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Abstract

In a previous paper, [1], we gave a new formalism to solve
the Inverse Frobenius-Perron Problem (IFPP), to produce a
dynamical system, uniformly nearby a given dynamical sytem,
but with a drastically different and desirable invariant density.
Our previous algorithm reduced the problem of producing the
dynamical system G with desirable statistics 8(z), into a con-
strained optimization problem, which we solved in {?. However,
we pointed out that if this I solution does not correspond to a
useful solution, one could not conclude nonexistence. The [*®
solution to the same optimization problem allows for a sharp
existence-nonexistence theorem. In this paper, we present for
the first time an [°° algorithm which produces solutions to our
IFPP, and conclude our nonexistence theorem which is perti-
nant to this solution. Then we discuss applications in control
of chaos, both by open-loop control strategies for maps, and
we discuss future applications to feedback control of flows.

1. Introduction

A major difficulty of nonlinear control theory has involved
globally representing the action of the dynamical system on
its phase space. A complete, and now classical, global rep-
resentation of a dynamical system is in terms of its symbolic
dynamics. We have recently [1] demonstrated that a graph ap-
proximation of the symbolic grammar is a highly efficient way
to completely encode course-grained control strategies. Closely
related to the topological notions of symbolic dynamics, are the
measure-theoretic notions of the transfer operator, including
the Frobenius-Perron operator, which time-advances ensemble
densities of initial conditions. The author has recently shown
that since such global representations of these operators are
easily course-grained by matrices (this idea dates to Ulam [4]),
the difficult problems of developing a global control strategy
can be reduced to much easier problems, 1) of linear algebra if
targeting invariant-density (IFFP - “Inverse Frobenius-Perron
Problem”), 2) or to symbolic dynamic [2] and combinatorial
problems [3] of path searching, if targeting optimal trajecto-
ries. Essentially, the nonlinearity of “stretch-and-fold” can be
accounted for by the action of a linear operator, approximated
by a matrix, or equivalently by a digraph over the function
space of densities. In this course-grained approximation, paths
through graphs model epsilon-chain trajectories of the dynam-
ical system.

Here, we extend control strategies based on transfer operator
representations of the action of a chaotic dynamical system, on
its invariant subspace. Suppose we are given a dynamical sys-
tem F : M — M, with an undesirable invariant density p(x),
but we prefer the long term statistics of some other measure

B(z). We wish to construct a sup-norm nearby dynamical sys-
tem G such that this new dynamical system has the desirable
statistics B(z). In our previous work, 1) we approximated the
Frobenius-Perron (F-P) operator of I, 2) we gave an algorithm
which generates a new F-P operator, which when its exists, has
the more desirable density as its steady state, and then 3) us-
ing what we call the “Inverse Ulam Problem,” we constructed a

transformation &G : M — M which has the required F-P opera-
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tor and hence the desirable statistics S(x). Our algorithm was
based on a constrained minimization problem, which we previ-
ously solved in 1%, by a modified least squares algorithm using
Singular Value Decomposition (SVD), but we gave a theorem
that stated that if this I solution did not generate the de-
sired statistics B(x), then it was feasible that there still existed
some as yet unfound solution. Then we pointed out that the
{®® minimal solution would not allow such a loop-hole. Hence
given the [°° solution of the same constrained optimization, not
finding an appropriate F-P operator implies nonexistence of a
transformation G uniformly nearby F, which has the desirable
statistics. Therefore, in this paper we present for the first time
a new algorithm, based on repeated linear programming, to
solve the required constrained optimization [°°.

We consider the implication of being able to globablly sta-
bilize a desirable invariant state, or drammatically alter long
term operating properties of a chaotically oscillating circuit to
be important, opening a rich range of potential new applica-
tions. As a preview of such potential, we consider the double-
welled Duffing system as an example of our techniques applied
to a flow system, and other flow systems such as say, Chua’s
circuit are equally readily altered.

2. IFPP: Targeting Invariant Measure

Remarkably, while a chaotic dynamical system

F:M—MMEeR" (1)
is nonlinear and typically has the critical ingredient of chaos,
“stretch-and-fold,” analogous to the Smale horseshoe [5], the
one-step action of the map in the space of (ensembles of initial
conditions) densities is that of a linear transfer operator [7,
8, 9]. The Frobenius-Perron operator generates an associated
linear dynamical system on the space of densities.

Pp: LY(M) — L*(M)
defined by [10, 7, §|,
> Al | s o, ©)

F/
{y:F(y)==} | (y)|

(2)

(Pr)p(z) =

where the sum is taken over all pre-images, y, when the map has
a multiply branched inverse. This infinite dimensional opera-
tor is typically not realizable in closed form, except for special
cases [3]. However, the so-called Ulam’s method, conjectured
in 1960 by S. Ulam [4], and proven for specific cases (see for
example [11, 12, 13, 14]), provides a robust technique to project
this operator to a finite dimensional linear subspace of L'(M)
generated by the set characteristic functions supported over the
partitioning grid [11]. The idea is that refining the grid yields
weak approximants of invariant density. Roughly speaking, the
infinitesimal transfer operator, [15], L(y,z) = 6(y — F(x)), in-
tegrated over a grid square B;, which is small enough so that
F'(x) is approximately constant, is approximated by a con-
stant matrix entry A; ;. Under special assumptions on F(z),
statements concerning quality of the approximation can be
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made rigorous. Recently, many groups have been using Ulam’s
method to describe global statistics of a dynamical system,
[12, 13, 14, 16, 17] such as invariant measure, Lyapunov ex-
ponent, dimension, etc. From our point of view, this Ulam
approximation of the F-P operator, and other similiar transfer
operators, are an ideal starting point to realize a wide range of
global control objectives.

In [1], we considered the following IFFP. Given a dynamical
system FEq. (1), which has an undesirable “typical” invariant
density p(x) € L' (M), but we prefer a density B(z) instead.
(While an arbitrary DS is not know to have an SBR invariant
measure, this is not a problem since we will be controlling it
away.) Stated as an open-loop control problem, we asked in
[1], can a dynamical system G, uniformly nearby F', be found
such that G has [ as its invariant density?

Our approach was, based on Ulam’s method, to approxi-
mately discretize the one step transfer action of the dynamical
system. First we choose a uniform e-grid, covering the attrac-
tor, which is made-up of an N X N X ... X N grid of squares
{Qi}. Choosing € allows us to contol the sup-norm deviation
between G and ' over M. Now, using a long test orbit, of a
“randomly” selected initial condition, whose orbit we presume
to be dense in the attractor, we can build a transition matrix
A of observed transitions of orbits through the grid,

A #{xy such that z, € Q; and f(xy) € Q:}
e #{re € Qi }

This formula, for long test orbits, and small squares, gives ap-
proximately a finite-dimensional (matrix) approximation of the
true infinite dimensional F-P operator. Said another way, the
matrix can be considered as a finite dimensional projection of
the F-P operator, into the finite dimensional linear subspace of
! (M), generated by characteristic functions x 4, (z) supported
over each square ;. Typically the grid is not completely oc-
cupied (consider the box-counting dimension).

Stated in terms of the transition matrix A, which has a
steady state dominant eigenvector v (which approximated in-
variant density p(z) ), our [IFPP requires us to construct a new

(4)

matrix A such that the new steady state dominant eigenvector
© approximates the desired density G(x). We formally define
the following optimization problem to find a desired matrix
A=A+ 6A,

Control Rules:

1. (A+68A)-(v+6v) =v+ v, forces the desirable steady

state.

2. (A4 6A) is stochastic. Therefore,
(a) T (A4+64); =1, for all 4,
(b) and 0 < (A+6A);,; <1 for all (4,7).

3. Preserve grammar in the sense that we require 6A4;; =
0 for each (i,7) that A; ; = 0, which controls maximal
variations ||F(z) — G(x)[rsup(M) <e

4. |6 A ;|| is as small as possible.

Rules 2-4 serve as constraints on Rule 1. Constraints 2(b) is
a posterior condition for evaluating success of a given solution.
Notice the original steady state solution was A-v = v, and
therefore subtracting this from both sides of Rule 1 gives

SA-(v+ov)y=(I—A)- bv. (5)

Considering which are the variables and which are the known
values reveals that Eq. (5) is written “backwards.” Here, the
matrix A is known (found by Ulam’s method) and hence v is
easily calculated. Likewise, v 4 6V is an approximation of our
desired target density S(z) which we know. What we don’t
know is the required variations 6 A of the matrix. As is more

usual, this equation can easily be rewritten to emphasize the
unknown values (the nonzero entries of the matrix §A4) as a
vector da (indexed arbitrarily),

where, x = v + 6v, andy = (I — A) - év. (7)
In [1] we gave a specific example to help clarify the role of the
g-variables, due to the T-nonzero entries of 6 A, which is m xm,
and therefore T < m?, but typically much less dues to typically
small topological entropy. Therefore, we can generally rewrite

Egs. (6), together with the linear constraint that A 4+ 6A be
stochastic, Rule 2(a) has the following solution hyperplane,

2mxT Tx1 2mx1
B y
~)ea = ). G
C 0
or simply write the generic linear equation,
B y
D-8a =z, where, D = - and z = — (9)
C 0

We call this a solution hyperplane since we are typically under-
constrained, 2m < T', as D is not of full rank, leaving infinitely
many solutions. We are now in a position to carefully state the
new result in this paper.

This underdetermination of our inverse problem is in fact de-
sirable, as it allows freedom in choosing a solution. We choose
to find the solution on the hyperplane D - a = z subject to
linear constraints that A is stochastic (Rule 2) which is clos-
est to A, so §a is minimal. Previously, we used the Penrose-
pseudo inverse method to determine the least squares solution
of Eq. (9), 6a = D"z, where the Singular Value Decomposi-
tion D =U-Q-V*![18], gives DT =V - Q1. Ut While this 12
solution is usefully constructive, and straight-forward to calcu-
late via well known algorithms, it does not allow non-existence
conclusions if this {? solution of the constrained optimization
problem, Rules 1-4, is not a good solution. In [1], we called this
the “round-peg square-hole” problem. Basically, constraints of
Rule 2(b) define a hyper-cube, but least-squares defines round
balls, so while the least squares solution could be outside of the
“stochastic box” defined by Rule 2(b), there could still exist a
solution lurking in a corner of the hyper-cube, which least-
squares cannot rule-out. The [ solution does not suffer this
problem. Thus, we are motivated to present the [°° algorithm
for the first time in this paper.

3. Control by “Box” Norm

In the last section, we reviewed that control problem Rules
1-4, defines a linearly constrainted optimization problem, which
is easily solved, when a solution exists, by least squares, but
we remarked that nonexistence of this solution cannot rule out
the existence of some solution to optimization problem Rules
1-4, and therefore neither to the IFPP. Since the [°° solution
(the “box” norm”) does not suffer the same restriction, since
the linear constraints define a hyper-cube. We now present for
the first time, this [*® solution, from which we can state the
sharp existence theorem at the end of this section.

We have designed a simple algorithm, based on repeated lin-
ear programming [19], to construction the {°° minimal solution
of the control problem 1-4. The objective function is chosen to
be the infinity-norm,

n(éa) = max|da;|, 6a € H (10)

where H is the set of all §a satisfying the two sets of con-
straints, D - 8a = z and Rule 2(b), which we rewrite,
D-éa =z,
—akgéakgl—ak, fOI‘lSkST.
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The objective function Eq. (10) is not linear, and cannot be
minimized directly by linear programming, but can easily be
adapted to apply linear programming. Consider the objective

function which selects the P component of da;,
ni(ﬁa) = 6CL7;, da € HN K;, (13)
when the ith component is maximal, which is the additional

constraint,

Kf; = {6a : 6CL¢ — 6CL]' Z 0} (14)
In this setting, each n; is a linear objective function, subject
to linear constraints H N K;, and therefore we can easily find
the minimizing §a, by linear programming [19]. Linear pro-
gramming is a well matured topic, and highly robust routines
are readily available; we have used both the routines built
into Mathematica, and the Numerical Recipes subroutines [19].
First, we must shift the problem,
6C~Lk = day + Ak, (15)
to a unit hyperbox which allows us to avoid the (nonlinear) ab-
solute value sign. Therefore, we replace the objective function

(13), and constraints (11), (12) and (14) with,

ni(6a) = da;, subject to a € H N K;, (16)
H={6a:D-6a=2, and 0 < éay, <1, for 1 <k < THT)
Ki; ={éa : 6a; — éa; > 0}. (1R)

Note that substituting the shift (15) into constraint (11) gives
the shifted data vector z =2z + D - a.

Given the T minima of 7;, the overall minimum yields the
minimum of the infinity-norm Eq. (10), once this minimum

has been unshifted by Eq. (15),

min max ;(a) || —a, (19)
1<i<T \ acAnEK,;

and this can easily be calculated by iterating the linear pro-
gramming routines 7' times and then selecting the minimum,
largest 77;.

Now given this [* solution, we can recall our [1] sharp nonex-
istence theorem, which is now useful.

min n(éa) =
dacH

Theorem: Given the stochastic matrix A, with station-
ary distribution v, then if the [®*® minimal solution of D -
8a = z found according to the linear programming algorithm
Eqgs. (16)-(19), yields a A+ A which is not stochastic, then no
such A+ 6A exists

Given the above newly presented optimization algorithm,
and recalling our above theorem, we have a true constructive
procedure to either find a good solution, or to conclude that
none exists.

4. Back to Dynamical Systems

After the above forary into linear algebra, and then opti-
mization, we now recall our original problem. Find a transfor-
mation G : M — M whose statistics are desirable. Given a
successful solution (A + §A) of Rules 1-4, we must construct
a piece-wise transformation, on the grid squares {Q;}, whose
F — P operator is eractly the new matrix (A + §A4). We call
this the “Inverse Ulam Problem.” We a detailed description of
how to construct a piece-wise transformation in [1], the details
of which we do not have space to reproduce here, but the main
idea of the construction is as follows. A stochastic transition
matrix is equivalent to a Markov directed graph. Note also
that the definition of an F-P operator Eq. (2) has reciprocals
of derivatives (or determinant of the Jacobian) in the formula.
Therefore, the idea is to produce a piece-wise linear (affine)
function whose local determinant Jacobians are reciprocals of

entries of (A4 6A). Said simply, if (A+6A4);; = 0.1 for exam-
ple, then its is necessary that exactly 10% of box @; be mapped
into ;. Furtheremore, for reasons of requiring a Markov trans-
formation [6], it is necessary to require that horizontal strips
stretching all the way across ); be mapped exactly onto some
vertical strip which stretches all the way across @);.

Given a stochastic matrix A, we construct a piecewise affine
Markov map. Basically, we map 100 - A; ;% of the grid-cell @Q;

onto 100 - ﬁ% of the cell @;. This is done by the affine
gDk
transformation,
Az’ .
Js? 0 7
i,j _ Azj; T — Ty, L i
n Ty — / : +
(@) DY ( Y=Y > ( Y i
0 A

Yj,i

which simply scales the Az; ; X Ay; ; rectangle R; ;, whose lower
left corner is (2;,:,9;,1), linearly onto the Az’ ; x Ay} ; rectangle
R]/ryi, whose lower left corner is (x;yl,yj/yl) Our notation con-
vention is that I;; C s is the rectangle in @; which maps into
Qj, but onto R, ; C Q;, where R}, is the part of @; that came
from @;. The situation is even simpler for 1-D transformations.
These transformations can be considered to be highly general-
ized Baker’s transformations, which are “open-loop” solutions
to the control problem of selecting invariant measure.

5. Apriori Considerations, Examples

A well known theorem states [7, 1] that when a sequence
of transformations {F),} has a uniform limit F', and the corre-
sponding sequence of invariant pdf’s {p,(z)} has a weak limit
p(x), then that invariant pdf must be F' invariant. This places
strong restrictions on the type of solution to our control prob-
lems we can expect, but it is nonetheless not a continuity-type
theorem, even though it may seem like one at first reading.
The theorem implies that if our target measure is already an
F-invariant measure (but not necessarily the “typical’, i.e.,
“natural” or SBR-invariant measure), then € may be chosen
arbitrarily small, and we can still find an e-nearby to F' trans-
formation G (in the sup-norm) such that G has the new desired
measure. Such target invariant measures must be supported
over invariant sets, such as Cantor sets, and the delta measures
supported over UPO’s. In other words, we can make a UPO
globally attracting for an arbitrarily close transformation G.
Likewise, invariant Cantor sets which avoid some undesirable
set allow for “anti-control” [20]; say in some practical applica-
tion, we do not care were in phase space a trajectory goes, as
long as it does not go to a region representing “bad” momenta
or positions. On the other hand, if we attempt to target a mea-
sure which is not F-invariant, then the converse of the theorem
states that there exists some critical minimal €., > 0 such that
any attempt to solve the IFPP for ||F — Gllsup(ar) < € < €cr
must yield no solution to Rules 1-4, which is in fact what we
do find in practice.

We now give two examples. Consider a 1-D example in which
we are given the logistic map, F(xz) = 42(1 — z), and for this
well known example, and exactly this parameter, we have the
rare situation where we can exactly write down the invariant
density, which is, p(z) = 1/m+/2z(1 — x) [8]. However, suppose
we do not like this invariant density. We wish to choose an
invariant density with zero support over the interval [0.44, 0.58]
(and therefore supported over the Cantor set which also does
not include all pre-images of this interval). We show a piecewise
linear transformation, and its invariant density in Fig.1.

As a second example, we show in Fig. 2 the invariant den-
sity of a piece-wise affine transformation which is nearby the
Poincare’” map of the Duffing oscillator, and whose invariant
measure is atomic and supported over a fixed point of the Duff-
ing map.

While the control strategy described here and in [1] is “open-
loop” as stated in this paper, and in [1], in the context of
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maps, this type of control applies to flows, by considering the
above calculated “nearby” maps on surface of section to be
a set of globally calculated targeted next responses. Desir-
able statistics of maps or flows may be global stabilization of
UPOs, anti-control of “bad sets” or targeting some arbitrary
target measure. When [’ is a Poincare’ map of a flow, then
small variations ||F'— G||sup(ar) should be realizable by likewise
small parameteric variations, of enough adjustable parameters
(in Fig. 2 of the Duffing oscillator for example, we find that
two variations, (6a,db) usually span the tangent space). Pre-
liminary results indicate that a closed-loop control program
globally mapped by the pre-calculated “targets-function” G is
likely to be a practical new avenue to achieve a wide range of
new control objectives. See Fig. 3 which is a characature of the
flow of a Duffing oscillator, in which the precalulated variations
between 27-stroposcopic mappings might be forced according
to control map G, and variations are guaranteed to be small
by our construction.
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Figure 1: A piece-wise linear transformation, and its invari-
ant density, constructed to avoid the interval [0.44,0.58], using
a grid of 50-points. Note that this transformation looks strik-
ingly like the logistic map (by construction) but close inspection
reveals the differences.

Figure 2: Left: Invariant density of the Duffing oscillator: =’/ +
ax’' + 2% —x = bsin(t). Right: Nearby the Duffing oscillator, (choose
a 40 x40 grid, on Poincare’ surface of section, there exists a piece-wise
affine map whose invariant measure is atomic, and supported over
a fixed point. Such transformations can be found by the algorithm
descwﬂ—\n,l ThAva an

=

time t

Figure 3: Characature of small variations in Duffing oscillator,
according to uniformly nearby control map G (see Fig. 2), which can
be achieved by small parameter variations. In this case, '’ 4 az’ +
23 — 2 = bsin(t), with (|8al, |§b]|) < (0.02, 3), produce the transverse
set of attainable next responses on the upper attractor, which allows

for next responses not in the uncontrolled box Q; (the box shown).
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