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Abstract. There is a well-established understanding of maximizing and minimizing local stretching associated4
with a map; this can be couched in terms of an eigenproblem associated with the Cauchy–Green5
tensor. The local eigenvalues correspond to stretching rates, while the eigenvector directions iden-6
tify maximal and minimal stretching directions. Generating hyperstreamlines of these eigenvector7
fields has been popular; however various claims that these collection of curves correspond to global8
optimizers of stretching remain unsubstantiated. In this paper, a formulation in terms of restricted9
foliations is presented, for which these curves form a well-defined solution as the most and least10
unstable objects, with respect to a global definition. The theory works for any map in n-dimensions,11
derived for example from repeated applications of a discrete dynamical system, or from a finite-time12
flow of a continuous one. Further insight is obtained into the two-dimensional situation via an el-13
ementary approach, including a simple singularity classification criterion and an understanding of14
numerical artefacts in foliation computations (e.g., special curves along which hyperstreamlines veer15
and/or do not cross). Illustrations and validations of the results to the Hénon map, the double-gyre16
flow, and the standard (Chirikov) map are provided.17

Key words. Foliations, maximum stretching, tensor field lines.18

MSC codes.19

1. Introduction. A central topic of dynamical systems theory involves analysis of insta-20

bilities, since this is the central ideas behind the possibility of forecast time horizon, or even21

of ease of control of future outcomes. The preponderance of work has involved analysis of22

local instability, whether by the Hartman-Grobman theorem and center manifold theorem23

[18] for periodic orbits and similarly for invariant sets [36]. For general orbits, local instabil-24

ity is characterized by Oseledec spaces [31] which are identified via Lyapunov exponents [37]25

and Lyapunov vectors [41, 34], or their finite-time counterparts. These are associated with26

local stretching: given a sufficiently differentiable map F on Rn, the local stretching of an27

infinitesimal sphere placed at a general location leads to the concept of the Cauchy–Green28

tensor, whose largest eigenvalue represents the stretching rate in the corresponding eigenvec-29

tor direction. Similarly, the smallest eigenvalue encodes the direction of least stretching, and30

therefore a complete understanding of locally optimizing stretching is available. The concepts31

of Lyapunov vectors and fields [37, 34, 41, 3] as well as (finite-time versions of) Oseledets32

spaces [31], are all connected to these ideas.33

In this paper, we take the view that global stretching is related to a global view of in-34

stabilities. The related organizing skeleton of orbits must therefore be premised on analysis35
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2 S. BALASURIYA AND E. BOLLT

of globally optimal stretching. Here, orbits will be in relation to n-dimensional maps which36

can be derived from various sources: a finite sequence of discrete maps, or a flow occurring37

over a finite time period. The latter situation is particularly relevant when seeking regions38

in unsteady flows which remain ‘coherent’ over a given time period [3]. In all these cases, we39

emphasize that we are not seeking to understand stretching in the infinite-time limit—which40

is the focus in many classical approaches [31, 36]—but rather stretching associated with a41

one-step map derived from any of these approaches. From the applications perspective, the42

one-step map would be parametrized by the discrete or continuous time over which the map43

operates, and this would of necessity be finite in any computational implementation. Nei-44

ther are we seeking the propagation of stretching due to model uncertainty, a topic which is45

receiving attention recently [2].46

Local stretching information in deterministic systems has been used by many to apparently47

infer global stretching properties. By drawing hyperstreamlines [11] which are locally tangen-48

tial to the leading eigenvector direction, one presumably obtains a curve which is associated49

with ‘maximal stretching’ in some way. However, this statement is hard to justify: in what50

way is such a curve the solution to a global maximization problem? There have been attempts51

by several researchers to pose such questions, but each is problematic (see Section 2.2). In52

this paper, therefore, we seek to pose a global optimization problem for which these curves53

form a solution. It turns out that in order to do this, the concept of a restricted foliation54

(closely related to a punctured foliation [29]) needs to be introduced. This theory is presented55

in Section 2, in which we introduce the concept of Stretching Optimizing Restricted Foliations56

(SORFs).57

Our theory works in Rn in general, but the two-dimensional problem is particularly at-58

tractive since explicit formulas can be derived using elementary arguments. In Section 3, we59

focus on several aspects of the global optimizing foliations: (i) their singularity classification,60

(ii) inevitability of a ‘branch-cut’ type phenomenon when attempting to construct global vec-61

tor fields from the eigenfields, (iii) numerically computed foliation curves stopping abruptly62

when attempting to cross certain specialized curves (which we can characterize) horizontally63

or vertically, and (iv) veering along spurious curves. The singularities associated with the64

Cauchy–Green tensor strongly influence these issues. The first two aspects above are well-65

known in the literature based on local stretching, and the (non-degenerate in our terminology)66

singularities are referred to as either “1-prong” and “3-prong,” or “wedge” and “trisector,”67

depending on the context. However, the last two do not seem to have been realized by prac-68

titioners, and consequently some existing numerical computations may indeed be incorrect.69

While our formulation here is motivated by stretching in dynamical systems, we note that70

there are related structures in other contexts in the mathematical literature. The so-called71

tensor fields in topology are closely related to the SORFs that we define here. Specifically,72

Teichmüller theory [24] concerning so called isomorphism class of “marked” Riemann surfaces73

has been shown to be closely related to the geometric trajectory structure in the special case74

of quadratic differentials [23]. Our SORFs are moreover related to an equivalence relation be-75

tween measured foliations [32, 16] called Whitehead–equivalence as discussed in braid theory76

[1]. These include in [32] elements closely related to the topological classification of nonde-77

generate singularities we define here from our interest in dynamical systems. In braid theory78

[16, 27, 4], the so called “1-prong” and “3-prong” singularities appear significantly comparable79
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GLOBALLY OPTIMAL STRETCHING FOLIATIONS 3

to the nondegenerate singularities of our SORFs, and moreover feature in the estimation of80

the entropy of a braid [4]. In a more applied direction, tensor fields and their singularities81

(usually called “wedge” and “trisector” in this literature) arise in two-dimensional graphical82

visualization [8, 42, 12, 40]. The applications range from solid mechanics [8] to computer83

graphics [42, 12, 40]. These studies variously focus on extracting topological skeletons of vec-84

tor fields [12], designing tensor fields for capturing graphical features [42], visualization for85

asymmetric tensors [8] and in understanding the local topology and bifurcations [40].86

This paper is organized as follows. In Section 2, we present our theory for restricted folia-87

tions of globally optimal stretching. In doing so, we first discuss local stretching in Section 2.1,88

as well as attempts to extend these ideas globally in Section 2.2, before presenting our theory89

in Section 2.3. Section 3 is devoted to the two-dimensional interpretation, with a strong effort90

to provide alternative but simple expressions by using elementary ideas while taking advan-91

tage of two-dimensional intuition. In the subsections, we find equivalent expressions to those92

in Rn in Section 3.1, categorize singularities in Section 3.2, show the impossibility of forming93

a vector field from the eigenfields in the presence of singularities in Section 3.3, and finally94

describe numerical artefacts arising from specialized curves and develop an integral curve solu-95

tion in Section 3.4. In Section 4, we demonstrate computations of globally optimal restricted96

foliations for several well-known examples: the Hénon map [22], the Chirikov (standard) map97

[9], and the double-gyre flow [37], each implemented over a finite time. The aforementioned98

numerical issues are highlighted in these examples. We conclude with some short remarks in99

Section 5.100

2. Optimizing stretching. Let Ω be an open bounded subset of Rn consisting of a finite101

union of connected sets, each of whose closure has at most a finite number of boundary102

components. So Ω may, for example, consist of disconnected open sets, or (if in R2) entities103

which are topologically equivalent to the interior of an annulus. We consider a map F : Ω →104

Rn such that F ∈ C2(Ω), and are interested in the stretching resulting from the application105

of F .106

Our approach embraces the fact that F might be generated in various ways. It can be107

simply one iteration of a given map, multiple (finitely-many) iterations of a map, or even108

the application of a finite sequence of maps. It can also be the flow-map generated from a109

nonautonomous flow over a finite time. In this sense, F encapsulates the fact that finiteness110

is inevitable in any numerical, experimental or observational situation, while allowing for111

both discrete and continuous time, as well as nonautonomy. The time over which the system112

operates can be thought of as a parameter which is encoded within F , and its effect can be113

investigated if needed by varying this parameter. In general, we ignore how F were generated,114

conscious though that it can arise in various ways. Once specified, it will only make sense to115

consider F applied one time to Ω. Thus standard approaches to dynamical systems which116

may, for example, examine the sign of the real part of eigenvalues associated with a fixed point117

in infer stability, no longer make sense. This is because the map F is not applied repetitively,118

and hence connecting stability with the rate of growth of powers of the eigenvalues is not119

justifiable. The issue in this instance is to understand stretching optimization in relation to120

the one iteration of F .121
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4 S. BALASURIYA AND E. BOLLT

2.1. Local stretching. In this subsection, we briefly outline the well-known understanding122

for local stretching, for subsequent extension to a notion of global stretching. Consider a small123

line segment of length δ (where 0 < δ ≪ 1) emanating from a location x ∈ Ω. Choosing this124

deviation in the direction of a unit vector n̂, we see that the deviation between the endpoints125

of the line once it has been mapped by F is therefore F (x+ δn̂)−F (x). The local stretching126

engendered by F with respect a vanishingly small initial line in the direction n̂ at a location127

x is therefore128

(2.1) Λ(x, n̂) := lim
δ→0

∥F (x+ δn̂)− F (x)∥
δ

= ∥∇F (x)n̂∥ .129

The standard approach to determine the directions n̂ to optimize the local stretching at each130

point x uses the observation131

Λ2(x, n̂) = [∇F (x)n̂]⊤ [∇F (x)n̂] = n̂⊤ [∇F (x)]⊤ [∇F (x)] n̂132

= n̂⊤C(x)n̂ ; ∥n̂∥ = 1 ,(2.2)133134

in which the Cauchy–Green (strain) tensor field on Ω is defined by135

(2.3) C(x) := [∇F (x)]⊤ [∇F (x)] ; x ∈ Ω .136

Since C is symmetric, its eigenvalues λj (j = 1, 2, · · · , n) are real and nonnegative, and it137

enjoys a full set of eigenvectors wj . This is true even if the eigenvalues have multiplicity138

greater than 1 [5, c.f.], but in this case each eigenvalue with multiplicity m has m linearly139

independent eigenvectors. All eigenfields depend on x, a fact we will sometimes suppress in140

the notation for brevity.141

If the orthogonal transformation matrix T (x) has the normalized eigenvectors wj as col-142

umns, then T⊤(x) = T−1(x) has the wj as rows, and C(x) is diagonalizable in the form143

C(x) = T (x) diag(λ1, λ2, · · · , λn)T⊤(x). We will agree to order the eigenvalues in an increas-144

ing fashion, i.e., 0 ≤ λ− = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn−1 ≤ λn = λ+, where we are using the145

notation λ± for the largest and smallest eigenvalues. Consequently146

Λ2(x, n̂) =
[
T (x)⊤n̂

]⊤
diag (λ1, λ2, · · · , λn)

[
T (x)⊤n̂

]
,147

in which the jth component of T (x)⊤n̂ is the projection of wj the direction of the unit vector148

n̂. Thus if n̂ were chosen to be exactly wj , we get Λ2(x,wj) = λj , thereby picking out the149

corresponding eigenvalue. So if x is fixed, and the problem of determining the direction n̂ such150

that the local stretching Λ(x, n̂) is optimized (either maximized or minimized) is considered,151

the following standard results are clear:152

• Choosing n̂ in the direction of the eigenvector w+(x) = wn(x) of C(x) corresponding153

to its largest eigenvalue λ+(x), represents the direction of the infinitesimal line segment154

such that Λ2 (and consequently Λ ≥ 0) is maximized;155

• Choosing n̂ in the direction of the eigenvector w−(x) = w1(x) of C(x) correspond-156

ing to its smallest eigenvalue λ−(x), represents the direction of the infinitesimal line157

segment such that Λ is minimized.158
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Since λ+(x) is the largest value that Λ2(x, n̂) takes, the maximum local stretching is given159

by the field
√
λ+(x), which is in fact the spectral norm ∥∇F (x)∥ by (2.1). While F is general160

here, it is worth remarking that if F were derived from a finite-time flow over a time-length161

of T , then this field is a scaled version of the well-known Finite-Time Lyapunov Exponent162

(FTLE) field163

(2.4) FTLE(x) =
1

|T |
ln
√
λ+(x)164

representing the exponential rate-of-stretching along a trajectory beginning at x.165

At points x ∈ Ω at which λj(x) < λk(x) for some j ̸= k, the fact that these eigenval-166

ues of the symmetric matrix C are different ensures that the corresponding eigenvalues are167

orthogonal, i.e., wj(x)
⊤wk(x) = 0. This property is indeed valid even if either of λj or168

λk had multiplicity greater than 1: any eigenvector associated with λj is orthogonal to any169

eigenvector associated with λk.170

For each fixed j, the eigenvectors wj are sometimes referred to as the Lyapunov vectors,171

which are finite-time analogs of Oseledets vectors for infinite-time flows/maps. The quantity172

wj(x) does not in general represent a C1-vector field on Ω, since eigenvectors are only defined173

modulo scalar multiples and only define a direction (field). (A ‘reversed’ direction is also174

permitted by choosing a negative multiple.) However, locally in regions where the multiplicity175

of λj is 1, it is possible to construct a vector field by choosing wj in consistent directions.176

Moreover, this vector field will be locally C1 because the components of C, comprising first177

spatial derivatives of F , are C1 and the eigenproblem for C is constructed using an algebraic178

combination of these components. From this, one can locally construct a family of curves179

which are tangential to these directions:180

Definition 2.1 (Hyperstreamlines). In regions where the multiplicity of the eigenvalue λj181

is 1, then wj(x) can be chosen to be a C1-vector field, and the associated hyperstreamlines182

[11, e.g.] are curves which are everywhere tangential to the vector field wj(x).183

The j = 1 streamlines are associated with curves tangential to the local directions of least184

stretching, since they are identified with the scalar field λ1(x) = λ−(x). The hyperstream-185

lines generated from the local stretching minimization are therefore tangential to the vector186

field w− which is well defined if the multiplicity of λ− is 1. Similarly, the tangent vectors to187

the j = N streamlines, being associated with the scalar field λn(x) = λ+(x), represent the188

directions which are locally maximally stretching. Notice that by extending the hyperstream-189

lines over all parts of Ω for which the multiplicity condition is satisfied, one obtains global190

objects constructed from local stretching properties. In what sense do these entities satisfy191

a global optimization problem? In this paper, we formulate a notion of global stretching,192

and will establish how these hyperstreamlines coincide with the solution to a global stretching193

optimization problem.194

2.2. Global optimization and hyperstreamlines. There have been several attempts at195

casting the hyperstreamlines obtained from the local stretching analysis, or entities derived196

from them, in terms of some sort of non-pointwise optimization problem. In this subsection,197

we briefly describe some of these approaches, and comment on why they do not necessarily198

fit the bill as global optimizers. In response to these issues we will in the next subsection199
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6 S. BALASURIYA AND E. BOLLT

establish a formulation which casts the hyperstreamlines as a solution to a specific type of200

global stretching optimization problem.201

We will first reiterate an issue related to determining streamlines: repeated eigenvalues202

of the Cauchy–Green tensor. If an eigenvalue at any point x has multiplicity greater than203

1, this causes difficulty in unambiguously identifying the ‘corresponding’ eigenvectors. If for204

example λ3 = λ4 = λ5 represents an eigenvalue of multiplicity 3, which vector from the three-205

dimensional eigenspace at each point should be taken as w3? The lack of clarity of this choice206

means that it is not then possible to use appropriately scaled versions of any chosen w3 as207

a C1-vector field at that point. Since we will be principally concerned with minimum and208

maximum stretching, our focus is on the constructed eigenvector fields w−(x) = w1(x) and209

w+(x) = wn(x), which will have potential difficulties if λ−(x) = λ1(x) and λ+(x) = λn(x)210

(respectively) have multiplicity greater than 1.211

A two-dimensional situation in which hyperstreamlines appear is when subsets of them are212

apparently solutions to a global variational problem of length optimization [21]. The map F in213

this case [21] is derived from a flow over a specified finite time period, and here since n = 2 the214

relevant eigenvalues are λ− = λ1 ≤ λ2 = λ+ and with corresponding eigenvectors w1,2. Here,215

the intuitive problem is in determining curves whose mapped length is maximized or minimized216

in comparison to nearby curves (our emphasis, highlighting the variational problem which is217

seemingly solved). Solutions to this problem are then defined to be ‘hyperbolic transport218

barriers’ [21, Defs. 1,2]. Though these definitions do not place any restrictions on the classes219

of curves considered, the ‘most length maximizing’ development quickly limits to seeking220

curves from among the hyperstreamlines associated with λ2 = λ+ (as described in the quick221

argument via geodesics in Appendix B and the algorithm in §7.1; see also the boundary222

conditions of Eq. (15) [21]). Intuitively, of course, this makes sense, since locally at any point,223

the direction w2 is the one in which there is maximal stretching. An infinitesimal curve at224

that point certainly should be in this direction for maximality of length increase.225

However, it is not clear how a curve comprising an amalgamation of infinitesimal curves226

with directionality w2 are those whose ‘length is maximized’ because the there is no specified227

restriction of the classes of curves considered, and thus other (non-hyperstreamline) curves228

should be permissible. (The optimization problem posed [21] is not, for example, selecting229

from among curves with fixed endpoints which have maximal stretching; this problem cannot230

have a hyperstreamline solution if the endpoints are not on the same hyperstreamline.) From231

among these hyperstreamlines, the development [21] comes up with conditions—locally at each232

point—which ensures that a particular hyperstreamline has maximal stretching in comparison233

to nearby hyperstreamlines [21]. In other words, the hyperstreamlines seem to be the class234

of curves to which the optimization problem is restricted. Our emphasis here is different: is235

there a global optimization problem for which the hyperstreamlines appear as a solution?236

Hyperstreamlines also play a prominent role in the influential article by Haller [19], where237

(subsets of) the hyperstreamlines help identify what he calls ‘hyperbolic Lagrangian Coherent238

Structures’ (hyperbolic LCSs) in n-dimensional flows. This is the basis of what is now a239

well-established method for seeking flow barriers over a finite-time in fluid flows [20, 15, 30].240

A hyperbolic LCS is defined to be “locally most repelling or attracting material surface” [19,241

Def. 1] where in this case the map is derived explicitly from a flow on an n-dimensional open242

set over a specified finite-time interval. The intuitive idea is to determine a co-dimension-243
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1 surface at the initial time, such that the attraction/repulsion towards it due to the flow244

over the time-interval is optimal in comparison to nearby surfaces. The ‘local’ here implies245

a comparison to locally-close surfaces, and so this is in reality a global problem because the246

surfaces are extended in space.247

The surfaces are initially confined to “finite-time hyperbolic material surfaces” [19, Def. 3]248

which are surfaces which pointwise have a normal stretching rate of at least 1, and with the249

normal stretching rate being larger than the tangential one. This automatically implies that at250

each point one has the normal vector being wn, and λn > λn−1 [19, Theorem 7, Proposition 8].251

The first condition is obvious because the direction of optimal local stretching is wn, which252

must then be chosen in the normal direction. The insistence of normal stretching being253

strictly larger than any tangential stretching moreover precludes the possibility of λn−1 = λn254

and consequently identifying a tangential direction wn−1 which has an equal local stretching.255

We emphasize that the surfaces considered by this process therefore obey these conditions256

pointwise as opposed to there being any definition of repelling from a surface. The surfaces are257

therefore, effectively by definition, amalgamated objects constructed from maximal stretching258

directions (when they exist) at each point. In our language, they are simply surfaces which are259

everywhere orthogonal to the wns (whenever they are well-defined). Let us call such surfaces260

(which may or may not be connected) S. It is from surfaces in S that those which are locally261

most repelling/attracting in comparison to nearby surfaces in S are selected as “locally most262

repelling or attracting material surfaces” [19, Def. 1]. (A measure for “most repelling” for a263

global, as opposed to an infinitesimal, surface would seem to be relevant here; we relegate a264

more detailed discussion on this and how the algorithm selects from among the surfaces in S265

to Appendix A.) Again, this is different from what we seek here, instead trying to understand266

to what global optimization problem do the hyperstreamlines which orthogonally pierce S267

form a well-defined solution.268

Returning to the general framework, we know that at a given location, an infinitesimal269

curve in the direction of wn (associated with the maximal eigenvalue λn = λ+, as long as270

wn is well-defined in the sense that λn has multiplicity 1) provides a curve which stretches271

most, while one in the direction of w1 (again subject to similar caveats) stretches least. Given272

this local property, to what global problem associated with non-infinitesimal curves do the273

relevant hyperstreamlines form a solution? Can this problem be posed such that the higher274

multiplicity issue is dealt with automatically? This problem is different from those discussed275

in this section; in those cases [21, 19, 20, 15, 30], the optimization problem is more on how276

one can select from among these hyperstreamlines (or surfaces orthogonal to them).277

2.3. Global stretching optimization. We will now establish our theory for how the hy-278

perstreamlines can be posed as the solution to a global stretching optimization problem. We279

require some definitions.280

Definition 2.2 (Singularity sets). The minimal singular set Smin ⊆ Ω is defined by281

(2.5) Smin := {x ∈ Ω : multiplicity (λ1(x)) > 1} ,282

while the maximal singular set Smax ⊆ Ω is283

(2.6) Smax := {x ∈ Ω : multiplicity (λn(x)) > 1} .284
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8 S. BALASURIYA AND E. BOLLT

The corresponding restricted sets will be defined by285

(2.7) Ωmin := Ω \ Smin and Ωmax := Ω \ Smax .286

on which the eigenvectors w− and w+ respectively form well-defined direction fields.287

When the multiplicity of the eigenvalue λ+ is m > 1, the corresponding eigenvectors span288

m-dimensional space and consequently a unique directionality cannot be inferred for w+.289

This means that the hyperstreamlines associated with λ+ become ill-defined. Such points are290

collected together in the singularity set Smax. Similarly, the singularity set Smin consists of291

points in Ω such that a locally minimal stretching direction is not well-defined. Generically,292

these sets will consist of a finite number of points (as will be apparent in the numerics in293

Section 4), but we will allow a broader class as given below:294

Definition 2.3 (Puncture sets). The set of puncture sets is defined by295

(2.8) P := {P ⊆ Ω : P is a finite union of compact connected sets} .296

Definition 2.4 (Restricted foliation). A restricted foliation f on the open bounded set Ω297

consists of a family of curves defined on a restricted set ΩP = Ω \ P , where P ∈ P, such that298

(a) The curves of f (‘the leaves of the foliation’) are disjoint;299

(b) The union of all these curves covers ΩP ;300

(c) The tangent vector varies in a C1-smooth fashion along each curve.301

The restricted foliation therefore depends on the choice of the set P from the puncture set,302

with the foliation curves of f only being defined within the restricted set ΩP = Ω \ P .303

Our definition is consistent with the local properties expected from a formal definition of304

foliations on manifolds [28], but bears in mind that ΩP is not generally a manifold because305

of the omission of the closed set P from Ω. We remark that if P consists of a finite number306

of points, our restricted foliation definition is equivalent to that of a ‘punctured foliation’ [29]307

or ‘measured foliation [39] on Ω, where the punctures are at the points in P . Given that we308

allow P to be more general, we use the term ‘restricted foliation.’ Definition 2.4 also allows309

for the possibility of P being the empty set, in which case the chosen restricted foliation is a310

genuine foliation on Ω.311

The properties of Definition 2.4 ensure that every restricted foliation f is associated with a312

unique C1-smooth direction field on its chosen restricted set ΩP in the following sense. Given313

a point x ∈ ΩP , there exists a unique curve from f which passes through it. The unit tangent314

line drawn at this point is unique up to multiplication by −1, and thereby defines a direction315

n̂. Conversely, suppose a C1-smooth direction field n̂ is defined on ΩP . Given an arbitrary316

point xα ∈ ΩP , the existence of solutions to the differential equation317

dr(s)

ds
= n̂ (r(s)) ; r(0) = xα318

ensures that there is an integral curve given in parametric form by r(s), which is C1-smooth319

in the parameter s. The curve can be evolved in both directions from xα by either going320

forward or backward in s. The fact that n̂ is only defined up to a multiple ±1 therefore321

does not interfere with this; multiplying n̂ by −1 is equivalent to simply reversing s in the322
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equation. Finding an integral curve in this way is possible for each and every xα ∈ ΩP , and323

the uniqueness property ensures that separate curves do not intersect one another. Moreover,324

ΩP is spanned by these curves because ΩP =
⋃
α xα, ensuring that there is a curve passing325

through every point xα. Hence, this process generates a unique restricted foliation f on ΩP .326

We are now in a position to define the global stretching which we seek to optimize.327

Definition 2.5 (Global stretching). The global stretching, dependent on a puncture set P ∈328

P and a restricted foliation f defined on ΩP = Ω \ P , is329

(2.9) Σ(P, f) :=

∫
ΩP

Λ (x, n̂f (x)) dx ,330

in which n̂f (x) is the (unit) direction field induced on ΩP by a choice of restricted foliation331

f , and dx = dx1 dx2 · · · dxn is a shorthand notation for the volume element in Ω.332

As central premise of this work, we seek sets P ∈ P and restricted foliations f which333

optimize (maximize, as well as minimize) Σ. Partitions of Ω which are extremal in this way334

represent the greatest instability or most stability associated with the dynamical system,335

and so orbits associated with these are distinguished for their corresponding difficulties in336

forecasting, or alternatively, relative coherence.337

Theorem 2.6 (Stretching Optimizing Restricted Foliations (SORF)). The global optimizing338

restricted foliations have the following properties:339

(a) If Smax ∈ P, any restricted foliation f+ which maximizes the global stretching (2.9)340

comprises the hyperstreamlines associated with the direction field w+ on the restricted set341

Ωmax.342

(b) If Smin ∈ P, any restricted foliation f− which minimizes the global stretching (2.9) com-343

prises the hyperstreamlines associated with the direction field w− on the restricted set Ωmin.344

Proof. We first tackle the maximization problem. We initially consider P ∈ P to be fixed,345

and suppose that f is any restricted foliation associated with this choice (i.e., the C1-curves346

associated with f are defined on ΩP = Ω \ P ). Recall that Smax is the singularity set such347

that the largest eigenvalue of C, λ+ = λn, has multiplicity greater than 1. Now, since Ω is348

the union of the disjoint sets Ωmax and Smax,349

Σ(P, f) =

∫
Ω\P

Λ (x, n̂f (x)) dx350

=

∫
Ωmax\P

Λ (x, n̂f (x)) dx+

∫
Smax\P

Λ (x, n̂f (x)) dx351

=: IΩ(P ) + IS(P ) .(2.10)352353

Consider first the integral IΩ(P ), the first term on the right-hand side of (2.10). For any354

x ∈ Ωmax \ P , both n̂f and w+ are well-defined. Moreoever, the local stretching obeys355

Λ (x, n̂f (x)) ≤ Λ
(
x,w+(x)

)
=

√
λ+(x)356

because the maximal local stretching is associated with the eigenvalue λ+, and is associated357

with the direction w+. If the unit vector n̂f is not in the same direction (modulo a plus/minus358
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10 S. BALASURIYA AND E. BOLLT

sign) as w+, then strict inequality occurs because w+ is well-defined as a direction within359

Ωmax in which the multiplicity of λ+ is 1. By the C1-nature of the restricted foliation curves360

of f , and the local differentiability of w+, this implies the presence of a neighborhood N of x361

in Ωmax \ P such that362 ∫
N
Λ (x, n̂f (x)) dx ≤

∫
N
Λ
(
x,w+(x)

)
dx .363

Exact equality can be obtained above if and only if the n̂f is chosen to be exactly in the same364

direction as w+ throughout N . Thus, within N , one can make the contribution to the integral365

larger by adjusting f to be identical to the hyperstreamlines associated with w+. Since this366

argument works for every point x ∈ Ωmax \ P , IΩ(P ) takes on its maximum value exactly if367

n̂f is identical to w+. Such a restricted foliation will be called f+, and this argument tells us368

the nature of the foliation curves of f+ on Ωmax \ P .369

It now remains to optimize (2.10) over all P ∈ P. By changing P such that P ∩ Ωmax is370

larger, but P ∩ Smax is the same, we will get a smaller contribution to IΩ(P ) (since it will be371

over a smaller domain). Therefore, we should choose P ∩ Ωmax to have zero measure. Given372

that P is a finite union of compact connected sets, this implies that P ∩ Ωmax should be at373

most a finite collection of points. Any such point p can be a puncture associated with the374

restricted foliation f , i.e., a point at which the tangent direction to the foliation curve passing375

through it is undefined. However, we have argued that we need to choose the foliation to be376

exactly the hyperstreamlines associated with w+ in a neighborhood around p because this377

punctured neighborhood is purely within Ωmax. Since w+ is locally C1, this means that the378

puncture point p can be “filled-in” with its hyperstreamlines, and the generated restricted379

foliation therefore does not have a singularity at p. Consequently, we can maximize IΩ(P ) by380

choosing P ∩ Ωmax = ∅; that is, P ⊆ Smax.381

Within this condition for P , the question now is the impact on IS(P ). Note that382

IS(P ) =

∫
Smax\P

Λ(x, n̂f (x) dx ≤
∫
Smax

√
λ+(x) dx .383

While w+ is not well-defined on Smax (it is any unit vector in the span of the eigenvectors384

associated with λ+, which is at least two-dimensional), it is conceivable that the foliation385

curves of f can be chosen in Smax \ P to be consistent with the span of the eigenvectors of386

C associated with λ+, and that these curves can connect up with the hyperstreamlines of387

w+ at the boundary between Smax and Ωmax to form the maximal foliation f+. Moreover,388

choosing P to have measure zero will enable equality above. In any case, choosing P ⊆ Smax389

in maximizing IS(P ) cannot affect the conclusion of the theorem: that any restricted foliation390

f+ associated with maximizing Σ coincides with the hyperstreamlines on Ωmax.391

The proof of minimizing Σ is analogous, and will be skipped.392

The restricted foliation f+ defines a C1 collection of curves on Ωmax, and we call these393

the Stretching Optimizing Restricted Foliation - Maximum, or SORFmax. Correspondingly,394

the curves f− on Ωmin will be called SORFmin curves for the system. We will present many395

examples of such curves in Section 4.396
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3. Two-dimensional global stretching. Here, we specialize to the case where Ω is two-397

dimensional. We will show here we can provide explicit formulas for the preceding general398

theory by using elementary methods and two-dimensional intuition. These lead to a straight-399

forward classification of the singularities of the relevant restricted foliation, and new insights400

into the numerical artefacts that can arise when attempting to compute foliations via stream-401

lines.402

In this case where n = 2, we use the standard Cartesian coordinates x = (x, y) for Ω ⊂ R2,403

and write the map F in component form as404

F

((
x
y

))
=

(
u(x, y)
v(x, y)

)
,405

where the functions u and v are in C2(Ω). Thus, the functions406

(3.1) ϕ(x, y) :=
ux(x, y)

2 + vx(x, y)
2 − uy(x, y)

2 − vy(x, y)
2

2
407

and408

(3.2) ψ(x, y) := ux(x, y)uy(x, y) + vx(x, y)vy(x, y)409

defined in terms of the partial derivatives ux, uy, vx and vy of the mapping F , are C1-smooth.410

These are related to the elements of the Cauchy–Green tensor (2.3)411

C(x, y) =

(
c11 c12
c21 c22

)
412

by413

ϕ =
c11 − c22

2
and ψ = c12 = c21 .414

3.1. Equivalent characterizations. In this section, we establish alternative, simpler, char-415

acterizations of the objects developed in Section 2 under the condition of two-dimensionality.416

We are able in many instances to develop these using elementary methods—without appealing417

to the Cauchy–Green tensor, for example—even though the results are equivalent.418

In two dimensions, a unit vector direction n̂ can be easily parametrized by an angle419

θ ∈ [−π/2, π/2) such that420

(3.3) n̂ =

(
cos θ
sin θ

)
.421

Since any multiple (including negative) of n̂ is permitted as a direction, it suffices to restrict422

θ to [−π/2, π/2) to be able to represent all possible directions.423

Lemma 3.1 (Local stretching in terms of angle). The local stretching (2.1) can be expressed424

in terms of the angle by425

(3.4) Λ2 = ϕ cos 2θ + ψ sin 2θ +
|∇u|2 + |∇v|2

2
.426
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12 S. BALASURIYA AND E. BOLLT

Proof. See Appendix B.427

Next, we note that since Ω is two-dimensional, there are only two eigenvalues related to428

stretching. Thus, if multiplicity is greater than 1 at any point x = (x, y), we get λ− = λ1 =429

λ2 = λ+. The eigenspace at any such point spans two dimensions. Hence, Smax = Smin, and we430

will refer to this singularity set as the isotropic set I since points in this set exhibit equal local431

stretching irrespective of the directionality n̂ of the line chosen in (2.1); an infinitesimal circular432

disk maps to a circular disk with no ellipticity. Now, (3.4) gives us the easy characterization:433

Lemma 3.2 (Isotropic set). The isotropic set I = Smin = Smax can be equivalently charac-434

terized by435

(3.5) I := {(x, y) ∈ Ω : ϕ(x, y) = 0 and ψ(x, y) = 0} ,436

Proof. See Appendix B.437

We define ΩI := Ω \ I to be the restricted set such that I is excluded from Ω; all relevant438

eigenfields are C1-smooth in ΩI .439

Lemma 3.3 (Equivalent characterizations of directions w±). On ΩI , the maximal and min-440

imal local stretching directions w± can be associated with directions encoded in the angles441

θ± ∈ [−π/2, π/2), for which two equivalent representations are442

θ+(x, y) =
1

2
˜tan

−1
(ψ(x, y), ϕ(x, y)) (modπ)(3.6a)443

= tan−1 −ϕ(x, y) +
√
ϕ(x, y)2 + ψ(x, y)2

ψ(x, y)
(modπ)(3.6b)444

445

and446

θ−(x, y) =
π

2
+

1

2
˜tan

−1
(ψ(x, y), ϕ(x, y)) (modπ) ,(3.7a)447

= tan−1 −ϕ(x, y)−
√
ϕ(x, y)2 + ψ(x, y)2

ψ(x, y)
(modπ) .(3.7b)448

449

Proof. See Appendix B.450

The notation ˜tan
−1

in (3.6a) and (3.7a) represents the four-quadrant inverse tangent,451

in which ˜tan
−1

(y, x) picks the angle in the appropriate quadrant dependent on the (x, y)-452

coordinates. This is useful since it is built into many computational packages (e.g., atan2453

in Matlab). For the representation in (3.6b) and (3.7b), we note that while it appears that454

points where ψ = 0 but ϕ ̸= 0 are not in the domain, these are removable singularities in the455

sense of keeping ϕ constant and letting ψ → 0. Specifically,456

(3.8) θ+(x, y)
∣∣∣
ψ=0
=

{
−π/2 if ϕ < 0
0 if ϕ > 0

and θ−(x, y)
∣∣∣
ψ=0
=

{
0 if ϕ < 0
−π/2 if ϕ > 0

.457

From the numerical perspective, there are advantages and disadvantages of each of the repre-458

sentations in Lemma 3.3, as will be demonstrated in subsequent computations. The orthogo-459

nality of the vectors w+ and w− is easily observable in the fact that θ+ − θ− = π/2 (mod π).460
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(a) (b)

Figure 3.1: Topological classification of nondegenerate singularities with respect to SORFmax

or -min (a) a 1-pronged (wedge) point, and (b) a 3-pronged (trisector) point. See Property 1,
and compare with Fig. B.1.

3.2. Behavior near singularities. The fact that generic singularities in two-dimensional461

symmetric tensor fields typically are ‘wedges’ and ‘trisectors’ is well known in the computa-462

tional community [11, 42, 14, e.g.]. Here, we show how our characterization in the previous463

sections can help categorize these using elementary arguments. By Lemma 3.2, we know that464

singularities are points where both ϕ and ψ are zero. Since both ϕ and ψ are C1-smooth in Ω,465

their gradients are well-defined on Ω. For a singularity to be nondegenerate, we must preclude466

either ϕ or ψ possessing critical points at p. Thus, we cannot get self-intersections of either467

ϕ = 0 or ψ = 0 contours at p, have local extrema of ϕ or ψ at p, or have a situation where ϕ468

or ψ is constant in an open neighborhood around p. Nondegeneracy also precludes ϕ = 0 and469

ψ = 0 contours intersecting tangentially at p (although we will make some remarks about this470

situation later). These considerations allow us to say that a singularity p is nondegenerate if471

the orientation function472

(3.9) g(x, y) := (∇ϕ×∇ψ) · k̂
∣∣∣
(x,y)

= det
∂(ϕ, ψ)

∂(x, y)

∣∣∣
(x,y)

473

is nonzero. We explain in Appendix C how we obtain the following complete classification for474

nondegenerate singularities, as illustrated in Fig. 3.1:475

Property 1 (1- and 3-pronged singularities). Let p ∈ I be a nondegenerate singularity, and476

let k̂ be the unit-vector in the +z-direction (i.e., ‘pointing out of the page’ for a standard477

right-handed Cartesian system). Then,478

(a) If g(p) > 0, then p is a 1-pronged singularity (‘wedge’), with nearby foliation of both f+479

and f− topologically equivalent to Fig. 3.1(a); and480

(b) If g(p) < 0, then p is a 3-pronged singularity (a ‘trisector’), with nearby foliation of both481

f+ and f− topologically equivalent to Fig. 3.1(b).482

The singularities occur in opposite directions for the two orthogonal foliations f±.483

The ‘1-pronged’ and ‘3-pronged’ terminology is from the theory of measured foliations484

[39, 23], while the terms ‘wedge’ and ‘trisector’ are common in the computational literature485

[11, 42, 14, 38]. We also note that in the case of all singularities being nondegenerate, the curves486
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14 S. BALASURIYA AND E. BOLLT

(a) (b) (c)

Figure 3.2: Some possible topologies for SORFmax near p when transversality is relaxed (see
Appendix C for explanations of these structures).

on ΩI may be thought of as a punctured foliation [29, e.g.] on Ω. These two singularities487

also correspond to the index of the foliation being +1/2 and −1/2 respectively [35, 11].488

The alternative form of classification as given in Property 1 does not seem to appear in489

the literature. These two topologically distinct singularities serve as the organizing skeleton490

around which the rest of the SORF smoothly vary.491

To see why the topology of f− is similar to that of f+, imagine reflecting these curves in492

Fig. 3.1 about the vertical line going through p. This generates an orthogonal set of curves,493

which are the complementary (orthogonal) foliation. Thus, f+ and f− have the same topology494

near p.495

At the next-order of degeneracy, we will have ϕ = 0 and ψ = 0 contours continuing to be496

curves, but now intersecting at p tangentially. In that case, it turns out that Fig. 3.2 gives497

the possible topologies for SORFmax, which are explained in detail in Appendix C. If p is498

not an isolated point in I, then many other possibilities exist. The SORFmin in the mildly499

degenerate situations in Fig. 3.2 represent curves which are orthogonal to the pictured ones;500

their topology will be identical.501

3.3. Discontinuity in Lyapunov vectors. We have determined slope fields θ+ and θ−502

which while optimizing local stretching, also maximize and minimize global stretching accord-503

ing to our formulation. Here we argue that it is generically not possible to express a C0-vector504

field on the closure of ΩI from the θ± angle fields. This specifically impacts numerical com-505

putations, and we give insight into numerical artefacts which can arise.506

To determine a curve from the SORFmax, we need to pick an initial point in ΩI , and evolve507

it according to ‘the’ vector field generated from θ+ from (3.6a). A simple possibility would be508

to take the (unit) vector field509

(3.10) w+(x, y) :=

(
cos [θ+(x, y)]
sin [θ+(x, y)]

)
,510

in which θ+ is computed from (3.6a). Similarly, a natural vector field for SORFmin would be511

(3.11) w−(x, y) :=

(
cos [θ−(x, y)]
sin [θ−(x, y)]

)
,512
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Figure 3.3: The map from Ω to (ϕ, ψ)-space, illustrating the sets I ′ and B′ to which the sets
I and B map. In red, we have stated the value of the field θ+ in (3.6a) in each quadrant.

where θ− is defined from (3.7a).513

Property 2 (Generating foliation curves using vector fields). If generating a SORFmax or514

SORFmin curve in ΩI , we can in general find solutions to515

(3.12)
d

ds

 x

y

 = w (x(s), y(s)) ;

 x(0)

y(0)

 =

 x0

y0

 ,516

where s is the parameter along the curve and (x0, y0) ∈ ΩI , and we can choose a Lyapunov517

vector field in the form518

(3.13) w(x, y) = m(x, y)w±(x, y)519

for a suitable scalar function m.520

If we use m ≡ 1 on ΩI , the parametrization s along the trajectory is exactly the arclength.521

However, more general scalar functions m can be used in (3.12), reflecting the fact that522

the vector fields which generate the foliations are actually direction fields, and thus can be523

multiplied at each point by a scalar. The only restrictions are (i) m can never be zero, because524

if it is, we introduce a spurious fixed point in the system (3.12) which ‘stops’ the curve, and (ii)525

m is sufficiently smooth to ensure that the equation (3.12) has unique C1-smooth solutions.526

The choice of m simply adjusts the parametrization along the curve. Notice that if we flip527

the sign of m we would be going along the curve in the opposite direction.528

To understand the generation of curves from (3.13), it helps to think of the mapping529

from Ω to (ϕ, ψ)-space, illustrated in Fig. 3.3. We have already characterized an important530

subset of Ω in relation to this mapping: the isotropic set I is the kernel of this mapping (by531

Lemma 3.2). Its image is denoted by I ′, the origin in (ϕ, ψ)-space.532

Definition 3.4 (Branch cut). The branch cut B is the set of points (x, y) ∈ Ω such that533

(3.14) B := {(x, y) ∈ Ω : ϕ(x, y) < 0 and ψ(x, y) = 0 } .534
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B

p

(a)

B

p

(b)

Figure 3.4: Vector field of (3.12) using w+, near a nondegenerate singularity p, with the
branch cut B shown in green: (a) if g(p) > 0 and (b) if g(p) < 0.

The image B′ of the branch cut is the negative ϕ-axis in Fig. 3.3. In each of the four535

quadrants we have stated the value of the θ+ field in terms of the standard inverse tangent536

function. We focus here near a nondegenerate singularity p, where the ϕ = 0 and ψ = 0537

contours must cross p transversely, given that g(p) ̸= 0. The axis-crossings in Fig. 3.3 will538

have the same topology as these contours if g(p) > 0. The relevant set B in ΩI , near p, must539

therefore have the structure as seen in Fig. 3.4(a). Consider a small circle around p as drawn540

in Fig. 3.4(a), and indicated via arrows the directions of the vector field w+ along it. The541

reasons for these directions stems directly from Fig. 3.3; we need to take the cosine (for the542

x-component) and the sine (for the y-component) of the angle field defined therein. While543

w+ must vary smoothly along the circle, it exhibits a discontinuity across the branch cut544

B, because the angle has rotated around from −π/2 to +π/2. Clearly, the same qualitative545

behavior occurs if g(p) < 0: in this case we need to consider Fig. 3.3 with the ψ-axis flipped546

(this orientation-reversing case is indeed pictured in Fig. B.1(b)). Once again, it is the ϕ− axis547

to which the branch cut B ∈ ΩI gets mapped. The intuition of Fig. 3.4 gives us a theoretical548

issue related to using a vector field to find curves:549

Theorem 3.5 (Impossibility of continuous Lyapunov vector field). If there exists at least one550

nondegenerate singularity p ∈ Ω, then no nontrivial scalar function m in (3.12) exists such551

that the right-hand side (i.e., vector field associated with the angle field θ+) is a C0-smooth552

nonzero vector field in ΩP . The same conclusion holds for vector fields generated from θ−.553

Proof. See Appendix D.554

3.4. Computational issues of finding foliations. In the previous section, we have out-555

lined a theoretical concern in defining a vector field for computing optimal foliations in two556

dimensions. We show here related numerical issues which emerge when attempting to compute557

foliating curves.558

First, we remark that generating hyperstreamlines for eigenvectors of tensor—which as559

seen here are equivalent to SORFmax and SORFmin curves—is standard practice [11, 42, 38,560

14]. Numerical issues in doing so have been observed previously, and ad hoc remedies proposed:561

• In generating trajectories following ‘smooth’ fields from grid-based data, one suggested562

approach is to keep checking the direction of the vector field within each cell a trajec-563
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tory ventures into, and then flip the vector field at the bounding gridpoints to all be564

in the same direction before interpolating [14, 21].565

• In dealing with points at which the eigenvector field is not defined, an approach is to566

mollify the field by multiplying with a sufficiently smooth field which is zero at such567

points (e.g., the square of the difference in the two eigenvalues [38, 21]).568

Our Theorem 3.5 gives explicit insights into the nature of both these issues. Both ad hoc569

numerical methods relate to choosing the function m (respectively as ±1, or a smooth scalar570

field which is zero at singularities). In either case, actual behavior near the singularities gets571

blurred by this process.572

The branch cut near singularities also leads to more subtle—and apparently hitherto573

unidentified in the literature of following streamlines of tensor fields—issues when performing574

numerical computations. In Appendix E, we explain why the following occur.575

Property 3 (Numerical computation of optimal foliations using vector fields). Suppose we576

numerically compute a SORFmax (resp. SORFmin) curve by using (3.12) with m = 1 and the577

vector field w+ (resp. w−), by allowing the parameter s to evolve in both directions. Then578

(a) SORFmax curves will not cross a one-dimensional part of B vertically, and may also veer579

along B even though B may not be a genuine SORFmax curve;580

(b) SORFmin curves will not cross a one-dimensional part of B horizontally, and may also581

veer along B even though B may not be a genuine SORFmin curve.582

These problems are akin to branch splitting issues arising when applying curve continu-583

ation methods in instances such as bifurcations [13]. Is it possible to choose a function m584

which is not identically 1 to remove these difficulties? The proof of Theorem 3.5 tells us that585

the answer is no. Either the branch cut gets moved to a different curve connected to p across586

which there is a similar discontinuity, or it gets converted to a curve which has spurious fixed587

points (i.e., a center manifold curve) because m = 0 on it. In either case, the numerical588

evaluation will give problems.589

Thus, there are several numerical issues in computing foliations using the vector fields590

w± as given in (3.10) and (3.11). Lemma 3.3 suggests a straightfoward alternative method591

for numerically computing such curves in generic situations, while systematically avoiding all592

these issues. For the maximizing foliation, let593

Φ− := {(x, y) : ϕ(x, y) < 0 and ψ(x, y) = 0} and594

Φ+ := {(x, y) : ϕ(x, y) > 0 and ψ(x, y) = 0} ;595

these are points mapping to the ‘negative ϕ-axis’ and the ‘positive ϕ-axis’ (see Figs. 3.3 and596

B.1), and we also note that Φ− = B. We define on ΩP \ Φ−,597

(3.15) h+(x, y) =

{
−ϕ(x,y)+

√
ϕ2(x,y)+ψ2(x,y)

ψ(x,y) if ψ(x, y) ̸= 0

0 if ψ(x, y) = 0 and ϕ(x, y) > 0
.598

This is essentially the function tan θ+ as defined in (3.6b), and is C1 in ΩI \ Φ−. The reason599

for not defining h+ on Φ− is because the relevant tangent line becomes vertical. Hence we600

This manuscript is for review purposes only.



18 S. BALASURIYA AND E. BOLLT

define its reciprocal, C1 on ΩI \ Φ+, by601

(3.16)

h+ (x, y) :=

{
ϕ(x,y)+

√
ϕ2(x,y)+ψ2(x,y)

ψ(x,y) if ψ(x, y) ̸= 0

0 if ψ(x, y) = 0 and ϕ(x, y) < 0
.602

The minimizing foliation is associated with the angle field θ−. Thus we define on ΩI \ Φ+,603

(3.17) h−(x, y) :=

{
−ϕ(x,y)−

√
ϕ2(x,y)+ψ2(x,y)

ψ(x,y) if ψ(x, y) ̸= 0

0 if ψ(x, y) = 0 and ϕ(x, y) < 0
,604

which gives the slope field associated with θ−, and on ΩI \ Φ− its reciprocal605

(3.18)

h− (x, y) :=

{
ϕ(x,y)−

√
ϕ2(x,y)+ψ2(x,y)

ψ(x,y) if ψ(x, y) ̸= 0

0 if ψ(x, y) = 0 and ϕ(x, y) > 0
.606

Property 4 (Foliations as integral curves). Within ΩI , a SORFmax curve can be determined607

by taking an initial point (x0, y0) and then numerically following608

(3.19)
dy

dx
= h+(x, y) if

∣∣h+(x, y)∣∣ ≤ 1 and
dx

dy
=

h+ (x, y) if else ,609

where we keep switching between the equations depending on the size of |h+|. This generates610

a sequence (xi, yi) to numerically approximate an integral curve. Similarly, a SORFmin curve611

can be determined in ΩP as integral curves of612

(3.20)
dy

dx
= h−(x, y) if

∣∣h−(x, y)∣∣ ≤ 1 and
dx

dy
=

h− (x, y) if else .613

Property 4 is an attractive alternative which avoids issues related to the branch cut and614

vector field discontinuities. Moreover, it is directly expressed in terms of the functions ϕ and ψ615

via the straightforward definitions of h± and

h±. The switching between the dy/dx and dx/dy616

forms avoids the infinite slopes which may result if only one of these forms is used. Thus,617

we can follow a particular curve as it meanders around ΩI , having vertical and horizontal618

tangents, and also crossing branch cuts, with no problem.619

4. Numerical examples of optimal foliations. We will demonstrate the global optimal620

foliations for several maps F , generated from several applications of discrete maps, and from621

sampling flows driven by unsteady velocities. The examples include situations which are622

highly disordered (e.g., maps known to be chaotic under repeated iterations, flows known to623

possess chaos over infinite times). Moreover, the maps F need not be area-preserving. We will624

in particular highlight the numerical issues outlined in the previous section by example, and625

demonstrate how the integral curve approach sidesteps many of these issues. Hence, we focus626

only on two-dimensional maps, for which we use (x, y) as the standard Cartesian coordinates.627

Given its relationship to the FTLE field (2.4), we will in our examples also plot the field628

(4.1) FTLE∗(x, y) = ln
√
λ+(x, y) ,629
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i.e., the logarithm of the largest local stretching value associated with each point (we do not630

time-scale ibecause our F may be generated in various ways from maps or flows). In order to631

retain sufficient resolution to view relevant features in the many subfigures that we present632

in this Section, we will dispense with axes labels since these are self-evident: x will be the633

horizontal axis and y the vertical as per standard convention.634

4.1. Hénon map. As our first example, consider the Hénon map, which is defined by [22]635

H(x, y) =

(
1− ax2 + y

bx

)
636

on Ω = R2, and where we make the classical parameter choices a = 1.4 and b = 0.3. We637

choose F to be four iterations of the Hénon map, i.e., F = H4. Fig. 4.1 demonstrates638

the computed foliations and related graphs. The stretching field Λ+ is first displayed in639

Fig. 4.1(a). In Fig. 4.1(b), we show the zero contours of ϕ and ψ. In this case, there are no640

nice transversalities. Indeed, there are several regions of almost tangencies, and the fact that641

several of the zero contours almost coincide in the two outer streaks in the figure, indicate642

that degenerate foliations are to be expected in their vicinity. The ‘squashing together’ that643

is occurring here is because we are at an intermediate stage in which initial conditions are644

gradually collapsing to the Hénon attractor.645

The vector fields w±, shown in Figs. 4.1(c,d) were computed using (3.10) and (3.11). The646

discontinuities impact the computation of the SORF curves in (e) and (f). These are obtained647

by seeding 300 initial locations randomly in the domain, and then computing streamlines648

generated from (3.12) with m = 1 in forward, as well as backward, s. Since the ϕ and ψ fields649

have large variations at small spatial scales because of the chaotic nature of the map, finding650

the branch cut B (where where ψ = 0 and ϕ < 0) as obtained from (3.14) requires care. We651

assess each gridpoint, and color it in (in green) if it has a different sign of ψ in comparison652

to any of its four nearest neighbors, and the ϕ value at this point is negative. The lowermost653

panel overlays the (green) set B on the SORF curves, indicating why some of the apparent654

behavior in (e) and (f) is not representative of the true foliation; the center vertical line in655

(f), for example, occurs because of Property 3(b), while the SORFmax (resp. SORFmin) curves656

stop abruptly on B if crossing vertically (resp. horizontally).657

On the other hand, Fig. 4.1(b) indicates that the zero contours of ϕ and ψ almost coincide658

on two curves: ‘outer’ and ‘inner’ parabolic shapes. These are also identified as part of the659

branch cut set B because ψ ≈ 0 and ϕ is slightly negative here. These curves are ‘almost’660

a curve of I, and we see accumulation of SORFmax curves towards these, indicating—at this661

level of resolution—potential degeneracy of the foliation. We zoom in to this in Fig. 4.2.662

In conjunction with the explanations in Fig. B.1, what occurs here is that the inner green663

line in Fig. 4.2(a) must have a slope field which is −π/2 (it is in Φ− = B with respect to664

Fig. 4.2), while on the inner pink line it should be −π/4 (corresponding to Ψ− in Fig. B.1(a)).665

The extreme closeness of the contours means that a very sharp change in direction must be666

achieved in a tiny region, which then visually appears as a form of degeneracy.667

This example highlights an important computational issue which is very general: even668

though relevant foliations will exist, in order to resolve them, one needs a spatial resolution669

which can resolve the spatial changes in the ϕ and ψ fields.670
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Figure 4.1: Optimal foliation computations for F = H4: (a) the FTLE* field, (b) zero contours
of ϕ and ψ, (c) vector fieldw+generated from (3.10), (d) vector fieldw− generated from (3.11),
(e) SORFmax by implementing vector field in (c), (f) SORFmin by implementing vector field
in (d), (g) SORFmax with branch cut (green), (h) SORFmin with branch cut (green).
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Figure 4.2: Zooming in to an area associated with the map F = H4 (a) the zero contours of
ϕ and ψ, (b) the SORFmax, and (c) the SORFmin.

4.2. Double-gyre flow. As an example of when F is generated from a finite-time flow,671

let us consider the flow map from time t = 0 to 2 generated from the differential equation672

(4.2)
d

dt

 x

y

 =

 −πA sin [πg(x, t)] cos [πy]

πA cos [πg(x, t)] sin [πy] ∂g∂x(x, t)

 ,673

in which g(x, t) := ε sin (ωt)x2 + [1− 2ε sin (ωt)]x and Ω = (0, 2) × (0, 1). This is the well-674

studied double-gyre model [37], but we exclude the boundary of the domain. We use the675

parameter values A = 1, ω = 2π and ε = 0.1, and the optimal reduced foliations are demon-676

strate in Fig. 4.3.677

Fig. 4.3(a) is a classical figure in this context: the FTLE* field (if divided by the time-678

of-flow 2, this would be the highly-studied finite-time Lyapunov exponent field for this flow).679

Fig. 4.3(b) indicates the ϕ = 0 and ψ = 0 contours, with their intersections defining I. We680

use the ‘standard’ w± unit versions, (3.10) and (3.11), to generate the vector fields in (c) and681

(d), and the corresponding SORFs are determined in (e) and (f). Figs. 4.3(g) and (h) overlay682

the branch cuts (green), which are parts of the green curves in Fig. 4.3(b) at which ϕ < 0.683

As expected, the SORFmax curves fail to cross the branch cut vertically, as do the SORFmin684

curves horizontally. Moreover, foliation curves which do get pushed in towards the branch685

cuts tend to meander along them, giving an impact of spurious accumulations. We zoom in686

towards one of these regions in Fig. 4.4; the SORFmax curves requirements of having slopes687

−π/4 (resp. +π/2) on Φ− (resp. Φ+) result in abrupt curving. The accumulation is not exactly688

to Ψ−, but rather to a curve which is very close, as seen in Fig. 4.4(b). Thus, it is not true689

that there is a one-dimensional part of the isotropic set I along here. The geometric insights690

of the previous sections allows us to understand and interpret these issues, while appreciating691

how resolution may give misleading visual cues.692

In Fig. 4.5, we zoom in to two difference locations, chosen by zeroeing in to two different693

intersection points of the zero ϕ and ψ-contours. The top panels illustrate the SORFmax694

(left) and the SORFmin (right) curves at the same location. The theory related to 1-pronged695

intruding points is well-demonstrated, with there being two such points adjacent to each other.696
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Figure 4.3: Optimal foliation computations for the double-gyre flow: (a) the FTLE* field,
(b) zero contours of ϕ and ψ, (c) vector field w+generated from (3.10), (d) vector field w−

generated from (3.11), (e) SORFmax by implementing vector field in (c), (f) SORFmin by
implementing vector field in (d), (g) SORFmax with branch cut (green), (g) SORFmin with
branch cut.
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Figure 4.4: Zooming in to near an ‘accumulating’ SORFmax from Fig. 4.3: (a) the relevant
zero contours of ϕ and ψ, and (b) the SORFmax.

(a) (b)

(c) (d)

Figure 4.5: Zooming in to the SORFmax (left) and SORFmin (right) in the double-gyre. The
top and bottom panels correspond to different locations, respectively near two adjacent wedge
points, and a trisector point. The branch cut is shown in green. Compare to Fig. 3.1 and
Property 1.
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(a) (b)

(c) (d)

Figure 4.6: Optimal foliation computations for the Chirikov map F = C4
2: (a) the FTLE*

field (b) zero contours of ϕ and ψ, (c) SORFmax with branch cut (green), (d) SORFmin with
branch cut (green).

The two orthogonal families ‘reverse’ the locations of the singularities for the maximizing697

and minimizing foliations, and the branch cut (green) forms vertical/horizontal barriers as698

appropriate. In contrast, the bottom figures are of a 3-pronged trisector; again, the numerics699

validate the theory.700

4.3. Chirikov map. The Chirikov (also called ‘standard’) map is defined on the doubly-701

periodic domain Ω = [0, 2π)× [0, 2π) by [9]702

Ck(x, y) =

(
x+ y + k sinx (mod 2π)
y + k sinx (mod 2π)

)
.703

We choose F = Cnk , that is, n iterations of the Chirikov map for a given value of the parameter704

k. Increasing k increases the disorder of the map, as does having n large. (The map is a705

classical example of chaos, with Ω consisting of quasiperiodic islands in a chaotic sea, where706

‘chaos/chaotic’ must be understood in the limit n → ∞.) In more disorderly situations,707

increasingly fine resolution is required to reveal the structures that we have defined.708

Relevant computations for k = 2 and n = 4 are shown in Fig. 4.6. There are significant709

regions where the behavior is quite orderly. There is ‘greater disorder’ in the region foliated710

with large values of FTLE* in (a)—indeed, this region is associated with the ‘chaotic sea’ when711

the map is iterated many more times—with the outer parts of low FTLE* being associated712
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Figure 4.7: A degenerate singularity of the map F = C2
1, shown zoomed-in: (a) the zero

contours of ϕ and ψ, (b) SORFmax, and (c) SORFmin.

with quasiperiodic islands and hence order. All features mentioned in previous examples are713

reiterated in the pictures. Moreover, the SORFmin foliation somewhat mirrors the structure714

expected from classical Poincaré section numerics.715

If we instead consider k = 1 and n = 2, an interesting degenerate singularity (correspond-716

ing to the ψ = 0 contour crossing exactly a saddle point of ϕ) is displayed in Fig. 4.7. The717

singularity in the SORFmax foliation (b) appears like a degenerate form of a trisector, if think-718

ing in terms of curves coming from above. However, if viewed in terms of curves coming in719

from below, it appears as a wedge with a sharp (triangular) end. The SORFmin conforms to720

this, having elements of both a wedge and trisector, as well. (The numerical issue of SORFmin721

not crossing B horizontally is displayed in Fig. 4.7(c); in reality, the true SORFmin curves722

should connect smoothly across.)723

Next, we demonstrate in Fig. 4.8, using F = C2
2, the efficacy of using the integral-curve724

forms (3.19) and (3.20) of the foliations, rather than using a vector field. The FTLE* field725

in Fig. 4.8(a) has several sharp ridges; these are well captured by locations where the ϕ726

and ψ zero-contours in Fig. 4.8(b) coincide. The SORFmax/min foliations in (b) and (c) are727

computed respectively using the vector fields w± as in previous situations, and exhibit the728

usual issues when crossing B. In contrast, the lower row is generated by using the integral-729

curve forms (3.19) and (3.20), where we have once again started from 300 random initial730

conditions. For each initial condition (x1, y1), we define the next point (x2, y2) on a SORFmax731

curve by x2 = x1+

h+ (x1, y1)δy where δy > 0 is the spatial resolution in the y-direction, and732

dx/dy is based on (3.19). Similarly, y2 = y1 + h+(x1, y1)δx using (3.19), and where δx > 0733

is the resolution chosen in x-direction. This initializes the process. Next, we check the value734

of h+(x2, y2), thereby deciding which of the equations in (3.19) to implement. If the dy/dx735

equation, we take x3 = x2 + sign (x2 − x1) δx, and thus find y3 using the ODE solver. Having736

now obtained (x3, y3), we again use the last two points to make decisions on which of the two737

equations to use, and continue in this fashion for a predetermined number of steps. Next, we738

go back to (x1, y1) and now set x2 = x1−

h+ (x1, y1)δy and y2 = y1 − h+(x1, y1)δy, thereby739

going in the opposite direction. Having initiated this process, we can then continue this curve740

using the same continuation scheme.741

This manuscript is for review purposes only.



26 S. BALASURIYA AND E. BOLLT

(a) 1 2 3 4 5 6

1

2

3

4

5

6

(b)

(c) (d)

(e) (f)

Figure 4.8: Comparison between using the integral-curve forms (3.19) and (3.20) and the
vector field forms for F = C2

2: (a) lnΛ+ field, (b) zero contours of ϕ and ψ, (c) SORFmax

using the vector field (3.10), (d) SORFmin using the vector field (3.11), (e) SORFmax using
the integral curve form (3.19), and (f) SORFmin using the form (3.20).

The SORFmin are obtained similarly, using the two equations in (3.20). There is sensitivity742

in the process to locations where ϕ and ψ change rapidly (they are each of the order 105 in743

this situation), and in particular where zeros are near. The resolution scales δx and δy need744

to be reduced sufficiently to not capture spurious effects. Notice that there are no branch-745

cut problems in the resulting foliations obtained using the integral-curve approach, since we746

do not have to worry about a discontinuity in a vector field. Neither are there any abrupt747

stopping of curves.748
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5. Concluding remarks. Using the Cauchy–Green tensor for understanding locally opti-749

mal stretching is well-established, as is using the hyperstreamlines generated from its associ-750

ated eigenvector fields. Despite many articles computing these hyperstreamlines and making751

various claims related to them, genuinely interpreting them in terms of a global optimization752

problem has remained problematic. In this paper, we formulate a global optimization prob-753

lem based on restricted foliations, and show how the hyperstreamlines are a solution to this754

optimization problem. Moreover, we focus on the two-dimensional situation and derive (using755

elementary methods) conditions on singularities of the foliation, and numerical artefacts that756

can emerge when attempting to compute foliation curves.757

We expect these results to help researchers interpret, and improve, numerical calculations758

related to optimal stretching paradigms in finite-time situations. In particular, misinterpreta-759

tions of numerics can be mitigated via the understandings presented here. In two-dimensions,760

regions of high sensitivity towards spatial resolutions are also identifiable in terms of the761

near-zero sets of the ϕ and ψ functions.762

We wish to highlight from our numerical results the role of SORFmin restricted foliations763

as being effective demarcators of complication flow regimes. These curves—observable for764

example in blue in Figs. 4.1, 4.3, 4.6 and 4.8—indicate curves along which there is minimal765

stretching. Consequently, there is maximal stretching in the orthogonal direction to these766

curves. This indicates that the SORFmin curves are barriers in some senses: disks of initial767

conditions positioned on such a curve experience sharp stretching orthogonal to them. That768

is, initial conditions on one side of such a curve get separated quickly from those on the769

other side, with the curve positioned optimally to maximize the separation. Our methodology770

enables this intuitive idea to be put into a global optimizing foliation framework. Looking771

at this another way, the dense regions of the SORFmin (blue) foliations in Figs. 4.1, 4.3, 4.6772

and 4.8 are reminiscent of separation curves which attempt to demarcate chaotic from regular773

regions. We emphasize, though, that ‘chaotic’ has no proper meaning in the finite-time context774

since it must be understood in terms of infinite-time limits or repetitive application of maps;775

in this case, the separation one may try to obtain is between more ‘disorderly’ and ‘orderly’776

regions. The ambiguity of defining these is reflected in the Figures, in which the SORFmin777

foliation nonetheless identifies coherence-related topological structures in Ω which are strongly778

influenced by the nature of the singularities in the foliation.779

We observe that the interaction of ϕ = 0 and ψ = 0 level sets as seen in Fig. 4.1(b) bear780

a striking resemblance to figures regarding zero angle between stable and unstable foliations781

of Lyapunov vectors such as in Fig. 1 for the Hénon map from [26] that was part of a search782

for primary heteroclinic tangencies when developing symbolic dynamic generating partitions783

of the Henon map, [17, 7, 6, 10]. Indeed this analysis likely bears a relationship, in that in784

an infinite time limit, the Lyapunov vectors suggested come to the same point as those much785

earlier stories underlying the topological dynamics of smooth dynamical systems. What is clear786

in the finite time discussion here is that when we see a coincidence between the stretching787

and folding, that in successively longer time windows, these properties repeat in progressively788

smaller regions. As suggested by Fig. 4.1, e.g. (h), any point of tangency would in turn be789

infinitely repeated in the long time limit. The perspective of this current work may further790

understanding of what has always been the intricate topic of why and how hyperbolicity is lost791

in nonuniformly hyperbolic systems wherein seemingly paradoxically, errors can grow along792
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the directions related to stable manifolds, such as highlighted by Fig. 5 in [25].793
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Appendix A. Hyperbolic Lagrangian coherent structures as optimizers.800

In Section 2.2, we discuss that in a seminal work [19] which subsequently led to a well-801

accepted theory of variational Lagrangian coherent structures [20, 15, 30], the surfaces S which802

are everywhere orthogonal to the maximal eigenvector wn (where it is a well-defined direction)803

are those from which the “surfaces from which there is maximal repulsion ” [19] are selected.804

We pointed out that this is a different approach from ours: we seek a global optimization805

problem for which the relevant hyperstreamlines are solutions, while in this approach [19]806

a selection of surfaces from S is undertaken, such that such a surface is locally maximally807

repelling in comparison to nearby surfaces in S. For completeness, we discuss here the process808

of selecting from S, as described in a variety of papers [19, 20, 15, 30].809

In [19], the most repelling ‘hyperbolic (variational) Lagrangian Coherent Structures’ are810

selected from S using a classical (Hessian) maximality conditions [19, Thereom 7(ii)2]. This811

is strictly pointwise, rather than using a definition of repelling from a surface. The pointwise812

tests in the selection process from S is further amplified in the discussion of the numerics813

(Algorithm 7.2 [19]).814

Indeed, the ambiguity of determining which surfaces to extract from S based on pointwise815

conditions is reflected in several follow-up papers. In one paper in two dimensions (n = 2)816

[15], noting now that the ‘surfaces’ S are now curves everywhere orthogonal to w+ = w2, the817

authors suggest using the average of λ+ = λ2 along curves in S as an effective measure of818

“repelling from the surface.” There is still ambiguity here in thinking of this as a maximal819

repelling problem: is there any restriction on how long a segment one can choose? In yet820

another paper, also confined to two dimensions, a computational toolbox LCSTool [30] is821

introduced; in this, the selection from S is done quite differently. First, the point p in the822

domain in which λ+ is maximal is chosen, and the curve from S which goes across this is823

selected as a hyperbolic Lagrangian Coherent Structure [30]. It is not at all clear how this824

corresponds to a curve from which there is maximal repulsion since, once again, the repulsion825

from the global object (in this case a curve) is not defined, but rather pointwise measures826

are used. Thus, while p is the point which has the most local repulsion, there is no reason827

to expect the curve passing through p to be the most repelling curve. Then, curves from828

a neighborhood of the selected curve are excluded from the domain, and the point in the829

remaining domain which has the largest λ+ value is chosen, and the process repeated.830

Thus, in the computational selection of ‘hyperbolic Lagrangian coherent structures’ as the831

“locally most repelling surfaces” [19, 20], the true global optimization problem is somewhat832

unclear. Rather, a definition which automatically restricts to the set S is initially used [19, 20].833

Then, the selection from among S is done in various ad hoc ways: using a Hessian argument834

pointwise [19], taking an average of λ+ along a curve [15], or picking a point with maximal835
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λ+ and taking curves passing through that [30]. In all these cases, there is ambiguity in how836

the local (pointwise) stretching behavior and the associated hyperstreamlines are related to a837

genuine optimization problem for co-dimension-1 surfaces.838

Appendix B. Equivalence of two-dimensional formulation.839

Here, we establish proofs of the equivalence results in Section 3.1 using elementary meth-840

ods.841

First, we consider Lemma 3.1. Given a general point (x, y) ∈ ΩP , let the direction n̂ in842

(3.3) be associated with an angle θ ∈ [−π/2, π/2). The local stretching (2.1) is843

Λ (x, y, θ) =

√
(ux cos θ + uy sin θ)

2 + (vx cos θ + vy sin θ)
2 .844

where the (x, y)-dependence on ux, uy, vx and vy has been omitted from the right-hand side845

for brevity. Hence,846

Λ2 =
u2x + v2x − u2y − v2y

2
cos 2θ + (uxuy + vxvy) sin 2θ +

u2y + v2y + u2x + v2x
2

.847

Using the definitions for the functions ϕ and ψ from (3.1) and (3.2) yields (3.4) as desired.848

We next address the characterization in Lemma 3.3 using elementary means. We first849

establish equivalence of the two formulations given, and then later show why these directions850

are associated with optimal local stretching. Beginning with (3.6a), assuming for now that851

both ϕ and ψ are not zero, we use the double-angle formula to obtain852

2 tan θ+

1− tan2 θ+
= tan 2θ+ =

ψ

ϕ
.853

Solving the quadratic for tan θ+, we see that854

(B.1) tan θ+ =
−1±

√
(ψ/ϕ)2 + 1

ψ/ϕ
=

−ϕ±
√
ϕ2 + ψ2

ψ
855

We now need to choose the sign in this expression, bearing in mind the usage of the four-856

quadrant inverse tangent as used in (3.6a). The four quadrants here are in the (ϕ, ψ)-space,857

which is indicated in Fig. B.1(a). If ϕ > 0 and ψ > 0, this implies that 2θ+ is in the first858

quadrant, and thus so is θ+. This means that tan θ+ > 0, and consequently the positive sign859

must be chosen. If ϕ > 0 and ψ < 0, 2θ+ is in fourth quadrant, or 2θ+ ∈ (−π/2, 0). Thus,860

tan θ+ < 0, and so the positive sign must be chosen in (B.1) to ensure that the division by861

ψ < 0 leads to an eventual negative sign. Next, if ϕ < 0 and ψ > 0, 2θ+ ∈ (π/2, π), and862

θ+ ∈ (π/4, π/2), leading to tan θ+ > 0 and the necessity of choosing the positive sign in (B.1).863

Finally, if ϕ < 0 and ψ < 0, 2θ+ ∈ (−π,−π/2) and θ+ ∈ (−π/2,−π/4), and thus tan θ+ < 0864

and the positive sign in the numerator of (B.1) must be chosen. Thus, all cases lead to a865

positive sign, and so866

tan θ+ =
−ϕ+

√
ϕ2 + ψ2

ψ
,867

which is (3.6b). Next, we argue that this expression works even if one or the other of ϕ or868

ψ is zero. The arguments to follow are equivalent to considering the four emanating axes869
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Figure B.1: SORFmax near a nondegenerate singularity: (a) Value of θ+ ∈ [−π/2, π/2) in
(ϕ, ψ)-space using (3.6a), (b) as in (a), but shown in a left-hand system, (c) and (d) qualitative
slope fields for (a) and (b); (e) 1-pronged ‘wedge’ associated with the structure (c); (f) 3-
pronged ‘trisector’ associated with the structure (d); (g) wedge when axes are tilted; (h)
trisector when axes are tilted. Compare to Fig. 3.1 and Property 1.
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in Fig. B.1(a). If ϕ = 0 and ψ ̸= 0, (3.6a) tells us that 2θ+ = (π/2) sign (ψ) and thus870

tan θ+ = tan(π/4) sign (ψ) = sign (ψ). This is consistent with what (3.6b) gives when ϕ = 0871

is inserted. If ψ = 0 and ϕ ̸= 0, (3.6a), which tells us that 2θ+ = −π if ϕ < 0, or 2θ+ = 0 if872

ϕ > 0. Thus if ψ = 0, θ+ = −π/2 if ϕ < 0, and θ+ = 0 if ϕ > 0. This verifies that (3.6b) is873

equivalent to (3.6a) in ΩP .874

Now, θ− in (3.7a) is defined specifically to be orthogonal to θ+. There is only one angle in875

[−π/2, π/2) which obeys this condition. It is straightforward to verify from (3.6b) and (3.7b)876

that877 (
tan θ+

) (
tan θ−

)
= −1878

in ΩP . Thus, θ− as defined in (3.7b) is at right-angles to θ+ as defined in (3.6b), which has879

been established to be equivalent to (3.6a).880

Next, we need to establish that the angles θ± correspond to local optimizers of the local881

stretching. Using (3.4) associated with a general angle θf associated with a restricted foliation882

f , we can write883

Λ2 =
√
ϕ2 + ψ2

[
ϕ√

ϕ2 + ψ2
cos 2θf +

ψ√
ϕ2 + ψ2

sin 2θf

]
+

|∇u|2 + |∇v|2

2
884

=
√
ϕ2 + ψ2

[
cos 2θ+ cos 2θ + sin 2θ+ sin 2θf

]
+

|∇u|2 + |∇v|2

2
885

=
√
ϕ2 + ψ2 cos

[
2
(
θ+ − θf

)]
+

|∇u|2 + |∇v|2

2
(B.2)886

in which θ+ = θ+(x, y) satisfies887

(B.3) cos 2θ+ =
ϕ√

ϕ2 + ψ2
and sin 2θ+ =

ψ√
ϕ2 + ψ2

.888

Thus, tan 2θ+ = ψ/ϕ. If applying the inverse tangent to determine 2θ+ from this, we need to889

take the two equations (B.3) into account in choosing the correct branch. This clearly depends890

on the signs of ϕ and ψ, which is automatically dealt with if the four-quadrant inverse tangent891

is used. Consequently, (B.3) implies that892

θ+(x, y) =
1

2
˜tan

−1
(ψ(x, y), ϕ(x, y)) ,893

which is chosen modulo π because of the premultiplier of 1/2 (the four-quandrant inverse894

tangent is modulo 2π). Thus, θ+ as defined here is identical to that given in (3.6a), which895

by Lemma 3.3 is equivalent to (3.6b). The establishment of θ− as the stretching minimizer is896

analogous, and will be skipped.897

Appendix C. Singularity classification in two dimensions.898

This section provides explanations for the nondegenerate singularity classification of Prop-899

erty 1. Given the transverse intersection of the ϕ = 0 and ψ = 0 contours at a singularity p,900

we examine nearby contours not in standard (x, y)-space, but in (ϕ, ψ)-space, in which p is901

at the origin. The angle fields θ± are the defining characteristics of the foliation, and thus we902
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Figure C.1: SORFmax near p when transversality is relaxed: (a), (b) and (c) show different
possibilities for axes to intersect, and the corresponding SORFmax topologies are illustrated
in Fig. 3.2.

show in Fig. B.1(a) a schematic of the maximizing angle field θ+. A nonstandard labelling of903

the ϕ and ψ axes is used here because the relative orientations of the positive axes ϕ+ and ψ+904

(the directions in which ϕ > 0 and ψ > 0 resp.) and negative axes ϕ− and ψ− is related to the905

sign of the orientation function—given in (3.9)—at p. Fig. B.1(a) corresponds to a positive906

orientation. The slope fields and expressions indicated are based on the four-quadrant inverse907

tangent (3.6a), expressed in terms of the regular inverse tangent in each quadrant. We also908

express the values of θ+ on each of the axes in Figs. B.1(a), along which θ+ is seen to be909

constant.910

In Figs. B.1(c), we indicate the angle field θ+ by drawing tiny lines which have the relevant911

slope. What happens when we ‘connect these lines’ to form a foliation is shown underneath912

in Figs. B.1(e). The foliation bends around the origin (shown as the blue point p), effectively913

rotating around it by π. However, it must be cautioned that while Fig. B.1(e) seems to914

indicate that the fracture ray lies along ϕ+, this is in general not the case. The angle fields915

shown in Figs. B.1(c) and (e) display directions in physical (Ω) space, in which the ϕ = 0916

and ψ = 0 contours intersect in some slanted way. We show one possibility in Fig. B.1(g), in917

which the fracture ray will be approximately from the northwest. We identify p in this case918

a wedge or a 1-pronged singularity. The nearby SORFmax curves rotate by π around it.919

In the right-hand panels of Fig. B.1 we examine the other possibility of g(p) < 0. This is920

achieved in Fig. B.1(b) by simply flipping the ψ− and ψ+ axes, and retaining the information921

that we have already determined in Fig. B.1(a). The corresponding slope field is displayed in922

Fig. B.1(d). The fracture ray (also along the ϕ+-axis in this case) now separates out curves923

coming from the right, rather than causing them to turn around the origin. Fig. B.1(f)924

demonstrates this behavior, obtained by connecting the angle fields into curves. There are925

two other fracture rays generated by this process of separation, because curves in the ϕ−926

region are forced to rotate away from the origin without approaching it. Fig. B.1(h) is an927

orientation-preserving rotation of the axes in Fig. B.1(f), which highlights that the directions928
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of the three fracture rays are based on the orientations of the axes in physical space. Based929

on the topology of the foliation, we thus have a trisector or 3-pronged singularity in the case930

of negative orientation.931

Suppose next that the nondegeneracy of p is relaxed mildly by allowing the ϕ = 0 and932

ψ = 0 contours (both still considered to be one-dimensional) to intersect tangentially at p. To933

achieve this, imagine bending the ψ-axis in Figs. B.1(a) and (c) so that it becomes tangential to934

the ϕ-axis, but the axes still cross each other. This degenerate situation is shown in Fig.C.1(a),935

and we note that the orientation remains positive despite the tangency. Connecting the angle936

field lines gives the relevant topological structure of Fig. 3.2(a). The topology is very close to937

the nondegenerate intruding point, but there is an accumulation of curves towards the fracture938

ray from one side. It is easy to verify (not shown) that there is no change in this topology if the939

tangentiality shown in Fig. C.1(a) goes in the other direction, with ψ+ becoming tangential940

to ϕ+ and ψ− to ϕ−. Fig. C.1(b) examines the impact on the degenerate negative-oriented941

situation; Fig. 3.2(b) indicates that the fracture ray acquires a similar one-sided accumulation942

effect, while the remainder of the portrait remains essentially as it was. So this is a degenerate943

separation point. Finally, in Fig. C.1(c) we consider the case where the tangentiality is such944

that the ϕ- and ψ-axes do not cross one another. In this case, drawing connecting curves945

reveals that the topology is a combination of degenerate intruding and separating points, and946

is illustrated in Fig. 3.2(c). Testing the other possibilities (interchanging the ψ− and ψ+ axes947

locations, and doing the same analysis with them below the ϕ-axis) yields no new topologies.948

One way to rationalize this is that the relative (degenerate) orientation between the negative949

axes and that between the positive axes is in this case exactly opposite; one is as if there were950

a positive orientation, while the other is as if it were negative.951

Appendix D. Proof of Theorem 3.5.952

We have established via Fig. 3.4 that if there exists a nondegenerate singularity p, then953

the vector field w+ as chosen in (3.10) is not continuous across the branch cut B. However,954

attempting to choose a vector field associated with the angle field θ+ is ambiguous, as is955

reflected in the presence of the arbitrary functionm in (3.12). The nonuniqueness is equivalent956

to the potential of scaling Lyapunov vectors in a nonuniform way in Ω \ I, by multiplying by957

a nonzero scalar. The question is: is it possible to remove the discontinuity that (3.10) has958

across B by choosing a scaling function m?959

From Fig. 3.4, we argue that the answer is no. Imagine going around the black dashed960

curve, C, and attempting to have w+ be continuous while doing so. Since w+ has a jump961

discontinuity across B, it will therefore be necessary to choose m to have the opposite jump962

discontinuity for mw+ to be smooth. So m must jump from +1 to −1 in a certain direction963

of crossing. However, since w+ is continuous on C \ B, to retain this continuity m must964

also remain continuous along C \ B. This implies that m must cross zero at some point in965

C \B. Doing so would render the Lyapunov vector w+ invalid. We have therefore established966

Theorem 3.5 using elementary geometric means. We remark that this theorem is analogous967

to the classical “hairy ball” theorem due to Poincaré [33].968

Appendix E. Branch cut effects on computations.969

If p is a nondegenerate singularity, then the vector field of (3.12) withm = 1 and the choice970

of the positive sign (SORFmax) will locally have the behavior as shown in Fig. 3.4. Now, in971
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general, in finding a SORFmax which passes through (x0, y0), we can implement (3.12) for the972

choice of m = 1, in both directions (increasing and decreasing s), thereby obtaining the curve973

which crosses the point. An equivalent viewpoint is that we implement (3.12) with m = 1,974

and s > 0, and then implement it with m = −1 while retaining s > 0.975

If using (3.12) with m = +1 (globally) and w+ in (3.10) to generate a SORFmax curve,976

the vector field in Fig. 3.4(a) must be followed. However, it is clear that anything approaching977

the branch cut B gets pushed away in the vertical direction. Thus, SORFmax curves near B978

will in general be difficult to find.979

The solution appears to be to set m = −1, which reverses the vector field. However,980

this is essentially the diagram in Fig. 3.4(b), corresponding to a p with negative orientation981

function. This is of course equivalent to implementing (3.12) with m = +1 but in the s < 0982

direction. Curves coming in to B now get stopped abruptly, because the vector field on the983

other side of B directly opposes the vertical motion. Thus, curves will not cross B vertically.984

However, since any incoming curve will in general have a vector field component tangential to985

B, this will cause a veering along the curve B. The curve will continue along B, because the986

vector field pushes in on to B vertically, preventing departure from it. Thus when numerically987

finding SORFmax curves, curves which appear to tangentially approach the branch cut B will988

be seen. These curves are not real SORFmax curves because, as is clear from Fig. 3.4, the989

actual vector field is not necessarily tangential to B. That is, the branch cut is not necessarily990

a streamline of the direction field θ+.991

A similar analysis (not shown) indicates that if using the expression (3.11) for w− to992

generate SORFmin curves, then these curves will not cross B horizontally, and also have the993

potential for tangentially approaching B in a spurious way. Notice moreover that, while we994

have discussed the branch cut locally near p, these objects extend through ΩI , potentially995

connecting with several singularities.996

Finally, suppose there are parts of B that are two-dimensional regions. In such regions,997

Fig. B.1(a) indicates that the angle field θ+ is vertical. Consequently, θ− is horizontal ev-998

erywhere. However, numerical issues as above will occur when crossing the one-dimensional999

boundary B̄ \ B, due to the inevitable issue of the reversal of the vector field along at least1000

one part of this boundary.1001
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[6] E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Życzkowski, Validity of threshold-crossing analysis of1012

symbolic dynamics from chaotic time series, Physical Review Letters, 85 (2000), p. 3524.1013
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[22] M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976),1046

pp. 69–77.1047
[23] J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Mathematica, 142 (1979),1048

pp. 221–274.1049
[24] Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer Science & Business1050

Media, 2012.1051
[25] L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobians - effects of noise in non-1052

hyperbolic chaotic systems, Physica D: Nonlinear Phenomena, 105 (1997), pp. 79–96.1053
[26] L. Jaeger and H. Kantz, Structure of generating partitions for two-dimensional maps, Journal of1054

Physics A: Mathematical and General, 30 (1997), p. L567.1055
[27] Y. Kawashima, A new relationship between the dilatation of pseudo-Anosov braids and fixed point theory,1056

Journal of Knot Theory and Its Ramifications, 28 (2019), p. 1950013.1057
[28] H. Lawson, Foliations, Bull Amer Math Soc, 80 (1974), pp. 369–418.1058
[29] L. Mosher, Tiling the projective foliation space of a punctured surface, Trans. Amer. Math. Soc., 3061059

(1988), pp. 1–70.1060
[30] K. Onu, F. Huhn, and G. Haller, LCS Tool: A computational platform for Lagrangian coherent1061

structures, J. Comp. Sci., 7 (2015), pp. 26–36.1062
[31] V. Oseledec, A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), pp. 197–231.1063
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[33] H. Poincaré, Sur les courbes definies par les equations differentielles, J. Math. Pures Appl., 1 (1885),1066

pp. 167–244.1067
[34] K. Ramasubramanian and M. Sriram, A comparative study of computation of Lyapunov spctra with1068

different algorithms, Physica D, 139 (2000), pp. 72–86.1069

This manuscript is for review purposes only.



36 S. BALASURIYA AND E. BOLLT

[35] E. Rykken, Expanding factors for psedo-Anosov homeomorphisms, Michigan Math. J., 46 (1999), pp. 281–1070
296.1071

[36] R. Sacker and G. Sell, Dichotomies and invariant splittings for linear differential equations, J. Differ-1072
ential Equations, 15 (1974), pp. 429–458.1073

[37] S. Shadden, F. Lekien, and J. Marsden, Definitions and properties of Lagrangian coherent struc-1074
tures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212 (2005),1075
pp. 271–304.1076

[38] K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault, and R. Camarero, Two-dimensional1077
metric tensor visualization using pseudo-meshes, Engineering with Computers, 22 (2006), pp. 121–1078
131.1079

[39] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc.,1080
19 (1988), pp. 417–431.1081

[40] X. Tricoche, X. Zheng, and A. Pang, Visualizing the topology of symmetric, second-order, time-1082
varying two-dimensional tensor fields, Visualization and Processing of Tensor Fields, (2006), pp. 225–1083
240.1084

[41] C. Wolfe and R. Samelson, An efficient method for recovering Lyapunov vectors from singular vectors,1085
Tellus, 59A (2007), pp. 355–366.1086

[42] E. Zhang, J. Hays, and G. Turk, Interactive tensor field design and visualization on surfaces, IEEE1087
Trans. Visual. Comp. Graphics, 13 (2007), pp. 94–107.1088

This manuscript is for review purposes only.


	Introduction
	Optimizing stretching
	Local stretching
	Global optimization and hyperstreamlines
	Global stretching optimization

	Two-dimensional global stretching
	Equivalent characterizations
	Behavior near singularities
	Discontinuity in Lyapunov vectors
	Computational issues of finding foliations

	Numerical examples of optimal foliations
	Hénon map
	Double-gyre flow
	Chirikov map

	Concluding remarks
	Appendix A. Hyperbolic Lagrangian coherent structures as optimizers
	Appendix B. Equivalence of two-dimensional formulation
	Appendix C. Singularity classification in two dimensions
	Appendix D. Proof of Theorem 3.5
	Appendix E. Branch cut effects on computations

