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The inverse Frobenius–Perron problem (IFPP) is a global open-loop strategy to control chaos.
The goal of our IFPP is to design a dynamical system in <n which is: (1) nearby the original
dynamical system, and (2) has a desired invariant density. We reduce the question of stabilizing
an arbitrary invariant measure, to the question of a hyperplane intersecting a unit hyperbox;
several controllability theorems follow. We present a generalization of Baker maps with an
arbitrary grammar and whose FP operator is the required stochastic matrix.

1. Introduction

The realization that the determinism which defines
chaos also opens the possibility of controllability,
has garnered a great deal of attention and research,
in recent years [Chen & Dong, 1998; Kapitaniak,
1996]. Sensitive dependence to initial conditions
implies that a small variation in initial conditions
or parameter values can potentially lead to rapid
and dramatic changes in system output. This mo-
tivation has focused chaos control research to take
advantage of this sensitivity, by developing con-
trol algorithms which achieve their objectives with-
out crude or drastic perturbations to the system.
Control objectives are therefore typically sought
within the already present and richly varied orbits.

Two main types of controlling chaos objec-
tives are: (1) stabilization of an unstable peri-
odic orbit; typified by the original method due to
Ott, Grebogi and Yorke, OGY [Ott et al., 1990];
a local feedback control-loop is applied once a
chaotically wandering trajectory has wandered
within a small neighborhood of the target, and

hence, ergodicity and patience (transients can be
long) can be thought of as the global strategy.
(2) Targeting solves the next natural (global) ques-
tion; can we find a very fast trajectory to near the
target point [Shinbrot et al., 1993; Kostelich et al.,
1993; Bollt & Meiss, 1995; Schweizer & Kennedy
1995; Bollt & Kostelich, 1998]. In both cases,
taking advantage of sensitive dependence to initial
conditions uniquely allows chaos control algorithms
to achieve their goals through small perturbations.
However, these are both closed-loop programs.

In this paper, we pursue a recent alternative
method of controlling chaos, based on altering the
statistical properties of the attractor. One chooses a
dynamical system whose corresponding Frobenius–
Perron operator has the targeted density as its
“physical” density fixed point. This inverse problem
is known as the Inverse Frobenius–Perron Problem
[Góra & Boyarsky, 1998, 1996, 1993, 1997; Koga,
1991; Grossmann et al., 1997] (or IFPP for short),
and we develop here a new approach for its solu-
tion. This can be described as a strategy to globally
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stabilize a target state or distribution of the per-
turbed dynamical system, and unlike the above-
mentioned control algorithms, IFPP is open-loop.
Additionally, we will achieve control with small per-
turbations of the map. Furthermore, our approach
yields simple controllability theorems.

To be more precise, we slightly perturb a
dynamical system, for which we assume only an ob-
served “physical ” invariant measure, to a nearby
dynamical system which has the desired statistics.
We show that “atypical” atomic invariant measures
can be globally selected. Additionally, some non-
invariant measures can be achieved by a bounded
away from zero perturbation.

A major requirement of our matrix-based
approach to the IFPP is our ability to pass from
the targeted Frobenius–Perron matrix back to an
appropriate dynamical system. We call this the “in-
verse Ulam problem” (IUP). For one-dimensional
systems, the IUP is completely solved [Góra &
Boyarsky, 1993, 1997] by virtue of the fact
that the Ulam conjecture is proven [Li, 1976;
Boyarsky & Haddad, 1981]. In higher dimensional
dynamical systems, a rigorous footing of Ulam’s
conjecture is incomplete, except for special cases
[Froyland, 1995, 1997; Boyarsky & Lou, 1991; Ding
& Zhou, 1995]. In Sec. 5, we have designed a class of
piecewise affine and area-preserving dynamical sys-
tems generalizing Baker’s transformations which:
(1) mimic the Anosov expanding/contracting
nature of typical maps, (2) have the grammar gener-
ated by an arbitrary transition matrix on a Markov
partitioning grid, and they can be designed to yield
the desired FP operator.

P. Góra and A. Boyarsky have several works
related to the IFPP, in particular as it relates
to the control of one-dimensional dynamical sys-
tems [Góra & Boyarsky, 1998, 1996, 1993, 1997].
In [Góra & Boyarsky, 1996], P. Góra and A.
Boyarsky presented an elegant graph theoretic so-
lution; they constructed nearby dynamical systems
which maximize the invariant density supported
over a so-called target set, selecting cycles of a
digraph representation which, frequently hit the
targeted set(node). In [Góra & Boyarsky, 1998,
1997], the authors offer an algorithm to dynamically
remove an interval, and its pre-iterates, from the
density support for a sequence of approximating
one-dimensional maps.

Two other approaches to the IFPP can be found
in the literature, both of which require large per-
turbations to the map. These are: (1) Integration

of the Frobenius–Perron operator (of a 1-D map),
with assumptions on the map’s form to force a
unique solution (e.g. assume a symmetric unimodal
map), can be made to yield a 1-D differential equa-
tion whose solution is the map, and can be found
in closed form for certain special target distribu-
tions. See for example [Koga, 1991], (2) Conjuga-
tion transformation to conjugate f to a piecewise-
linear map g, f ◦ h = h ◦ g, for a g with a uniform
invariant density, such that the conjugacy composed
with the density gives the density of f [Grossmann
et al., 1977; Mori et al., 1981; Baranovsky & Daems,
1995].

2. Motivation and Definitions

Consider the dynamical system,

f : M →M, M ⊂ <m . (1)

Our objective is to control the “physical” invari-
ant measure. Given a measure space (M, A, µ),
then µ is f -invariant if , µ(S) = µ(f−1(S)), for
all Borel sets S ∈ A where f−1 denotes the (per-
haps many-to-one) preimage. In general, there are
infinitely many invariant probability measures for a
chaotic f , and we wish to alter the typically observed
invariant measure.

The so-called Sinai–Bowen–Ruelle (SBR) mea-
sure, when it exists, is widely considered to be
the “physical measure” of the attractor [Bowen &
Ruelle, 1975], and it is this measure which one
(almost always) observes in computer simulations.
The question of existence of an SBR is open in
the general case [Ott, 1994], although there are
existence results for some smooth one-dimensional
maps. For Axiom A diffeomorphisms, as well as
Anosov diffeomorphisms, µSRB is widely consid-
ered to be the physical measure, but these special
cases do not include many common nonuniformly
hyperbolic examples. Recently however, a µSRB

has been established for certain parameter values
of the Hénon maps [Benedicks & Carleson, 1991;
Benedicks & Young, 1993]. Numerically however,
the existence of physical measures seems to be quite
prevalent. In fact, for the purposes of this paper we
do not require that the original function f can be
proven to have a natural measure; we wish only to
construct a nearby function approximate f + δf ,
which has the desired statistics.

The Frobenius–Perron (FP) operator is cen-
tral to discussions of invariant measures as any
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invariant density is a fixed point of the operator,
Pfρ(x) = ρ(x). Intuitively, this operator maps
densities to densities under the action of the map.
More precisely [Lasota & Mackey, 1997], the FP
operator Pf associated with a DS Eq. (1) is it-
self a dynamical system on L1(M) disributions,
Pf : L1(M) → L1(M), ρ ∈ L1(M), according to,∫
B Pfρ(x)dµ(x) =

∫
f−1(B) ρ(x)dµ(x), for all Borel

sets B ∈ B. When the derivatives are nonsingular,
we may write [Lasota & Mackey, 1997],

Pfρ(x) =
∑

{y:f(y)=x}

ρ(y)

|Df(y)| , (2)

where |Df(y)| is the determinant of the Jacobian
derivative of f , at y.

An important simplification when approximat-
ing Pf on an equipartition (call the grid cells Qi) of
the state-space M , comes from application of the so-
called Ulam method conjectured by S. Ulam [Ulam,
1960], which projects the action of Pf on the infi-
nite dimensional space L1(M) onto a finite element
linear subspace, A : ∆n → ∆n, where ∆n is given
by characteristic functions on the grid cells {Qi}i.
The stochastic matrix A is defined,

Ai,j =
m(Qj ∩ f−1(Qi))

m(Qj)
, (3)

which gives the fraction of Qj which maps to Qi,
m(·) denotes the Lebesgue measure on M , allow-
ing f−1 to have multiple branches. Ulam conjec-
tured that the matrix A is a good approximation
to Pf in the following sense. A sequence of refin-
ing grids over the state space M give a sequence of
stochastic matrices A, with a sequence of dominant
fixed eigenvectors A · v = v, and these eigenvec-
tors converge weakly to the dominant eigendensity,
Pfρ(x) = ρ(x), as the grid is refined.

The Ulam “conjecture” was proven by T. Y. Li
[1976] using bounded variation arguments, requir-
ing that f ∈ piecewise C2[0, 1], with M > inf |f ′| >
2. The n-dimensional generalization was proven by
G. Froyland in the cases of a Markov partition of
an expanding Anosov diffeomorphism, using sym-
bol dynamics techniques in [Froyland, 1975], and
by mixing arguments in [Froyland, to appear]. The
conjecture was also proven by Boyarsky and Lou
[1991], for expanding Jablonski transformations
(n-dimensional maps such that, on a grid square,
each component-wise function of f is a function of
only one independant coordinate variable xi), again

using bounded-variation arguments modeled after
the methods in [Li, 1976]. Likewise the methods in
[Ding & Zhou, 1995] for piecewise-affine functions
also use bounded variation arguments and therefore
require an expanding transformation [Proppe et al.,
1990].

In practice, using a finite length test orbit {xj},
we can approximate the action of the map on dis-
crete densities, alternate to Eq. (3), by developing
the transition matrix A,

Ai,j =
#{xk such that xk ∈ Qj and f(xk) ∈ Qi}

#{xk ∈ Qj}
,

(4)

by normalizing A so that each column sums to 1,
i.e. the total probability of the transition from any
given state to all other states is 1.

3. The Control Problem and the
Euclidean Norm Solution

Given the dynamical system Eq. (1), which may
or may not have an invariant SBR measure µ (we
do not require one), with corresponding probabil-
ity density function ρ, and given another arbitrary
probability distribution function ρ+ δρ, we wish to
find a nearby (in the sup-norm sense) dynamical
system f + δf ,

f + δf : M →M, M ⊂ <m , (5)

such that this dynamical system has an SBR in-
variant measure µ+δµ with the desired probability
density function ρ+δρ. This will not be possible for
all ρ+ δρ, but we discuss controllability in the next
section. Note that our targeted transformations will
typically be discontinuous.

We consider a sequence of dynamical systems
fn which sup-norm approach f , such that fn has ex-
actly the Frobenius–Perron matrices An, and there-
fore their invariant measures µn have densities ρn
which follow the sequence of dominant eigenvectors
vn. In this section we show the linear algebraic
construction of An, and in Sec. 5 we relate a trans-
formation fn for each An, which we call the IUP.

In terms of matrices, the control problem is
stated as follows: Given a stochastic matrix A with
stationary eigenvector v, we wish to perturb A so
that we achieve a desired stationary eigenvector
v + δv

(A+ δA) · (v + δv) = v + δv . (6)
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In general, we do not expect that this is a well-
defined inverse problem. There are infinitely many
matrices δA likely which satisfy Eq. (6) for given
data A, v, and v + δv. However, we intend to do
this within the grammar of A, which allows us to
closely approximate f . This motivates the follow-
ing objectives of the linear algebraic problem:

Control Rules:

1. (A+ δA) · (v + δv) = v + δv.
2. (A+ δA) is stochastic. Therefore,

(a)
∑q
i=1(A+ δA)i,j = 1, for all j,

(b) and 0 ≤ (A+ δA)i,j ≤ 1 for all (i, j).

3. Preserve grammar in the sense that we require
δAi,j = 0 for each (i, j) that Ai,j = 0.

4. maxi,j |δAi,j | is as small as possible.

Rules 2–4 serve as constraints on Eq. (6). Actually,
we will only solve constraints 2(a), and we use 2(b)
as a posterior condition for evaluating the success
of a given solution.

Equation (6) can be expanded, and cancellation
of the original term A · v = v leaves,

δA · (v + δv) = (I −A) · δv . (7)

Recall that we consider A, v, and δv as the known
data, and therefore we rewrite this equation to em-
phasize the known and unknown components:

δA · x = y , (8)

where, x = v + δv, and, y = (I −A) · δv . (9)

Note that the unknowns of the equation are the
q2 entries of the q × q perturbation matrix δAi,j .
This is a highly under-determined linear system,
and the linear equation is a co-dimension-q restric-
tion. From constraint 2(a) follows that δA must
column sum to zero,

∑q
i=0 δAi,j = 0, which is a fur-

ther co-dimension-q restriction on the δAi,j space of
variables, leaving a q2 − 2q solution hyperplane.

The grammatical rule 3 further reduces signifi-
cantly the number of variables. Typically, there are
enough constraint 3 equations δAi,j = 0, to reduce
the dimension of the solution hyperplane to just a
few degrees of freedom, as made clear in the exam-
ple following Eq. (10). Suppose that there are T
nonzero δAi,j , then we may rename these variables
in the lower case {δai}Ti=1 as a T -vector of variables,
δa.

For example, we show a 3 × 3 matrix δA, in
which there are T = 7 nonzero entries,

δA =

da1 0 da5

da2 0 da6

da3 da4 da7

 , (10)

and we explicitly see the role of the 7-vector variable
δa of nonzero δAi,j entries which yields,

δA · x =

da1 0 da5

da2 0 da6

da3 da4 da7

 ·
x1

x2

x3



=

 x1da1 + x3da5

x1da2 + x3da6

x1da3 + x2da4 + x3da7

 .
(11)

Reversing these equations so as to emphasize the
subordinate role of the 7× 1 vector δa of unknown
nonzero entries of δA, we get a 2q × T = 6 × 7
matrix D,

D · δa ≡



x1 0 0 0 x3 0 0

0 x1 0 0 0 x3 0

0 0 x1 x2 0 0 x3

1 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 1



· δa =



y1

y2

y3

0

0

0


≡ z . (12)

Typically, these hyperplanes are under-deter-
mined. Equation (12) defines an infinite solution
space; the 7-vector variable δa makes a codimen-
sion-6 restriction, leaving a one-dimensional solu-
tion space.

We resolve the undetermined solution problem
with control objective 4. For ease of calculation, we
interpret constraint 4 in terms of minimizing the l2

norm, but we show that l∞ minimization also has
relevance. Without loss of generality, we minimize
the function,

n(δa) ≡ ‖δa‖2l2 =
T∑
i=1

δa2
i . (13)
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In fact, the solution of Eq. (13) is the well-known
least-squares problem, and a particularly stable
numerical solution is found using the Penrose pseu-
doinverse, as calculated by Singular Value Decom-
position [Golub & Van Loan, 1989],

δa = D+z, where, D+ = V · Ω−1 · U t , (14)

given the SVD of D, D = U · Ω ·V t. The SVD has
numerous nice properties [Golub & Van Loan, 1989;
Press et al., 1992], including that Ω = diag(ωi)
is the diagonal matrix of “singular values,” and is
therefore trivial to invert, and U and V are orthog-
onal matrices, and are therefore also trivial to in-
vert, U−1 = U t, V −1 = V t. Most important to us is
the property that the SVD solution of an undeter-
mined system automatically selects the solution on
the hyperplane which is minimal in the sense that
n(δa) ≡ ‖δa‖2l2 is minimized [Golub & Van Loan,
1989; Press et al., 1992].

Note that δa, the solution of Eq. (13), is not
necessarily a reasonable solution to the control
problem conditions 1-4; δa may not give a stochas-
tic A+ δA.

4. Controllability

In the previous section, we gave an algorithm to
solve a linear algebraic analog of the IFPP, culmi-
nating in Eq. (14). However, we do not expect a
reasonable solution for all choices of the vectors x
and y, i.e. we do not expect that an arbitrary A,
with fixed grammar, can be controlled to an arbi-
trary equilibrium distribution, v + δv.

The solution Eq. (14) only solves the control
problem constraints 1, 2a, 3, 4; we did not yet
consider 2b which we now incorporate as an ex
post facto controllability requirement. If the solu-
tion Eq. (14) yields a reasonable stochastic matrix
A + δA, then 2b says that the solution vector δa
must have all of its component entries bounded,

0 ≤ ak + δak ≤ 1 , (15)

where ak denotes the Ai,j, a nonzero entry of A, in-
dexed to match δak with the same position in δAi,j .
For an arbitrary A and target distribution v + δv,
we can always construct a solution A+ δA accord-
ing to Eq. (14), but this solution is not necessarily
a stochastic matrix. Another solution, which does
not violate condition 2b is possible. The problem is
due to the fact that we have minimized ‖δa‖l2 , in

whose topology, “balls” are hyperspheres which do
not fit properly into the boxes of Eq. (15); a round
peg does not fit into a square hole. The following
theorem addresses this issue.

Theorem 1. If the solution δa = D+z to control
problem 1–4 has a bad component, ak + δak < 0 or
ak+δak > 1, then the minimal ‖δa‖l2 does not yield
a feasible solution, but there may be another feasi-
ble δa. However, there is a very bad component if
(ak + δak − 1/2) >

√
T/2, and then there exists no

stochastic A+ δA control solution.

Proof. D · δa = z defines a 2q-dimensional hyper-
plane in <T , T > 2q. The condition 0 ≤ ak + δak ≤
1, 1 ≤ k ≤ T defines a compact hyperbox, in
<T . If the hyperbox intersects the hyperplane, then
the “reasonable” solution exists, satisfying condi-
tions 1–4. The center of the box is the point
p ∈ <T , pk = 1/2, and a corner of the hyperbox is a
Euclidean distance

√
T/2 from the center, but there

are points in the ball which are not in the box if
(ak + δak − 1/2) <

√
T/2. Figure 1 clearly illus-

trates the existence of such points. �

This indicates that to ensure nonexistence of a
solution of D · δa = z in the hyperbox, we must

Fig. 1. A low-dimensional characature of the hyperplane
D · δa = z piercing (or not piercing) the stochastic hyper-
box 0 ≤ ai + δai ≤ 1, i = 1, 2, . . . , T , in <T . The point x is
the l2 norm closest point, on the hyperplane, to the origin,
but this point is not in the box. See Theorem 1. However,
in this illustration, the hyperplane does pierce the box, and
the point y. The l∞ minimum definitively decides whether
D · δa = z pierces the box; see Theorem 2.
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consider the sup-norm, whose “balls” are actually
boxes [Kolomogorov & Fomin, 1970]. We state
an existence theorem, based on the natural sup-
norm of a matrix. Recall that, given an n-vector x,
‖x‖∞ ≡ maxi |xi|, and given an m×nmatrix A, the
natural sup-norm is ‖A‖∞ ≡ sup‖u‖∞=1 ‖A ·u‖∞ =
sup‖u‖∞≤1 ‖A · u‖∞ which measures roughly the
maximal “stretch” a matrix can affect on a vec-
tor space. This matrix norm is easily computed as
the maximal absolute row sum [Golub & Van Loan,
1989],

‖A‖∞ = max
i

n∑
j=1

|Ai,j | . (16)

Lemma 1. Given the undetermined linear equa-
tion A · x = b, there exists a solution in the unit
box, −1 ≤ xi ≤ 1 iff given the companion sys-
tem Ã · x̃ = b̃, (where Ã = diag(1/bi) · A, and
b̃ = diag(1/bi) · b, assuming that bi 6= 0 for all
i), that ‖Ã‖∞ ≥ 1.

Proof. Given the normalized companion system Ã·
x̃ = b̃, the definition of ‖Ã‖∞ considers whether a
unit vector (which can be thought of as a candidate
solution x̃ from the unit box) can be “stretched” to
attain ‖b‖∞ = 1. �

Lemma 2. The undetermined linear system A·x =
b, has a solution in the box αi ≤ xi ≤ βi, iff a lin-
early scaled companion system A∗ · x∗ = b∗ has a
solution ‖x∗‖∞ ≤ 1.

Proof. Rescale the unit box as follows: x∗i =
σi(xi − αi) − 1, where σi = 2/(βi − αi) is ar-
rived at by constructing the line through (αi, −1),
and (βi, 1). Hence, xi = x∗i /σi + (1/σi + αi) gives
−1 ≤ x∗i ≤ 1 when αi ≤ xi ≤ βi. Therefore,
x = diag(1/σi) · x∗ + s, where si = (1/σi + αi),
and A∗ = A · diag(1/σi), and b∗ = b−A · s. �

Theorem 2. Given the stochastic matrix A, with
stationary distribution v, then the target station-
ary distribution v + δv can be attained within the
grammar of A, according to control objectives 1–4,
iff there exists a solution to the undetermined lin-
ear system D · δa = z, within the box −ak ≤ δak ≤
1 − ak. This system has a solution iff a compan-
ion system D̃∗ · δ̃a∗ = z̃∗, has the matrix natural
sup-norm bounded, ‖D̃∗‖∞ > 1.

Proof. The theorem follows immediately the “twid-

dle” and “star” operations defined in Lemmas 1
and 2. �

The Euclidean norm is often the most reason-
able interpretation of the word “minimal” in con-
straint 4, and we showed that this quantity is easily
computable by the well established and robust SVD
algorithm. However, Theorem 1 shows that the l2

minimum is not always sufficient to decide nonex-
istence of a solution, but Theorem 2 indicates that
nonexistence of a good (stochastic) l∞ minimal so-
lution is sufficient. If Theorem 2 indicates that an
l∞ solution does indeed exist, we replace the objec-
tive function, Eq. (13), with the infinity-norm.

n(δa) = max
i
|δai|, δa ∈ H , (17)

where H is the set of δa satisfying control rules
1–4 including constraints Eq. (15). This con-
strained optimization problem is not difficult to
solve by repeated linear programming on each
δai [Press et al., 1992], selecting the maximal–
minimized coordinate δai, the details of which can
be found in a longer preprint at this author’s web-
site. The point is, given the l∞ solution, we can
state the following sharp nonexistence theorem,
which does not hold for the l2 solution.

Theorem 3. Given the stochastic matrix A, and
target distribution v + δv, then if the control rules
1–4 constrained l∞ minimal solution of D · δa = z,
found by repeated linear programming, yields an
A+δA which is not stochastic, then no such A+δA
exists.

5. A Piecewise-Affine
Transformation for the Given
Stochastic Matrix

Given a dynamical system f : M → M , we can
easily approximate the Frobenius–Perron operator,
as a stochastic matrix, simply by box counting,
and keeping track of relative frequencies of transi-
tions between boxes, as already described in Sec. 2,
Eq. (4). In the last two sections, we used this
stochastic matrix A as a starting point to find a
“grammatically nearby” stochastic matrix A + δA
satisfying control rules 1–4, with a desirable sta-
tionary probability distribution. The purpose of
this section is to describe the construction of a
piecewise-affine dynamical system f + δf which:
(1) is sup-norm-nearby f , (2) the matrix A+ δA is
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exactly the Frobenius–Perron matrix for f+δf , and
the ε-grid is a Markov partition. We have already
called this second part the inverse Ulam problem
(IUP).

5.1. 1-D case

The argument for the 1-D IUP is as follows. A
piecewise-linear function can be found arbitraily
(sup-norm) close to any continuous function. The
FP operator in Eq. (2) has divisions by the deriva-
tive, and a piecewise-linear function has piecewise-
constant derivative. So, given a stochastic matrix
A and a grid Qi, we can construct the piecewise-
linear function fn. A typical piecewise-linear func-
tion, defined on a grid square Qi is shown in Fig. 2;
construction of each linear segment of fn easily fol-
lows, the key observation being that the slopes of
each segment [li,k, li,k+1] come from the transition
weights Ai,j,

mi,k,j = ± ∆xj
li,k+1 − li,k

, (18)

by placing intra-grid points li,k so that the result-
ing slopes match according to the equation Ai,j =
1/|f ′n(x)| and Eq. (2). Details can be found in [Góra
& Boyarsky, 1993, 1997].

The grid Qi is a Markov partition of this
interval map fn, defined as follows. Suppose M is
an interval, and fn is a piecewise-linear map, with
constant slope si for each Pi = [ai, bi] of a grid-
partition Q = ∪qi=1Qi = M , int(Qi)∩ int(Qj) = ∅ if
i 6= j, and Qi exactly maps onto a union of subin-
tervals, f(Qi) = ∪lk=1Qjk , l ≤ q, then the parti-
tion is Markov and the action of the map on den-
sities is given by a stochastic matrix A [Alligood
et al., 1997]. By construction, A is a stochastic ma-
trix. In particular, the dominant eigenvector of A
is stationary probability density of fn, and when f
is expansive (|f ′(x)| > 1 for x ∈ int(Qi)) then ρ
is constant on each subinterval Qi of the partition
[Boyarsky & Haddad, 1981]. This slope condition
can be weakened to |f ′(x)| ≥ 1 if the transition
matrix is irreducible and aperiodic.

Since, by construction fn differs from f by at
most the size of a grid square, we have that the sup-
norm is bounded in terms of the grid, because we
control the approximation by refining the grid,

sup
x∈I
|fn(x)− f(x)| ≤ max

i
∆xi = ε . (19)

Fig. 2. The piecewise-linear approximate function fn(x) :
I → I, designed for a stochastic matrix A. We show a seg-
ment of fn(x) defined over the line segment (ai, bi), with
width ∆xi = bi − ai. The interval (ai, bi) is divided propor-
tionally by the “contiguous” transition probabilities (three
are shown), Aj,i, Aj+1,i, and Aj+2,i. The widths are de-
fined li,k+1 − li,k = Aj,i∆xi, li,k+2 − li,k+1 = Aj+1,i∆xi,
and li,k+3 − li,k+2 = Aj+2,i∆xi.

5.2. 2-D case

To solve the 2-D IUP, we introduce piecewise-affine
transformations fn : Q → Q, Q ∈ <2, which have
A as its Frobenius–Perron operator, on the grid.
We designed these transformations to mimic the
expanding/contracting and invertible nature of an
Anosov diffeomorphism, and long term statistics on
the grid Q are the same as A has on its linear space.
Furthermore, our construction implies agreement
between f and fn on the grid,

‖f(x, y)− fn(x, y)‖sup(∪iQi) ≤ ε , (20)

again follows by the “grammar-preservation” rule
3. These piecewise-affine transformations can
be thought of as a generalization of the Baker’s
transformations.

Equation (2) suggests that the Frobenius–
Perron operator reduces to a matrix when the
Jacobian is piecewise constant, on a Markov parti-
tion. The construction follows that the determinant
of the inverse Jacobian matrix describes how the
area of a rectangle, in the tangent space, stretches
under the action of the inverse transformation.
Literally, this means that a rectangle is scaled back
to a rectangle if the transformation is piecewise
affine on rectangular regions.

Our construction is characatured in Fig. 3,
illustrating 100 · Aj,i% of the grid-cell Qi (in gray)
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Fig. 3. The piecewise-affine approximate function fn(x) : M → M , M ∈ <2, in Eq. (21), constructed for a given stochastic
matrix A, and designed with Anosov-like expanding and contracting directions.

which maps surjectively onto 100 ·Aj,i/
∑
k Aj,k% of

the cell Qj. This is done by the affine transforma-
tion,

f i,jn (x, y) =

(
f j,in (x)

gj,in (y)

)

=


∆x′j,i
∆xj,i

0

0
∆y′j,i
∆yj,i

 ·
(
x− xj,i
y − yj,i

)

+

(
x′j,i
y′j,i

)
(21)

which scales the ∆xj,i×∆yj,i rectangle Rj,i, whose
lower left corner is (xj,i, yj,i), linearly onto the
∆x′j,i × ∆y′j,i rectangle R′j,i, whose lower left cor-
ner is (x′j,i, y

′
j,i). Our notation convention is that

Rj,i ⊂ Qi is the rectangle in Qi which maps into
Qj, but onto R′j,i ⊂ Qj, where R′j,i is the part
of Qj that came from Qi. The grid cell Qi is
similarly filled with Rk,i, which form a grid cover,
(∪kRk,i = Qi and int(Rk,i) ∩ int(Rl,i) = ∅ if k 6= l),
and likewise Qj is grid covered by rectangles R′j,m
which came from various cells Qm. In other words,
Rj,i ≡ Qi ∩ f−1

n (Qj) and R′j,i ≡ f(Qi) ∩ Qj. For
the ε × ε disjoint and rectangular cell cover Qi,
M ⊂ ∪iQi, the “from node” rectangle Rj,i ⊂ Qi
has dimensions determined by the weight Aj,i on the

arc from Qi, (∆xj,i, ∆yj,i) = (εAj,i, ε), so that Rj,i
is a subrectangle with 100 · Aj,i% of the Lebesgue
measure of Qi. The lower left edge is defined cu-
mulatively, and based on the grid, yj,i = ε ·∑j Aj,i,
and xj,i is the left edge of Qi. See Fig. 3. The “to
node” rectangle R′j,i is defined in a similiar man-
ner, but with a key difference: the total sum of
weights on all of the arcs into Qj need not sum
to 1.

We now state several lemmas concerning these
piecewise-affine transformations. The proofs are
simple and were omitted for reasons of brevity,
but they can be found in an earlier version of this
manuscript on the author’s website.

Lemma 3. We define the set Ψ = ∪kQk −
∪k[∪∞l=−∞f ln(∂Qk)], where ∂Qk denotes the bound-
ary of the cell Qk. The transformation fn : Ψ→ Ψ
is one-to-one and onto.

Lemma 4. The transformation fn : Ψ → Ψ is
hyperbolic if there is no i, j such that Ai,j = 1, or
equivalently, there are no rows and columns of A
with fewer than two nonzero entries.

Lemma 5. The transformation fn : Ψ → Ψ is
hyperbolic if A is irreducible and aperiodic.

Lemma 6. The grid ∪iQi is a Markov partition
when fn : Ψ→ Ψ is hyperbolic.
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In the Examples section, we present numerical
evidence to support the following conjecture.

Conjecture 1. Let fn : ∪iQi → ∪iQi, defined
by Eq. (21), be hyperbolic on Ψ ⊂ ∪iQi, and
with Markov partition ∪iQi. The stochastic matrix
defined, Aj,i = m(f−1

n (Qj)∩Qi)/m(Qi), has a dom-
inant eigenvector p, corresponding to the eigen-
value λ = 1, such that the measure µ defined,
µ(E) =

∑
km(E ∩ Qk)/m(Qk) · pi, for any Borel

set E, coincides with µSBR.

Note that µSRB depends only on rates at which
volumes grow, along unstable directions, according
to the determinant of the Jacobian projected onto
the unstable subspace, |DT (z)|Eu(z). Hence, rates
volume decrease along stable manifolds are unim-
portant to the asymptotic stability of the forward
Markov chain. This leaves a great deal of lati-
tude when choosing ∆xj,i, as long as |DT (z)|Es(z) is
chosen to be nonsingular.

6. A Sequence of Discrete
Approximates to the
Continuous Dynamical System

In this section, we extend a theorem concern-
ing convergence and attainable target distributions,
found Góra and Boyarsky [1998]. We also discuss
the implications for which discrete approxima-
tions of the continuous control problem are ex-
pected to have solutions as outlined in the previous
sections.

Given a transformation of an interval, M =
[a, b], Góra and Boyarsky [1998], showed that not
all target measures can be attained by perturbing
the dynamical system f , Eq. (1), in an arbitrar-
ily small fashion. We assert that their theorem
extends to n-dimensional dynamical systems, and
their proof still holds with little modification.

Theorem 4. [Góra & Boyarsky, 1998] Given
a continuous dynamical system f : M → M,
f ∈ C0(M), and a sequence of convergent
transformations, fn → f, in the C0 topology, then
if µn are each fn-invariant, then a weak-∗ limit µ
of {µn} is f -invariant.

Proof. To show that µ is f -invariant, we must show
that

∫
M hdµ =

∫
M h ◦ fdµ for the set of “test

functions,” all h ∈ C0(M) with compact support.

We bound,∣∣∣∣ ∫ hdµ−
∫
h ◦ fdµ

∣∣∣∣
≤
∣∣∣∣ ∫ hdµ−

∫
hdµn

∣∣∣∣+ ∣∣∣∣ ∫ hdµn −
∫
h ◦ fndµn

∣∣∣∣
+

∣∣∣∣ ∫ h ◦ fndµn −
∫
h ◦ fdµn

∣∣∣∣
+

∣∣∣∣ ∫ h ◦ fdµn −
∫
h ◦ fdµ

∣∣∣∣ (22)

By assumption, µn is fn-invariant, and so the sec-
ond term is identically zero. The first and fourth
terms converge to zero by definition of weak-∗ con-
vergence of µn → µ. By continuity of h, the third
term may also be bounded by an arbitrarily small
term proportional to the modulus of continuity of
h: |h◦fn(x)−h◦f(x)| ≤ ω(δ) = sup{|h(y)−h(y′)| :
d(y, y′) ≤ δ} where we choose δ = ‖f − fn‖C0(M).

�

Remark. Since a chaotic set is characterized by
an infinite number of periodic orbits, f typically
has infinitely many invariant atomic measures. In
addition, the unstable chaotic saddle sets are the
Cantor-like sets which arise by dynamically remov-
ing a subset S ⊂ M , and all of its preimages
[Lai et al., 1993] M − ∪∞i=0f

−i(S), when this is a
nonempty uncountable set. The notation f−i is
taken to be the possibly multivalued preimage, if
the inverse of f does not exist. In fact, these unsta-
ble chaotic saddles may support an infinite number
of measures [Lai, 1997]. One of our goals in this pa-
per is to choose one of these invariant measures,
and stabilize it, i.e. we find a nearby dynamical
system such that it has the desired measure as its
“physical” measure.

Remark. The converse of the above theorem is that
a bounded away from zero perturbation is required
to control a noninvariant density: if µ is not f -
invariant, then one cannot find an arbitrarily close
g to f , such that µ is g-invariant. Given an arbi-
trary µ, there exists some g : M → M such that µ
is g-invariant. This can be considered as a highly
undetermined version of the IFPP, on a sequence of
refining grids covering M , amounting to a subset of
our control problem, using rules 1 and 2, but not
3 and 4. Thus large ‖f − g‖sup ∼ O(1) perturba-
tions are allowed, and all entries of the stochastic
matrix on the grid may be altered. Obviously, there
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may be infinitely many matrix solutions; one sim-
ple solution can be explicitly constructed in terms
of the so-called “3-band” transformations [Góra &
Boyarsky, 1993, 1997]. Nonzero entries are placed
on the three-band diagonal, corresponding to a di-
graph in which each node is connected to its left
and right neighbors, and to itself. The construction
given in [Góra & Boyarsky, 1993] chooses these arc
weights to select any dominant eigenvector. Again,
this eigenvector describes a discrete density ρn, and
a sequence of these constructions formulate a se-
quence of gn → g as ε → 0, with µn which are
g-invariant and µn converge weakly to µ.

In summary, if we are willing to perturb by a
lot, then there is a g to be found, but for an arbi-
trary target µ, a large perturbation is required, if µ
is not f -invariant.

7. Examples

We now give examples to demonstrate one-
dimensional and then two-dimensional invariant
measure stabilization.

Consider the logistic map, xn+1 = 4xn(1 −
xn), well known to have “fully developed chaos”
for this parameter value [Devaney, 1989], λ =
4. Furthermore, this logistic map has the well-
known unique absolutely continuous invariant den-
sity function ρ(x) = 1/π

√
x(1− x), and therefore

this is the unique, bounded from zero, fixed point of

Fig. 4. Invariant density of the logistic map xn+1 =
4xn − xn, obtained by the fixed point of the approximate
Frobenius–Perron operator, derived from a 105 iterate test
orbit, and an equipartition ∪50

i=0Qi = [0, 1]. This sam-
pled density is very close to the expected density ρ(x) =
1/π

√
x(1− x).

the Frobenius–Perron operator [Lasota & Mackey,
1997]. Using an evenly spaced grid of n = 50 cells,
on the interval I = [0, 1], and a chaotic test orbit

{xi}105

i=0, we formed the associated stochastic transi-
tion matrix A with stationary eigenvector v shown
in Fig. 4.

From Remark of Theorem 4, we have that any
periodic orbit supports an atomic invariant mea-
sure, and we propose to stabilize densities corre-
sponding to arbitrarily chosen periodic orbits:

Example 1. (Logistic map) We choose to stabi-
lize the cells which contain the two iterates of the
period-2 orbit: x = (5−

√
5)/8 ≈ 0.345492, f(x) =

(5 +
√

5)/8 ≈ 0.904508. Therefore, we choose a cu-
mulative target distribution vector, (v + δv)18 =
(v + δv)46 = 0.5, and (v + δv)i = 0 if i 6= 18 or 46.
Note that the sign of the derivative is unimportant
to the FP operator, Eq. (2), and both controlling
maps give the same invariant density. In Fig. 5 we
show the stabilized density of the piecewise-linear
function approximates f50(x) shown in Fig. 5 insets.
By construction, the perturbation error is bounded
supx∈[0,1] |f50(x)− 4x(1− x)| ≤ 1/n = 1/50 accord-
ing to Eq. (19). Other periodic orbits are equally
accessible.

We are not restricted to densities supporting
periodic orbits. We now parameterize a family of
target densities which “spread” density from one
region, (x > 0.5), to another, (x ≤ 0.5).

Example 2. (Destroying Symmetry in the Logistic
map) We find that rather arbitrary, but small, vari-
ations δv give control feasible targets. Given n = 20
cells, let us choose (δv)i = ε if i ≤ 10 and (δv)i =
−ε otherwise. When ε = 0, the target is the original
invariant measure, and no control is applied. For
small target variations, ε ≤ εcr20 = 0.0004, we find
that the control objective is feasible; Eq. (14) yields
a stochastic matrix. See in Fig. 6 the successfully
targeted distribution (dashed), and the correspond-
ing piecewise-linear map, f20(x). We have changed
the originally symmetric distribution of the logistic
map, to one with 47.25% of the probability on the
left of x = 0.5, and 52.75% on the right. See also
that ε ≤ εcr10 = 0.0061 (solid) when n = 10 cells.
In both of these extreme cases, the hyperplane was
pushed to the edge of the stochastic box (see Fig. 1
and Theorem 2), and correspondingly we see that
the control maps f10(x) and f20(x) were forced to
have points with almost vertical derivatives.
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Fig. 5. Nearby the dynamical system f(x) = 4x(1 − x), with invariant density shown in Fig. 4, we find a piecewise-linear
map f50(x) with invariant density supported on the cells Q18 and Q46, containing the period-2 orbit of the logistic map.
Insets: Perturbed maps f50(x) with invariant density shown. Above: Time-series of trajectories under controlled map from
two “typical” initial conditions.

We have achieved many other families of non-
invariant target densities, including concentrating
density only partly over a point. Always we find
that noninvariant targets require some εcr > 0,
before our algorithm breaks-down as predicted by
Remark of Theorem 4.

A main theme of this paper is that not all
arbitrary target distributions are supported by an

arbitrary transition matrix A. Another theme is
that coarsening the grid (fewer cells) allows a wider
latitude of target distributions. See Theorem 4.

Example 3. (Cell Refinement and the Logistic
map) Given n = 20 cells, one cannot find a nearby
dynamical system which approximates a uniform
distribution: (v)i = 1/20. Similarly, we cannot
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Fig. 6. Maximal distribution variations of Logistic map from asymmetric target families (δv)i = ε if x ≤ 0.5 and (δv)i = −ε
otherwise, where εcr10 = 0.0061 (solid) and εcr20 = 0.0004 (dashed) with n = 10 and 20 cells respectively. Compare to Fig. 5.
Above left: Control map f10(x). Above right: Control map f20(x).

stabilize other famous, named targets. However,
coarsening the grid eventually allows all targets.
Just one cell, n = 1, obviously allows all targets
for all maps in this trivial case, but the required
perturbation to the map is then of the order of the
phase space. For the logistic map, the grammar
on two cells also allows all targets since the two by
two transition matrix has all four entries nonzero.
Somewhere between 20 and 2 cells, Example 2 can
be controlled beyond εcr = 0.0004, e.g. with n = 10
cells, we find critical value εcr = 0.0061.

In the space of stochastic matrices, we interpret
loss of controllibility of a noninvariant density tar-
get, with refining ε-grids, as follows. Referring to
Fig. 1, we conjecture that an ε-parameterized fam-
ily of target densities also ε-parameterizes a con-
tinuously moving hyperplane, Dε · δa = z, that is
pushed outside the box by increasing ε.

To consider two-dimensional measure targeting,
we start with the well-known Hénon map [Henon,
1976]: (x, y)→ f(x, y) = (1.4−x2+0.3y, x), which
is widely believed to admit a chaotic attractor, but

a rigorous proof of existence for an SBR-measure
is still an open question. First we verify numeri-
cally that our piecewise-affine transformations fn,
constructed according to Eq. (21), do indeed have
statistics which mimic the statistics of the original
map.

Example 4. (Comparison between Piecewise-
Affine Models and Nonlinear Maps) In Fig. 7, we
give numerical evidence to support Conjecture 1.
The piecewise-affine models have statistics converg-
ing to the observed statistics of the nonlinear mod-
els, using standard map and Henon map data sets,
both generated on a 50 × 50 grid. We show the
average error improvement (lines with circles) as a
function of test orbit length, between the piecewise-
affine models and the true nonlinear map. The
average error is (µ(Qi) − µn(Qi))/µ(Qi), where
µ(Qi) denotes the observed cell Qi occupancy of
the N iterate test orbit under the true nonlinear
map f , and µn(Qi) denotes the same thing for
the model fn. The lines with x’s show the maxi-
mum worst (µ(Qi)−µn(Qi))/µ(Qi). The decreasing
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Fig. 7. Improving error statistics as a function of test or-
bit length, between the piecewise-affine models in Eq. (21)
and the true nonlinear map. The solid lines show standard
map data, and the dashed lines show Hénon map data, both
generated on a 50 × 50 grid ∪iQi grid. Lines with circles
show average error (µ(Qi)−µn(Qi))/µ(Qi) indexed by i over
the grid Qi, and lines with x’s show the maximum worst
(µ(Qi)− µn(Qi))/µ(Qi).

error with increasing N is strong evidence support-
ing Conjecture 1.

In Fig. 8, we show the Hénon map’s discrete
distribution for N = 105 and the reasonably fine
50× 50 grid, making each square cell Qi, (εx, εy) =
(0.0716, 0.0716). Using a 50 × 50 = 2500 element
grid, we might expect that a 2500 × 2500 FP ma-
trix A would be required, but by only box counting
occupied nodes, we save a tremendous amount of
memory and computation: there are only 322 oc-
cupied cells, and the 322 × 322 matrix A is spares
with only 656 nonzero elements. To remind us of
the corresponding density function, ρ(x, y), we have
used a “3-D” impulse-plot representation, illustrat-
ing each density value (v)i over the corresponding
grid square Qi.

Example 5. (Atomic measures of the Hénon map)
We choose to stabilize a density which is con-
centrated over, say, a period-1 orbit (see Fig. 9).
The control variation is bounded by the grid size:
‖fn(x, y) − f(x, y)‖∞ ≤ εx = εy. Other periodic
orbits are equally controllable.

Example 6. (“Arbitrary” measures near the
Hénon map) In analogy to Example 2, we “destroy
symmetry” by targeting a sequence of successively
more asymmetric (and noninvariant to the Hénon

Fig. 8. A discrete distribution histogram of the Hénon map, using N = 25, 000 and a 50× 50 grid.
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Fig. 9. Stabilized density histogram, N = 25, 000, supported over the cell containing the period-1 orbit, controlled by a
piecewise-affine map near the Hénon map, using a 50 × 50 grid. Above: An initial segment of a “typical” controlled x-time-
series.

map), target densities. When attempting to shift
mass evenly from the support of the attractor y < 0,
to y > 0, we find a critical maximum amount of
mass which may be “moved.” For example, a 50×50
grid allows εcr50 = 4.3 · 10−3 when the y < 0 mea-
sure is pushed evenly to y > 0, but the courser,
25× 25 grid gave εcr25 = 7.4 · 10−3, and the courser
still 10× 10 grid gave εcr10 = 1.1 · 10−2.

Consider the well-known standard map
[MacKay et al., 1984], (x, y) → f(x, y) =
([y − (k/2π) sin(2πkx) + x]mod 1, [y − (k/2π)
sin(2πkx)]mod 1. The phase space of the standard
map is the unit torus. We chose this example to
emphasize the flexibility of our algorithm, because
it is not known whether an absolutely continuous
invariant measure exists.

Example 7. (Standard map) In Fig. 10(a), we
show a discrete density of the Standard map, due
to sampling a 25, 000 iterate orbit, on a 35 × 35
grid covering the unit torus. The resulting tran-
sition matrix is 831 × 831, with 2969 nonzero
entries. Given the relatively short sample, and no-
toriously slow transport of area preserving maps

due to “sticky” invariant tori and cantori [MacKay
et al., 1994], this is not expected to be even close
to an invariant density, if one exists. The rela-
tively higher density band through the middle of
the picture, is due to the “stickiness” of the two
golden mean resonances (ω = 1/γ, and 1/(γ2),
where γ = (1 +

√
5)/2) [MacKay et al., 1984].

Figure 7 shows that the piecewise-affine models well
approximate these densities. We select cell Q401,
the transition matrix has a nonzero element on the
diagonal, A401,401 > 0, and hence includes a fixed
point. Figure 10(b) shows a successfully stabilized
density, by a piecewise-affine map nearby the stan-
dard map, ‖f − f831‖∞ ≤ εx = εy = 1/35.

8. Invariant Set Stabilization

If we wish to target an invariant measure µ
supported over an invariant set S, but we do
not know what this measure is, then we cannot
apply the algorithm developed in Sec. 3. An
explicit target distribution would be required
a priori. One might expect that choosing ρ(x) dis-
tribution weights arbitrarily on the invariant set,
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Fig. 10. (a) The discrete distribution for the Standard map, using N = 2.5× 104 and a 35 × 35 grid. (b) Stabilized density
supported over the cell Q401 containing the period-1 orbit.
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Fig. 11. Stabilized Chaotic Saddle in the Logistic Map. The stabilized distribution avoids the region B = [0.44, 0.58], and
pre-iterates. The histogram bar-plot of a 105 iterate controlled orbit agrees closely with predicted distribution curve from
dominant eigenvector of Acontrolled. Inset: The stabilized control map f50(x).
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Fig. 12. Stabilized Chaotic Saddle in the Hénon Map. The stabilized distribution avoids the region B = {−0.358 ≤ y ≤
0.358}, and preiterates/predecessors.
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and ρ(x) = 0 if x /∈ S, will allow application of our
previous algorithm, but generally such an arbitrary
distribution will not be f -invariant, and hence not
attainable with an arbitrarily small perturbation.
In this section, we give an alternative graph-based
algorithm to target an invariant measure whose
density values are allowed to “float.”

We assume that we have already used Ulam’s
method to produce a stochastic matrix A. Suppose
we wish to eliminate node Qk from the equilibrium
state. This can be achieved by eliminating all arcs
into node Qk by associating zero probability to all
arcs into Qk. This is effectively achieved by placing
zero’s in the kth row.

Let Ak,i = 0, for all i . (23)

To recover a stochastic matrix, it is necessary to
renormalize the columns of the newly altered A. We
include the following very useful but trivial propo-
sition for completeness.

Proposition 1. The equilibrium eigenvector of the
stochastic matrix A modified according to Eq. (23)
has an equilibrium eigenstate, A · v = v, in which
(v)k = 0.

Proof. The λ = 1 eigenvector v exists since we
renormalize A to a stochastic matrix. The fact that
(v)k = 0 trivially follows Eq. (23) and the matrix
row multiplication, (v)k ≡

∑
iAk,i(v)i = 0. �

Remark. Proposition 1 can be multiply-applied to
eliminate large sections of phase space, by elimi-
nating multiple nodes/grid cells. However, an elim-
inated node may cause other nodes to be eliminated
in a “domino-like” effect; the eliminated node might
have been the only access route to some other nodes,
etc. Hence, if too many nodes are eliminated, then
the resulting invariant set tends to be empty.

What we are describing in directed graph lan-
guage, is dynamic removal of set B in state space,
and its preimages f−i(B). Often, these preim-
age sets will overlap, and if B is too large, then
the above process will effectively remove all of the
nodes, meaning there exists no transformation fn
to achieve the goal of avoiding B.

Remark. An invariant set S of f which avoids the
set B ∈M can be written

S = M − ∪∞i=0f
−i(B) . (24)

Such sets are typically Cantor-like unstable chaotic
saddles, if they are nonempty. Given a fixed grid
∪iQi, of cell diameter ε, then the minimal cell cover
of S can be found, S ∈ ∪kQik . The associated
Frobenius–Perron matrix can be found by Propo-
sition 1, in which the equilibrium eigenstate has
(v)ik = 0 for each k. Once the matrix A has been
formed, a corresponding transformation on the grid
is found by the IUP described in Sec. 5. By refining
the grid ε → 0, a sequence of transformations can
be constructed whose invariant densities limit on an
invariant density on the approximate of the Cantor
set S.

Example 8. (Stabilized Chaotic Saddles in the
Logistic Map and the Hénon Map) We remove the
region B = [0.44, 0.58], and pre-iterates in the lo-
gistic map, Fig. 11 vice Fig. 4, and we eliminate
the region B = {−0.358 ≤ y ≤ 0.358}, and pre-
iteraes/predecessors in the Hénon Map, Fig. 12 vice
Fig. 8.
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