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On April 20, 2010, an oil well cap explosion below the Deepwater Horizon, an off-shore oil rig
in the Gulf of Mexico, started the worst human-caused submarine oil spill ever. Though an
historic tragedy for the marine ecosystem, the unprecedented monitoring of the spill in real time
by satellites and increased modeling of the natural oceanic flows has provided a wealth of data,
allowing analysis of the flow dynamics governing the spread of the oil. In this work, we present the
results of two computational analyses describing the mixing, mass transport, and flow dynamics
of the oil dispersion in the Gulf of Mexico over the first 100 days of the spill. Transfer operator
methods are used to determine the spatial partitioning of regions of homogeneous dynamics
into almost-invariant sets, and Finite Time Lyapunov Exponents are used to compute pseudo-
barriers to the mixing of the oil between these regions. The two methods give complementary
results, generating a comprehensive description of the oil flow dynamics over time.

Keywords : Finite time Lyapunov exponent; Fröbenius–Perron operator; fluid mixing; Gulf oil
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1. Introduction

Two pressing, yet related, problems in the general
study of fluid dynamics are understanding mixing
mechanisms and modeling transport. Both are of
special concern in oceanic systems, where large-
scale and local flow dynamics partition the seascape
into distinct regions, and agents and pollutants
can advect from one such region to another, crit-
ically impacting ecologies, peoples, and economies.
Understanding and describing these distinct regions
and the transport of pollutants between them can
be considered a “pre-processing” step to controlling

the spread of unwanted chemicals. The importance
of such fundamental questions of fluid dynamics
was unfortunately publicly and widely underscored
by the oil spill disaster in the Gulf of Mexico dur-
ing the spring and summer of 2010 [Aigner et al.,
2010]. Following the initial explosion beneath the
Deepwater Horizon drilling rig on April 20, 2010,
oil continued to spill into the Gulf of Mexico from
the resulting fissure in the well head on the sea
floor. Spill rates have been estimated at 53 000 bar-
rels per day by the time the leak was controlled by
the “cap” three months later. It is estimated that
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approximately 4.9 million barrels, or 185 million
gallons of crude oil flowed into the Gulf of Mexico,
making it the largest-ever submarine oil spill. The
regional damage to marine ecology was extensive,
but the impacts were seen on much larger scales
as well, as some oil seeped into the Gulf Stream,
which transported the oil around Florida and into
the Atlantic Ocean. Initially, the amount of oil that
would disperse into the Atlantic was overestimated,
because a prominent dynamical structure arose in
the gulf early in the summer preventing oil from
entering the Gulf Stream. Computational tools for
analyzing the transport mechanisms governing the
advective spread of the oil are the subject of this
paper. Figure 1 shows a satellite image of the Gulf of
Mexico off the coast of Louisiana on May 24, 2010.
The oil is clearly visible in white in the center of the

image, and the spread of the oil can already be seen,
just over a month after the initial explosion. Dur-
ing the early days of the spill, the Gulf Stream was
draining oil out of the gulf and, eventually, into the
Atlantic. This spread was substantially tempered
later in the summer, due to the development of a
natural eddy in the central Gulf of Mexico, which
acted as a barrier to transport.

It is in the setting of this tragedy that we
study the flow dynamics in the gulf, using vector
fields generated from a model describing the oceanic
flows during the time of the spill. The data set
used in these simulations is from the Hybrid
Coordinate Ocean Model (HYCOM), a PDE model
describing oceanic flow. The data generated by
this model has been produced out of a multi-
institutional effort sponsored by the National Ocean

Fig. 1. Satellite view of the Gulf of Mexico near Louisiana during the oil spill disaster, May 24, 2010. The oil slick spread is
clearly visible and large. The image, taken by NASA’s Terra satellite, is in the public domain.
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Fig. 2. Vector field describing surface flow in the Gulf of Mexico on May 24, 2010, computed using the HYCOM model
[HYCOM, 2010]. Note the coherence of the Gulf Stream at this time. Oil spilling from south of Louisiana could flow directly
into the Gulf Stream and out towards the Atlantic. Horizontal and vertical units are degrees longitude (negative indicates
west longitude) and degrees latitude (positive indicates north latitude), respectively.

Partnership Program (NOPP) and is publicly avail-
able [HYCOM, 2010]. The scientific details of the
model are described, e.g. in [Bleck, 2002; Halli-
well, 2004]. The objectives of the consortium include
real-time, three-dimensional depictions of ocean
products such as sea surface temperature, salinity,
and currents for the Atlantic and Pacific oceans.
The form of the data is a nonautonomous, three-
dimensional vector field

f : R
3 × R

+ → R
3

f(x, y, z, t) = 〈u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)〉,
at longitude and latitude positions x and y, depth
z, and time t. Figure 2 shows the HYCOM mod-
eled flow on the surface of the Gulf of Mexico on
May 24, 2010. The fundamental dynamical struc-
ture in this image is the Gulf Stream, which can be
backtracked from the northeast corner of the image,
around the horn of Florida, back up into the cen-
tral Gulf of Mexico, then down around the Yucatan
Peninsula. During the initial days of the oil spill,
this was the driving system governing the spread
of oil, but that changed later in the summer when

another dynamical structure arose. The impact of
these structures on the oil transport will be demon-
strated and quantified in the sections that follow.

In order to develop a comprehensive description
of the mixing and transport in the Gulf of Mexico
over this time period using the data provided by
the HYCOM model, we will pursue the following
two complementary methods of analysis of trans-
port mechanisms:

• Finite Time Lyapunov Exponents (FTLE), and
• Transfer operator methods based on discretizing

the Fröbenius–Perron operator.

Each of these approaches is described briefly in
subsequent sections, and results specialized to the
setting of the Gulf of Mexico during the crisis are
presented in the section that follows.

2. Transport Barriers and the FTLE
Analysis

In this section we review the analysis of trans-
port and mixing via Lagrangian coherent structures
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(LCS) based on Finite Time Lyapunov Exponents
(FTLE) [Haller & Poje, 1998; Haller, 2000, 2002].
For a steady flow, the LCSs extracted from the
FTLE field approximate stable and unstable invari-
ant manifolds of a hyperbolic fixed point. Both
invariant manifolds of a separatrix heteroclinic con-
nection are generally understood to moderate trans-
port in dynamical systems, in what has become a
classical theory of global dynamics [Meiss, 1992;
Wiggins, 1992]; these manifolds separate regions
exhibiting qualitatively different activities. A driv-
ing viewpoint is that FTLEs approximately rep-
resent these structures, as the ridges describe sets
across which there is slow diffusion [Shadden et al.,
2005], although with some important recent caveats
[Shadden et al., 2009]. Moreover, as opposed to the
stable and unstable manifolds — and fundamen-
tal to applications — FTLEs are readily computed
when the dynamical system is known only through
empirical measurements.

In general, if LCSs are of co-dimension one rel-
ative to the domain of the dynamical system, they
constitute pseudo-barriers to transport and mixing,
which is to say the flux of particles across an LCS
approaches zero as the integration time for compu-
tation of the FTLE becomes large [Shadden et al.,
2005, 2006]. A practical approach to locating LCSs
is to compute the FTLE of a time-dependent veloc-
ity field, quantifying the local stretching rate over
a finite time interval [Haller, 2000, 2002].

Given a velocity field v(x, t) on a manifold
M ⊂ R

d,

dx
dt

= v(x, t) (1)

where x ∈ M and v(x, t) is at least C2(M) — inte-
grating yields the flow map φt : x(t) �→ x(t + τ).
The finite-time strain tensor of the velocity field
along the trajectory x(t) is given by the symmetric,
time-dependent, d × d matrix

Jτ =
[
dφτx(t)

dx

]∗ dφτx(t)
dx

, (2)

where A∗ denotes the adjoint of A. In the sequel
we assume that d = 2, but this assumption is only
for ease of presentation and not mathematically
necessary.

If over a finite time interval [t, t + τ ], the
minimum and maximum eigenvalues, λmin(τ) and
λmax(τ), of Jτ satisfy the condition

ln λmin(τ) < 0 < ln λmax(τ), (3)

then the canonical local material advective behavior
is described by circles evolving into ellipses, where
the major axis determines the orientation of insta-
bility. This condition implies that there is compres-
sion in one direction and expansion in the other
along the trajectory. This type of trajectory in a
time-dependent velocity field is referred to as a
hyperbolic trajectory.

Recall that the spectral norm of the Jacobian,
dφτx(t)

dx , is given by∥∥∥∥dφτx(t)
dx

∥∥∥∥
2

= λmax(τ). (4)

Then the FTLE, which represents the maximum
stretching at the point x(t) along the trajectory
with duration time τ , is given by

στ (x(t)) =
1
|τ | ln

∥∥∥∥dφτx(t)
dx

∥∥∥∥
=

1
|τ | ln

√
λmax(τ). (5)

The repelling and attracting LCSs are then defined
as the maximum ridges of the FTLE computed in
forward time (τ > 0) and backward time (τ < 0),
respectively [Haller, 2002; Shadden et al., 2005].

2.1. FTLE in the Gulf

The HYCOM data set is a finite array of values,
v(x, t), sampled on a grid of geographic positions
in the ocean, x, at discrete times t. Integration
of the vector field in (1) and the associated tan-
gent bundle in (2) each require samples of the vec-
tor field at positions in between the grid values.
Super resolution is needed, and the interpolation
is performed using (generally) stiff cubic smoothing
splines, where a great deal of stiffness weighs the
balance toward strong agreement with the data.

Figure 3 shows the computed FTLE for the vec-
tor field v(x, t), beginning on April 20, 2010, using
a 3-day window (i.e. τ = 3 days). In this repre-
sentation, red indicates ridges of the scalar field,
transverse to which little diffusion will occur, by
the theory in [Shadden et al., 2005]. The striking
large-scale regions are the loop-and-circulation just
northwest of Cuba and the expected boundaries of
the Gulf Stream north of Cuba and northward east
of Florida. The implication of this computation is
that outlining these regions is a likely partition of
dynamical relevance.
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Fig. 3. FTLE for the Gulf computed from a 3-day range starting on April 20, 2010, derived from HYCOM data. The red
regions denote the strongest barriers to transport and generally outline components partitioning almost invariance.

What cannot be readily seen from a static snap-
shot of the FTLE field is its time varying nature,
due to the fact that the driving vector field is nonau-
tonomuous. A movie of the time evolution of the
FTLE field from April 20, 2010, to July 28, 2010,
is available online1 [Bollt et al., 2010], and it shows
that the red ridges corresponding to approximate
transport barriers form pockets and walls that push
the oil (represented as ensembles of initial condi-
tions being flowed from the oil spill source) around
the Gulf. Given that Fig. 3 represents the first three
days of the oil spill, only a small amount of oil has
flowed out of the immediate vicinity of the spill
source, so the ensembles of initial conditions are not
displayed. Roughly halfway through the 100-day
period used in the computations, the FTLEs open
and pull the ensembles through to more southerly
parts of the Gulf, whereafter it would appear the

advective tendency is to shuttle fluid into the Gulf
stream and eventually northward. This behavior is
shown in Fig. 4, which displays the FTLE field for
the 3-day window, beginning May 24, 2010, the
same day as is shown in the satellite image in Fig. 1.
Note the evolution of the transport barriers. As it
turned out, the evolution of the transport barriers
was more complex than was initially estimated, and
large-scale transport of oil into the Gulf Stream did
not occur.

Overlayed on the FTLE in Fig. 4 is the under-
lying vector field v(x, t) for May 24, 2010, which is
the beginning of the 3-day frame of integration used
to compute the FTLE, and we emphasize that the
vector field is not universally parallel to the ridges.
Also shown is a sample of black tracers representing
oil as if it had been advected from the origin of the
spill through the 34-day time period up until the

1http://people.clarkson.edu/∼aluttman/GulfFTLE.mov
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Fig. 4. FTLE for the Gulf computed from a 3-day range beginning May 24, 2010. Contrast to Fig. 3, which shows the
transport pseudo-barriers at an earlier date. Also shown is the underlying vector field on May 24, 2010, as well as black tracers
representing the spread of oil. A month after the initial explosion, the tracer particles have dispersed significantly from the
source.

Fig. 5. The HYCOM vector field and associated FTLE for July 27, 2010. The central eddy in the Gulf of Mexico can be
clearly seen in the vector field, and the associated transport boundaries are evident in the FTLE. Note the difference in the
flow field from that shown in Fig. 2, where the Gulf Stream was directly connected to the central flow. Now the central eddy
has broken from the Gulf Stream, cutting off the oil transport into the Gulf Stream. This is clear in the FTLE field, as due
west of Florida are two orange ridges representing the barrier to oil transport. This barrier prevented large amounts of oil
from entering the Gulf Stream and transporting into the Atlantic Ocean during the summer months of 2010.
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day shown. The main feature to emphasize is how
the tracers manage to weed their way through the
FTLE mostly along the red ridges and not trans-
versely, thus obeying the principle of low trans-
verse diffusion. It is through the openings in these
ridges that the oil must shuttle, if it is to transport.
Figure 4 also shows a ridge blocking entrance into
the Gulf Stream that has arisen due to the strong
circulation in the middle of the Gulf. This ridge rep-
resents the “Eddy Franklin,” a recurring eddy that
forms in the central Gulf of Mexico. This structure
can be seen more clearly in Fig. 5. On the left we
have the HYCOM vector field computed for July
27, 2010. The vector field clearly shows the eddy
to the northwest of Cuba. On the right in Fig. 5 is
the corresponding FTLE field, which demonstrates
the barrier between the region south of Louisiana,
from which the oil was flowing, and the Gulf Stream.
This dynamical structure prevented oil from enter-
ing the Gulf Stream on a large scale and greatly
reduced the amount of oil that dispersed into the
Atlantic Ocean.

3. Transfer Operator Methods for
Inferring Components

While the FTLE suggests pseudo-barriers to trans-
port, the interior regions bounded by the FLTE
ridges are the topological partition elements, and
transfer operator methods are ideally suited for
inferring these interiors directly. Moreover, com-
puted via transfer operators, these partition ele-
ments have a more direct principled mathematical
relationship to almost invariant sets.

3.1. Fröbenius–Perron and
Koopman operators

Let (X, A, µ) be a measure space and F : X → X

a non-singular, measurable transformation on (X,
A, µ) such that µ(F−1(A)) = 0 for each A ∈ A sat-
isfying µ(A) = 0. The Fröbenius–Perron operator,
P : L1(X) → L1(X) with respect to F is defined by

Pf(x) =
∫

X

δ(x − F (y))f(y)dy, (6)

where f(x) ∈ L1(X) is a probability density func-
tion (PDF) [Lasota & Mackey, 1994] and δ(x) is the
point of mass distribution. Thus Pf(x) gives a new
PDF, which depends on the discrete-time trans-
formation F and the probability density function

f(x) and is unique almost everywhere (a.e.). The
Fröbenius–Perron operator satisfies the discrete-
time continuity equation∫

F−1(A)
f(x)dx =

∫
A

Pf(x)dx (7)

for each measurable set A ∈ A [Lasota & Mackey,
1994].

The Koopman Operator, K : L∞(X) → L∞(X),
with respect to F is defined by

Kg(x) = g(F (x)) (8)

for g ∈ L∞(X). In this context, the key property
of the Koopman operator is that it is the adjoint
of the Fröbenius–Perron operator. That is for every
ρ ∈ L1(X) and g ∈ L∞(X)

〈Pρ, g〉 = 〈ρ,Kg〉, (9)

where we denote the bilinear form 〈·, ·〉L1(X)×L∞(X)

by 〈·, ·〉 here throughout.
Defining a discrete-time mapping F from the

flow given by (1) — specifically for the simula-
tions presented here based on the HYCOM data
of the Gulf of Mexico — may be understood as
a standard stroboscopic Poincaré mapping. In this
case, X is the Gulf of Mexico, and the mapping
F ≡ φt(x) is defined in terms of the flow opera-
tor φt. In practice, a numerical integration scheme
is used, and splines are used to interpolate the vec-
tor field between data points for the ODE solver, as
discussed above. It is straightforward to construct
subroutines that effectively implement the strobo-
scopic mapping F for a given, fixed time window
t0 ≤ t ≤ tf . From this implementation of F , the
next section concerns numerically estimating the
infinite-dimensional Fröbenius–Perron operator.

3.2. Finite-rank approximation

We compute a discrete approximation to the
Fröbenius–Perron operator using the Ulam–
Galerkin method [Ulam, 1970; Li, 1976]. Assume
that X has finite Lebesgue measure — so that
L2(X) ⊂ L1(X) — and let {φi}∞i=1 ⊂ L2(X) be
a complete orthonormal system (see e.g. [Whee-
den & Zygmund, 1977] for terminology). Then we
approximate a function f ∈ L2(X) by its orthogonal
projection onto the finite-dimensional subspace

	N = span{φi(x)}N
i=1. (10)
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For Galerkin’s method, this projection,

Π: L1(X) → 	N , (11)

maps a function from an infinite-dimensional space
down into a finite-dimensional function space. Thus,
given the operator P : L1(X) → L1(X) restricted
to L2(X), the composition of P with the projec-
tion, P ◦ Π, results in an operator of finite rank,
represented by an N × N matrix, via the inner
product

Ai,j = 〈Pφi, φj〉 =
∫

X

Pφi(x)φj(x)dx. (12)

The quality of the approximation of P by P ◦ Π is
discussed in many references including [Chui et al.,
1992; Ding & Zhou, 1994; Hunt, 1996].

The region X is represented by a covering of
closed sets {Bi}N

i=1. In principle, this representation
can consist of any collection of closed sets satisfy-
ing int(Bi) ∩ int(Bj) �= ∅ for j �= i and X ⊂ ∪iBi,
though in practice it is constructed in a straight-
forward way. In order to ensure a prescribed degree
of accuracy for the Ulam–Galerkin representation,
we first define a threshold εmax, then the closed
sets Bi should be chosen with diam(Bi) < εmax.
It is also helpful to choose conveniently shaped
regions, such as rectangles or triangles. In practice,
we use a Delaunay triangulation of the underlying
domain, as such a decomposition is straightforward
to work with from a programming standpoint in
that it lends itself nicely to an iterative, adaptive
refinement.

Ulam’s method [Ulam, 1970] is a special case of
Galerkin’s method, where the basis functions are a
family of characteristic functions,

φi(x) = χBi(x)

= 1 for x ∈ Bi and zero otherwise. (13)

It is interesting to note that in certain applica-
tions it may be useful to use different complete
orthonormal systems for L2(X), for example, using
basis functions such as wavelets. The traditional
Ulam method concerns weak convergence for a com-
puted invariant measure, which is a process incorpo-
rating behavior over the long-term. This contrasts
with the computational use of Galerkin’s method,
which is used widely and here, which concerns only
the short-term, one-step accuracy of the represen-
tation. This is a much simpler problem to ana-
lyze. Using (12), the matrix approximation of the

Fröbenius–Perron operator has the form of

Ai,j =
m(Bi ∩ F−1(Bj))

m(Bi)
, (14)

where m denotes the Lebesgue measure on X (as
opposed to µ, which denotes the natural, invariant
measure on X). Now m can be estimated simply, for
example using Monte-Carlo simulations, whereas
the estimation of µ takes greater care.

The entries Ai,j can be interpreted as the ratio
of the fraction of the box Bi that will be mapped
to the box Bj to a measurement of the “size” of Bi.
Note that if we only have a test orbit {xj}N

j=1 —
which is actually the main interest of this paper —
the Lebesgue measure can be approximated by a
counting measure λ and the matrix approximation
of the Fröbenius–Perron operator becomes

Ai,j =
λ({xk|xk ∈ Bi and F (xk) ∈ Bj})

λ({xk ∈ Bi}) . (15)

4. Partition to Emphasize
Almost-Invariance

A fundamental aspect of transport analysis is par-
titioning the underyling domain into invariant or
almost-invariant sets, if they exist. We will consider
and review here transport analysis via theories for
partitioning graphs, including a discussion of the
strengths of each approach for analyzing flux in the
dynamical systems these graphs represent. A com-
mon scenario in advective turbulent dynamical sys-
tems is for the long-time behavior to be transitive
(or correspondingly ergodic in terms of measurable
dynamics), but the short-time behavior may reveal
only slow transport between almost invariant sets
[Froyland & Padberg, 2009; Froyland, 2005; Bollt
et al., 2002]. Such behavior has been called “weakly
transitive” [Froyland, 2005].

The basic idea behind using the finite-rank
approximation given in (15) to the transfer operator
is that partitions associated with almost invariance
correspond to the blocks of the matrix

Ã = P T AP, (16)

where P is a permutation matrix and Ã is in almost
block-diagonal form. That is, finding the partitions
corresponds to finding the permuation matrix P
such that Ã is as close to block diagonal as it can
get. In particular, Ã must have the form

Ã =

(
R1,1 E1,2

E2,1 R2,2

)
, (17)
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where E1,2 and E2,1 are matrices of “relatively
small” Fröbenius norm [Golub & Van Loan, 1996],
which is given by

‖B‖F =
√

Tr(B · BT ) =

√√√√ N∑
i=1

N∑
j=1

|bi,j |2. (18)

More specifically, “relatively small” means that the
ratios

‖E1,2‖F

‖R1,1‖F
and

‖E2,1‖F

‖R2,2‖F

are below some predefined threshold.
There are several popular methods for trans-

forming A into nearly block diagonal form — each
of which is formulated as an optimization prob-
lem — including community methods [Newman,
2004, 2006], max-flow/min-cut type methods, and
reduction of congestion methods [Preis & Dellnitz,
2003]. Another more recent and successful approach
is the balanced Markov chain method [Froyland,
2005], derived from the theory of reversible Markov
chains and associated with spectral graph theory
[Chung, 1997; Chan et al., 1995]. There is a beau-
tiful connection between this method and the spec-
tral version of the graph modularity method stated
in its spectral formulation [Newman, 2006]. Here
we use a variation of the spectral graph theory
method [Chung, 1997]. Assume that A is a stochas-
tic matrix, with dominant eigenvalue λ = 1 of mul-
tiplicity 1 and with eigenvector p. Consider the
transition matrix A of the time-reversed Markov
chain defined by

Ai,j =
pjAj,i

pi
. (19)

While this formula is discussed in [Froyland, 2005],
we advance the technology by addressing here the
likely scenario that pi = 0 for some i by the methods
associated to Eqs. (24)–(26) discussed herein. In a
matrix form, A = Π−1AT Π, where Π is a diagonal
matrix with Πi,i = pi. This is defined in [Brémaud,
1999] and discussed in the context of almost invari-
ance with respect to dynamical systems in [Froy-
land, 2005]. It is easy to check that pA = p. The
additive reversibilization of A is defined as

R =
1
2
(A + A). (20)

The Markov chain represented by the reversibi-
lized transition matrix R is reversible and has p

as the stationary distribution as well, i.e. under the
dynamics governing the Markov chain R, the prob-
ability to go from states i to j is the same as going
from states j to i (i.e. piRi,j = pjRj,i).

Recall that the normalized graph Laplacian
[Chung, 1997] is given by

L := I − Π−1/2RΠ1/2

= I − Π1/2AΠ−1/2 + Π−1/2AT Π1/2

2
. (21)

It is clear that L is symmetric, so optimal partition-
ing comes by applying the Courant–Fischer Theo-
rem to L. More precisely, consider the minimization
problem of computing

argmin
xT (I − L)x

xT x
subject to:

∑
i

xip
1/2
i = 0.

(22)

Notice that due to the relation x = Π1/2y, the
optimal vector x has to be constrained to be
orthogonal to p1/2 for y to be orthogonal to p. Also,
we note that, after obtaining the optimal vector x,
we have to revert it to y. Following the Courant–
Fischer Theorem the optimal partition is derived
spectrally by

λ2 = min
xT p1/2=0,x �=0

xTLx

xT x

= min
yT p=0,y �=0

∑
i,j

(yi − yj)2piAi,j

∑
i

y2
i pi

. (23)

This minimum is attained by the eigenvector x =
v2, where y = Π−1/2v2 corresponds to the sec-
ond eigenvalue λ2 of the normalized Laplacian L
(see [Chung, 1997; Brémaud, 1999; Bollt & Santi-
tissadeekorn, 2012]).

A problem with the above is that the spec-
tral graph theory, in terms of the reversible Markov
chain and the normalized graph Laplacian, implic-
itly assumes that the dominant state p used to
reverse A has no zero entries, i.e. pi > 0 for each i.
This scenario can be easily violated, for example,
when the dynamical system is not recurrent. Specif-
ically in our data sets from the Gulf of Mexico, on
the largest scale there is a flow due to the Gulf
stream. Mass flows into the system in the region
south of Cuba and flows out of the system in the

1230012-9
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Atlantic, northeast of Florida. This is, of course,
due to the fact that the region shown is not a closed
subsystem of the world’s ocean’s as a whole. As a
consequence, for each i such that Bi decreases in
mass, we have pi = 0. A simple approximate fix to
this situation is to replace (19) with,

C = ceil(A), (24)

which is an adjacency matrix: Ci,j = 1 if and only
if Ai,j > 0. We use the function ceil(·) to denote
the element-wise round-up to the nearest integer
function. Then we normalize,

Di,j =
Ci,j∑

j

Ci,j

, and Di,j =
Cj,i∑
i

Ci,j

, (25)

and construct the matrix

R =
(D + D)

2
. (26)

This mimics the methods of the reversed Markov
chain (19) and (20), but is built of stochastic matri-
ces D and D. In this case, transition weights empha-
size actual transitions with respect the topological
dynamics of the dynamical system, rather than by
invariant probability associated with the dynamics.
Further, the possible division by zero values of pi

in (19) is avoided.
We proceed to investigate the second eigenvec-

tor v2 of R. In Fig. 6, we illustrate a signs vector
associated with v2,

σ = sign(v2 − q), (27)

where q is a scalar −1 ≤ q ≤ 1 chosen so that
the area flux of each signed region is balanced. The
color scheme in Fig. 6 is chosen so that those cells
Bi such that σi > 0 are colored blue, and otherwise
red, whence we denote the vector partition,

σ = σ+ + σ−. (28)

In this notation, balance may be formulated as
Rσ+ � Rσ− which is a statement of almost
invariance.

It is instructive to compare Fig. 3 with the
regions partitioned in Fig. 6, which are the FTLE
and transfer operator analyses developed around
data sets using the same exact 3-day time epochs.
Whereas FTLE analysis is considered appropriate
for discussion of transport pseudo-barriers, we see
similar structures from the spectral theory of the
Fröbenius–Perron operator corresponding to almost

Fig. 6. Partition of the Gulf of Mexico using transfer oper-
ator approach. Regions in red correspond to almost-invariant
sets, i.e. areas into and out of which little transport occurs.

invariant sets. It is not surprising that these sim-
ilar structures correspond to the interiors of the
bounding ridges of the FTLE field. It is appar-
ent that global analysis of the time-varying vec-
tor field can lead to a better understanding of the
fate of oceanographic gyres, which are themselves
time varying. As such, advection of pollutants, tem-
perature variations, and ecological factors such as
plankton blooms can all be better understood in
terms of the time evolution of the bounding barri-
ers and regions of almost invariance. As the anal-
ysis in this paper suggests, these can be defined in
terms of adjustments to recently advanced tools in
the theory of computational measurable dynamical
systems.

5. Conclusions

Based on vector fields generated from a standard
ocean model, we have used modern methods of
computational and applied measurable dynamics to
study the global dynamics related to the transport
behavior in the Gulf of Mexico during the period of
the Deep Water Horizon oil spill. Transfer operators
and FTLE methods give complementary descrip-
tions of the transport mechanisms, almost invariant
sets, and the changing barriers associated with the
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time dependence of this highly complex and nonau-
tonomous dynamical system.

Initial predictions [NCAR, 2010], showed the oil
quickly reaching the Gulf loop current and be car-
ried as far north as Cape Hatteras, N.C. This loop
current can be seen simply by inspecting the vec-
tor field in Fig. 2. This was not actually realized, as
by mid-summer a circulation loop known as “Eddy
Franklin” developed in the central Gulf, barring a
large amount of oil from entering the Gulf Stream.
The “Eddy Franklin” periodically sheds off the loop
current and forces the northernmost point of the
loop current much farther south. This particular
eddy is known to form somewhat predictably, on
average, once a year. However, there is no seasonal
preference as to when it forms [Auer, 1987]. Because
of the impossibility of forecasting ocean currents
months into the future, the original NCAR model
did not account for this phenomenon. Nonetheless,
the phenomenon was factored into the modeled flow
field later in the summer, and its consequences can
be seen in the FTLE fields computed for the Gulf
by early July (see [Bollt et al., 2010]).

Our global analysis of this data set corrobo-
rates this behavior, as it is apparent that barriers
to broader oil spread are formed early and strength-
ened throughout the summer. The formation of this
eddy was shown in Fig. 5, can be seen in the result-
ing movie (which can be found online at [Bollt et al.,
2010]), and is apparent in the FTLE barriers. The
timing of this eddy was rather fortunate for the east
coast as it kept a barrier for transport out of the
gulf in place, as seen in the FTLE. In summary, the
global analysis of this paper offers a more proactive
analysis for predicting the important understanding
of future oceanographic agents’ spreading.
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