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Abstract19

An interesting feature of the brain is its ability to respond to disparate20

sensory signals from the environment in unique ways depending on the21

environmental context or current brain state. In dynamical systems, this22

is an example of multi-stability, the ability to switch between multiple23

stable states corresponding to specific patterns of brain activity/con-24

nectivity. In this article, we describe chimera states, which are patterns25

consisting of mixed synchrony and incoherence, in a brain-inspired26

dynamical systems model composed of a network with weak individ-27

ual interactions and chaotic/periodic local dynamics. We illustrate the28

mechanism using synthetic time series interacting on a realistic anatom-29

ical brain network derived from human diffusion tensor imaging (DTI).30

We introduce the so-called Vector Pattern State (VPS) as an efficient31
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way of identifying chimera states and mapping basin structures. Cluster-32

ing similar VPSs for different initial conditions, we show that coexisting33

attractors of such states reveal intricately “mingled” fractal basin bound-34

aries that are immediately reachable. This could explain the nimble35

brain’s ability to rapidly switch patterns between coexisting attractors.36

Keywords: brain, synchronization, chimera states, cluster synchronization,37

fractal, fractal basin boundary, riddled basin, complex networks, dynamical38

systems39

1 Introduction40

It is known that the complex dynamics of the brain exhibits numerous spa-41

tiotemporal patterns associated with its many capable responses to a given42

stimulus, as seen in various imaging techniques. Yet, there has not been a43

good theory to explain how the system is able to switch among these patterns.44

Rapidly changing patterns of active brain regions, each containing different45

types of interconnected neurons that have continuously changing electrochem-46

ical properties and environments, only begins to touch on the complexity of47

a full-scale brain model. This challenge is often countered by course-graining48

the system to reduce the dimensionality and simplify the model. For instance,49

instead of analyzing the brain at the neuronal level, even the observational50

scale of tens of thousands of voxels containing blood oxygenation level depen-51

dent (BOLD [1]) signals from functional magnetic resonance images (fMRI)52

are down sampled to many fewer anatomical or functional brain regions so53

that functional brain networks of smaller sizes can be analyzed [2, 3].54

Experiments using fMRI and other imaging technologies reveal that the55

brain exhibits a rich variety of activity patterns. While it is generally accepted56

that certain brain regions are more, or less, active when specific tasks are57

performed or certain sensory systems such as vision, hearing, or touch are stim-58

ulated, it is the global activity patterns that are particularly of interest to us59

here. An active brain region also implies active neurons, which share informa-60

tion with other neurons and other brain regions. They transmit their signals61

along axonal pathways via electrical events called action potentials and com-62

municate with other neurons through diverse electrical and chemical synapses63

[4]. Neural transmission, the process of sharing information along constrained64

neuroanatomic pathways, can result in neurons exhibiting synchronous large-65

scale firing patterns, for instance, the collective firing of neurons generating66

cortical oscillations [5]. In order to understand how the brain processes envi-67

ronmental cues to generate our experiences, thoughts, and/or emotions it68

is essential that we better understand these ever-changing, i.e. dynamical69

patterns of synchronous brain activity [5].70

Brain activity can be described mathematically as a complex networked71

dynamical system which exhibits a key property of multi-stability between72
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numerous states, each associated with different patterns of synchronous activ-73

ity. The burgeoning field of network neuroscience has used functional brain74

connectivity [6] to identify regions of synchronous brain activity, typically75

assessed using correlations, to show that various patterns of synchrony are76

associated with distinct cognitive processes [7–9] or brain disorders [10, 11].77

Epilepsy, for example, might be understood as a neurological disease of excess78

synchrony [12]. Most of the time the brain exhibits patchy or partial synchrony,79

which is a state in which a subset of nodes (or brain regions) synchronizes while80

activity in other nodes is incoherent [13]. This state of partial synchrony is81

often referred to as a chimera state, including cluster synchronization [14–16].82

We use the term chimera state broadly to describe the presence of coexist-83

ing synchronous and asynchronous (meaning disordered) patterns, and saving84

ourselves the issue of modifiers to allow for various kinds of synchrony in the85

definition, see details in the SI. Thus, we consider chimera states as an activ-86

ity pattern where some subset of the system is synchronous and the rest may87

be incoherent [17].88

Chimera states have been observed in brain networks at various scales,89

from small to moderate size neural networks composed of spiking neurons [17]90

to brain networks from C. elegans and cats [18, 19]. More recently, researchers91

have extended their investigations to analyze large-scale functional patterns92

of simulated brain activity using various oscillator models interacting on DTI93

structural brain networks [20–22]. Spatiotemporal activity patterns over dif-94

ferent brain regions fluctuate over time during resting state, so describing95

brain dynamics in terms of chimera states holds promise, particularly con-96

cerning the multistability and metastability of brain activity patterns [23, 24].97

The key feature of the litany of potential chimera states is that, in a healthy98

brain, the different organized and disorganized activity patterns coexist with99

the potential for rapid switching between various states in response to stimuli.100

Mechanism for the nimble brain. It has been previously observed that the101

brain is capable of relatively fast task switching and this has been suggested,102

with both experimental and numerical support [25–30] to be related to the103

stability of the basins of attraction involved. Yet, the dynamical mechanisms104

that underpins the ability of the brain to perform such switching in a rapid105

manner remain unknown. In particular, why does the basin of attraction of106

a particular task appear to be quite stable when it is being performed, while107

simultaneously allowing for ease of switching between tasks? In this work, we108

propose a potential mechanism for the agile switching between brain activity109

patterns/states, a process that supports the nimble brain. Using a perspective110

of dynamical systems, the nimble brain is explained by a complex basin of111

attraction for each chimera state with multiple states highly intermingled into112

a fractal basin boundary. Fractal basin boundaries generally involve a large113

uncertainty in the final state of a multi-stable system [31]. That is, which initial114

conditions will lead to a particular final state depends on the detailed intrica-115

cies of closely packed and intermingled sets associated with disparate basins of116

attraction [31–35]. In particular, there is an apparently rich “intermingling” of117
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these boundaries, as the present phenomenon of what is called riddled basins118

[36–38], that we present in the results. This offers a potential mechanism for119

agile switching between disparate but complex dynamical patterns, i.e. nimble120

brain activity, because small changes in current state caused by environmental121

stimuli would be enough to switch between distinct stable brain states.122

An accurate model for capturing the dynamics of the whole-brain has been123

elusive [24] and even if such a model existed, it would be premature to use such124

a complex, high-dimensional system to map the basin structures investigated125

here. Hence, we adopt a simplified model of spiking neurons on a structural126

brain network generated using DTI data from a prior study [39]. Much like127

prior neuroscience research modeling chimera states [20–22], we located brain-128

inspired dynamical models, Hindmarsh-Rose (HR) neurons in our case, at each129

node in the DTI network. As a recent research has demonstrated that when130

coupled, they can exhibit chimera states under specific parameter settings [18].131

Others have used models such as Wilson-Cowan oscillators [20, 22], FitzHugh-132

Nagumo neurons [21], as well as Kuramoto oscilators [22]. Regardless of the133

chosen neural model, this approach allows us to minimize computational com-134

plexity while still providing a mechanism to emulate the essential features of135

the nimble brain’s behavior. Furthermore, we assess the robustness and gen-136

eral applicability of our findings by testing various individual node dynamics,137

including Kuramoto oscillators and Hénon maps.138

We map regions of stability of chimera states to allow us a better under-139

standing of how these disparate patterns co-exist. To make it possible we140

introduce a technical innovation called the Vector Pattern State (VPS) that141

characterizes generalized synchronous behaviour from multivariate time series,142

allowing for phase and approximate synchronization. Using the VPS technol-143

ogy we are able to cluster similar states from different initial conditions and144

uncover the underlying riddled basin structure of our brain model. This obser-145

vation sheds light on a biologically important assertion: fine-scale topological146

structure of the basins of coexisting chimera states is potentially underlies147

the ability of our nimble brain to rapidly switch between various spatial148

synchronization patterns.149

2 Results150

2.1 Neuronal model and brain regions151

Our phenomenological approach is to leverage the presence of chimera states152

in neuronal systems as a simplified, yet neurologically relevant, model to illus-153

trate our claims regarding the topological fractal basin boundaries in the brain154

model dynamics. First, we illustrate the concept of how the brain could switch155

between disparate pattern states with a semi-synthetic complex coupled sys-156

tem consisting of the well-accepted HR model of spiking neurons, where the157

coupling structure is a true structural brain network with 83 cortical regions158

connected by white matter fiber tracts measured using DTI. Fig. 1 illustrates159

the the organization of this network in brain space.160
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A general model of coupled identical units is given by:161

ẋi = f(xi) + σ

N∑
j=1

[A]i,jh(xi,xj), (1)

where xi ∈ Rd is the state vector, f : Rd → Rd represents the individual162

node dynamics, σ ∈ R+ is the coupling strength, A is the adjacency matrix163

describing the coupling structure, and h : Rd → Rd is the coupling function.164

We consider the individual node dynamics given by HR [40, 41] oscillators. For165

this model, xi =
[
xi, yi, zi

]T
, and the individual node dynamics is166

f(xi) =

yi − ax3
i + bx2

i − zi + I
c− dx2

i − yi
r(s(xi − xR)− zi)

 . (2)

Above x represents the membrane potential, y is the rate of transfer of sodium167

and potassium ions through the fast channels, and z is the adaptation current168

which reduces the spiking rate after a spike has occurred, see SI (Sec. 5.1) for169

more details about the parameters. We consider diffusive coupling through all170

variables171

h1(xi,xj) =

xj − xi

yj − yi
zj − zi

 . (3)

The diffusive coupling mimics electrical interactions between the neurons: a172

higher difference of ’+’ and ’-’ ions between pre-synaptic and post-synaptic173

neurons causes a proportionally higher flow of these ions through channels. We174

also consider a more realistic model of the neuronal dynamics, which includes175

coupling through two terms,176

h2(xi,xj) =

 0
yj − yi

0

− α(xi − Vsyn)

[1 + e−λ(xj−θsyn)]−1

0
0

 . (4)

The first coupling term in Eq. (4) describes simple diffusive coupling through177

the y-variables only, while the second represents a “chemical coupling”178

function. This coupling scenario was presented in [18] as a more realistic con-179

sideration of two types of neuronal connections, one set which interacts through180

electrical signals and the other does so chemically. An interesting feature of this181

model was the coexistence of multiple different chimera states, even though182

the network did not contain any non-trivial automorphism (symmetry) groups.183

Recently it has been shown that such symmetries are a sufficient [42, 43],184

but not necessary [44, 45] condition for a graph to support a stable chimera185

state. This is an important distinction since, in fact, the DTI network that186

we examine here contains no such non-trivial automorphism group. Indeed, as187
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the number of nodes in a network increases, the lower the likelihood that the188

network will contain such symmetries [46].189

Simplification is the first step. Our model of the brain dynamics incor-190

porates simplifications, where we employ a single-neuron model to represent191

the dynamics of a node. While more complicated approaches such as the192

Wilson-Cowan nonlinear oscillator [20, 47] or the neural mass model [24]193

could better represent large pools of neurons, the intricacies involved, such as194

higher-dimensional descriptions and noise, might obscure the essence of our195

observations. Addressing these challenges in more elaborate models is a task196

for future research.197

2.2 Vector Pattern State198

At some chosen initial time (t = 0) the network is in a particular initial state,199

see Fig. 1. Each node undergoes some dynamics, shown as a time series, and200

after a transient time, reaches a final state. Out of all time series generated by201

the network, three are depicted in Fig. 1. Each of the nodes can be classified202

based on their level of activity by assigning each node a color based on intensity,203

and nodes with approximately the same level of activity are given the same204

color.205

A chimera state generally describes a scenario amongst N coupled dynam-206

ical nodes [16, 49] whereby their time variables z(t) = (x1(t),x2(t), ...,xN (t))207

(in the notation here, xi(t) ∈ R3 denotes one of the coupled HR oscillators;208

in Eqs. (1)-(2), z(t) ∈ R3N encompasses the set of all the coupled variables)209

eventually converge to a state where some of the variables at nodes synchro-210

nize, t > 0, possibly including a phase shift, while others of the variables are211

incoherent to those, but possibly synchronous amongst themselves. The latter212

scenario, with the remaining variables being synchronous amongst themselves,213

is also called cluster synchrony [42, 50].214

Traditionally, activity patterns have been identified in terms of the level of215

synchrony of the overall system [24, 51]. However, the system may exhibit syn-216

chronous, asynchronous, and partial synchrony, which encompasses chimera217

states. However, partial synchrony limits a richer characterization of the pos-218

sible activity patterns. Indeed, for a large system such as the DTI network of219

N = 83, the chimera states can be plausibly quite complex, with exponentially220

many plausible groupings, and many in fact are feasible. Thus, the characteri-221

zation of different chimera states requires deciding which variables synchronize222

in the complex networked system of HR oscillators.223

To characterize a chimera state of the 83 brain regions, we quantify the224

level of synchrony between pairs of nodes in the network. More precisely, after225

a large time T0 > 0 to allow transients to settle, the time series xi(t) are226

compared to xj(t − τ) for each i, j pair, as depicted in Fig. 1. Allowing for227

phase shift synchrony by a possible shift, we must decide if228

L(i, j, τ) = lim
T→∞

1

T

∫ T0+T

T0

∥xi(s)− xj(s− τ)∥22ds, (5)



Springer Nature 2021 LATEX template

Fractal Basins as a Mechanism for the Nimble Brain 7

alignment matrix

Feature vector

VPS

DTI network Time series  matrix 

vectorization 
and concatenation

Encoding chimera state

6 nodes motif

Complete 
synchrony

Cluster
synchrony

Phase shift
complete synchrony

initial state final state

Fig. 1 Schematic diagram of the Vector Pattern State construction. (Top) The
actual DTI network used in this work mapped to brain space, generated by BrainNet Viewer
1.7 (www.nitrc.org/projects/bnv/) [48], is shown on the left. Nodes are structural brain
regions and the edges are anatomical connections via white matter fiber tracts. The size of
each node is scaled by the degree centrality. From some initial state the dynamics of the three
individual brain regions are shown as hypothetical time series, reaching a final state. The
time shift τ and alignment between states of all pairs of nodes is recorded at the final state,
yielding the τ and alignment matrix L(τ). (Bottom) To create a feature vector associated
with this final state, we stack and concatenate these matrices into a single vector, defining
the Vector Pattern State (VPS). The VPS encodes patterns of synchrony, with or without
phase shift. All states correspond to different VPSs, and are here distinguished in the 6 node
network, shown as different colored patterns. Each color (blue, green or orange) corresponds
to a given cluster in the network, while the color intensity captures phase shift in time.

is small for any phase shift τ > 0, which may be decided by minimizing229

L(i, j, τ). Here the limit to infinity means large enough integration time, see230

SI for practical implementation for finite time series. Since the maximum of231

the cross-correlation has the property that,232

argmax
τ

(xi ⋆ xj)(τ) = argmin
τ

L(i, j, τ), each i, j = 1, 2, . . . , N, (6)

www.nitrc.org/projects/bnv/
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it is convenient to estimate when variables xi(t) and xj(t) settle into a233

synchronous state by maximization of the discrete cross-correlation,234

Rxi,xj (τ) =
∑
t

xi(t)xj(t− τ), (7)

in terms of the scalar xi, the first index of each xi.235

After all pairs are taken into account, we construct the corresponding τ236

matrix and the alignment matrix via L(τ). From these matrices, we create the237

feature vector, the vectorization and concatenation of the two matrices into a238

single vector, which we call the vector patterns state (VPS)239

el = (τ∗1,2, τ
∗
1,3, . . . , τ

∗
N−1,N , βL(1, 2, τ∗1,2), βL(1, 3, τ

∗
1,3), . . . , βL(N−1, N, τ∗N−1,N )),

(8)
where the parameter β ≥ 0 scales the importance of contrasting the opti-240

mal phase shift τ∗i,j for comparison of the coupled components, and that best241

matched difference between components L(i, j, τ∗i,j). Whether complete syn-242

chrony, cluster synchrony, or chimera, with or without phase shift, all patterns243

are encoded via the VPS, as illustrated in Fig. 1.244

2.3 Fractal basin structure supports the nimble brain245

Basin of attraction is defined as the set of all the initial conditions in the phase246

space whose trajectories eventually fall into a particular attracting state. In247

our case, different initial conditions may lead to the same final state (and are248

assigned to the same color when visualized) according to the VPS. It is the249

pairing of the initial state with the final state which we are interested in. This250

represents the structure of the basin of attraction to various final states.251

Recently, there has been significant research into unraveling the basin struc-252

ture of attractors in high-dimensional systems [52–55]. Typical questions about253

basin structure have centered around the size and shape of these basins, both254

quite challenging in our specific case. We are dealing with a system compris-255

ing 83 nodes, each associated with a three-dimensional dynamical model, with256

a phase space that is 3 × 83 = 249 dimensional. In contrast to many current257

studies that rely on characterizing states based on identical synchronization,258

our focus is on achieving approximate synchrony. We find this approach more259

versatile and applicable to a broader range of neuroscience questions where260

identical synchrony is unlikely. Hence, mapping the basin of attraction struc-261

ture of the various chimera states based on approximate synchrony becomes262

a problem of associating many long-time patterns from distinct initial condi-263

tions, and so this requires a way to match similar signals corresponding to264

occurrences of disparate chimera states. The full basin structure is too complex265

to visualize, hindering any chance to uncover its structure, and consequently,266

the mechanism of the nimble brain. To this end, we use the introduced VPS267

to solve this mapping problem.268
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We wish to partition a randomly selected “slice” of the phase space into269

those regions with similar asymptotic behavior, by observing a sample of M270

initial conditions which we index by l, Z = {zl(0)}Ml=1. To this end, we wish271

to decide the synchrony pattern of any one zl(0), by comparing the long time272

state of component time series according to Eq. (5) at optimally matched phase273

shift, according to Eq. (7). With the VPS, we can now assert that two initial274

conditions zk1
(0) and zk2

(0) yield asymptotically similar complex synchrony275

patterns only if their VPS are relatively close, i.e. ∥ek1
− ek2

∥2 is small.276

Now the problem of partitioning the phase space into like asymptotic277

chimera states reduces to a clustering problem of all VPSs relative to the dif-278

ferent initial conditions. To this end we apply the k-means method to the set279

of VPS, {el}Ml=1, to cluster the space into k-regions (colors) and we map the280

phase space by associating these colors to each corresponding initial condition281

zl(0). Thus the clustering is a partition function, P : Z → {1, 2, .., k}, as shown282

in Fig. 2. We describe these as basin plots since in any like colored region, the283

orbits of the initial conditions map asymptotically to similar patterns. Relevant284

details concerning the experimental methods are included in the figure cap-285

tion. As noted above, a key component of our method in determining how to286

group the final states into their various attractors is clustering. While numerous287

clustering methods exist, we chose, for reasons of computational complexity,288

k-means. Thus a general description of the k-means algorithm as a clustering289

method, and the manner in which we choose how fine to partition the space290

with the selection of a specific k are both presented in the SI.291

2.4 Coupled HR oscillators in a DTI network292

Even with these simplified dynamical models of the brain, there is still rich293

complexity that demonstrates interesting phenomena in the basin structure. In294

Fig. 2 we show that using the coupled HR oscillator model, the basin boundary295

between the states has a non-integer Hausdorff dimension, and thus fractal296

basin boundaries. In the parameter regime a = 1, b = 3, c = 1, d = 5, s = 4, r =297

0.005, xR = −1.6, I = 3.25, σ = 0.5, α = 0.03, Vsyn = 2, θsyn = −0.25 and λ =298

10, which is known to contain chimeras [18], we use the electrical and chemical299

coupling functions, Eq. (4), where the corresponding adjacency matrices are300

assumed to be the same, unlike in [18]. Here for the first time, we map the301

manner in which these states are intricately co-mingled. On an arbitrary plane,302

in this case, which we selected randomly as a slice of the full phase space303

restriction for the sake of visualization, a uniform grid of 750 × 750 initial304

conditions is chosen. The various colors label initial conditions associated with305

differing chimera state states. Furthermore, “zoom” restrictions of the domain306

are also shown to illustrate the fractal-like structure of the basins of attraction307

at a finer scale. We validate this assertion by computation, that the basin308

boundaries projected into the planes shown to have a box counting dimension309

that is not an integer. The box counting dimension of the boundary sets was310

found to be fractal in Fig. 2 (b), where the dimension was estimated to be311

dbox ∼ 1.8, by the method described in Eq. 11.312



Springer Nature 2021 LATEX template

10 Fractal Basins as a Mechanism for the Nimble Brain

Fig. 2 Fractal riddled basin of the full featured HR oscillator model on the
DTI network. a) An arbitrary plane “slicing” through the full high dimensional space was
selected on which initial conditions are sampled uniformly. Here the x component of the
29th oscillator and the x-component of the 80th oscillator, at t = 0 define the plane. In
this basin, the initial conditions associated with different chimera are each a different color.
Note that in a region that appears to alternate between just a few states, actually exhibits
a rich structure with many different interleaved states when zoomed in at higher resolution.
b) The basin boundary set shown in a). The box counting fractal dimension of the basin
boundary in this plane, which is computed dB ∼ 1.8, being non-integer indicates a fractal
set. We consider full featured HR oscillator model Eqs. (2),(4) with a = 1, b = 3, c = 1, d =
5, s = 4, r = 0.005, xR = −1.6, I = 3.25, σ = 0.5, α = 0.03, Vsyn = 2, θsyn = −0.25 and
λ = 10. The partition into basin structure associated with distinct dynamical chimera states
follows k-means clustering on the VPS structure, Eq. (8), using the cost Eq. (5), inferred
with cross-correlation, Eq. (7), using k = 8, the result of a classic elbow method.

The basin structure in Fig. 2 appears to exhibit complexity beyond simple313

fractal basin boundaries. A riddled basin structure appears, which is the sce-314

nario that regions exist where points in the domain of one attractor have the315

property such that small neighborhoods of nearby points have a nonzero prob-316

ability of being in the basin of another attractor [36–38]. In practical terms,317

this means that there are large regions in phase space where it is likely that318

even small perturbations can send the outcome to regions corresponding to a319

different state. This has significant implications for the possibility of nimble320

switching between states, since switching between multiple states that may321

be co-mingled in the phase space may require only vanishingly small control322

inputs.323

2.4.1 Fractal basins are ubiquitous324

HR oscillators coupled in small networks. To illustrate the generality325

of our results, we present fractal basins in different networks. Fig. 3 displays326

complex patterns that can be found in the basin of a smaller network of 6327

oscillators, as shown in Fig. 3 (a). We use the electrical coupling scheme with h1328

given in Eq. (3), and the parameter values based on earlier research works, see329

[56, 57]. We chose to examine a small synthetic network, which does not have330

any non-trivial automorphism group, to demonstrate the ability of a coupled331
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Fig. 3 A simplified HR model with diffusive coupling Eqs. (2)-(3) on a small graph
illustrates the ubiquity of fractal basin structure of chimera states. (a) A network of 6
nodes that does not contain non-trivial symmetries. Nonetheless, there are many stable
chimera states (at least on the time scale examined), and the basin structure shown in 8
colors indicates distinct patterns that can be derived by VPS structure, Eq. (8), by the
same method as in Fig. 2. (b) Fractal basins for HR oscillators on this network when
xR = −0.5(1 +

√
5), I = 3.27, r = 0.017, σ = 0.0004, and β = 1. All other xi, yi, and zi

values at t = 0 are initialized to be −0.5. (c) and (d) are zoomed regions indicated by the
black rectangles in (b) and (c). (e) Centroid locations of two of the clusters in τ − L space,
which resembles the approximate form of most of (or all) VPSs inside (see SI for a detailed
view of all el vectors inside each cluster).

HR model to form a basin that has fractal boundaries. In fact, in Fig. 3 (b),332

the corresponding estimate is dbox ∼ 1.27, where it shows the basin structure333

grouped into 8 different states using k-means. Figs. 3 (c) and (d) are shown334

in zoomed (restricted) in regions of Fig. 3 (b) and Fig. 3 (c). The structure of335

the basin is quite complex at all scales examined.336

We further explore two more examples of local dynamics and network struc-337

ture to support the generality of our claims on the nimble brain. In Fig. 4 we338
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illustrate these examples, and thus the ubiquity of complex basin structure339

between various chimera states.340

Identical Kuramoto oscillators. We consider the following equations of341

motion for the identical oscillators342

θ̇i = σ

N∑
j=1

[A]i,j sin(θj − θi − α), i = 1, . . . , N, (9)

where σ is the overall coupling strength and α = π/2− γ with γ = 0.025. The343

adjacency matrix A represents a network that does not have full permutation344

symmetry. To generate this network we initiate two populations of 5 nodes345

that are globally coupled akin to [58], and remove uniformly at random one346

edge from the graph, see details in the SI. Fig. 4(a) shows the complex basin347

structure that is captured using our VPS.348

Hénon map. Additionally, we study the network of coupled Hénon maps,349

[
xi(t+ 1)
yi(t+ 1)

]
=

fx(xi(t), yi(t)) + σ
N∑
j=1

[A]i,j

(
fx(xj(t), yj(t))− fx(xi(t), yi(t))

)
fy(xi(t), yi(t))


(10)

for i ∈ {1, 2, ..., N}, with fx(x, y) = 1 − px2 + y, fy(x, y) = bx and t ∈ N,350

as discussed in [59]. The parameters chosen are p = 1.44, b = 0.164, σ =351

0.8. The network used is the DTI brain network from Fig. 1. Fig. 4(b) again352

highlights the generality of the complex structures and also the utility of the353

VPS technology. Further details of both of these examples are presented in SI354

(Secs. 5 and 6).355

3 Discussion356

The brain has proven to be extremely nimble in its ability to switch between357

states in response to stimuli, thoughts, and/or decisions. As observed by358

various imaging techniques, this is associated with rapid switching between359

patterns of synchronous, chimera, and incoherent states.360

Basin structure of network dynamics. Several prior works have studied361

the basin structure of chimera states in networked systems. There have been362

observations of chimera states with an intermingled basin structure in a special363

case of a strongly self-coupled cluster network specifically designed to empha-364

size chimera; see an explanation of critical switching behavior [60]. Authors in365

[61] found highly riddled basins in small and highly symmetric all-to-all net-366

works of coupled phase oscillators. Fractal basins of chimeras states were found367

in small networks of coupled complex maps [62]. In [54] the authors use a low-368

dimensional description valid for the infinite size system [63] to characterize369

the basin structure of different patterns in a model of two populations of all-370

to-all coupled Kuramoto oscillators [58]. Likewise and related, in [22] analyze371

the same highly symmetric two population network model for chimera, but372

then illustrate chimera states for a DTI network with coupled Wilson-Cowan373
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Fig. 4 Riddled basins for different networked systems. (a) The left panel shows a two-
dimensional section of the state space for a system of coupled phase oscillators on a network
showing basins of 12 (clustered) distinct states. Right panel Zoomed in from inset of a)
showing basins of 7 (clustered) distinct states. To construct the VPS, we use β = 1 in
Equation (8) and a grid with 1248×1248 and 624×624 for left and right panels, respectively,
uniformly sampled initial conditions. (b) Hénon map dynamics on a DTI network with no
non-trivial symmetry. See further details in the SI.

oscillators. They define chimera states in terms of a highly approximate syn-374

chrony, which is not a general approach such as our VPS that would allow for375

analysis of basin structure. Similarly, in [19] chimera premised on approximate376

synchrony was described for a cat brain connectome data set [64] describing377

coupled HR oscillators as coupled through one variable only, but again, no378

basin structure was found. In [59], authors use the chaotic Hénon map coupled379

by again a highly symmetric network, the circulant (ring) stricture, and thus380

to find fractal basins for chimera premised on identical synchrony.381

Dynamical systems theory is useful to explain the brain. Dynamical382

systems theory has been adopted as an approach to gain insights over the brain383
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dynamics across various scales [65–72]. Instead of an empirical or quantitative384

investigation, e.g. trying to observe attractor-like states [65, 73], most investi-385

gations have focused on proposing theoretical dynamical mechanisms [68, 70].386

For example, dynamical systems theory has contributed to the development387

of theories of consciousness, by so-called integrated information theory (IIT)388

[67], or the description of complex switching phenomenon in biological systems389

by the concept of chaotic heteroclinicity [69].390

Within a dynamical systems perspective, numerous possible mechanisms391

exist, necessitating research to pinpoint the one that aligns most closely with392

empirical data. In this context, we provide numerical evidence of fractal basin393

boundaries that have non-integer box counting dimension, and riddled basin394

boundaries.This evidence corroborates a theoretical explanation for resting-395

state brain dynamics, as investigated in [68], which shows the promise of this396

dynamical mechanism. We observe these properties in numerical simulations397

of multiple different systems of coupled dynamical oscillators, using an exper-398

imentally determined human structural brain network as well as small test399

networks. With this evidence, we have identified a potential mechanism that400

would allow a nimble brain to switch between various distinct states with only401

small changes in the system parameters.402

From a dynamical systems perspective, we argue that coexisting attractors403

corresponding to the various chimera states may seemingly suggest that large404

perturbations would be required to transition from deep in the well of one405

stable state to another. A brain with such dynamics would be at odds with the406

idea of a system that can nimbly switch between states. From a neuroscience407

perspective, it may seem that to transition from one brain state to a distinctly408

different brain state, one would have to traverse many unique states on a409

trajectory to the final desired state. We offer an explanation for how to resolve410

this seeming contradiction in the form of fractal basin boundaries. The fractal411

basin boundary allows for different stable states to be mixed together closely,412

creating the opportunity for small perturbations to lead to entirely different413

stable states, as patterns of chimera.414

Thus, the main results of this work are summarized as follows:415

1. Our main proposal is that brain activity switching, that is, the nimble416

brain, is explained by fractal intermingled (riddled) basins. Complex basins417

of attraction for each chimera state are intrinsically highly intermingled.418

Thus, significantly different states are nonetheless near each other, in the419

dynamical variables of the phase space, and so available for nimble control420

manipulations by internal cognitive processes or external environmental421

events.422

2. Even though the networks in the system have no symmetries, a general-423

ized interpretation of synchrony allows fractal (intermingled) riddled basins,424

including relatively small model networks.425

3. A crucial technology that underpins these above two assertions is based on426

clustering the VPSs corresponding to chimera states. Here, the k-means of427

a metric between VPS is a convenient clustering approach. Implementation428
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of the computational task in mapping fractal basins is a key technical inno-429

vation that we have developed as background for this new description of430

the neuronal dynamics of the brain. Our approach can be extended to more431

complex models of brain dynamics.432

Our approach allows the first step to find basin structure of complex high-433

dimensional systems. Our initial description of such fractal basins necessitated434

a somewhat simplistic, though biologically inspired, brain model. Now that we435

have presented this potential mechanism for nimble brain state shifts, exper-436

imental neuroscientific studies are needed to empirically validate, or reject,437

the hypothesis that we have presented. We also envision studies that further438

investigate the structure of these basins. Promising directions include octopus-439

like basins for basin structures for chimera states [55], narrowing down other440

potential mechanisms for the nimble brain.441

4 Methods442

4.1 Fractal basins: box counting dimension443

The assertion of fractal basin boundaries is a matter of considering the approx-444

imate boundary set SBL, such as the one shown in Fig. 2(b), from the basin445

set in Fig. 2(a), shown in cross-section with respect to the variables.446

The box counting dimension can be estimated by counting a covering of447

squares of side length ϵ, and then consideration of this count N(ϵ) upon448

refinement by decreasing ϵ. The box dimension is defined [74]:449

dbox(SBL) = lim
ϵ→0

ln(N(ϵ))

ln(1/ϵ)
, (11)

that is equivalent to the Minkowski-Bouligand dimension. While SBL is sim-450

ply a slice of the full high-dimensional boundary set, the non-integer result,451

dbox(SBL) = 1.8, together with the statistically self-similar structure shown,452

supports the assertion of a fractal set. Likewise, in Fig. 3(b), the corresponding453

estimate is dbox ∼ 1.27.454

Data availability. The network structure used here was derived from dif-455

fusion tensor imaging, and parcellated by the Lausanne anatomical atlas into456

83 anatomical regions. This structure is publicly available [39], see the link457

https://rb.gy/q3o71, from which we selected “Subject 1” as used in [75].458

The visualization of the DTI network is generated by BrainNet Viewer 1.7459

(www.nitrc.org/projects/bnv/) [48].460
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