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In a broad sense, model reduction means producing a low-dimensional dynamical system that
replicates either approximately, or more strictly, exactly and topologically, the output of a
dynamical system. Model reduction has an important role in the study of dynamical systems
and also with engineering problems. In many cases, there exists a good low-dimensional model
for even very high-dimensional systems, even infinite dimensional systems in the case of a PDE
with a low-dimensional attractor. The theory of global attractors approaches these issues ana-
lytically, and focuses on finding (depending on the question at hand), a slow-manifold, inertial
manifold, or center manifold, on which a restricted dynamical system represents the interest-
ing behavior of the dynamical system; the main issue depends on defining a stable invariant
manifold in which the dynamical system is invariant. These approaches are analytical in nature,
however, and are therefore not always appropriate for dynamical systems known only empirically
through a dataset. Empirically, the collection of tools available are much more restricted, and
are essentially linear in nature. Usually variants of Galerkin’s method, project the dynamical
system onto a function linear subspace spanned by modes of some chosen spanning set. Even the
popular Karhunen–Loeve decomposition, or POD, method is exactly such a method. As such, it
is forced to either make severe errors in the case that the invariant space is intrinsically a highly
nonlinear manifold, or bypass low-dimensionality by retaining many modes in order to capture
the manifold. In this work, we present a method of modeling a low-dimensional nonlinear man-
ifold known only through the dataset. The manifold is modeled as a discrete graph structure.
Intrinsic manifold coordinates will be found specifically through the ISOMAP algorithm recently
developed in the Machine Learning community originally for purposes of image recognition.
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1. Introduction

A fundamental problem in dynamical systems is to
reduce a high dimensional problem to a simpler low
dimensional problem, when such a reduction exists.
This is what is meant when using the phrase looking
for “hidden order within chaos,” [Prigogine, 1984;
Bollt, 2005] , which implies that there is some form
of dissipation in the system. This is the corner-
stone of several major techniques in the field for

dissipative systems with global attractors, includ-
ing singular-perturbation theory [Carr, 1981], the
method of multiple-scales [Kevorkian & Cole, 1996],
and the inertial manifold theory [Teman, 1997;
Robinson, 2001]. Each of these techniques strive
to find a lower-dimensional equation, restricted to
some stable invariant manifold, and whose dynam-
ics is the same (conjugate) as the long term behav-
ior of the original system. The idea of an attractor
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in chaos theory, and especially a chaotic attractor,
focuses on the concept that a low dimensional pro-
cess exists in a seemingly high dimensional and com-
plex process. The methods usually require a closed
form of the model to analytically reduce the system
dynamics onto a stable invariant manifold.

Data-driven and empirical techniques are also
important for the obvious reason that they are
designed to deal with real world problems where
only measurement from a laboratory realization of
a dynamical system is available. Galerkin’s method
and finite element methods are very well regarded
and well developed [Hughes, 2000], but these are lin-
ear methods of analysis of nonlinear evolution equa-
tions, and they require in advance an analytic form
of the model. The method of approximate inertial
manifolds [Jolly et al., 2001], also does an excel-
lent job of finding a lower dimensional manifold for
restriction of the dynamics, but this too requires an
analytic form of the model.

Most notably, based on the Taken’s embedding
method [Takens, 1980] there are techniques of the
time-series embedding literature [Abarbanel, 1996;
Kantz, 1997], which are concerned first with finding
a good embedding, meaning the right embedding
dimension such that data on the embedding man-
ifold is properly unfolded (such as false-nearest
neighbors [Kennel, 1992]), and then a good delay,
such that the data is well distinguished from each
other, in a mutual information theoretic sense
[Fraser & Swinney, 1986]. The techniques in this
area have been successful for prediction [Farmer &
Sirowich, 1987; Weigenbend & Gershenfeld 1993;
Abarbanel, 1996; Kantz, 1997], control [Ott et al.,
1994] as well as characterization [Kantz, 1997; Eck-
mann & Ruelle, 1985] of datasets from real mea-
surements; they allow for local modeling of the
dynamical system on whatever might be the attrac-
tor manifold containing the attractor set. However,
such methods do not model an invariant manifold
directly. Rather, a different local model, a coordi-
nate chart [Conlon, 2001], is made for each neigh-
borhood, but no effort is generally made to connect
the local models into a global framework, or atlas.

The main concern of this paper will be to intro-
duce a method to construct an empirical model of
the global invariant manifold. When a dynamical
system has a stable invariant manifold, onto which
empirical data is attracted, that manifold can be
detected and modeled as a discrete graph structure.
In this sense, our goal could be described as dimen-
sion reduction.

2. Linear Versus Nonlinear Model
Reduction

2.1. Linear model reduction

Consider a spatiotemporal pattern, such as the solu-
tion of an evolution equation

ut(x, t) = Au(x, t) + f(u), (1)

sampled on a grid in x, and in,

t : {un(x)} = {u(x, tn)}n=1,M . (2)

The form Eq. (1) also represents a large spatially
extended ODE, taking u to be a time varying vec-
tor valued function, and x to now be a discrete
value identifying a lattice index position. A favorite
method of approach is formally called Galerkin’s
method [Hughes, 2000], and it relies on formal sub-
stitution into a finite expansion of a finite basis set
of functions, Φn ∈ L2,

u(x, t) =
∑
n

an(t)ψn(x), (3)

into the PDE, which when the basis set is orthonor-
mal, exercising the inner product condition,

(u, v) =
∫

u(x)v(x)dµ(x), (4)

and an assumed orthonormality condition of the
basis functions,

(Φi,Φj) = δi,j , (5)

results in a coupled set of time varying Fourier coef-
ficients. The evolution equations of the an(t) are
then a coupled set of ODEs. The question becomes
then how to represent the full dynamics in the
Banach space in terms of projection onto a finite
basis set. This is the problem of inertial manifold
theory [Teman, 1997; Robinson, 2001]. In general,
it is expected that a small number of basis func-
tions do not result in a sufficient representation
of the dynamics on the true nonlinear invariant
manifold.

A popular method of model reduction of mod-
eling a given empirical dataset is a special case
of a Galerkin’s method, in terms of an “optimal
basis” called KL analysis [Karhunen, 1946; Loeve,
1955; Lumley, 1970; Holmes et al., 1996; Sirovich,
1989]. The KL (Karhun–Loeve) modes (a form of
POD analysis — principal orthogonal decomposi-
tion, or PCA — Principal Component Analysis), is
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fundamentally a linear analysis using eigenfunctions
Ψn(x) of the time-averaged covariance matrix,

K(x, x′) = 〈u(x, tn)u(x′, tn)〉, (6)

which may be arrived at by a singular value decom-
position [Golub & Van Loan, 1996]. Then u may be
expanded in the resulting orthoganol basis,

u(x, t) =
∑
n

an(t)ψn(x), (7)

and this is the optimal basis in the sense of
projection:

max
ψ∈L2(D)

〈|(u, ψ)|〉
‖ψ‖ , (8)

[Holmes et al., 1996]. These functions are orthogo-
nal in time, meaning in terms of time-averaging,

〈an(t)am(t)〉 = λnδnm, (9)

in terms of eigenvalues of,

K : λn =
(ψn,Kψn)

‖ψn‖ . (10)

Thus, the time-varying Fourier coefficients an(t)
are decorrelated in time average. A computation-
ally important approach [Sirovich, 1989], to solve
this eigenvalue problem involves successive compu-
tation to maximize mean square energy. Formal
substitution of a finite expansion of empirical modes
u(x, t) =

∑
n an(t)ψn(x) into the PDE, and then

projection onto each basis element ψm(x) produces
an ODE which is expected to be a maximal energy
model of the PDE. POD does a good empirical
job of capturing a high energy model of the true
dynamics. Improvements, such as Balanced POD
[Rowley, 2005] based on balanced truncation fur-
ther improves upon this picture.

A fundamental topological problem with the
use of KL modes as a dimension reduction technique
for nonlinear dynamical systems is that KL analysis
is fundamentally a linear analysis. Given a dataset
of high dimensional and randomly distributed data
points, principle component analysis gives the prin-
ciple axis of the time-averaged covariance matrix.
That is, it treats that data as an ellipsoidal cloud,
and it yields the major and minor axes. It does not
have the ability to cope with a truly nonlinearly
curved invariant manifold in a properly nonlinear
way.

2.2. Nonlinear reduced models from
dynamical systems

In general, the classic issue of concern here is that
of the presence of a significant spectral gap, or said
differently, a system with two or more significantly
different time scales. A system with a stable invari-
ant manifold is well charicatured in the context of a
singularly perturbed system [Carr, 1981; Fenichel,
1979],

ẋ = F (x, y),
(11)

εẏ = G(x, y).

where,

x ∈ �m, y ∈ �n, F : �m ×�n → �m,
(12)

and G : �m ×�n → �n.

It is easy to see that for 0 < ε � 1, that the y(t)-
equation runs fast, relative to the slow dynamics of
the first equation for evolution of x(t). Such systems
are called singularly perturbed, since if ε = 0 we get
a differential-algebraic equation

ẋ = F (x, y), (13)
G(x, y) = 0.

The second ODE becomes an algebraic constraint.
Under sufficient smoothness assumptions on the
functions F and G so that implicit function the-
orem [Tikhonov et al., 1985; Carr, 1981; Fenichel,
1979] can be applied, there is a function, or ε = 0
slow-manifold,

y = hε(x)|ε=0, (14)

such that,

G(x, hε(x)|ε=0) = 0. (15)

The singular perturbation theory concerns itself
with continuation, and persistence of stability of
this manifold hε(x) within O(ε) of hε(x)|ε=0, for
0 < ε � 1 and even for larger ε. For the rest of
this paper, we will refer to a stable invariant mani-
fold in an �m+n space, generally as the graph of an
expression,

H : �m → �n

(16)
x �→ y = H(x).

if it exists. In such a case, the reduced model
becomes,

ẋ = F (x,H(x)), (17)

which is equivalent to Eq. (11), subject to substitu-
tion of Eq. (16), and yields the manifold equation,

εDH|x · F (x,H(x)) = G(x,H(x)). (18)
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For the purposes of this paper, we presume that we
cannot approach the model reduction in an analytic
form of the equations, Eq. (11), either because we
only know the dynamical system through a dataset,
or because the problem is otherwise difficult to put
into such a form. However, the goal is to find an
empirical representation of what is the manifold,
y = H(x) which leads to a manifold reduced equa-
tion, Eq. (17).

If the data is mainly confined to a low dimen-
sional subspace, that is, H(x) is approximately flat,
then linear methods work pretty well to discover a
flat, nearly invariant and stable subspace and esti-
mate its dimensionality. More generally, however, if
the data lies on (or near) a highly curved low dimen-
sional submanifold, then linear methods overly sim-
plify the topological picture.

3. Manifold Learning in the Machine
Learning Community

Manifold learning can be described as an estab-
lished area, and a quickly evolving area, in the
machine learning community, for wide ranging prac-
tical problems of detecting low dimensional struc-
tures in very high dimensional datasets. It is also
an idea for problems of handwritten character
recognition [LeCun et al., 1995], object recogni-
tion [Schlkopf & Smola, 2001], facial recognition
[Schlkopf & Smola, 2001], and other classification
and feature extraction problems.

Popular methods of reducing the dimension-
ality of a dataset include SOM-self-organizing
maps [Kohonen, 1988], GTM-generative topo-
graphic mapping [Bishop et al., 1998], and autoen-
coder neural networks, [DeMers & Cottrell, 1993],
attempt to generalize PCA-principal component
analysis to build a single global low-dimensional
nonlinear model, as do similarly SVM-support vec-
tor machine and kernel methods [Schlkopf & Smola,
2001; Vapnik, 1998]. However, such methods can
be difficult to apply to real datasets depending on
dataset size, manifold complications and dimension-
ality. In brief, they rely on greedy optimization cri-
teria which can lead to problems with unwanted
local minima that result in unrevealing suboptimal
results. On the other hand, there are local methods
[Bregler & Omohundro, 1995; Hinton et al., 1995]
which build a set of local models that are usually
linear, and therefore only valid in a limit range,
and can have smoothness problems. Interestingly,
the local methods in the machine learning literature

parallel what can be found in the (now) traditional
time-series embedding literature of the dynamical
systems community [Abarbanel, 1996; Abarbanel
et al., 1993; Kantz, 1997; Farmer & Sirowich, 1987;
Eckmann & Ruelle, 1985], although the two commu-
nities have developed their techniques as apparently
parallel but independent efforts.

Recently, the Isometric mapping-ISOMAP
method has been developed [Bernsetin et al., 2000;
Roweis & Saul, 2000; Tenenbaum et al., 2000], that
approximates the manifold by an undirected graph
whose geodesics are meant to coincide with those of
the true nonlinear manifold. Other recent methods
approximate a manifold’s global nonlinear structure
by a discrete graph, notably the LLE-local linear
embedding method [Saul & Roweis, 2000] which
preserves linear structure on the manifold. We will
focus here on the ISOMAP method.

For description of the ISOMAP method,
assume a dataset consisting of N data points in
q-dimensional Euclidean space X = {xi}N

i=1 ⊂
�q. We wish to construct a corresponding dataset,
Y = {yi}N

i=1 ⊂ �p appropriately embedded within
an invariant manifold, and hopefully p � q. In
the following, we will describe X as represented
in the variables of the ambient space �q, and we
will describe Y as represented in the intrinsic vari-
ables of the manifold (meaning that the mani-
fold locally has neighborhoods like, homeomorphic
to, �p).

In review, to embed a point x from q-
dimensional Euclidean space, into intrinsic variables
y of a p-dimensional manifold, means that we need
to represent the manifold in terms of a parameteri-
zation,

Φ : Y �→ X, (19)

where,

x = Φ(y)

= 〈φ1(y1, y2, . . . , yp), φ2(y1, y2, . . . , yp), . . . ,

φq(y1, y2, . . . , yp)〉, (20)

For example,

• The familiar p = one-dimensional circle is param-
eterized by two functions,

x = 〈φ1(y), φ2(y)〉 = 〈cos(y), sin(y)〉, y ∈ �,

(21)

to represent the q = 2 coordinates of the ambient
space.
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• Similarly,

x = 〈y1, y2, y
2
1 + y2

2〉, (22)

and y1, y2 ∈ �, is a p = two-dimensional param-
eterization of each point on the manifold in q =
three-dimensional ambient space.

These, y-variables are what we call the intrinsic
variables, and can be described as directions to any
point on the manifold relative to a base point on
the manifold. Thus the job of approximating the
manifold requires two related parts,

• Marks on the manifold. The dataset in intrin-
sic variables, X, which is assumed to lie on the
lower dimensional manifold M embedded in �q,
serves this purpose. For dynamical systems pur-
poses, this manifold is presumed to embed an
attractor set A.

• Relative positions on the manifold. The
parameterization describes vector positions in the
manifold of each data relative to each other data
point.

3.1. Review of ISOMAP

ISOMAP is a manifold “learning” algorithm that
extends the classical MDS-multidimensional scaling
method [Cox & Cox, 1994] by using approximations
of geodesic distances with shortest paths of a dis-
crete graph approximation of the manifold, instead
of directly applying MDS to the ambient Euclidean
space.

There are several main steps in developing
the ISOMAP [Tenenbaum et al., 2000] embed-
ding, meaning to represent the parameters Y in
Eq. (20).

(1) Build a neighbors graph to approximate
the embedding manifold. A graph G =
(V,E) consists of the set of vertices V = {vi}
which we assign to match the data points,
X = {xi}N

i=1 → {vi}N
i=1, and edges which are

ordered pairs of edges present in the graph,
E = {vi, vj}. One can choose either epsilon-
neighborhoods, or neighborhoods of k-nearest
neighbors. To build a k-near neighbors graph,
construct the graph consisting of edges {vi, vj}
corresponding to the k-closest data points xj to
xi, for each i, with respect to the Euclidean dis-
tance function of the ambient space dX(·, ·). Let
NM be a matrix encoding the weighted graph
of intrinsic manifold distances corresponding to
the graph G; for each vertex present {vi, vj}

in G, we associate the neighbors distances
NM (i, j) ≈ dX(xi, xj), and for each edge not
present, we associate the distance NM(i, j) =
∞, to forbid geodesics of the graph from jump-
ing between branches of the underlying mani-
fold.

(2) Compute geodesics of the graph, to
approximate geodesics of the manifold. There
are popular methods to compute shortest paths
of the graph, including Floyd’s algorithm for
small to medium sized datasets or Dijtsra’s
algorithms for small to large datasets. Thus
compute an approximate geodesic distance
matrix DM (i, j) consisting of shortest weighted
path lengths from NM between each i to j, to
approximate in manifold geodesic distances.

(3) Approximate in Manifold Distance by
k -Near Neighbor Distance. The DM dis-
tance matrix of graph geodesics from the pre-
vious step is taken to approximate the true
geodesic distances of the manifold between
xi, and xj , dM (xi, xj). This approximation
improves as data density increases. If k is chosen
too large, or data density is too low, then con-
sequently, some neighbors could be on separate
branches of the manifold, and the approxima-
tion is poor, resulting in illegal shortcuts and a
poor representation of the manifold.

(4) Perform an MDS on DM . MDS requires
only the DM matrix of in manifold distances as
input, which was computed from X input data
above, but X is not required further, to form
projective variables Y of the intrinsic variables.
Therefore the results in variables X̃ defined
below, and Y , will also represent intrinsic man-
ifold variables.

3.2. Review of MDS

We review the classical MDS algorithm as follows,
[Cox & Cox, 1994a]. Given DM , which approxi-
mates in manifold geodesic distances for our pur-
poses, the goal is to form a matrix of projected
d-dimensional data Y to optimize the residual error,

E = ‖τ(DM ) − τ(DY )‖L2 , (23)

denoting the matrix norm, ‖A‖ ≡
√∑

i,j A2
I,j, (this

is therefore not a so-called natural norm [Golub &
Van Loan, 1996]), τ(·) is a centered distance func-
tion, and the matrix [DY ]i,j describes the geodesic
distances between yi and yj in the projective space
Y of intrinsic variables. To compute Y , we list the
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following string of facts which are central to the
theory of MDS [Cox & Cox, 1994]. First define.

τ(DM ) = −1
2
HD2

MH, (24)

where H is a centering matrix,

H =
1
N

I − 1 · 1t, (25)

1 is a N × 1 matrix of ones, and I is the N × N
identity. Likewise, define, but we do not need to
compute,

τ(DY ) = −1
2
HD2

Y H. (26)

Then, again for exposition but not for computation,
we note that,

min ‖τ(DM ) − τ(Dy)‖ = min
∥∥∥∥−1

2
H(D2

M − D2
Y )H

∥∥∥∥
= min ‖X̃tX̃ − Y tY ‖2

= min trace(X̃tX̃ − Y tY )2

(27)

The last equalities follow from a theorem [Cox &
Cox, 1994], highlighted by Eq. (32), that yields for
any squared matrix D2

M , there exists points x̃i, x̃j

such that,

d2
i,j = (x̃i − x̃j)t · (x̃i − x̃j), (28)

from which,

τ(DM )2 = X̃tX̃, (29)

and likewise for τ(DY )2. The coordinates x̃ are to
be understood as centered in such a way that pair-
wise Euclidean distances are DM . A key advantage
of the MDS algorithm over the more common POD
algorithm is that all matrix manipulations to com-
pute an output Y require only the centered distance
matrix τ(DM ), which represents geodesic distances
on the manifold. Whereas by contrast POD works
directly with the original X input data by attempt-
ing to linearize it by a singular value decomposition-
SVD of the X. Therefore X̃ is allowed to be in the
manifold appropriate to the geodesic distances DM ,
and X̃ is thus distinguished from the original input
data X. If needed, X̃ can be found by Eq. (32), since
we never have any need to distinguish between Y
or Ỹ , and we will always write the former.

Since τ(DM ) is symmetric and positive semi-
definite, the computation of MDS uses the spectral

decomposition,

τ(DM ) = V ΣV t, (30)

where Σ = diag(λi) is the matrix of eigenvalues,
and V is the orthogonal matrix of eigenvectors,

V 2 = I, and τ(DM )V = ΣV. (31)

Comparing representations for τ(DM ), Eqs. (24)
and (29), to the spectral decomposition Eq. (30)
gives a representation of the variables x̃i mentioned
by Eq. (28),

X̃ = V Σ
1
2 , (32)

where the square matrix of non-negative eigenval-
ues has a simple square root Σ = diag(

√
λi). The

MDS solution is then,

Y ≡ YMDS = VpΣ
1
2
p , (33)

where Σ
1
2
p and Vp use the top p (significant) eigen-

values and eigenvectors of τ(DM ).
Note that the MDS is essentially a linear anal-

ysis, and the main nonlinear step to restrict to the
nonlinear manifold is the formation of the neigh-
bors graph based on k-nearest neighbors, the idea
being that with enough data density, geodesics of
the graph will not take any shortcuts not allowed
by paths in the manifold.

There is a simple relationship between a PCA
projection, at the heart of POD used in KL analy-
sis, and the MDS projection. Whereas POD forms a
rank-p projection of maximal variance, MDS forms
the rank-p projection that optimizes the dissimi-
larity, meaning intra-point distances. Specifically,
the variables of the corresponding projections relate
according to,

YPCA = Σ
1
2
PCAYMDS, (34)

where ΣMDS = ΣPCA = Σp as used in Eq. (33).
Also, there is a relationship of the basis vectors,

VPCA = X̃VMDS, (35)

where similarly VMDS = Vp from Eq. (33). The two
algorithms yield essentially the same thing when the
distance matrix is Euclidean distance, but since we
take DM to be discretely approximated in manifold
distance in ISOMAP, the results are different, as are
the steps of computation. The most important dif-
ference in the algorithmic steps between MDS and
PCA is that MDS does not explicitly use X in its
computations, and therefore since variables to be
found are in some unknown nonlinear manifold, this
is a good dependency to avoid.
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Most interesting to us for future exploration is
how to couple recent results of convergence of the
graph approximation of the manifold, [Bernsetin
et al., 2000], to our particular setting. The theory
in [Bernsetin et al., 2000] concerns considerations
of sampling a random variable on the submanifold,
which can be considered in the setting of a dynam-
ical system on a manifold through understanding
the invariant measure of the dynamical system, and
convergence rate of the initial distribution function.

4. Examples

4.1. A Duffing on paraboloid
singularly perturbed system

First, we consider a benchmark problem, consisting
of a singularly perturbed problem, in the form of
Eq. (11), of relaxation of a Duffing oscillator onto a
stable nonlinear manifold consisting of a paraboloid.

ẋ1 = x2,

ẋ2 = sin(x3) − ax2 − x3
1 + x1, (36)

ẋ3 = 1,
εẏ = y − α(x2

1 + x2
2).

If we choose, a = 0.02, b = 3, α = 1, and ε = 0.001,
we get the chaotic dataset shown wrapped onto a
paraboloid in Fig. 1.

Clearly, any dataset from a sampling of the
flow,

{zi}i ≡ {(x1(ti), x2(ti), y(ti)}i, (37)

is poorly modeled as lying in any planar or lin-
ear subspace, but nonetheless, it lies on a two-
dimensional nonlinear submanifold. It is no surprise
that applying the KL-method to this dataset cannot
properly reveal the true two-dimensionality of this
process. Furthermore, this example could have been
augmented by creating many fast variables which
decay to a two-dimensional paraboloid in as high-
dimensional an ambient space as we like; we chose
only one fast variable for sake of artistic simplicity
of displaying the attractor as a three-dimensional
rendering. We know of no previous method to prop-
erly model the dynamics on the parabolic invariant
manifold.

There are approximately 65,000 data points
comprising of the sampling of the flow shown in
Fig. 1(a). In principle, one could perform ISOMAP
directly on this dataset, {zi}, but it is computation-
ally too expensive on this large dataset, and empri-
cally redundant. In practice, we find a subsam-
pling of the dataset {zik} of 1000 points, shown in

Fig. 1(b), to be quite sufficient. A subsampling of a
high-dimensional dataset for better computational
efficiency has been called “landmark ISOMAP.”
The critical issue is that the subsampling must
have similar statistics (the same distribution) as the
larger dataset, and the subsampling should be suf-
ficiently dense so that the approximations of the
manifold by the discrete graph structure is good.
We see in Fig. 2(a) a clear indication to justify that
the expected benchmark result that the embedding
manifold should be two-dimensional.

The intrinsic manifold coordinates y = (y1, y2)
shown in Fig. 2(b) serve sufficiently for revealing
the underlying Duffing flow, which is the empirical
version of Eq. (17), which we rewrite here calling
the intrinsic variables-y,

ẏ = f(y) = F (y,H(y)). (38)

The red curve shown in Fig. 3(b) shows just such
an empirical curve of the approximated flow of
ẏ = f(y). This curve can now be used for any num-
ber of other purposes, such as through a nonlin-
ear parameter estimation by synchronization, or by
the least squares Kalman-type methods, or alter-
natively, the red curve could be used for predica-
tion and/or control. The point is, that each of these
activities is now performed in a reduced dimen-
sional space, which could in principle be much lower
dimensionally.

In this particular case, where the embedding
manifold is particularly smooth and low dimen-
sional, we demonstrate a further operation to
reduce the size of the dataset being sent to
ISOMAP, and to nonetheless ensure that there is
sufficient data density to justify the discrete graph
to manifold approximation. The problem is one of
regridding, to reduce the number of data points
where they are particularly dense, and to use the
underlying manifold smoothness to increase data
density where it is sparse. A traditional method
of regridding uses multivariate splines. For exam-
ple, a bivariate B-spline which could be used in
this example would have the form [Eubank, 1999;
Messer, 1991; Nyschka, 1995],

f(x1, x2) =
∑

i

∑
j

Bi,k(x1)Bj,l(x2)ai,j, (39)

which can be quite successful for a smooth slow
manifold with a fast normal contraction, so the
dataset is essentially on the manifold. If the data
is not expected to be as close to the manifold, then
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Fig. 1. (a) Data of a singularly perturbed relaxation of a Duffing oscillator onto a stable nonlinear manifold, by Eqs. (36).
(b) A subsampling of the data, the blue dots, is a sufficient landmark set for more efficient processing by ISOMAP.

a degree of smoothing can be inferred by a multi-
variate version of a smoothing spline, which in the
bivariate case can be written as the minimizer of
the functional,

p
∑

i

|x3,i − fci|2 + (1 − p)
∫

(|D1,1f |2

+ 2|D1,2f |2 + |D2,2f |2), (40)

which gives rise to thin-plate splines. Notice that
this functional is a balance between least squares

smoothing in the case p = 0 and an exact fitting
spline when p = 1, with a balance between data
fidelity in the first term, and curvature relationships
in the second. We have used the Matlab Spline Tool-
box [Matlab, 2005] of both the multivariate spline,
and the plate spline, and in this case the results
are essentially the same, due to the strong nor-
mal hyperbolicity of the slow manifold. In Fig. 3(a)
we see the singularly perturbed Duffing oscillator
Eq. (36) and the results of a bivariate spline applied
to the Duffing data. The spline has been evaluated
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(a)

(b)

Fig. 2. (a) Dimensionality found by the ISOMAP algorithm applied to the dataset shown in Fig. 1(a). The horizontal axis
is the test dimension, d, and the vertical axis is error. The algorithm indicates quite clearly that the dataset justifies a two-
dimensional embedding. (b) The two-dimensional nonlinear embedding of the dataset onto the (paraboloid) manifold. The
variables shown are the intrinsic variables, y = (y1, y2), as in Eq. (20). This is the discrete graph model of the manifold in
intrinsic variables.
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(a)

(b)

Fig. 3. (a) The Duffing singularly perturbed flow data from Eq. (36) in blue, and a 20 × 20 regridding derived by bivari-
ate spline, used for a reduced dataset for ISOMAP. (b) The uniform grid, but now in intrinsic variables, and its underlying
neighborhood graph. Also shown in red is the embedded flow data in intrinsic variables.

on a 20 × 20 uniform grid of n = 400 points,
resulting in the square-looking grid shown on the
paraboloid. The n = 400 corners of these squares
have been passed to the ISOMAP algorithm, as an

alternative and smaller landmark set than using the
Duffing data, and constructed to be reliably more
uniform than a subsampling of the flow. The result-
ing embedding is shown in Fig. 3(b), which shows
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the discrete graph corresponding to grid shown on
the right used to approximate the manifold, but
arranged in the intrinsic manifold distances. Like-
wise, the red curve shows the embedded flow. A
remark to point out at this stage is the apparent

and obvious result that the grid in Fig. 3(a) which is
uniform in x1, x2 ambiant variables, is not uniform
in the intrinsic manifold variables. This is, of course,
expected since the relationship of the slow manifold,
x3 = H(x1, x2) gives distances in the intrinsic vari-
ables infinitesimally by,

dL =
√

dx2
1 + dx2

2 + dx2
3

=
√

dx2
1 + dx2

2 + (D1H(x1, x2)Dx1 + D2H(x1, x2)Dx2)2, (41)

4.2. Lorenz equations

For our second example, we take the famous Lorenz
equations [Lorenz, 1963],

ẋ1 = σ(x2 − x1),
ẋ2 = ρx1 − x2 − x1x3, (42)
ẋ3 = x1x2 − βx3,

where we choose as usual, σ = 10, r = 28, b = 8/3.
There is no apparent invariant manifold for these
equations, but there is a famous butterfly shaped
attractor, with a fractal dimension DF slightly
larger than 2 (it is beside the point here to spec-
ify which fractal dimension). In fact, it is known
that the Lorenz attractor is better described as
a branched manifold, [Williams, 1979; Birman &
Williams, 1983]. Therefore, this makes a good exam-
ple dataset to test an algorithm which insists on
treating the data as if there is a manifold.

In Fig. 4, we see results of directly fitting
the Lorenz data. As validated by Fig. 4(b), it is
no surprise that a two-dimensional manifold fits
the attractor well, but not perfectly. The man-
ifold found, shown in Fig. 4(c) appears as two
joined annuli, joined at an edge, where in fact it
is known that the folding part of the Lorenz chaos
occurs; the branched part of the branched manifold
has been flattened. This benchmark serves as an
instructive example of the sort of topological errors
which might occur in higher dimensional attractors.
Numerically however, for predictive purposes, this
sort of modeling error is not always a problem.

In Fig. 5, we show a second way of processing
the Lorenz data, using the splines regridding
method mentioned in the previous example. In
Fig. 5(a) we show the Lorenz attractor data,
together with a splined uniform grid running
approximately through the data. Using this regrid-
ded data results in the same data in intrinsic
variables on the approximated manifold shown in
Fig. 5(b). It is in agreement with what is known

about the Lorenz attractor, and branched mani-
folds, and our own previous result, that now the
manifold approximation now appears as two planar
manifolds with two apparent tears. Recent work has
analytically discussed aspects of the Lorenz equa-
tions which do indeed give rise to a singular pertur-
bation form [Ramdani et al., 2000].

4.3. Chua’s circuit equations

An important system in the theory of chaos in
nonlinear electronics elements has been the famous
Chua’s circuit, [Matsumoto, 1984; Chua et al., 1986]
which depending on the elements present has been
modeled by a differential equation with either a
cubic nonlinearity, or a piecewise linear function. In
either case, these systems are well known for their
rich collection of attractors [Chua, 1992; Tsuneda,
2005] and bifurcations between them as the param-
eters are varied. Here we take a single example for
each of the two types of nonlinearities as presen-
tation of the types of result one can expect when
performing an ISOMAP embedding model of the
nonlinear attractor.

4.3.1. Chua’s equations with piecewise
linear nonlinearity

Consider the equations [Tsuneda, 2005],

ẋ = kα(y − x − fL)
ẏ = k(x − y + z) (43)
ż = k(−βy − γz)

with parameters,
α = 3
β = 30

γ = −0.86
m0 = −3
m1 = 0.4
d = 3.0

(44)
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(a) (b)

(c)

Fig. 4. (a) Solution data from the Lorenz equations, Eq. (42) in ambiant variables. (b) Embedding error as a function of
dimension. (c) Lorenz data in intrinsic variables, in two dimensions. The model manifold of what is known to be a branched
manifold admits well the known location of the branched section which is near the joint shown.

and nonlinear in the piecewise linear form,

a =
−35(d2 − 1)2(m0 − m1)

16d7

b =
(45d4 − 50d2 + 21)(m0 − m1)

16d5
+ m1 (45)

fL = m1x +
1
2
(m0 − m1)(|x + 1| − |x − 1|).

In Fig. 6, we see an example of one of the many
possible Chua attractors, this one from the param-
eters as specified above. Notice the twisting of the

attractor. In Fig. 7 we see the results of an ISOMAP
embedding of this data. The dimensional analy-
sis is strongly suggestive of two dimensions, which
is a correct description projectively, and this is
shown also in Fig. 7. Thus in the projective intrin-
sic coordinates, we see the simple rotation aspect
of the attractor, and we get intrinsic coordinates
descriptive of this aspect. The example is instruc-
tive however, since projectively, there is the loss of
information especially due to the twisting aspect
of the attractor, but this appears as the nodules
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(a) (b)

Fig. 5. (a) Data from the Lorenz equations, Eq. (42) in ambient variables, together with a uniform regridding using a stiff
bivariate cubic smoothing spline. This uniform data is processed by ISOMAP. (b) The resulting manifold has apparent rips,
which is expected by inspection of the data, considering the intrinsic distances Eq. (41), and the known way in which the two
butterfly lobes are joined.

Fig. 6. A Chua attractor due to piecewise linear nonlinearity, according to Eqs. (43)–(45).

seen at the ends. To prevent such a projective loss,
a mix of aspects of a false nearest neighbors type
technique [Kennel, 1992] and ISOMAP would be
necessary, and this is not explored here. In this
case, the original coordinates would be required,
since it is well known, by Poincaré–Bendixon

theorem [Perko, 2006], that at least three inde-
pendent coordinates are required for chaos. For
projections of very high dimensional problems,
such as the KS equations in the next subsection,
projections which are still chaotic can be quite
useful.
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Fig. 7. ISOMAP embedding of piecewise linear Chua’s flow shown in Fig. 6. (a) Dimension calculation strongly indicates
a two-dimensional embedding dimension. (b) The resulting intrinsic coordinates suggest the simple rotation where the twist
fold appears as the nodules at the ends.
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4.3.2. Chua’s equations with cubic
nonlinearity

Consider the equations [Tsuneda, 2005],

ẋ = kα(y − x − fC)
ẏ = k(x − y + z) (46)
ż = k(−βy − γz)

again with parameters as in Eqs. (44), and now non-
linear in the cubic form,

a =
−35(d2 − 1)2(m0 − m1)

16d7

b =
(45d4 − 50d2 + 21)(m0 − m1)

16d5
+ m1 (47)

fC = ax3 + bx.

In Fig. 8, we see the resulting attractor.
The ISOMAP embedding is again clearly two-
dimensional, as shown by Fig. 9(a), but this time,
the projection to intrinsic variables on the mani-
fold corresponds to a domain which appears as an
annulus, as seen in Fig. 9(b). Inspecting the three-
dimensional picture in Fig. 8 this makes strong
sense.

4.4. Kuramoto–Shivasinky equations

The Kuramoto–Shivasinky systems developed as
a description of flame front flutter [Kuramoto &
Tsuzuki, 1976] has become somewhat of a paradigm
of spatiotemporal dynamics, and also one used in
particular, in the study of low-dimensional behav-
ior in high dimensional systems such as by using a
KL modeling [Zoldi & Greenside, 1997] and one for

which the inertial manifold theory can be carried far
forward analytically [Foias et al., 1988; Robinson,
2001], and numerically with the approximate iner-
tial manifold theory [Jolly et al., 2001]. As is typical
with inertial manifold theory, there is an appar-
ently very large gap between the minimally prov-
able dimensionality of the inertial manifold, and the
apparent dimension of the observed attractor.

We will take as our last example, the KS
equations,

ut = (u2)x − uxx − νuxxxx, x ∈ [0, 2π], (48)

or periodically extended, u(x, t) = u(x + 2π, t). It
is an example of an evolution equation of the form
Eq. (1), which can be written formally as an ODE
in a Banach space as follows [Cvitanovic, 2003]. Let,

u(x, t) =
∞∑

k=−∞
bk(t)eikx. (49)

Assuming a real u forces bk = bk. Substitution yields
infinitely many ODEs for the time varying Fourier
coefficients,

ḃk = (k2 − νk4)bk + ik

∞∑
k=−∞

bmbk−m. (50)

Restricting to pure imaginary solutions yields, bk =
iak for real ak gives,

ȧk = (k2 − νk4)ak + ik

∞∑
k=−∞

amak−m, (51)

and restricting to odd solutions, u(x, t) = −u(−x, t)
gives a−k = ak. Finally, for computational reasons,
it is always necessary to truncate at the Nth term,
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Fig. 8. A Chua attractor due to cubic nonlinearity, according to Eqs. (46) and (47).
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(a)

(b)

Fig. 9. ISOMAP embedding of cubic nonlinearity Chua’s flow shown in Fig. 8. (a) Dimension calculation strongly indicates
a two-dimensional embedding dimension. (b) The resulting intrinsic coordinates suggest the simple rotation where the twist
fold appears as the nodules at the ends.

which here means defining ak = 0 if k > N . In
Fig. 10, we show comparison between the solutions
of the ODEs Eq. (51) for a 16 mode and 24 mode
model of the KL attractor. We can see obvious
differences, and the question is therefore whether

either truncation can capture the true dynamics,
and in fact the inertial manifold theory [Foias
et al., 1988; Robinson, 2001] indicates that possi-
bly hundreds of thousands of modes may be nec-
essary. The approximate inertial manifold theory
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Fig. 10. Projective views of their respective a1 and a2 coordinates of KS ODE equations Eq. (51), using N = 16 and 24
mode models respectively in blue and red.

[Jolly et al., 1990] suggests that somewhat less, but
still large number of modes could be necessary to
even approximately model the equations.

We will take only an observational approach,
and assume that we have used a sufficiently large
number of modes in our truncation so as to ensure
that the data is a good topological model of the

attractor. We will then use the data together with
the manifold modeling procedures which we have
described to observe very simple dynamics. For the
sake of pictures, we show results from the 16 mode
model, although we observed the same with the
24 and 32 mode models. We see from Figs. 11
and 12 that strongly indicate a three-dimensional
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Fig. 11. Data on (near) the attractor of the KS ODE equations Eq. (51) strongly indicates a three-dimensional manifold. See
Fig. 12(b) showing the three-dimensional embedding of the data into intrinsic variables from ISOMAP.
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(a)

(b)

Fig. 12. (a) Projection of the data of the KS ODE equations Eq. (51) onto three a1, a2, a3. (b) Results of the ISOMAP
algorithm embedding the data in three intrinsic variables.

embedding is best. An apparent twist in the bands
shown also justifies the projection.

4.5. Generalized synchronization
example

Synchronized arrays of dynamical systems have
attracted considerable attention in the past decade
and a half. See for example one particularly nice
review [Boccaletti et al., 2002], amongst many
that are available. Identical synchronization can
be characterized by a stable invariant “synchro-
nization” manifold. A more general version of syn-
chronization, known as generalized synchronization

can be defined as a coupled system having a sta-
ble normally hyperbolic invariant manifold [Josic,
2000]. Methods based on conditional Lyapunov
exponents are popularly used to indicate synchro-
nization, but except for special specific exam-
ples, such as the benchmark example used here,
usually no direct observation or modeling of the
generalized synchronization manifold is seen. The
claim here is that the data from such a system
reveals that invariant manifold, and it can be
effectively approximated by the methods described
here.

We take here as an example, a system presented
in [Josic, 2000], which consists of a Lorenz coupled
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Fig. 13. The Lorenz driving Rossler generalized synchrony system Eq. (52) is indicated by an apparent three-dimensional
invariant manifold, which is in this case known to be the slow manifold Eq. (53).

to Rossler equations,

ẋ1 = σ(y1 − x1),
ẏ1 = ρx1 − y1 − x1z1

ż1 = x1y1 − βz1

ẋ2 = −y2 − z2 − c(x2 − (x2
1 + y2

1))
ẏ2 = x2 + αy2 − c(y2 − (y2

1 + z2
1))

ż2 = b + z2x2 − dz2 − c(z2 − (x2
1 + z2

1)),

(52)

and all parameters are chosen to be the famous
chaotic values, σ = 10, ρ = 28, β = 8/3, α = 0.2, b =
0.2, d = 8.0. We take d = 10 since it is a large
enough value for synchronization. It was shown in
[Josic, 2000] that a large class of symmetrically and
asymmetrically coupled system can be cast by a
simple change of variables into a formal singularly
perturbed form written in Eq. (11), which accord-
ing to the geometric singular perturbation theory
[Fenichel, 1979] gives rise to the stable manifold
defining generalized synchrony. For our purposes,
we wish only to show that generally, such systems
reveal themselves by their flow which restricts them-
selves to that manifold. See Fig. 13 which indicates
a three-dimensional attractor. It is known for this
benchmark example [Josic, 2000], that there is an

attractor embedded in the manifold,

x2 = x2
1 + y2

1 ,

y2 = y2
1 + z2

1 , (53)

z2 = x2
1 + z2

1 .

5. Conclusion

Modeling high dimensional processes by a low
dimensional process is a fundamental problem in
dynamical systems. We have discussed how tradi-
tional linear methods have built in failings in the
situation that asymptotic behavior of the dynam-
ical system is restricted to a nonlinear manifold,
specifically in the setting of singular perturbation
theory. We have presented a way in which recent
methods of modeling an invariant manifold, known
only through a dataset near that manifold, can be
effectively learned and modeled as a discrete graph
structure. The methods locally based on MDS have
certain strong parallels with what was developed in
the time-series embedding community in the past
decade(s) [Weigenbend & Gershenfeld, 1993; Fraser
& Swinney, 1986; Kennel, 1992; Eckmann & Ruelle,
1985], which in its best implementations used SVD
locally. However, the global aspects of the new
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methods go much further, effectively modeling the
global manifold, and therefore global intrinsic vari-
ables, by a discrete graph.

A good model of the dynamics restricted to the
manifold means, as we have described, presenting
the flow as in intrinsic variables, or in manifold coor-
dinates, rather than ambient variables of the larger
space. Such description is therefore a first step to
one of several useful processes in applied dynami-
cal systems theory, such as prediction of time series,
global modeling of differential equations restricted
to the manifold (filtering for example) and even con-
trol. Our current work is focusing on these applica-
tions. It is also our plan in future work to explore
how to link analysis of convergence rates of initial
distributions of ensembles of initial conditions of
a singularly perturbed system, towards the invari-
ant measure on an invariant manifold together with
known recent results of sampling theorems of ran-
dom data, from probability densities on a mani-
fold with convergence of the modeling of the graph
approximations of the manifold.

It is also of interest to better understand how
more traditional (statistical) methods of identify-
ing low dimensional behavior, such as measuring
(box) fractal dimensions of the dataset, or measur-
ing conditional Lyapunov exponents (for indicating
generalized synchronization), work in harmony with
the above introduction of constructive methods of
modeling invariant manifolds.
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