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Abstract

We consider a temporal model in which the prey and mid level predator interact via Holling Type

IV functional response and mid level predator and top level predator via Beddington Deangelis

functional response. We perform local and global stability analysis of the temporal model.

We later extend the temporal model spatially and then consider spatially explicit three species

predator prey model with Beddington DeAngelis functional response. An extensive bifurcation

analysis has been performed and the correlation between the pattern and bifurcation point is

studied. Both Turing and non-Turing patterns have been studied. We also observe spatial and

temporal chaos in the model. We have investigated the effect of Hopf-bifurcation on Turing and

non-Turing pattern formation in the model system.
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1. Introduction

Patterns in nature and the mechanisms which can generate these patterns is an endless

challenge to mathematical modelers . The diversity and beauty of patterns in ecology makes

the study even more fascinating. Mathematics provides the natural language for talking about

patterns in nature. Since, the ground breaking work of Alan Turing [1] several researchers have

contributed in the area. In his seminal work, he explained that activator-inhibitor type chemical

reactions can generate interesting patterns due to destabilizing behavior of diffusion, which is

counter intuitive to the idea that diffusion always has a strong stabilizing influence. After his

work many models in chemistry were studied to verify diffusion as an influencing factor for

pattern formation [2–6]. In biology, there is very little knowledge about underlying molecular
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mechanism of skin patterns in animals. Some studies suggest that skin patterns are generated

through reaction diffusion systems which are a putative wave of chemical reactions that can gen-

erate periodic patterns [7] . Scientists used the spatial models supported by empirical data to

explain the localized nature of insect population and to illustrate that dynamic spatial processes

regulate the population distribution [8] .The explanation of self regulated pattern formation in

nature using reaction diffusion systems was long debated. In a review article, Kondo explained

the effective use of reaction diffusion models in experimental biology using the examples from

experimental studies [9].

The Beddington DeAngelis functional response is a functional response which describes preda-

tor eating response to prey in a similar manner as Holling type II, except that it has an extra

term due to mutual interference of predators in the denominator. The simplest form of two

dimensional prey predator model with and without diffusion with Beddington DeAngelis func-

tional response has been studied in literature by several authors [10–12]. However, in this work

we have focused on spatially extended three species model system with Beddington-DeAngelis

functional response because it is more generic and can be applied to understand the dynamics of

a wide range of ecological systems. The proposed model describes the temporal evolution due to

interaction and movements of hyperparasitoids, parasitoids and hosts population. In literature,

researches have tried to understand the interdependence of bifurcation and pattern formation.

[12] observed that two dynamical systems having topologically equivalent local dynamics near

the Hopf-bifurcation, exhibit a completely different patterning behavior in spatially extended

system. An analytical study of diffusive Sel’kov system was done to study Hopf-bifurcation in

the model system [13]. Recently there has been much attention focused on Hopf-bifurcation

analysis of spatially extended population models, for example [14, 15] and references therein.

Recently, Hopf- bifurcation of two dimensional diffusive predator-prey model with Beddington

DeAngelis response has been studied to understand global stability of the system [16]. But to

the best of our knowledge, the Hopf-bifurcation in three species spatially extended population

model with Beddington DeAngelis functional response and its impact on pattern formation has

not been studied yet.The objectives of the present study are (i) to investigate the emergence

of complex patterns in three species model system as a consequence of spatial distribution of

species with Beddington-DeAngelis functional response (ii) to understand the association of

Hopf-bifurcation and pattern formation. The organization of remainder of the paper are as

follows, in section 2 we discuss formulation of the model system. In section 3, the stability and

Hopf-bifurcation analysis of spatially homogeneous case has been discussed. Section 4 discusses

the derivation for the conditions for Turing instability in the model system. In section 5, we

present spatio temporal pattern formation, Turing pattern formation and Hopf-bifurcation in
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the model system. We conclude with a discussion of results in section 6.

2. Formulation of the model system

The model system studied in this paper has been developed from the Upadhyay Rai predator

prey model [17, 18]. A short introduction to the Upadhyay Rai model is given as follows. Here,

r(t) is the generalist top predator predating on v(t) - which is its favorite food, v(t) is the middle

specialist predator, predating on u(t) , which is the lowest level prey and the favorite food of

middle predator. The temporal evolution model for this food chain is given by

du

dt
= a1u

(
1− u

K

)
− w0uv

(u+D0)

dv

dt
= −a2v +

w1uv

u+D1
− w2vr

(v +D2)

dr

dt
= cr2 − w3r

2

(v +D3)

(2.1)

The various parameters [19–21] are described here - a1 is the rate of self-growth of prey, a2

is the rate at which middle predator will die out in the absence of its favorite food, wis are

the maximum value which per capita rate can attain, D0, D1, D2, D3 are the half saturation

constants, K is the carrying capacity of prey u, c is the growth rate of top generalist preda-

tor due to sexual reproduction. In this model the top predator r , is predating on v with a

predator functional response of Holling type II. The model system 2.1 is based on the assump-

tion that species is spatially homogeneously distributed but in nature the species distribution

is always spatially in-homogeneous. Therefore, for modeling a realistic food chain scenario, we

shall consider the model system with diffusion. When the population distribution changes with

location, the predator’s rate of feeding upon prey depends on both predator and prey densities.

Beddington DeAngelis is one of the predators feeding responses which can arise from spatial

mechanism. Therefore, we assume that the population of top predator, r , predating on its

favorite food, v, not only allocate time to search for its prey but also spend some time engaging

in encounters with other predators of the same population [10]. This results in Beddington

DeAngelis functional response of the form f1(v, r) =
w2vr

(v + br +D2)
. This functional response

incorporates a predator mutual interference term br in the denominator of Holling type II func-

tional response. The Holling type II functional response of the form f2(v, r) =
w2vr

(v +D2)
is free

from such assumptions[22] during predation. We assume that the top predator’s rate of feeding

upon prey can be modeled using Beddington DeAngelis functional response instead of Holling

type II. Therefore, the system 2.1 can be transformed as follows.
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Consider the spatially explicit three species predator prey food chain model system. At any

location (x, y) and time t , the interaction of three species populations u(x, y, t), v(x, y, t) and

r(x, y, t) can be modeled with the reaction-diffusion equations given by

∂u

∂t
= a1u

(
1− u

K

)
− w0uv

(u+D0)
+ δ1∆u

∂v

∂t
= −a2v +

w1uv

u+D1
− w2vr

(v + br +D2)
+ δ2∆v

∂r

∂t
= cr2 − w3r

2

(v +D3)
+ δ3∆r

(2.2)

a1,K,w,D0, a2, w1, D1, w2, D2, c, w3, D3 are positive constants as explained earlier. The

new parameter b measures the predator mutual interference. δ1, δ2, δ3 are diffusivity con-

stants which signify the spatial movement of prey, middle and top predator populations re-

spectively. The Laplace operator ∆ represents , ∆ =
∂2

∂x2
in one dimension spatial domain and

∆ =

(
∂2

∂x2
+

∂2

∂y2

)
in two dimensional spatial domain. The problem is based on a bounded

domain Ω = [0, Lx] × [0, Ly] ⊂ R2, we consider the following Neumann boundary condition at

any time t,

(ux)x=0,Lx = (uy)x=0,Ly = (vx)x=0,Lx = (vy)x=0,Ly = (rx)x=0,Lx = (ry)x=0,Ly = 0

and positive initial condition.

3. Stability analysis of the temporal system

The proposed model system, without diffusion can be written as follows

du

dt
= a1u

(
1− u

k

)
− w0uv

u+D0

dv

dt
= −a2v +

w1uv

u+D1
− w2vr

v + br +D2

dr

dt
= cr2 − w3r

2

v +D3

(3.1)

above equation’s can be written as :

du

dt
= ug1,

dv

dt
= vg2,

dr

dt
= rg3. (3.2)

where,

g1 = a1

(
1− u

k

)
− w0v

u+D0
(3.3)

g2 = −a2 +
w1u

u+D1
− w2r

v + br +D2
(3.4)

g3 = cr − w3r

v +D3
(3.5)
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3.1. Local stability analysis

The system has following equilibrium points :

(i) the trivial equilibrium point E0 = (0, 0, 0)

(ii) the equilibrium point E1 = (k, 0, 0) exist on the boundary of the first octant

(iii) the planar equilibrium point E2 = (u, v, 0) in the u − v plane, where u =
a2D1

a2 − w1
and

v =
1

w0

[
a1

(
1− u

k

)
(u+D0)

]

The equilibrium point E2 exist if a2 > w1 and k > u

(iv) The non trivial equilibrium point E3 = (u∗, v∗, r∗) ,where

v∗ =
w3

c
−D3,

u∗ is a positive solution of the following equation

u∗
2

− k
(

1− D0

k

)
u∗ − kD0 +

kw0

a1
v∗ = 0

and

r∗ =
(−a2(u∗ +D1) + w1u

∗)(v∗ +D2)

(w2(u∗ +D1) + ba2(u∗ +D1)− bw1u∗)

Let, the Jacobian matrix at E
′s
i , i = 0, 1, 2, 3 be V

′s
i , i = 0, 1, 2, 3. At the trivial equilibrium

point E0, the jacobian matrix V0, takes the form

V0 =


a1 0 0

0 −a2 0

0 0 0


The eigenvalues of V0 are a1, and −a2 which makes E0 a saddle point.

The Jacobian matrix at E1 is

V1 =


−a1 − kw0

k +D0
0

0 −a2 +
w1k

k +D1
0

0 0 0


From the jacobian matrix V1, it is found that the equilibrium point E1 is locally asymptotically

stable if a2 >
w1k

(k +D1)
.
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The jacobian matrix V2, at the equilibrium point E2 is

V2 =


u

(
−a1

k
+

w0v

u+D0

)
u

(
− w0

u+D0

)
0

v
w1D1

(u+D1)2
0 −v

(
(v +D2)w2

(v + br +D2)2

)
0 0

(
c− w3

(v +D3)

)


the eigenvalues of the above matrix satisfies the following conditions

λ1 + λ2 = u

(
−a1

k
+

w0v

u+D0

)

λ1λ2 = −u.v
(

w0

u+D0

)(
w1D1

(u+D1)2

)

λ3 =

(
c− w3

(v +D3)

)
Hence the system is stable in the u− v plane if c <

w3

(v +D3)
.

For the non trivial equilibrium point E∗, the jacobian matrix V3 is given as

V3 =


u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
u∗
(
− w0

(u∗ +D0)

)
0

v∗
(

w1D1

(u∗ +D1)2

)
v∗
(

w2r
∗

(v∗ + br∗ +D2)2

)
−v∗

(
w2(v∗ + w2)

(v∗ + br∗ +D2)2

)
0 r∗

(
w3r

∗

(v∗ +D3)2

)
r∗
(
c− w3

(v∗ + w3)

)


The characteristic equation of the above matrix is

λ3 +A1λ
2 +A2λ+A3 = 0 (3.6)
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where,

A1 =

[
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
+ v∗

(
w2r

∗

(v∗ + br∗ +D2)2

)
+ r∗

(
c− w3

(v∗ + w3)

)]
A2 =u∗v∗

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)(
w2r

∗

(v∗ + br∗ +D2)2

)
+ u∗r∗

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)(
c− w3

(v∗ + w3)

)
+v∗r∗

(
w2r

∗

(v∗ + br∗ +D2)2

)(
c− w3

(v∗ + w3)

)
+ v∗r∗

(
w3r

∗

(v∗ +D3)2

)(
w2(v∗ + w2)

(v∗ + br∗ +D2)2

)
+u∗v∗

(
w0

(u∗ +D0)

)(
w1D1

(u∗ +D1)2

)
A3 =−

[
u∗v∗r∗

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)(
w2r

∗

(v∗ + br∗ +D2)2

)(
c− w3

(v∗ + w3)

)]
−
[
u∗v∗r∗

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)(
w2(v∗ + w2)

(v∗ + br∗ +D2)2

)(
w3r

∗

(v∗ +D3)2

)]
−
[
u∗v∗r∗

(
− w0

(u∗ +D0)

)(
w1D1

(u∗ +D1)2

)(
c− w3

(v∗ + w3)

)]
Applying Routh-Hurwitz criteria to equation 3.6 gives the following theorem :

Theorem 1 The non-trivial equilibrium point E3 is locally asymptotically provided Ai > 0, i =

1, 2, 3 and A1A2 −A3 > 0

Through the conditions derived earlier for different equilibrium points and by calculations the

above criteria has been proved.

3.2. Global stability analysis

We here state the theorem for global existence of the non-trivial equilibrium point E3.

Theorem 2 The non trivial equilibrium point E3 is globally asymptotically stable under

the following condition :

c <
w3

γ
(v∗ +D3) and

(
a1

k
+
w0v

∗

α

)
(u− u∗)2 >

β1w2r
∗

β2w1D1
(v − v∗)2 (3.7)

Proof We use Lyapunov direct method to prove global existence of the non trivial equilib-

rium point. For that purpose we consider the following Lyapunov function

V = C1

[
u− u∗ − u∗ln

( u
u∗

)]
+ C2

[
v − v∗ − v∗ln

( v
v∗

)]
+ C3

[
r − r∗ − r∗ln

( r
r∗

)]
,

where, Ci, i = 1, 2, 3 are arbitrary constants to be evaluated.

i.e. V = V1 + V2 + V3, where,

V1 = C1

[
u− u∗ − u∗ln

( u
u∗

)]
, V2 = C2

[
v − v∗ − v∗ln

( v
v∗

)]
;V3 = C3

[
r − r∗ − r∗ln

( r
r∗

)]
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The derivative of V with respect to the time along the solution of the model system 3.1is

dV

dt
=
dV1

dt
+
dV2

dt
+
dV3

dt
(3.8)

Here,
dV1

dt
= C1

(
u− u∗

u

)
du

dt

dV1

dt
= C1

(
u− u∗

u

)(
a1u

(
1− u

k

)
− w0uv

u+D0

)
On, simplification we obtain,

dV1

dt
= −C1

(
a1

k
+
w0v

∗

α

)
(u− u∗)2 − C1w0

α
(u∗ +D0)(v − v∗)(u− u∗) (3.9)

where α = (u+D0)(u∗ +D0).

Similarly, we can obtain the following

dV2

dt
=

(
C2w1D1

β1

)
(u− u∗)(v − v∗)−

(
C2w2

β2

)
(v∗ +D2)(r − r∗)(v − v∗) +

(
C2w2r

∗

β2

)
(v − v∗)2

(3.10)

where β1 = (u− u∗)(u∗ +D1) and β2 = (v + br +D2)(v∗ + br∗ +D2)

and
dV3

dt
= C3

(
c− w3v

∗

γ
− D3w3

γ

)
(r − r∗)2 +

(
C3w3r

∗

γ

)
(v − v∗)(r − r∗) (3.11)

where, γ = (v +D3)(v∗ +D3)

From above equations, we obtain,

dV

dt
=C1

(
a1

k
+
w0v

∗

α

)
(u− u∗)2 − C1

w0

α
(u∗ −D0) (v − v∗)(u− u∗)

+

(
C2w1D1

β1

)
(u− u∗)(v − v∗)−

(
C2w2

β2

)
(v∗ +D2)(r − r∗)(v − v∗)

+

(
C2w2r

∗

β2

)
(v − v∗)2 + C3

(
c− w3v

∗

γ
− D3w3

γ

)
(r − r∗)2

+

(
C3w3r

∗

γ

)
(v − v∗)(r − r∗)

Choosing,

C1 = 1, C2 =
β1w0(u∗ +D0)

αw1D1
and C3 =

C2γw2(v∗ +D2)

β2w3r∗

we obtain the following,

dV

dt
= −

(
a1

k
+
w0v

∗

α

)
(u−u∗)2 +

β1w2r
∗

β2w1D1
(v−v∗)2 +

γβ1

w1w3r∗D1

(
c− w3

γ
v∗ − D3w3

γ

)
(r−r∗)2

Now,
dV

dt
is clearly negative definite under condition 3.7, stated in the theorem. Hence the

nontrivial equilibrium point E3 is globally asymptotically stable.
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4. Existence of Hopf-bifurcation

We will now prove the existence of Hopf-bifurcation in the system by considering a1 - the

rate of self growth of prey as the bifurcation parameter.

If there exist a1 = a10 then the necessary and sufficient and sufficient conditions for the existence

of the Hopf-bifurcation are

(i) Ai(a10) > 0, i = 1, 2, 3

(ii) A1(a10)A2(a10)−A3(a10) = 0 and

(iii) Re

(
dui
dr

)
6= 0, i = 1, 2, 3 , where uis is the real part of the eigenvalues of the characteristic

equation of the form λi = pi + iqi

Now, we verify the condition (iii) for the existence of Hopf-bifurcation. Put λi = pi + iqi in (14),

we get,

(p+ iq)3 +A1(p+ iq)2 +A3(p+ iq) +A3 = 0 (4.1)

on separating the real and imaginary parts and eliminating q between them, we get,

8p3 + 8A1p
2 + 2(A2

1 +A2)p+A1A2 −A3 = 0 (4.2)

Now we have p(a10
) = 0 as A1(a10

)A1(a10
) − A1(a10

) = 0 and a1 = a10
is the only positive

root of A1(a10)A2(a1)−A3(a1−0) = 0, and the discriminant of 8p2 + 8A1p+ 2(A2
1 +A2) = 0 is

−64A2 < 0. On differentiating (21) with respect to a1, we get,

(24p2 + 16A1p+ 2(A2
1 +A2))

dp

da1
+ (8p2 + 4A1p)

dA1

da1
+ 2p

dA2

da1
+

d

da1
(A1A2 −A3) = 0 (4.3)

Now at a1 = a10
, p(a10

) = 0, we obtain(
dp

da1

)
a1=a10

=
− d

da1
(A1A2 −A3)

2(A2
1 +A2)

6= 0 (4.4)

which ensures that the above system has Hopf-bifurcation.

5. Stability Analysis of Spatially Extended Model System

In this section, we will study the dynamical behavior of the model with diffusion. For that

purpose we will first analyze the model in one dimensional spatial domain [0,Ω]. Diffusion is

introduced as the principal mechanism of motion. The model takes the form

∂u

∂t
= a1u

(
1− u

k

)
− w0uv

u+D0
+ δ1

∂2u

∂x2

∂v

∂t
= −a2v +

w1uv

u+D1
− w2vr

v + br +D2
+ δ2

∂2v

∂x2

∂r

∂t
= cr2 − w3r

2

v +D3
+ δ3

∂2r

∂x2

(5.1)
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The above system will be studied with positive initial conditions given by

u(x, 0) ≥ 0; v(x, 0) ≥ 0; r(x, 0) ≥ 0.

and boundary conditions:

∂u

∂x

∣∣∣
x=0,Ω

=
∂v

∂x

∣∣∣
x=0,Ω

=
∂r

∂x

∣∣∣
x=0,Ω

= 0.

For the above model system, we consider eigenfunctions of the form
u

v

r

 =


a

b

c

 exp(λt+ ikx)

Hence, we have,

u = a exp(λt+ ikx),

v = b exp(λt+ ikx),

r = c exp(λt+ ikx)

(5.2)

where, λ is wavelength and k is the wave number.

Thus from the above expression of u, v and r, we have,

∂2u

∂x2
= −k2a exp(λt+ ikx) or

∂2u

∂x2
= −k2u, similarly

∂2v

∂x2
= −k2v and

∂2r

∂x2
= −k2r.

Hence, the above model becomes

∂u

∂t
= a1u

(
1− u

k

)
− w0uv

u+D0
− δ1k2u

∂v

∂t
= −a2v +

w1uv

u+D1
− w2vr

v + br +D2
− δ2k2v

∂r

∂t
= cr2 − w3r

2

v +D3
− δ3k2r

(5.3)

5.1. Local stability Analysis of Model in one-dimensional spatial domain

To perform the local stability analysis at the equilibrium points Ei, i = 0, 1, 2, 3, we first

obtain the jacobian matrix of the system 5.3at each of the equilibrium point. The jacobian

matrix at E0 is given by

V0 =


a1 − δ1k2 0 0

0 −a2 − δ2k2 0

0 0 −δ3k2


The eigenvalues of V0 are a1 − δ1k2, −a2 − δ2k2 and −δ3k2. Thus the equilibrium point E0 is
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(i) stable if a1 < δ1k
2,

(ii) saddle if a1 > δ1k
2.

The Jacobian matrix at E1 is given by

V1 =


−a1 − δ1k2 − kw0

k +D0
0

0 −a2 +
w1k

k +D1
− δ2k2 0

0 0 −δ3k2


From V1, we can conclude that equilibrium point E1 is

(i) saddle if
w1k

k +D1
> (a2 + δ2k

2),

(ii) stable if
w1k

k +D1
< (a2 + δ2k

2).

The jacobian matrix at E2 is

V2 =


u

(
−a1

k
+

w0v

u+D0

)
− δ1k2 u

(
− w0

u+D0

)
0

v w1D1

(u+D1)2 −δ2k2 −v
(

(v +D2)w2

(v + br +D2)2

)
0 0

(
c− w3

(v +D3)

)
− δ3k2


The eigenvalues of the above jacobian matrix satisfies the following conditions

λ1 + λ2 = u

(
−a1

k
+

w0v1

u+D0

)
− (δ1 + δ2)K2,

λ1λ2 =

[{
u

(
a1

k
+

w0v

u+D0

)
− δ1k2

}
δ2k

2

]
− uv

(
w0

u+D0

)(
w1D1

(u+D1)2

)
− (δ1 + δ2)K2

λ3 =

(
c− w3

(v +D3)

)
− δ3k2

Therefore, the equilibrium point E2 is stable under the following conditions

(i) c <

(
w3

v +D3

)
+ δ3k

2

(ii) u

(
−a1

k
+

w0v

u+D0
− δk2

)
(δ2k

2) > uv

(
w0

u+D0

)(
w1D1

(u+D1)2

)
+ (δ1 + δ2)K2

(iii) u
a1

k
+ (δ1 + δ2)k2 >

w0uu

u+D0
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The jacobian matrix at non trivial equilibrium point is given by

V3 =


u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
− δ1k2 u∗

(
− w0

(u∗ +D0)

)
0

v∗
(

w1D1

(u∗ +D1)2

)
v∗
(

w2r
∗

(v∗ + br∗ +D2)2

)
− δ2k2 −v∗

(
w2(v∗ + w2)

(v∗ + br∗ +D2)2

)
0 r∗

(
w3r

∗

(v∗ +D3)2

)
r∗
(
c− w3

(v∗ + w3)

)
− δ3k2


The characteristic equation of the jacobian matrix V3 is,

λ3 +A1λ
2 +A2λ+A3 = 0

where,

A1 =
[
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
− δ1k2 + v∗

(
w2r

∗

(v∗ + br∗ +D2)2

)
− δ2k2

+ r∗
(
c− w3

(v∗ + w3)

)
− δ3k2

]
A2 =

(
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
− δ1k2

)(
v∗
(

w2r
∗

(v∗ + br∗ +D2)2

)
− δ2k2

)
+

(
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
− δ1k2

)(
r∗
(
c− w3

(v∗ + w3)

)
− δ3k2

)
+

(
v∗
(

w2r
∗

(v∗ + br∗ +D2)2

)
− δ2k2

)(
r∗
(
c− w3

(v∗ + w3)

)
− δ3k2

)
+

(
u∗
(
− w0

(u∗ +D0)

))(
v∗
(

w1D1

(u∗ +D1)2

))
−
(
v∗
(

w2(v∗ + w2)

(v∗ + br∗ +D2)2

))(
r∗
(

w3r
∗

(v∗ +D3)2

))
A3 =

[(
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
− δ1k2

)(
v∗
(

w2(v∗ + w2)

(v∗ + br∗ +D2)2

))(
r∗
(

w3r
∗

(v∗ +D3)2

))]
+

[(
u∗
(
− w0

(u∗ +D0)

))(
v∗
(

w1D1

(u∗ +D1)2

))(
r∗
(
c− w3

(v∗ + w3)

)
− δ3k2

)]
−
(
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
− δ1k2

)(
v∗
(

w2r
∗

(v∗ + br∗ +D2)2

)
− δ2k2

)(
r∗
(
c− w3

(v∗ + w3)

)
− δ3k2

)
By Routh-Hurwitz criteria of local stability, E3 is locally stable if Ai > 0, i = 1, 2, 3 and

A1A2 −A3 > 0.

5.2. Global stability analysis of one dimensional diffusion model

The global stability of one dimensional diffusion model has been established by the following

theorem

Theorem 3: (1) If E∗ is globally asymptotically stable for model without diffusion then it is

also globally asymptotically stable for our diffusion model.

(2) If non trivial equilibrium E∗ is unstable for model without diffusion then the diffusion

12



model can be made globally asymptotically stable by increasing the diffusion coefficients to a

sufficiently large value.

Proof: We consider the following functional

V1 =

∫ Ω

0

V (u, v, r)dx

on differentiating with respect to time, we get

dV1

dt
=

∫ Ω

0

[(
∂V

∂u

)(
∂u

∂t

)
+

(
∂V

∂v

)(
∂v

∂t

)
+

(
∂V

∂r

)(
∂r

∂t

)]
dx

on putting the values of
∂u

∂t
,
∂v

∂t
and

∂r

∂t
in the above expression, we obtain

dV1

dt
=

∫ Ω

0

[(
∂V

∂u

)(
a1u(1− u

k

)
− w0uv

u+D0
+ δ1

(
∂2u

∂x2

)]
dx

+

∫ Ω

0

[(
∂V

∂v

)(
−a2v +

w1uv

u+D1
− w2vr

v + br +D2
+ δ2

∂2v

∂x2

)]
dx

+

∫ Ω

0

[(
∂V

∂r

)(
cr2 − w3r

2

v +D3
+ δ3

∂2r

∂x2

)]
dx

Or

dV1

dt
=

∫ Ω

0

(
dV

dt
)dx− δ1

∫ Ω

0

(
∂2V

∂2u2

)(
∂u

∂x

)2

dx− δ2
∫ Ω

0

(
∂2V

∂2v2

)(
∂v

∂x

)2

dx

− δ3

∫ Ω

0

(
∂2V

∂2r2

)(
∂r

∂x

)2

dx

On putting the values of

(
∂2V

∂2u2

)
,

(
∂2V

∂2v2

)
and

(
∂2V

∂2r2

)
, we get

dV1

dt
=

∫ Ω

0

(
dV

dt

)
dx− δ1

∫ Ω

0

u∗

u2

(
∂u

∂x

)2

dx− δ2
∫ Ω

0

v∗

v2

(
∂v

∂x

)2

dx− δ3
∫ Ω

0

r∗

r2

(
∂r

∂x

)2

dx

Therefore when
dV

dt
is negative, the system is globally asymptotically stable.

If
dV1

dt
is not negative, then we can make the system globally asymptotically stable by increasing

the diffusion coefficient sufficiently large. Hence the theorem.

5.3. Local stability Analysis of Model in two dimensional spatial domain

Here we consider the model system given in 2.2 in two dimensional spatial domain.

We consider the solution of the following form
u

v

r

 =


a

b

c

 exp(λt+ i(kxx+ kyy))

13



where u = a exp(λt+ i(kxx+kyy)), v = b exp(λt+ i(kxx+kyy)) and r = c exp(λt+ i(kxx+

kyy)) where, λ is frequency and kx and ky are the components of wave number k along x and y

directions.

Substituting these values in the model system, we can obtain

∇2u = −k2u , ∇2v = −k2v and ∇2r = −k2r, where, k2 = k2
x +k2

y. Putting the above values

in the model,we obtain the new model as follows

∂u

∂t
=a1u

(
1− u

k

)
− w0uv

u+D0
− δ1k2u (5.4)

∂v

∂t
=− a2v +

w1uv

u+D1
− w2vr

v + br +D2
− δ2k2v (5.5)

∂r

∂t
=cr2 − w3r

2

v +D3
− δ3k2r (5.6)

As the model with two dimensional diffusion is similar to that of one dimensional diffusion,

therefore the results of local stability of two dimensional diffusion model are equally applicable

to for the two dimensional diffusion model.

5.4. Global stability Analysis of two dimensional diffusion model

The following theorem the global stability of two dimensional diffusion model

Theorem 4 (1) If E∗ is globally asymptotically stable for model without diffusion then it is

also globally asymptotically stable for our diffusion model.

(2) If non trivial equilibrium E∗ is unstable for model without diffusion then the diffusion

model can be made globally asymptotically stable by increasing the diffusion coefficients to a

sufficiently large value.

Proof: To prove the above result, we consider the following functional

V2(t) =

∫∫
Ω

V (u, v, r)dA

Differentiating the above functional with respect to time and along the solution of the two di-

mensional diffusion model, we obtain

V
′

2 (t) =

∫∫
Ω

[(
∂V

∂u

)(
∂u

∂t

)
+

(
∂V

∂v

)(
∂v

∂t

)
+

(
∂V

∂r

)(
∂r

∂t

)]
dA

on putting the values of
∂u

∂t
,
∂v

∂t
and

∂r

∂t
in the above expression, we obtain

14



V
′

2 (t) =

∫∫
Ω

[(
∂V

∂S

)(
a1u

(
1− u

k

)
− w0uv

u+D0
+ δ1 4 u

)]
dA+∫∫

Ω

[(
∂V

∂I

)
(−a2v +

w1uv

u+D1
− w2vr

v + br +D2
+ δ2 4 v

]
dA+∫∫

Ω

[(
∂V

∂R

)
(cr2 − w3r

2

v +D3
+ δ3 4 r

]
dA

We can write the above expression as a sum of two integrals as follows

dV2

dt
= I1 + I2

Where,

I1 =

∫∫
Ω

[(
dV

dt

)]
dA

I2 =

∫∫
Ω

[
δ1

(
∂V

∂u

)
4 uu+ δ2

(
∂V

∂v

)
4 uv + δ3

(
∂V

∂r

)
4 ur

]
dA

Now, according to the Green’s identity in the plane, we have the following result

∫∫
Ω

F 4 uQdA =

∫
∂Ω

F
∂Q

∂n
ds−

∫∫
Ω

(5F.5Q) dA

δ1

∫∫
Ω

((
∂V

∂u

)
4 uu

)
dA = −δ1

∫∫
Ω

(
∂2V

∂u2

)((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
dA

≤ 0

similarly,

δ2

∫∫
Ω

((
∂V

∂v

)
4 v

)
dA = −δ2

∫∫
Ω

(
∂2V

∂v2

)((
∂v

∂x

)2

+

(
∂v

∂y

)2
)
dA

≤ 0

and

δ3

∫∫
Ω

((
∂V

∂r

)
4 r

)
dA = −δ3

∫∫
Ω

(
∂2V

∂r2

)((
∂r

∂x

)2

+

(
∂r

∂y

)2
)
dA

≤ 0

Thus, it is clear that I2 ≤ 0 and hence
dV2

dt
< 0 if I1 ≤ 0.

Therefore, we can conclude that, if E∗ is stable in the absence of diffusion then it will remain

globally asymptotically stable in the presence of diffusion.
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5.5. Diffusion Driven Instability

In this section, we will study in detail the local dynamics and stability conditions of the

spatially explicit case of the model system in a two dimensional spatial domain. We also obtain

here the conditions for the diffusion driven instability to occur by perturbing the homogeneous

steady state solution. The stability analysis of model system 2.2 is carried out with positive

initial conditions and zero flux boundary conditions given by

r(x, y, 0) ≥ 0, r(x, y, 0) ≥ 0, r(x, y, 0) ≥ 0

(ux)x=0,Lx = (uy)x=0,Ly = (vx)x=0,Lx = (vy)x=0,Ly = (rx)x=0,Lx = (ry)x=0,Ly = 0

where 0 < x < Lx and 0 < y < Ly

.

For the linear stability analysis of spatially extended model (4)-(6), steady state is perturbed

with the following two dimensional spatio-temporal perturbation of the form

u = u∗ + a exp(λkt+ i(kxx+ kyy)) = u∗ + u1 (5.7)

v = v∗ + b exp(λkt+ i(kxx+ kyy)) = v∗ + v1 (5.8)

r = r∗ + c exp(λkt+ i(kxx+ kyy)) = r∗ + r1 (5.9)

where a, b and c are sufficiently small constants, kx and ky are the components of wave number

k along x and y directions respectively and λk is the wavelength. The system is linearized about

the equilibrium point E(u∗, v∗, r∗).

The characteristic equation of the linearized version of the spatial model system 2.2 is given by

(Juvr − λkI3)


a

b

c

 = 0 (5.10)

with

Juvr =


a11 − δ1k2 a12 0

a21 a22 − δ2k2 a23

0 a32 −δ3k2


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where k is the wave number given by k2 = k2
x + k2

y and I3 is a 3× 3 identity matrix in which,

a11 = u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
a12 =

−w0u
∗

(u∗ +D0)

a21 =
w1D1v

∗

(u∗ +D1)2
, a22 =

w2r
∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
,

a23 =
−w2v

∗(v∗ +D2)

(v∗ + br∗ +D2)2
, a32 =

c2r∗2

w3

Our interest is the stability properties of the attracting interior equilibrium point E , which

will lead to the conditions for diffusion driven instability. From 5.10, we get the characteristic

equation of the form

det(Juvr − λkI3) =λ3
k − tr(Juvr)λ2

k + λk[(δ1δ2 + δ2δ3 + δ3δ1)k4 − (a11(δ2 + δ3) + a22(δ1 + δ3)k2)

+a11a22 − a23a32 − a12a21]− det(Juvr) = 0

(5.11)

The characteristic equation can be written as

det(Juvr − λkI3) = λ3
k + ρ1λ

2
k + ρ2λk + ρ3 (5.12)

where

ρ1 =− tr(Juvr)

ρ2 =(δ1δ2 + δ2δ3 + δ3δ1)k4 − (a11(δ2 + δ3) + a22(δ1 + δ3)k2) + a11a22 − a23a32 − a12a21]

ρ3 =− det(Juvr)

(5.13)

An application of the Routh-Hurwitz criteria gives the following theorem immediately.

Theorem 5 The interior equilibrium point E3(u∗, v∗, r∗) is locally asymptotically stable in

the presence of diffusion if and only if the following three conditions are satisfied:

u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
+
w2r

∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
< (δ1 + δ2 + δ3)k2, (5.14)

u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
δ2 +

w2r
∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
δ1 −

w0w1D1u
∗v∗

k2(u∗ +D0)(u∗ +D1)2

−w2u
∗r∗

k2

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)(
(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2

)
− w2c

2(v∗ +D2)v∗r∗2

w3k2(v∗ + br∗ +D2)2

δ1
δ3

< δ1δ2k
2 − w2c

2

w3δ3k4

(v∗ +D2)

(v∗ + br∗ +D2)2

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
u∗v∗r∗2

(5.15)
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[
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
(δ2 + δ3) +

w2r
∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
(δ1 + δ3)

]
k2

− ww1D1u
∗v∗

(u∗ +D0)(u∗ +D1)2
− w2c

2(v∗ +D2)v∗r∗2

w3(v∗ + br∗ +D2)2
− w2(v∗ + 2(D2 + br∗))u∗r∗

(v∗ + br∗ +D2)2(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
> (δ1δ2 + δ2δ3 + δ3δ1)k4 − det(Juvr)

tr(Juvr)

(5.16)

The spatially homogeneous state will be unstable provided that at least one eigenvalue of

characteristic equation 5.12 is positive. This will occur when at least one of the three inequalities

of Theorem 5 does not hold.

For the above, since δ1, δ2, δ3 and k are all positive, the inequality 5.14 always holds as

a11 + a22 < 0 from the stability condition of interior point in homogeneous state (Here we will

have to refer the analysis of non spatial model). Therefore, the inequality 5.15 can be reversed

and can be rewritten as

H(k2) =(k2)3δ1δ2δ3 − (k2)2

[
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
δ2 +

w2r
∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
δ1

]
δ3

+ k2

[
δ3

(
w2u

∗r∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
(v∗ + 2(D2 + br∗)

(v∗ + br∗ +D2)2
+

w0w1D1u
∗v∗

(u∗ +D0)(u∗ +D1)2

)]
+ k2

(
δ1
w2c

2

w3

(v∗ +D2)v∗r∗2

(v∗ + br∗ +D2)2

)
− w2c

2

w3

(v∗ +D2)

(v∗ + br∗ +D2)2

(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
u∗v∗r∗2 < 0

(5.17)

The minimum of H(k2) occurs at k2 = k2
c given by

1

3δ1δ2δ3

[{
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
δ2 +

w2r
∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
δ1

}
δ3

+

{{
u∗
(
−a1

k
+

w0v
∗

(u∗ +D0)2

)
δ2 +

w2r
∗(v∗ + 2(D2 + br∗))

(v∗ + br∗ +D2)2
δ1

}2

δ2
3

− 3δ1δ2δ3

{
δ3

{
w2u

∗r∗
(
− a1

K
+

w0v
∗

(u∗ +D0)2

)
v∗ + 2(D2 + br∗)

(v∗ + br ∗+D2)2

}

+
w0w1D1u

∗v∗

(u∗ +D0)(u∗ +D1)2

}
+ δ1

w2c
2(v∗ +D2)v∗r∗2)

w3(v∗ + br∗ +D2)2

}1/2]
(5.18)

Consequently, the condition for diffusive instability is H(k2
c ) < 0.

Theorem 6 The criterion for diffusive instability for the model system is obtained at the

critical wave number kc of the first perturbations obtained by solving 5.18.

6. Turing and Non - Turing Pattern Formation

We now carry out numerical simulations of model system 2.2 and demonstrate the Turing

instability. We perform both 1d and 2d simulations. For the simulations we use MATLAB
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(R2011a). All the simulations performed have been refined several times on spatial grids in

both 1d and 2d. These refinements lead to the same general shape and structure of the figures.

All of our calculations are based on perturbations of the non-trivial steady-state. To explore the

spatiotemporal dynamics of the model system in two dimensional spatial domain, the system

of partial differential equations is numerically solved using a finite difference method. Forward

difference scheme is used for the reaction part and standard five point explicit finite difference

scheme is used for two dimensional diffusion terms. The model is studied with positive initial

condition and Neumann boundary condition in the spatial domain, 0 < x < Lx, 0 < x < Ly,

where Lx = Ly = 500. Parameters used in the simulations are given in Table 1. The initial

distribution of the species is considered to be a small spatial perturbation of the steady state.

The simulations have been performed for different step sizes in space and time until the solution

becomes invariant. To investigate the spatiotemporal dynamics of the model systems, we have

numerically solved the system of partial differential equations using finite difference method.

Forward difference scheme is used for the reaction part. For diffusion part, central difference

scheme is used for one dimensional case and standard five point explicit finite difference technique

is used for two dimensional diffusion terms. The simulation is carried out at different time level

for both one dimensional and two dimensional spatial model systems.

6.1. Non - Turing pattern formation

We study the model system 3.1 in both one dimension and two dimension. In one dimensional

case, the model system with u(x, t), v(x, t) and r(x, t) takes the form as given below

∂u

∂t
= a1u

(
1− u

K

)
− w0uv

(u+D0)
+ δ1∆u (6.1)

∂v

∂t
= −a2v +

w1uv

u+D1
− w2vr

(v + br +D2)
+ δ2∆v (6.2)

∂r

∂t
= cr2 − w3r

2

(v +D3)
+ δ3∆r (6.3)

The equations 6.1 are solved numerically with zero flux boundary condition at different time

levels t =100, 200, 500, 800, and 15000 and results are presented in Fig. 1. The parameter

values used for Fig. 1 are as follows:

a1 = 1.93,K = 36, w = 1, D = 10, δ1 = 1, a2 = 1, w1 = 2, D1 = 10, w2 = 0.405

D2 = 10, b = 0.2, δ2 = 1, c = 0.027, w3 = 0.8, D3 = 20, δ3 = 1

The system of equations 6.1 are numerically solved over 30000 mesh points with very small

spatial resolution Du = 0.1 and time step Dt = 0.1, to avoid any numerical artifact. The
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nontrivial interior equilibrium for model system 3.1 is E∗(31.6917, 9.6296, 66.8290) . The initial

condition used is of the form δ,
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Figure 1: 1 Model System 1: Simulation of model system (24)-(26) at different time level (a) t = 100 (b) t =

200 (c) t = 300 (d) t = 500 (e) t = 800 (f) t = 15000. Parameter values are given in text

u(x, 0) = u∗ + ε1(x− 1200)(x− 2800)

v(x, 0) = v∗ + ε2(x− 200)(x− 800)

r(x, 0) = r∗

(6.4)

where (u∗, v∗, r∗) is the nontrivial state for the coexistence of the three populations and ε1 =

ε2 = 10−8 . At time t =100 , an irregular but less dense dynamics is observed, but as time

increases to t = 500 the irregular chaotic patterns increases. The size of the domain occupied

by the irregular chaotic patterns increases and hence occupies the whole region at time t = 800

and the chaotic dynamics persists as time increases at t =15000 . At the same set of parameter

values given in 3.7, the spatial model system 6.1 displays chaotic attractor shown in Fig. 2.
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Figure 2: Chaotic attractor obtained due to spatial evolution of trajectories of model system (4)-(6). Parameter

values are given in text

The two dimensional spatially extended model system takes the form as given below

∂u

∂t
= a1u(1− u

K
)− wuv

(u+ d0)
+ δ1

(
∂2u

∂x2
+
∂2u

∂y2

)
(6.5)

∂v

∂t
=− a2v +

w1uv

u+D1
− w2vr

(v +D2)
+ δ2

(
∂2v

∂x2
+
∂2v

∂y2

)
(6.6)

∂r

∂t
= cr2 − w3r

2

(v +D3)
+ δ3

(
∂2r

∂x2
+
∂2r

∂y2

)
(6.7)

The system of equations 6.5 is numerically solved over a 500× 500 square spatial domain with

spatial resolution ∆u = 1 = ∆v and time step ∆t = 0.1. The spatial patterns of the three

populations, u, v, r, are presented in Fig. 3 at different time with other parameter values same

as given in 3.7. Note that the initial conditions are deliberately chosen so that it is asymmetrical

in order to make more influence of the corners of the domain. The initial distribution of the

species considered is a two-dimensional initial condition of the form given below :

u(x, y, 0) = u∗ + ε1(x− 0.1v − 325)(y − 0.1v − 675)

v(x, y, 0) = v∗ + ε2(x− 450)− ε3(y − 350)

r(x, y, 0) = r∗

(6.8)

where, (u∗, v∗, r∗) is the nontrivial state for the coexistence of the three species and ε1 =

2 × 10−7, ε2 = 3 × 10−5 and ε3 = 1.2 × 10−4 The spatial snapshots of three populations at

different time levels t = 500, 800, 1000and1500 are presented in Fig 3 with initial conditions as

specified and other parameter values given in 3.7.
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Simulations are performed over the square domain of 1000× 1000 with spatial resolution ∆x =

∆y = 0.01 and time step size 0.01. We next present the results of the 2d simulations in Figures

3. The densities of the three species are shown as contour plots in the x− y plane (see table 1

for the parameters). The long-time pattern is seen to be spot Turing patterns, with cold and

hot spots being most conspicuous, in case of the prey and the middle predator respectively.

7. Turing pattern Formation

Long term numerical simulation is carried out for the solution of the model system 2.2. The

parameter values are chosen such that the Turing instability conditions derived in section 4 are

satisfied. The system is solved under Neumann boundary conditions. The initial condition used

is a two dimensional spatial perturbation of the order 10−7 and 10−5 to the coexistence steady

state of the system. The parameter values used are given in table below. For the numerical

integration, the time step has been fixed at 1
3 but we keep changing the space step and the

domain size which yield a wide range of Turing patterns as seen in Fig 4 to Fig 10. The different

values of diffusivity constants and other parameters used for simulation are presented in Table

1.

Table 1: Table describing different parameters values and corresponding diffusivity coefficients used for simula-

tion.

Fig. δ1 δ2 δ3 space-step domain size time

4 1.25× 10−3 1.25× 10−3 1.25 2 500 x 500 1500

5 3× 10−2 3× 10−2 3 3 500 x 500 2000

6 3× 10−2 3× 10−2 3 3 1000 x 1000 2000

7 3× 10−2 3× 10−2 3 2 1000 x 1000 5000

8 3× 10−1 3× 10−1 3 2 1000 x 1000 2000

9 3× 10−1 3× 10−1 3 2 1000 x 1000 5000

10 3× 10−3 3× 10−3 3 2 1000 x 1000 5000

8. Hopf-Bifurcation and Pattern Formation

In this section, we perform a detailed bifurcation analysis of the system 2.2. Bifurcation

study has been done by selecting the bifurcation parameter as a1 the rate of self-growth of prey

as bifurcation parameter because from the Hopf bifurcation analysis we have observed that a1

is one of the sensitive parameters, which has a significant impact on the dynamics of the model

system 2.2. For bifurcation study, we discretize the model system 2.2 in space. In this section,
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(a)

(b)

(c)

(d)

Figure 3: Spatial snapshots are obtained at different time a) t = 500 b) t = 800 c) t = 1000 d) t =1500.

Parameter values are same as in one dimensional case with initial condition give in (18). Other parameter values

are in text.
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Figure 4: Solutions of the model system (4)-(6) showing Turing patterns. Here the domain size is increased and

step size is reduced relative to Fig 5 and other parameters are kept constant

Figure 5: Solutions of the model system (4)-(6) showing sprinkle type Turing patterns at t=1500. First second

and third figure represents prey, middle predator and top predator population distributions respectively.
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Figure 6: Solutions of the model system (4)-(6) showing Turing patterns where prey population displays a circular

patch of high population density and middle predator yields a circular ring of high population density . We here

increase the diffusion coefficients of all three populations.

Figure 7: Solutions of the model system (4)-(6) showing Turing patterns. Here we increase the value of diffusion

coefficients of the prey and the middle predator and keep the diffusion coefficient of the top predator fixed

the discretized system of dimension 10 of the reaction diffusion system is used for simulation.We

have plotted bifurcation diagram with respect to a1.

We have considered all the diffusivity coefficients of prey, mid predator and top predator to be
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Figure 8: Solutions of the model system (4)-(6) showing Turing patterns when numerical integration is carried

for relatively longer time 5000

Figure 9: Solutions of the model showing Turing patterns when numerical integraion is done for longer time

while other parameters remain fixed as in Fig 8.

Figure 10: Solutions of the model showing Turing patterns. Here we reduce the diffusion coefficients of prey and

predator population significantly while keeping the diffusion coefficient of top predator fixed.

equal or same therefore, D = δ1 = δ2 = δ3. Since, diffusion coefficient is a responsible parameter

for pattern formation. We study the change variation in dynamics with respect to D, the equal

diffusivity coefficient. So we change the value of D as D = 10, 30, 50, and 70 and we plot

bifurcation diagram in Fig 11(a).

We observed that for the smaller values of D = 10, 30, and 50 the dynamics is very complex

and displays several Hopf Bifurcation points, the system displays fewer number of Hopf Bifur-

cation points at D = 70.

Further in Fig-11(b), we perform the bifurcation study at D = 100, 400, 500, 600, 800.

Here we observe that the number of Hopf Bifurcation points becomes constant and its value

converges to ′3′.

At equal diffusivity coefficient δ1 = δ2 = δ3 = 800, the Hopf-bifurcation points are obtained
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at the bifurcation parameter value a1 = 0.860982, 0.730893 and 0.702050 and a limit point is

obtained at 0.655325. In fig 12a, we obtain spatial distribution of prey density at a1 = 0.68

which is the point before Hopf-bifurcation point a1 = 0.70205 . The prey distribution is almost

homogeneous in space at this point.

We further simulate pattern at a1 = 0.71 the value of bifurcation parameter between the two

Hopf bifurcation points 0.70205and0.730893(see fig 12b).Again we observe a homogeneous popu-

lation density distribution in space. The spatial distribution obtained at a1 = 0.75 and a1 = 1.93

is presented in fig 12c and 12d respectively. The numerical integration is done at time 1500 for

fig 12. We observe a homogeneous prey population distribution at all values of bifurcation pa-

rameter a1 which are less than 0.86. When the value of a1 is larger than 0.86, which is Hopf

bifurcation point, we obtain a complex spatial distribution (see Fig 12d).

(a)

(b)

Figure 11: The bifurcation diagram at diffusivity coefficients (a) D= 10,30,50,70 (b) D= 100,400,500,600,800
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(a) (b)

(c) (d)

Figure 12: Patterns obtained at different values of bifurcation parameter a1 (a) a1 = 0.68, space step = 20 (b)

a1 = 0.71 space step = 20 (c) a1 = 0.75, space step = 20 (d) a1 = 1.93, space step = 30

9. Discussion and conclusion

In this work, we have analytically and numerically investigated three species diffusive in-

teraction model of hyperparasitoid, parasitoid and host population with Beddington DeAngelis

functional response. An extensive stability analysis of the temporal system and spatially ex-

tended model system has been carried out which includes both local and global stability analysis

at various equilibrium points in concern. Moreover, it has been proved that the Beddington

DeAngelis functional response admits a wide range of dynamical behaviour including Hopf bi-

furcation, limit points, Turing and non Turing patterns.

The existence of Hopf bifurcation has been shown both analytically and numerically with respect

to parameter a1 - which is the rate of self growth of prey because it is a sensitive parameter

and it governs the dynamics both middle order predator and top level predator significantly and

in turn the dynamics of the system. The bifurcation diagram at different values of diffusivity

constants is obtained (Fig 11) which shows different Hopf bifurcation points for different values

of bifurcation parameter a1 and also corresponding limit points.
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The one dimensional model system has been solved numerically with zero flux conditions at

different time levels and results are depicted in Fig-1 at different parameter values, also it has

been shown in Fig-2 that the model system displays chaotic attractor.Extensive study of two

dimensional spatially extended model system has been carried out. Various spatial snapshots

at different time levels are given in Fig-3. The conditions for the occurrence of diffusion driven

instability has been derived and numerical simulations of the system has been carried out to

demonstrate Turing instability Simulations have been performed for parameters which satisfy

the conditions derived for Turing instability. For different domain size, step size and diffusion

coefficients values of species involved, Turing patterns have appeared in the system which are

depicted in Fig - 4, 5,6, 7, 8, 9 and 10. The relationship between Hopf bifurcation and Turing

pattern formation has been shown in Fig - 12(a), 12(b), 12(c) and 12(d).

The mutual interference in the model yields an oscillatory spatiotemporal growth to the middle

predator in a three species model. In Fig 3(a) the spatial distribution of middle predator is high

at various locations. At time t=800, the population density of v decreases significantly (Fig

3(b)). But again there is significant population growth at various locations at t = 1000 followed

by population decline at t = 1500 (Fig3c-d). However, the spatiotemporal pattern formation of

top predator population r, who predates on the middle predator using Beddington DeAngelis

functional response, exhibits a continuous decline in the population density. This shows that

Beddington DeAngelis predator response provides an advantage to the middle predator v to

grow over time when the population is spatially distributed and simultaneously restricts the

bloom in the population.
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