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Abstract

Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In
this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimen-
sional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be
defined. A solution is proposed whereby hyperbolic chaotic saddles embedded in the attractor are exploited for digital
encoding. Issues addressed include the channel capacity and noise immunity when these saddles are utilized for
communication. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 05.45.qb

w xCommunicating with chaos has become a field of recent interest 1–5 . There have been two different
w xapproaches to the problem. The first is to use the principle of synchronous chaos 1,2,6 to embed and transmit
w xdigital information. In the second approach, the principle of controlling chaos 7 is extended to dynamical

w xsystems with well-defined symbolic dynamics 3,4 . This second approach makes explicit use of the fundamen-
tal principle that chaotic systems are natural information sources. By manipulating the symbolic dynamics of a
chaotic system in an intelligent way, the system produces trajectories in which digital information is embedded
in the corresponding symbolic dynamics.

This Letter addresses communicating with chaos by controlling symbolic dynamics in two-dimensional maps
Ž .equivalently three-dimensional flows . Our motivation comes from the fact that, although the principle of
utilizing chaotic symbolic dynamics for communication is quite general, so far examples illustrating this idea

w xexclusively utilize chaotic systems whose dynamics can be approximated by one-dimensional maps 3,4 . Many
chaotic systems encountered in practice, however, cannot be described by one-dimensional dynamics. It is thus
of interest to study whether communicating using controlled symbolic dynamics can be realized in higher
dimensions.

The major difficulty when two-dimensional maps are utilized for communication is to locate a generalized
partition so that a good symbolic dynamics can be defined. This difficulty arises due to nonhyperbolicity. In
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smooth, noninvertible two-dimensional maps such as those arising on the Poincare surface of section of´
three-dimensional autonomous flows, nonhyperbolicity is typically characterized by the existence of an infinite
number of points embedded in a chaotic attractor at which the stable and unstable directions coincide - the set of

wtangency points. Analogous to the critical point in one-dimensional chaotic maps e.g., x s1r2 in the logisticc
Ž . Ž .xmap f x srx 1yx , which is naturally the generating partition point for defining symbolic dynamics, in two

dimensions the generating partition is a zig-zag curve, the curve connecting all primary tangency points in the
w xchaotic attractor 9 . It is generally quite difficult to locate precisely the partition curve even for well studied

w xtwo-dimensional systems such as the Henon map 10 . To overcome this difficulty, in this Letter we propose a´
general solution: we exploit various hyperbolic chaotic inÕariant sets embedded in the nonhyperbolic chaotic
attractors. Due to hyperbolicity, it is straightforward to locate a generating partition for trajectories restricted to
these saddles 1. We can choose the chaotic saddles so that the symbolic dynamics are robust against small
random noise. Thus, utilizing hyperbolic chaotic saddles for communication also provides a solution to

w xovercome the influence of noise 5 .
To begin, we briefly describe symbolic partitions in two dimensions. The fundamental requirement that

qualifies a chaotic system for communication is whether a good symbolic dynamics can be defined which
faithfully represents the dynamics in the phase space. That is, there should be a one-to-one correspondence
between points in the phase space and those in the symbolic space. To generate a symbolic dynamics, one first

Ž .partitions the phase space into cells C is1,2, . . . ,m covering the entire attractor and then assigns symbols si i

to cells C , respectively. Consider a point x in the cell C , together with a segment of its unstable manifold. Leti i

a and b be the two intersecting points of the unstable manifold segment with the cell boundaries, as shown in
Ž .Fig. 1. A primary condition for a good symbolic dynamics is that the images of a and b under the map F x ,

Ž . Ž . Ž . Ž .denoted by F a and F b , respectively, should still be at the cell boundaries within which the curve F a F b
Ž .lies, as shown in Fig. 1 a . However, for an arbitrary partition, situation may arise where one of the end points,

Ž .say b, is no longer on a cell boundary, thus creating a ‘‘dangling end,’’ as shown in Fig. 1 b . Dangling ends
may also occur for the stable manifold of x under the inverse map Fy1. In both cases, there is no one-to-one
correspondence between points in the phase space and those in the symbolic space. Such an ill-defined symbolic
representation of phase-space points is not desirable for communication application, as ambiguities will arise
when one attempts to assign symbols to different cells. Nonetheless, if the chaotic attractor is hyperbolic, the

Ž .partition into cells can be chosen in such a way that the situation of dangling ends depicted in Fig. 1 b does not
w x w xoccur 8 . Such partitions are called Markov partitions 11 , the dynamics of which is schematically illustrated in
Ž .Fig. 1 a . The partition is generating if every infinitely long symbol sequence created by the partition

w xcorresponds to a single point in the phase space 9 .
Since chaotic attractors arising in most two-dimensional maps are nonhyperbolic, the key issue becomes how

w xto find hyperbolic subsets embedded in the attractor. To illustrate the principle, we use the Henon map 10 :´
Ž . Ž 2 .x, y ™ 1.4yx q0.3 y, x , which is widely believed to admit a chaotic attractor. The partition is a zig-zag

w xcurve connecting all primary tangency points in the phase space, which lies near ys0 9 . Trajectory points
above the curve bear symbol 1 and those below bear symbol 0. This curve is a generating partition but it is
difficult to compute. To overcome this difficulty while preserving the generating partition, we look for chaotic
saddles embedded in the attractor with a gap region, or a forbidden region, defined by ys"sr2, which covers
the partition curve. Due to the gap, a trajectory restricted to the chaotic saddle will never visit the vicinity of the
zig-zag partition curve. The partition for the chaotic saddles thus becomes easy to locate: it is the gap itself. In
particular, trajectory points above the gap bear symbol 1 and those below bear symbol 0, and this partition is

Ž .generating. Fig. 2 a shows such a chaotic saddle with gap size ss0.2. The chaotic saddles are numerically
Ž . w xcomputed by the Proper-Interior-Maximum triple PIM-triple procedure 12 . Since the forbidden region

1 Strictly speaking, the hyperbolic subsets do not cover the entire attractor and, hence, the corresponding ‘‘generating partition’’ is not the
generating partition for the original map but for a ‘‘truncated’’ map.
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Ž . Ž .Fig. 1. a The forward dynamics of a Markov partition. b For an arbitrary partition, a ‘‘dangling end’’ of the unstable manifold. This
dangling end destroys the one-to-one correspondence between the phase space and the symbolic space.

Ž .contains all the primary tangency points, the chaotic saddle in Fig. 2 a is apparently hyperbolic: it does not
contain any tangency points between the stable and unstable manifolds. As such, a Markov partition can be
defined for such a hyperbolic saddle, which naturally admits a good symbolic dynamics. In fact, there are
infinitely many gap sizes s which correspond to different hyperbolic chaotic saddles embedded in the attractor.

Ž .The hyperbolic chaotic saddle shown in Fig. 2 a is a subset embedded in the chaotic attractor and, hence, its
topological entropy cannot be larger than that of the attractor. A question is then, how severe is the reduction in
the topological entropy. This question is important for communication because the topological entropy of a
chaotic set characterizes, quantitatively, how much information can be encoded into the trajectories on the set
Ž . w x Ž .the channel capacity 13,3–5 . To address this, we compute the topological entropy h s of the chaotic saddleT

Ž . Ž . Ž .Fig. 2. a A hyperbolic chaotic saddle embedded in the Henon attractor with gap size ss0.2. b The topological entropy h s of the´ T

chaotic saddle as a function of the gap size s.
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w x Ž .as the gap size s is increased from zero 5 , as shown in Fig. 2 b for 0Fs-s f0.42, where the dashedmax

horizontal line at h s0.466 defines the minimum gap size s above which the generating partition for theT min

chaotic saddle is simply 2 ys0. We see that as s increases from 0, h decreases slowly at first, and thenT

faster. The slowly decreasing behavior warrants a relatively large regime s-s f0.3 in which h decreasesc T
Ž .only slightly less than 10% reduction in h . The key implication is that utilizing chaotic saddles with gap sizeT

smaller than s but larger than s seems to be practically beneficial in communication applications: thec min

specification of the symbolic dynamics is straightforward, yet the channel capacity is close to that obtained
when one utilizes the original chaotic attractor. We conjecture that the function of h versus s is a devil’sT

w xstaircase, a statement that can be made rigorous for certain one-dimensional maps 5 .
Ž .In general, it is advantageous to use chaotic saddles, such as the ones depicted in Fig. 2 a , for

communication, because the symbolic dynamics on the chaotic saddle are immune to small noise. If the system
Žis in a noisy environment, and the original chaotic attractor is used to encode messages, then a bit error i.e., 0

.becomes 1 or vice versa may occur whenever the trajectory comes close to the partition curve, because noise
can kick the trajectory over the curve in both directions. However, trajectories on the chaotic saddles do not
come close to the partition point because of the forbidden region. Thus, the possibility for bit error due to noise
can be substantially reduced when a chaotic saddle is utilized to encode messages if the noise amplitude is
smaller than s . Generally, there is a trade-off between the channel capacity and noise resistance.min

We now give an example of coding a specific message. Suppose we wish to encode the message ‘‘BEAT
Ž .ARMY!’’ into a trajectory in the chaotic saddle in Fig. 2 a . The message ‘‘BEAT ARMY!’’ has the following

ASCII representation:

If the chaotic saddle were equivalent to the fullshift grammar symbolic dynamics, i.e., no grammatical
restrictions, then we could simply find a trajectory in the x, y plane such that its y itinerary exactly follows the
above digital message. However, the symbolic dynamics of the chaotic saddle are subshift-type because its
topological entropy is less than ln2.

Dynamics on the saddle is representable by the Bernoulli shift map, on a bi-infinite symbol space S

w xof two symbols 9,15 . A bi-infinite symbol sequence is a point in the symbolic space: s s
Ž . 2. . . s s s .s s s . . . gS, where s s0 or 1, and s is the position of x , y gR , relative to ay2 y1 0 1 2 3 i i i i

Ž . Ž .partition curve, on the ith pre iterate for i-0 iG0. Shifting the decimal to the right represents a forward
iteration, and shifting the decimal to the left represents an inverse iteration. To quantify the correspondence

Ž .between a point x in the phase space and a point points in the symbolic space, it is necessary to use a vector
Ž w x w x.function the so-called coding function 3 , corresponding to the ‘‘symbolic plane’’ discussed in Ref. 15 :

Ž .Gs d ,g , where d and g are determined by
` `

yk ykds1y0.d d . . . d '1y d 2 , gs0.c c . . . c ' c 2 , 1Ž .Ý Ý1 2 ` k 1 2 ` k
ks1 ks1

k Ž . Ž . k Ž .where d sÝ 1ya mod 2 and c sÝ a mod 2 . The phase-space dynamics can then be representedk is1 yi k is1 i
Ž . Ž . Ž . �Ž . 4by the following map in the coding space: d ,g sD d ,g , where D d ,g s 1yd r2,2g ifnq1 nq1 n n

2 When the noise-gap size is small so that the zigzag generating partition curve cannot be covered entirely, utilizing ys0 as the partition
Ž .line for the symbolic dynamics leads to an error D N in N n , the number of possible symbol sequences of length n. We have compared the

Ž . Ž . Ž . Ž .values of h for ss0 the chaotic attractor i by counting N n , with x-axis as the partition line, and ii by using a procedure developedT
w x Ž . Ž .by Newhouse and Pignataro 14 . From the counting method i , we obtain h ss0 f0.500, while the Newhouse–Pignataro algorithmT

Ž . Ž .ii gives h ss0 f0.466. This suggests that when a chaotic saddle has entropy less than about 0.466, its noise-resisting gap has alreadyT
Ž .covered the zigzag generating partition of the attractor. This, in turn, gives an estimation for the value s in Fig. 2 b , the minimum gapmin

size for which a good symbolic dynamics can be defined by simply using ys0 as the partition.
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Ž . �Ž . 4g-1r2 and D d ,g s 1qd r2,2y2g if gG1r2. A trajectory of 50000 points in the symbolic plane
Ž . Ž .corresponding to the chaotic saddle in Fig. 2 a is shown in Fig. 3. The forbidden points blank regions in the

w xsymbolic plane is generated by the pruning front 15 . Fig. 3 thus determines, completely, the grammar on the
chaotic saddle, from which a controlling scheme can be derived to encode messages into the trajectories in the
chaotic saddle. We note that the pruning front of an embedded chaotic saddle must be ordered less than or equal
to the pruning front of the full chaotic attractor, following the fact that the subshift grammar of the chaotic
saddle must be a subset of the subshift grammar of the attractor. Furthermore, the pruning front must be a

Ž .monotone nonincreasing curve i.e., receding , as a function of the increasing gap. This corresponds to the fact
that we observe a monotone nonincreasing topological entropy.

In what follows we present a practical method to learn the grammar and then to encode digital messages. In
physical or numerical experiments, only finite precision can be achieved and, hence, it is reasonable to choose

Ž .an n-bit precision approximation subshift of finite type . A way to represent the transitions between the
w xallowed n-bit words is to use the directed-graph method in Ref. 4 which was originally discussed for

Ž .one-dimensional noninvertible chaotic maps with an infinite shift space . The directed-graph representation is,
Ž .however, more general: two-dimensional invertible maps with a bi-infinite shift space requires little modifica-

tion, for n-bit words, or truncations of the bi-infinite symbol sequences, which represent nr2 pre-iterates and
Ž .nr2 future iterates. The main point of a symbol dynamics representation is that each x, y state in phase space

occupies a neighborhood which corresponds to an n-bit code, labeled as a node on the graph. There are two
Ž .possible situations: 1 either a 0 or a 1 may be shifted into the n-bit register, and this choice means that one of

Ž .the message bits may be controlled; or alternatively, 2 only a 0 or a 1 exclusively may be shifted into the bit
register, and this must be a non-message bearing ‘‘buffer-bit’’ eÕen if the bit happens to coincide with the next

w xmessage bit because according to Shannon’s information theory 13 , an event only carries information if that
event is not pre-determined. It is exactly this time spent transmitting the buffer-bits which causes decreased
channel capacity, as measured by the topological entropy. The more of the n-bit words which have the two
possible outcomes, 0 or 1, the higher the channel capacity. In our numerical experiments, we approximate the

Ž .Fig. 3. The symbolic plane for the hyperbolic chaotic saddle in Fig. 2 a .
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w xsymbolic dynamics of the chaotic saddle by using 12-bit words. By using the method outlined in Ref. 4 , we
encode the message into a trajectory on the chaotic saddle, where the actual phase-space trajectory is shown in

Ž . Ž .Fig. 4 a and the corresponding time series y is shown in Fig. 4 b . The receiver can completely recover then

original message, given the time-series, the location of the symbol partition ys0, and the grammar in the form
of the 2 n list of transitions.

We remark that an alternative method to record the grammar of a two-dimensional map is to use the pruning
w xfronts 15 which was originally developed for the Henon map as the analogy in the symbol plane to the´

w xone-dimensional kneading theory of Milnor and Thurston 16 . Both theories give a partial order for the symbol
representation of a given point, relative to a ‘‘maximum’’ grammatically allowed word. Given a particular n-bit
sequence, it is only necessary to check whether both possibilities are grammatically permitted. In the case of the
kneading theory, one checks, in the Gray-code ordering, whether both shifting in a 0 and a 1 give new n-bit
words which are also below the kneading sequence, which is the maximum sequence corresponding to the
symbolic code of the critical point. In the case of the two-dimensional pruning-front theory, one must check that

Ž .both 0 and 1 lead to symbolic codes ordered ‘‘below’’ the pruning front; if either shift, say a 0 or 1 , is greater
than the pruning front, then that word is grammatically forbidden on the chaotic saddle, and therefore the

Ž .alternative shift, say the 1 or 0 , is determined. In either case, just as with the directed-graph method of
book-keeping the grammar, information theory demands that when the two possible outcomes are permitted, the

Ž . Ž .Fig. 4. Example of encoding a message into a chaotic saddle: a controlled trajectory in the phase space; and b the corresponding time
series.
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Ž .message bit can be transmitted, but when one of the alternatives 0 or 1 leads to a symbolic code ordered larger
than the pruning front, the transmitted bit must be a non-message bearing buffer bit.

In conclusion, we have studied the feasibility of utilizing two-dimensional symbolic dynamics for communi-
cating with chaos. The main difficulty for chaotic attractors in two-dimensional invertible maps, arising from
three-dimensional flows, is that due to nonhyperbolicity, the generating partition for defining a good symbolic
dynamics is extremely difficult to compute. Our idea is that there typically exists an infinite number of
hyperbolic chaotic saddles embedded in the chaotic attractor for which the generating partition can be easily
specified. The hyperbolic chaotic saddles have the additional property that their symbolic dynamics are immune
to small environmental noise. When chosen properly, the topological entropies of the chaotic saddles can be
close to that of the original attractor. These advantages make dynamical systems described by two-dimensional
invertible maps potential candidates for nonlinear digital communication.
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