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Abstract

A primary concern of this thesis is to develop principles and methods to compare dynamical

systems when they are not necessarily conjugate (topologically the same). The first main

body of this thesis provides an understanding of “mostly conjugacy (mostly homeomor-

phism)” between “dynamically close” systems, which enables us to measure and interpret

the distance from being conjugate. We also generalize this idea from comparing determin-

istic systems to stochastic systems.

As a second theme, we extend and interpret the concepts of “mostly conjugacy” in

symbolic dynamics, where we resort to a variant of the classic Monge-Kantorovich op-

timization problem to both built a useful change of variables and measure quality of the

comparison through the underlying cost called the Wasserstein distance. Later, we build up

a bundle structure, visualize as a bundle plot, to show the evolution of symbolic space as we

vary a system’s parameter. The main object is a specific structure “joint”, which happens

shortly after bifurcation, implies qualitative changes of system where the kneading points

become periodic.

Finally, we apply the above techniques to study time series analysis and modeling on

heart rate data, which we have shown to be a one-dimensional nonlinear map that has a

stochastic parameter with persistence causing the heart rate and rhythm system to wander

about a bifurcation point.
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Chapter 1

Introduction

1.1 Motivation: A Conjugacy between Dynamical Systems

A fundamental question in science is how do we compare systems, or how do we rep-

resent data with the best model. Traditional approaches based on normed linear spaces,

such as L2, define two objects’ distance to be the Euclidean distance. Difference between

system-to-system or data-to- system can be measured by looking at the sum/intergration

of deviation. Thus by regression analysis, we can obtain the best fit curve, from which

we make prediction. The underlying assumption here is close systems should yield similar

results, or close. But this concept is brittle in that it will break even for extremely simple

systems.

For instance the logistic map, from which people model the population in the physical

world. Assume we have two logistic systems, xn+1 = 4xn(1−xn) and yn+1 = 3.9999xn(1−xn),

where I generate two time series data xn and yn, with x0 = y0 = 0.88. From Figure 1.1, the

data start acting tremendously different after n = 14. So two similar systems with the same

formation but slightly different parameters values may behave qualitatively different.

Quantifying model accuracy is to measure how “close” the model is to the original sys-

tem. In many cases, prediction is the goal. The quality of prediction in dynamical systems

1
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Figure 1.1: Time series data form two slightly different systems: (Red) {xn} is generated
by xn+1 = 4xn(1 − xn); (Blue) {yn} is generated by yn+1 = 3.9999xn(1 − xn). These two
systems differ in the parameter by 0.001 (close in the sense of regression analysis), but the
trajectories behave qualitatively different after n = 14.
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is typically not based on error analysis, like regression methods. Within the dynamical sys-

tems framework, the determination of whether two systems are dynamically equivalent is

based upon whether or not there is a conjugacy between them. Conjugacy is essentially a

smooth change of coordinates from one system to the other, where we say systems are topo-

logically the same. Conjugate systems under this equivalent relationship behave exactly the

same, and trajectories are matched via this conjugacy.

What do we mean by that? Now suppose we have two systems, i.e. the logistic map

xn+1 = 4xn(1 − xn) and the tent map yn+1 = 2yn i f yn < 1/2; otherwise yn+1 = 2(1 − yn),

which are shown in Figure 1.2(a). These two systems are in no way similar in the sense

of regression analysis. If looking at the time series data from these two systems (Figure

1.2(b)), we can find that even the orbits points are not exactly at the same locations, but are

moving following the same pattern. What do we mean by “pattern” here? Let’s plot {xn}

v.s. {yn} in Figure 1.2(c); we can see that each xi corresponds to a yi in a nice way, which

forms a smooth function. As a matter of fact, they are related by a conjugacy function

yn = (1 − cosπxn)/2, which implies they are considered the same topologically. Thus if

given a time series data xn, modeling using the tent map seems to be a better choice than

yn+1 = 3.9999yn(1 − yn). At least we can “describe” the demographic trends correctly. And

in principle, we are representing the original data in a different coordinates system only.

Since the beginning of the field of dynamical systems by Henri Poincare [1], character-

izing a dynamical system has focused on examining the topological and geometric features

of orbits, rather than focusing on the empirical details of the solution of the dynamical

system with respect to a specific coordinate system. We seek to understand coordinate

independent properties, such as the periodic orbit structure, the count, and stability of peri-

odic orbits.

However, most of the time, we are trying to model the “true” system (physical perhaps)

by a simpler one, that is “descriptive” of some aspects of the original system, in which

case we have to address the issue of quantifying the quality in a mathematically grounded

3
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(b) Time Series Data
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Figure 1.2: Conjugate systems: (a) Data {xn} is generated by the (red) system xn+1 =

4xn(1−xn). Data {yn} is generated by (blue) system yn+1 = 2yn i f yn < 1/2; otherwise yn+1 =

2(1 − yn)
; (b) Time series data generated by systems described in (a); (c) A plot of {xn} v.s. {yn}.
Even though these two systems are in no way the same in the sense of regression analysis,
but each xi corresponds to yi by a conjugacy yn = (1 − cosπxn)/2, which implies they are
considered the same topologically.
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manner. In other word, we seek to approximate one thing by another, so we need to have

some way of quantifying how much the underlying systems are conjugate.

So what do we mean by “not conjugate” but “approximately”? For our first example

where xn+1 = 4xn(1 − xn) and yn+1 = 3.9999xn(1 − xn), if we symbol xn to be 0 when

xn < 1/2, otherwise 1, we would have the symbolic sequence 101001010111011101...

for {xn} and 10100101011101011... for {yn} (see Figure 1.3). We can see that they have

matching symbols until the 15th digit. And the fact is, if the parameter in the {yn} system

is 3.99999 or a number closer to 4, we can have more matching symbols. Of course for

conjugate systems, we would have a perfect matching. Thus a “good” model provides

an “approximate conjugacy” that matches the respective symbolic sequences for as many

symbols as possible. This also provides us an optimization criterion to present the “best”

model. This is just part of the interesting story.

In this thesis work, we extend the notion “conjugacy” and focus on studying the “ap-

proximation” of conjugacy, named mostly conjugacy.

1.2 Purposes and Outcomes

In dynamical systems, the usual way to relate two dynamical systems is with the topological

notion of conjugacy, related by the following commuting diagram:

X
g1−−−−−→ Xy f

y f

Y
g2−−−−−→ Y

A conjugacy f is a homeomorphism, i.e. f is 1-to-1, onto, continuous and has a con-

tinuous inverse function, such that f : X → Y satisfying

f ◦ g1 = g2 ◦ f , (1.1)
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Figure 1.3: If we use the symbol 0 for xi < 0.5 and yi < 0.5; and 1 for xi > 0.5 and
yi > 0.5, we would have the symbolic sequence 101001010111011101... for {xn} and
10100101011101011... for {yn}. They have matching symbols until the 15th digit. If the
parameter in the {yn} system is 3.99999 or a number closer to 4, we can have more matching
symbols. And we would have a perfect matching if we symbolize {xn} and {yn} that are from
two conjugate systems.
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It is a smooth change of coordinates from system g1 to g2 so that the mappings behave

exactly the same in either coordinate system.

While we extend the notion of “conjugacy” by relaxing the condition that f has to be

a homeomorphism, which is rarely satisfied, especially when we try to model real data. In

particular, we define the function f : X → Y satisfying f ◦ g1 = g2 ◦ f as a ”commuter”.

A commuter is a conjugacy if it is a homeomorphism, but a commuter is any function, not

necessary a homeomorphism, that satisfies the commuting relationship.

In our work [6], we define the commuter f to be a function in the Lp space, which

enables us to apply classical real analysis tools and measure the “homeomorphic defect”.

More importantly, we interpret the concept of “distance/defect” in the sense of “mostly

conjugacy”, which is an essential criterion when we do model optimization. Furthermore,

we provides some basic regularity properties of the commuter function, and a modeling

problem when only given a time series data. In addition, we introduce the algorithm to

generate the commuter, and the computation error analysis.

Detail will be discussed in Chapter 2.

Later [49], we consider this comparison method within stochastic systems, since of-

tentimes we are dealing with data or models from stochastic systems rather than the deter-

ministic ones. In this case we seek to extend our understanding of “mostly conjugacy” in

a noisy world. Roughly speaking, we consider the underlying stochastic systems to be a

“distribution” of deterministic systems, and for each instance we can refer to the establish-

ment that we have. Such extension relies on the “random fixed point theorem [9]”, which

proves the existence and uniqueness of a “random commuter (a distribution version of the

deterministic commuter)” for comparison between stochastic systems.

Detail will be discussed in Chapter 3.

Later, we realize there are limits in the mathematical technology requiring that the trans-

formations be one-dimensional mappings for construction of the commuters. Further, there

are difficulties in numerically computing defects in the more complicated one dimensional
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cases, and further limits to higher dimensional problems. Thus, we focus on studying the

commuter in the symbolic dynamics perspective. In contrast to studying the commuter as a

point-wise matching from one coordinate system to the other, we try to provide a matching

between symbol spaces from two systems, like the example of symbolizing trajectories in

the previous section.

In symbolic dynamics, all allowable trajectories of a system form a shift space. But

the concepts of shift space and the comparison between shift space are relatively abstract

objects. We consider a shift space as a directed graph, and we applied the graph matching

technique (Earth Mover’s Distance) to compare shift spaces in the work [44]. We also

demonstrate such resulting matching in association with “conjugacy/mostly conjugacy” in

the dynamical systems view point.

Detail will be discussed in Chapter 4.

A step further, we study a topological dynamics perspective on the full bifurcation

unfolding in unimodal mappings. We present a bundle structure, and visualize as a bundle

plot, to show the evolution of symbolic space as we vary a system’s parameter in paper

[50]. The bundle plot can be viewed as a limit process of an assignment plot, which are

lines assignments between points from two dynamical systems. Such lines assignments

are determined by the commuter. The bundle structure is studied with the understanding

of implications from system’s qualitative changes. A main concern in the bundle plot is a

special structure, called “joint”, which determines a critical value of a parameter where the

kneading point is being a period-N point.

Detail will be discussed in Chapter 5.

On the data driven side, we study time series analysis and modeling on heart rate data

based on the technique that we have built [43]. As interesting and challenging question

in modeling behaviors of human cardiovascular system is how best to provide a simpli-

fied representation of both the deterministic and stochastic aspects of heart dynamics. We

develop a one-dimensional nonlinear map that describes short term deterministic behavior
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in the EKG signals. Our study suggests that there is a stochastic parameter with persis-

tence which causes the heart rate and rhythm system to wander about a bifurcation point.

We propose a modified circle map with a jump process noise term as a model which can

qualitatively capture such this behavior of low dimensional transient determinism with oc-

casional (stochastically defined) jumps from one deterministic system to another within a

one parameter family of deterministic systems.

Detail will be discussed in Chapter 6.

Based on the low dimensional structure that we obtain from a persons 24 hours record,

we use Hidden Markov Models (HMM) to characterize the heart rhythms pattern. Then

apply the graph matching method, which we discuss in chapter 4, to compare the models

and investigate the difference to a reference model.

Detail will be discussed in Chapter 7.

We have our conclusions and future works in Chapter 8.

1.3 Mathematical Terminology and Definitions

Here we present a brief review of necessary terminology, definitions and theorems, but the

list is far from comprehensive.

Definition 1.3.1 (Dynamical system [37]). A dynamical system consists of a set of possible

states, together with a rule that determine the present state in terms of past states. If the

rule is applied at discrete times, it is called a discrete-time dynamical system.

Definition 1.3.2 (Chaos [39]). Chaos is aperiodic long-term behavior in a deterministic

system that exhibits sensitive dependence on initial conditions.

1. “Aperiodic long-term behavior” means that there are trajectories which do not settle

down to fixed points, periodic orbits, or quasi-periodic orbits as t → ∞. For practical

reasons, we should require that such trajectories are not too rare. For instance, we could

insist that there be an open set of initial conditions leading to aperiodic trajectories, or
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perhaps that such trajectories should occur with nonzero probability, given a random initial

condition.

2. “Deterministic” means that the system has no random or noisy inputs or parameters.

The irregular behavior arises from the system’s nonlinearity, rather than from noisy driving

forces.

3. “sensitive dependence on initial conditions” means that nearby trajectories separate

exponentially fast, i.e., the system has a positive liapunov exponent.

where we define that the limit to be the Liapunov exponent for the orbit starting at x0:

λ = limn→∞{ 1n
∑n−1

i=0 ln | f ′(xi)|}.

Note that λ depends on x0. However, it is the same for all x0 in the basin of attraction

of a given attractor. For stable fixed points and cycles, λ is negative; for chaotic attractors,

λ is positive.

Definition 1.3.3 (Conjugacy). A conjugacy f from system g1 to g2 is a homeomorphism, i.e.

f is 1-to-1, onto, continuous and has a continuous inverse function, such that f : X → Y

satisfying f ◦ g1 = g2 ◦ f .

Remark 1.3.4 (Regression analysis). Here we give a brief review of Regression analysis

with a simple application using regression line.

Suppose we are given samples of pairs (x1, y1), (x2, y2), ..., (xn, yn), with all the xi not

equal, we want to give a best fit line base on the Least Squares Principle, where the sum of

the squares of the distances of those points from the straight line is minimum. Without loss

of generality, we assume the distance is measured in the vertical direction (the y-direction).

We write the line as y = k0+k1x, and the distance to the line as |y j−(k0+k1x j)|. Thus the

sum of the squares of distances is given by q =
∑n

j=1(y j − k0 − k1x j)2. We want to determine

k0 and k1 such that q is minimized. We let ∂q
∂k0
= 0 and ∂q

∂k1
= 0, from which we obtain the

best fit line as:
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y − ŷ = k1(x − x̂).

where x̂ = 1
n (x1 + ... + xn), similar for ŷ, and k1 =

sxy

s2
x
, where

sxy =
1

n−1

∑n
j=1(x j − x̂)(y j − ŷ), and s2

x =
1

n−1

∑n
j=1(x j − x̂)2.

Definition 1.3.5 (Graph Isomorphism). Let V(G) be the vertex set of a simple graph and

E(G) its edge set. Then a graph isomorphism from a simple graph G to a simple graph H

is bijection f : V(G)→ V(H) such that u, v ∈ E(G) if and only if f (u), f (v) ∈ E(H).

Theorem 1.3.6 (Ulam’s Conjecture [20]). 1. A finite rank approximation of the Frobenius-

Perron operator by

P( j|i) ≈
#({xk|xk ∈ Bi and f (xk) ∈ G j})

#({xk ∈ Bi})
(1.2)

as Ulam-Galerkin approximation of the Frobenius-Perron operator with a partition

Γ = {Bi}, which is a finite family of connected sets with nonempty and disjoint interiors that

covers the phase space.

2. The conjecture that the dominant eigenvector (corresponding to eigenvalue equal to

1 as is necessary for stochastic matrices) weakly approximates the invariant distribution of

the Frobenius-Perron operator.

Theorem 1.3.7 (Ergodic Theorem). Let T : X → X be a measure-preserving transforma-

tion on a measure space (X,Σ, µ), with µ(X) = 1. A measure-preserving transformation T

is ergodic if for every E ∈ Σ with T−1(E) = E, then either µ(E) = 0 or µ(E) = 1. If T is

ergodic, then

limn→∞
1
n

∑n−1
k=0 f (T kx) = 1

µ(X)

∫
f dµ.

where f is a µ-integrable function, i.e. f ∈ L1(µ).
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Definition 1.3.8 (Entropy of a dynamical system, also known as Metric Entropy, Mea-

sure-Theoretic Entropy, Kolmogorov Entropy, Kolmogorov-Sinai Entropy, or just KS en-

tropy). Let M be the phase space of a discrete time dynamical system, with a probability

measure µ. Let T be a measure-preserving transformation of M onto itself. Take a finite

partition ξ = {C1,C2, ...,Cr} of M. Let

wk(x) = j if x ∈ T−kC j, −∞ < k < ∞.

Thus each x generates a random process w(x) = {...w−n(x), ...,w0(x),w1(x), ...,wm(x)...}.

The so-called Shannon-MacMillian theorem tells us there exists the limit

h(T, ξ) = limn→∞
1
n

∑
i1,...,in µ(T

−1Ci1 ∩ ... ∩ T−n(Cin))ln(µ(T−1Ci1 ∩ ... ∩ T−n(Cin))).

The Entropy of a dynamical system is h(T ) = supξ h(T, ξ) where sup is taken over all

finite partition ξ.

Theorem 1.3.9 (Relation between Measure Theoretic Entropy and Topological Entropy).

htop(T ) = supµ hµ(T ).

where the supremum is taken over measures µ which are T-invariant Borel probability

measures on M, i.e. for every measurable set A in M, µ(T−1(A)) = µ(A).

Note the topological entropy of a dynamical system is the asymptotic growth exponent

of the number of finite symbol sequences that the system can generate (given the best state-

space partition).

Definition 1.3.10 (Symbol dynamics [17]). Σ2 = {S = (s0s1s2...)|s j = 0 or 1}. We called Σ2

the sequence space on the two symbols 0 and 1. (More generally, we can consider the space

Σn consisting of infinite sequences of integers between 0 and n − 1.) Given two sequences

S = (s0s1s2...) and T = (t0t1t2...), define the distance between them by d(S ,T ) =
∑∞

i=0
|si−ti |

2i ,

which is a metric on Σ2. The shift map σ : Σ2 → Σ2 is given by σ(s0s1s2...) = (s1s2s3...).

Definition 1.3.11 (The kneading sequence [17]). Let x ∈ [0, 1]. The itinerary of x under a

unimodal interval mapg is the infinite sequence S (x) = (s0s1s2...) where
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s j =


0, g j(x) < xc,

1, g j(x) > xc,

C, g j(x) = xc.

where xc is the critical point. The kneading sequence K(g) of g is the itinerary of g(xc),

i.e., K(g) = S (g(xc)).

Definition 1.3.12 (Gray Code Ordering). s and t have discrepancy n if si = ti for 0 ≤ i < n,

but sn , tn. Let τn(s) denote the number of 1’s among s0, s1, ..., sn. Suppose s and t have

discrepancy n. We say s < t if a. τn−1(s) is even and sn < tn; b. τn−1(s) is odd and sn > tn.

Theorem 1.3.13 (Intermediate value theorem for kneading sequences). [51] If a one-

parameter family Gt of continuous unimodal maps depends continuously on t and the topo-

logical entropy h(Gt) > 0 for all t then if K(Gt0) < K < K(Gt1) and K ∈ M where M is

call the class of sequences which occur as kneading sequences of Gt for all t, then there

exists t between t0 and t1 with K(Gt) = K.

Definition 1.3.14 (Hidden Markov Model [47]). A hidden Markov model (HMM) is a

statistical Markov model in which the system being modeled is assumed to be a Markov

process with unobserved (hidden) states. In particular, A HMM is characterized by the

following:

• 1: number of hidden states N. We let S (t) = {S 1(t), S 2(t), · · ·, S N(t)} to be the set of

hidden states at time t. Note that each of the hidden states in S is a first order Markov

process for any time t;

• 2: number of observation states M. We let O = {O1,O2, · · ·,OM} to be the set of

observation states. Note that each of the observation states in O is not necessary a

first order Markov process;
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• 3: the hidden states transition probability matrix A = [ai j], where ai j = P(S j(t +

1)|S i(t)). Note that
∑N

j=1 ai j = 1, 1 ≤ i ≤ N;

• 4: the emission matrix B = [bik], where bik = P(Ok(t)|S i(t)) for 1 ≤ i ≤ N, 1 ≤ k ≤

M. Note that
∑M

k=1 bik = 1, 1 ≤ i ≤ N;

• 5: the initial hidden states probability π = [πi], where πi = P(S i(0)). Note that∑N
i=1 πi = 1;

We let λ = (π, A, B) to be the parameter of a hidden Markov model. Given a sequence

of observations OT
1 of length T , the goal is to find the best λ̂ to maximize P(OT

1 |λ) to charac-

terize the signal OT
1 . For the resulting Markov model, we denote its stationary distribution

for the hidden states by Π = {Π1,Π2, · · ·,ΠN}, where Π = πA. And we can obtain the

stationary distribution for the observation states that are driven by the hidden dynamics by

P(O) = {P(O1), P(O2), · · ·, P(OM)}, where P(Ok) =
∑N

i=1Πibik.

Definition 1.3.15 (Earth Mover’s Distance [21]). EMD is a bipartite network flow problem

which can be formalized as a linear programming problem: Let I be the set of supplies, J

be the set of consumers, and ci j be the cost to ship a unit from i ∈ I to j ∈ J. We want to

find a set of flow (matching matrix) fi j to minimize the overall cost:

∑
i∈I

∑
j∈J ci j fi j,

subject to the constrains:

fi j ≥ 0, i ∈ I, j ∈ J∑
i∈I fi j = y j, j ∈ J∑
j∈J fi j ≤ xi, i ∈ I

where xi is the total supply of supplier i, and y j is the total capacity of consumer j.
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Chapter 2

Mostly Conjugacy: Comparison on

Dynamical Systems with Conjugacy

Defect Measure

2.1 Introduction

Modeling is a fundamental problem whereby we seek to represent a system or data’s be-

haviors. To the extent that science seeks to codify knowledge of the world, a basic tool

in science is the model - a simplified representation of the “true” system under considera-

tion, with mathematical models being a particular example. An essential question within

this modeling context is “how close is the model to the true phenomena.” Where the nat-

ural system under consideration is dynamic, with possibly complex behavior, the field of

dynamical systems seeks to provide an appropriate framework for study of these systems.

Since the inception of the field of dynamical systems by Henri Poincare [1], the fundamen-

tal approach has been to examine topological and geometric features of the orbits, rather

than focusing on numerical specifics of particular solutions of the dynamical system, as

measured in some specific coordinate system. Characterization of the system relies upon
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deciphering coordinate independent properties, such as the periodic orbit structure - the

count and stability of periodic orbits. Within this dynamical systems framework, the de-

termination of whether two systems are dynamically equivalent is based upon whether or

not there is a conjugacy between them. However, in any situation where we seek to ap-

proximate one thing by another, we need to have some way of quantifying the error in the

approximation. Because “conjugacy” is an equivalence relationship, it can not be in the

case where one system is only an “approximation” to the original system.

In the paper written by E. Bollt and J. Skufca [2], the concept of using a commuter

to relate non-equivalent systems allows us to measure the topological difference between

systems from a different perspective other than traditional methods, like regression analy-

sis. The objective of defect measure provides a criterion to choose the “best” model to the

original system or data source. Defining “goodness” in modeling should somehow quantify

the quality of achieving our modeling goal, which is prediction in most of the cases. For

classical method like regression analysis, comparisons between dynamical systems based

on the least square method may fail if the systems turn out to be chaotic. J. Skufca and

E. Bollt [2] develop a method of comparing dynamical systems by judging the quality of

“matching” by looking at their topological difference (homeomorphic defect). The prin-

ciple is to investigate how much one system can “smoothly” translate to another system,

where smooth transformation means a function which is 1-to-1, onto, continuous and in-

verse continuous. The measure of deviation from being homeomorphism (homeomorphic

defect) quantifies how much the commuter fails to be a homeomorphism. In this chapter,

we will study questions like, whether closer systems imply less homeomorphic defect. In

addition to E. Bollt’s work [2], we extend the results by considering the function space in

Lp, which provides us a broader view of the “measurable” commuter functions, and home-

omorphic defect. Furthermore, we study the regularity of commuter functions. Finaly, we

introduce our computation method, which allows one to approximate singular functions

with smooth functions, with a computation error analysis given in the end.
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This chapter is organized as follow: In section 2, we introduce the concept of mostly

conjugacy, and give the example between tent map and logistic map, where the related

functions are in Lp space, with 1 ≤ p < ∞. In section 3, we will prove that, if a skew tent

map converges to a full tent map, the commuter between this skew tent map and the full

tent map converges to the identity function. In section 4, we show that using our scheme to

generate commuter functions are measurable if the initial guess function is, and hence the

limit of the sequence, i.e. the commuter, is also measurable. Together with the assumption

that all the functions that we are discussing are bounded, we conclude that the commuter

is in Lp. In section 5, we sketch the computation method of generating the commuter, and

give the error analysis.

2.2 A Contraction Mapping From the Commutative Re-

lationship

In the field of dynamical systems, the concept conjugacy describes an equivalent relation

between dynamical systems. More precisely, we have the following definition,

Definition 2.2.1. Let X and Y be topological spaces, and let g1 : X → X and g2 : Y →

Y. The dynamical systems g1 and g2 are conjugate if there exists a homeomorphism h :

X → Y, such that

g1(x) = (h−1 ◦ g2 ◦ h)(x) (2.1)

for all x ∈ X.

Topologically, h is a function which is continuous, 1-to-1, onto, inverse continuous. If

we rewrite (2.1) in a equivalent form

(h ◦ g1)(x) = (g2 ◦ h)(x) (2.2)
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So conjugacy describes a “perfect” matching in the sense of dynamical systems. A

typical example is the one we gave in the introduction section, where time series data

generated from two conjugate systems behave qualitatively the same. In principle, this

is due to the fact that conjugacy is a translation from one coordinates system to another,

where during translation we have no lost of dynamics. Here “no lost of dynamics” can

be mathematically explained that the transformation is continuous, 1-to-1, onto, inverse

continuous, namely homeomorphism. But what if the case is not that perfect? Most often

times we are trying to model a complicated world with a simple system which describes

the most representative aspects, not all. Or we are given data which are full of noise from

unexpected sources which we don’t want to model. So we want a reasonable quantifier

to show how far this two objects are from being ‘”perfectly matched”, while “closeness”

should reflect the dynamical similarity between systems. We can achieve that by relaxing

some conditions for the definition of conjugacy.

Here we introduce “mostly conjugacy” in the following definition with a function which

satisfies the commutative relationship (2.2), but not necessary a homeomorphism.

Definition 2.2.2 (Commuter). Let X and Y be topological spaces, and let g1 : X → X and

g2 : Y → Y. If f : X → Y satisfies the commuting relationship (2.2), then we say f is a

commuter relating the dynamical system g1 and g2.

Notice that this definition doesn’t require the function f to be continuous, 1-to-1, onto

or inverse continuous. In paper [2], we have iterative scheme to construct commuter func-

tions in the Banach space B([0, 1], R), the set of all bounded functions from [0, 1] to the

real numbers, with the norm defined as || f || = || f ||∞ := sup| f (x)|. The main goal of the

section is to extend the function space to Lp space, which enables us to do analysis and

measure of commuters in a boarder setting.

Even we relax the condition of conjugacy, the existence and uniqueness of commuter

function can still be guaranteed under some conditions, to show relationship between sys-

tems in some sense. In the following, we use the tent maps and logistic maps as an easy set-
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ting to introduce how the commuter, or would be conjugacy, can be explicitly constructed

by a fixed-point iteration. In this setting, we will rigorously prove several properties of

commuters. We note that for more complicated problems, the methods still work numeri-

cally well under some conditions.

Now consider the family of skew tent maps S (x) defined on [0, 1], with:

(1) S (0) = 0, S (1) = 0;

(2) Peak of tent occurs at S (a) = b with 0 < a < 1;

(3) To ensure the map is locally expanding, require max(a, 1 − a) < b ≤ 1.

which define the family of tent maps {S a,b}

Consider the subset of maps that are symmetric about x = 1/2, denote the subfamily as

τ, τ ⊂ S , τv := S 1/2,v. First, the following lemma gives the existence of a conjugacy:

Lemma 2.2.3. Let S a,b be a particular member of S . Then there exists a v0 s.t. S a,b is

conjugate to T (v0) ∈ τ. (S ◦ h(x) = h ◦ T (x))

Secondly, we require the commuter function maps monotone segments of the symmet-

ric tent map to monotone segments of the full tent map. Since in [0, 1/2], the symmetric

tent map is T (x) = 2v0x. From (1.2), we have

S ◦ h(x) = h(2v0x) (2.3)

Notice that h maps the domain [0, 1/2] of of S (x) to the domain [0, a] of T (x). i.e.

h[0, 1/2] = [0, a]. Since S (x) = b/ax, together with (2.3), we get,

b
a

h(x) = h(2v0x) (2.4)

Similarly, in (1/2, 1], we can have

b
1 − a

(1 − h(x)) = h(2v0(1 − x)) (2.5)
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Therefore, the conjugacy function h(x) must satisfy:

h(x) =


a
b

h(2v0x), 0 ≤ x ≤ 1/2,

1 − 1 − a
b

h(2v0(1 − x)), 1/2 < x ≤ 1.

And, a conjugacy should map turning points to turning points, that is

h(1/2) = a (2.7)

Then at x = 1/2, we have

h(1/2) = a =
a
b

h(v0) (2.8)

and

h(v0) = b (2.9)

Since the conjugate function h(x) satisfied:

h(x) =


a
b

h(2v0x), 0 ≤ x ≤ 1/2,

1 − 1 − a
b

h(2v0(1 − x)), 1/2 < x ≤ 1.

Now use this equation as a guide, we create an operator whose fixed point will satisfy

(2.2).

Consider the space Lp([0, 1]) with norm || f || = || f ||Lp := (
∫

[0,1]
| f |pdx)

1
p , 1 ≤ p < ∞,

which is a Banach space, complete. More precisely, we give the definition of the Lp space

in the following.

Definition 2.2.4 (Definition of Lp Space). If E is a measurable subset of R and p satisfies
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1 ≤ p < ∞, then Lp(E) denotes the collection of measurable f for which
∫

E
| f (x)|pdx is

finite, that is

Lp(E) = { f :
∫

E
| f (x)p|dx < ∞}, 1 ≤ p < ∞.

We shall write

|| f ||p,E = (
∫

E
| f (x)|pdx)

1
p , 1 ≤ p < ∞

thus, Lp(E) is the class of measurable f for which || f ||p,E is finite.

From the closed subset F ⊂ B([0, 1],R)

F = { f | f : [0, 1]→ [0, 1]}

Then given (a, b) satisfying max(a, 1 − a) < b < 1 defined a one-parameter family of

operators.

Mv : F → F for 1/2 < v ≤ 1

Mv f (x) :=


a
b

f (2vx), 0 ≤ x ≤ 1/2,

1 − 1 − a
b

f (2v(1 − x)), 1/2 < x ≤ 1.

Consider on a, b and v are required to ensure F is mapping into itself, also cause the

operator to be a contraction.

Lemma 2.2.5. Mv is a uniform contraction on F , where the contraction is with respect to

|| · ||p.

Proof. Define λ = max( a
b ,

1−a
b ), then 0 ≤ λ < 1,

||Mv f1 −Mv f2||p,[0,1] = (
∫

[0,1]
|Mv f1 −Mv f2|pdx)

1
p
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For 0 ≤ x < 1/2

(
∫

[0,1/2]
|Mv f1 −Mv f2|pdx)

1
p

= (
∫

[0,1/2]
|a
b

( f1(2vx) − f2(2vx)|pdx)
1
p

=
a
b

(
∫

[0,1]
| f1(y) − f2(y)|pd

y
2v

)
1
p

≤ a

(2v)
1
p b

(
∫

[0,1]
| f1(y) − f2(y)|pdy)

1
p

≤ λ

(2v)
1
p

|| f1 − f2||p

Similarly, for 1/2 ≤ x < 1,

(
∫

[1/2,1]
|Mv f1 −Mv f2|pdx)

1
p

= (
∫

[1/2,1]
|1 − a

b
( f1(2vx) − f2(2vx)|pdx)

1
p

≤ 1 − a
b

(
∫

[0,1]
| f1(y) − f2(y)|pd

y
2v

)
1
p

≤ 1 − a

(2v)
1
p b

(
∫

[0,1]
| f1(y) − f2(y)|pdy)

1
p

≤ λ

(2v)
1
p

|| f1 − f2||p

Thus, ||Mv f1 −Mv f2||p,[0,1] ≤ λ|| f1 − f2||p,[0,1].

�

SoM is a contraction, with contraction constrain constant λ. Because λ not depends

on v, the constant is uniform.

Lemma 2.2.6. There is a unique fv ∈ F , so that

Mv fv = fv

Moreover, for an arbitrary f0 ∈ F , if we define the sequence of functions
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fn+1 =Mv fn

this sequence will converge to fv

fv := limn→∞ fn

2.3 Convergence of Commuter Function

We note that a full tent map is conjugate to itself by the identity function which is a home-

omorphism. But as we lower the height of the tent maps, we lose periodic orbits and hence

the “dynamics” of the system is reduced. This can also be understood with the tool of the

Kneading theory, which we will discuss in detail in later chapters. But now we are curious

to the problem like, if we raise the height of a short tent map towards the full one, what will

happen to the commuter function. Would the commuter converges to the identity function?

Or even more, monotone converges? These questions are essential in the whole commuter

topic, since first of all, it validates our motivations and settings in some sense; it also shows

the regularity properties of the commuter function, which enables us to do optimization

problem for choosing the “best model”, at least theoretically.
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Figure 2.1: Regularity property. (Left) A tent map Tn with peak at ( 1
2 , 1)(blue), and a tent

map Tn with peak at ( 1
2 ,Vn)(red). (Right) A full tent map S . Here Tn = S , so the commuter

between them is the identity function I. As Vn going to 1, the commuter function between
Tn and S is going to the identity function I under the norm || · ||p,[0,1], 1 ≤ p < ∞
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Theorem 2.3.1. If the height of tent maps {Vn} is a sequence going to 1, then the commuter

from the symmetric tent map Tn with peak Vn to the full symmetric tent map S , is convergent

to the identity function I(x) under the norm || · ||p,[0,1]

Proof. From section 2, it is easy to see the commuter function between Tn and S satisfies

the following equations:

hn(x) =


1
2

hn(2vnx), 0 ≤ x ≤ 1
2 ,

1 − 1
2

hn(2vn(1 − x)), 1
2 < x ≤ 1.

Note: Just take a = 1
2 , b = 1 at the original equations.

Also notice that hn maps monotone segments of the graph of Tn onto monotone seg-

ments of S . i.e. hn maps segment on the interval [0, 1
2 ] of Tn onto the segment on the

interval [0, 1
2 ] of S . Also notice that the inverse function of S exists on each of these

intervals.

First consider 0 ≤ x ≤ 1
2 ,

||hn − I||p,[0, 12 ] = ||S −1 ◦ hn ◦ Tn − S −1 ◦ I ◦ S ||p,[0, 12 ]

≤ L||hn ◦ Tn − I ◦ S ||p,[0, 12 ]

Since in this simple example, we are dealing with the system S (x) = 2x. Thus it is easy

to see that the lipshitz for S −1(x) is 1
2 . However, we will point out the fact in the next part

that for more general systems beside S (x) = 2x, the above idea of proof with still work.
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Thus,

||hn − I||p,[0, 12 ] ≤
1
2
||hn ◦ Tn − I ◦ S ||p,[0, 12 ]

≤ 1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1
2
||hn ◦ S − I ◦ S ||p,[0, 12 ]

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1
2

(
∫ 1

2

0
|hn(2x) − 2x|pdx)

1
p

Let 2x = u, we can substitute x = u
2 on the above equation because of its absolute

continuity [2].

So,

||hn − I||p,[0, 12 ] ≤
1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1
2

(
∫ 1

2

0
|hn(2x) − 2x|pdx)

1
p

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1
2

(
∫ 1

0
|hn(u) − u|pd

u
2

)
1
p

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1

21+ 1
p

||hn − I||p,[0,1]

(2.13)

On the other hand, for 1
2 ≤ x ≤ 1,

||hn − I||p,[ 1
2 ,1] ≤ L||hn ◦ Tn − I ◦ S ||p,[ 1

2 ,1]

≤ L||hn ◦ Tn − hn ◦ S ||p,[ 1
2 ,1] + L||hn ◦ S − I ◦ S ||p,[ 1

2 ,1]

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1]

+
1
2

(
∫ 1

1
2

|hn(2(1 − x)) − 2(1 − x)|pdx)
1
p

Again, let 2(1 − x) = u, we can substitute x = 1 − u
2 on the above equation because of

its absolute continuity [2].
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So,

||hn − I||p,[ 1
2 ,1] ≤

1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1]

+
1
2

(
∫ 1

1
2

|hn(2(1 − x)) − 2(1 − x)|pdx)
1
p

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1] +
1
2

(
∫ 0

1
|hn(u) − u|pd(1 − u

2
))

1
p

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1] +
1
2

(
∫ 1

0
|hn(u) − u|p 1

2
du)

1
p

=
1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1] +
1

21+ 1
p

||hn − I||p,[0,1]

(2.14)

Since 1 ≤ p < ∞, by raising p power on (1)+(2), we can get

||hn − I||p
p,[0, 12 ]
+||hn − I||p

p,[ 1
2 ,1]
≤ (||hn − I||p,[0, 12 ] + ||hn − I||p,[ 1

2 ,1])
p

≤ (
1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1

21+ 1
p

||hn − I||p,[0,1]

+
1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1] +
1

21+ 1
p

||hn − I||p,[0,1])p

So,

||hn − I||p,[0,1] ≤
1
2
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] +

1
2
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1] (2.15)

+
1

2
1
p

||hn − I||p,[0,1]

which implies

||hn − I||p,[0,1] ≤
1

2(1 − 1

2
1
p
)
||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] (2.16)

+
1

2(1 − 1

2
1
p
)
||hn ◦ Tn − hn ◦ S ||p,[ 1

2 ,1]
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By the continuity in Lp[2], since

||Tn − S ||p,[0, 12 ] → 0, ||Tn − S ||p,[ 1
2 ,1] → 0 (Vn → 1)

we have

||hn ◦ Tn − hn ◦ S ||p,[0, 12 ] → 0, ||hn ◦ Tn − hn ◦ S ||p,[ 1
2 ,1] → 0

Thus

||hn − I||p,[0,1] → 0 as Vn → 1, 1 ≤ p < ∞.

�
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(b) Convergence Analysis with 2-
norm

Figure 2.2: Defect analysis As vn → 1, the difference between hn and I under the norm
|| · ||p,[0,1] is going to 0 strictly monotone.

The above theorem says that as vn → 1, ||hn − I||p,[0,1] → 0. In fact, the convergence

under this norm is strictly monotone. Before proving this claim, we first look at some

numerical evident from Figure 2.2.
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As we increasing the values of vn, we construct the commuter between the symmetric

tent map with peak vn and the full symmetric tent map, then we calculate the difference be-

tween the commuters and the identity function under 1-norm and 2-norm. We can observe

from Figure 2 that the values ||hn − I||1,[0,1] and ||hn − I||2,[0,1] are decreasing monotone as vn

is increasing.

Please be notice here that, we calculate the “homeomorphic defect” by the difference

from the commuter to the identity function in a Lp([0, 1]. In the very first derivation [2],

we define the homeomorphic defect particularly. But the computation is too complicated,

and it is different from cases to cases. Thus in the above example, we applied a “surrogate

defect measure” to capture the onto-defect, which turns out to be the only homeomorphic

defect. In the following discussion, including an application about finding the “best model”

for a specific time series data in later section, we still use this surrogate defect measure as

the homeomorphic defect, where there only appears onto-defect.

Let’s review a little bit about the construction of the commuter functions, which will

provide implications for proving the monotone convergence of commuters.
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Figure 2.3: Construction Procedure Of Commuter Function

Generally, suppose we have the commuter function h(x) at the nth step of iteration

schema. At the next step, we make a copy of h(x), shrunk it by 1/2 in the vertical and by

2v in the horizontal (Figure 2.3(b)). Take a second copy, scaled the same horizontally, and

vertically scaled by 1/2. Rotate this copy by 180 degrees and place it in the upper right

portion of the unit square (Figure 2.3(c)). Then truncate the left copy to the interval [0, 1/2)

and the right copy to [1/2, 1]. The result (Figure 2.3(d)) return the commuter function h(x)
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at step n + 1th
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Figure 2.4: Analysis for the commuter function: (Green) The identity function. (Red)
The commuter between the full tent map and the tent map with peak at ( 1

2 , 0.9). (Blue) The
commuter between the full tent map and the tent map with peak at ( 1

2 , 0.8). Notice that on
[0, 0.5], every point of the red one is greater than the green one. While on [0.5, 1], every
point of the red one is less than the green one.

In Figure 2.4, the red curve is the commuter with the peak higher than the blue ones.

And the green line is the identity function. We can see that on [0, 0.5], every point of

the red one is greater than the green one. While on [0.5, 1], every point of the red one is

less than the green one. This makes the difference between the identity function and the

’red’ commuter, i.e.|I − hred|, is less than that between the identity function and the ’green’

commuter i.e.|I − hblue|, which also implies ||hred − I||p,[0,1] < ||hblue − I||p,[0,1], 1 ≤ p < ∞.

More precisely, we prove the monotone convergence of commuters as follows:

Theorem 2.3.2. If vn is a sequence going to 1, then the commuter from the symmetric tent

map Tn with peak vn to the full symmetric tent map S , is monotone convergent to the identity

function I(x) under the norm || · ||p,[0,1]

Proof. Without loss of generality, we let vred be the peak of the higher symmetric tent map,

while vblue be peak of the lower symmetric tent map. We are going to show that on the

interval [0, 1/2], every point of the commuter from the red symmetric tent map to the full
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tent map is greater than the blue one. on the interval [1/2, 1], every point of the commuter

from the blue symmetric tent map to the full tent map is greater than the red one. Here we

just give the prove for the 1-norm. For arbitrary p-norm, it is also true by the fact of the

embedding theorem.

We prove it by induction.
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(b) nth iteration

Figure 2.5: Commuter Functions with Different Peak Values

For the first iteration, we start with the identity function, see the Green line in Figure

2.5(a). Then we make a copy of h(x), shrunk it by 1/2 in the vertical and by 1
2vred
, 1

2vblue

respectively in the horizontal. Take a second copy, scaled the same horizontally, and verti-

cally scaled by 1/2. Rotate this copy by 180 degrees and place it in the upper right portion

of the unit square. Then truncate the left copy to the interval [0, 1/2) and the right copy to

[1/2, 1]. The result return the commuter function hred(x) and hblue(x) after the first iteration.

We can see that the every red point in the interval [0, 0.5] is greater than the blue one.

Every blue point in the interval [0.5, 1] is greater than the red one. That is true because the

red one shrunk by 1
2vred

, which is more than what the blue one shrunk. See Figure 2.5(a).

Now we suppose what we need to prove is true in the nth iteration. That is, every

red point in the interval [0, 0.5] is greater than the blue one. Every blue point in the interval

[0.5, 1] is greater than the red one. At the next step, we still construct the commuter just like

the procedure in the first iteration above. Without loss of generality and for simplification,

we assume that the commuters look like Figure 2.5(b). In fact this picture is the commuter
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after three iterations. In order that at the n+ 1th iteration, every red point is greater than the

blue one in the interval [0, 0.5], we just need to figure out in the most upper right segment,

whether the red points shrunk more enough than the blue ones, so that every red point in

this segment runs above the blue one. If so, then every point of the whole red commuter will

runs above the blue commuter, which is exactly what we want to happen. This can be tell

easier if see Figure 2.5(b). Since the blue line segment moves 1/2(1/vblue) horizontally, the

red line segment moves 1/2(1/vred) horizontally, the blue one moves 1/2(1/vblue − 1/vred)

with respect to the red one. For n sufficiently large, the commuter is going to converge to

the final commuter function, the slopes of the blue line segment and the red line segment

are going to be 0. At the same time the length of them are going to be 0. So the left end

points of the red and blue line segments will be closer and closer as n → ∞, until their

distance reaches 0, which is absolutely less than 1/2(1/vblue − 1/vred). Thus the conclusion

is true in [0, 0.5]. For [0.5, 1], the argument is similar because of symmetry.

As a result, at the n+1th iteration, the conclusion is also true. This finishes the proof. �

The above statement can be generalized for commuters between arbitrary tent maps,

but we may lose monotony of convergence. For example, if we have skew maps with peaks

(an, bn) and (a, 1) respectively, see Figure 2.6, and let hn be the commuter, as the sequence

{(an, bn)} goes to (a, 1), it can be also showed that ||han,bn − I||p,[0,1] → 0. More precisely, we

have the following theorem:

Theorem 2.3.3. If (an, bn) → (a, 1), then the commuter from the skew tent map Tn with

peak (an, bn) to the skew tent map T with peak (a, 1), say hn, is convergent to the identity

function I(x) under the norm || · ||p,[0,1], 1 ≤ p < ∞

Proof. From the commutative diagram in section 2, we can have the commuter function

between Tn and T satisfies the following equations

31



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a
n
,b

n
)

(a,1)

Figure 2.6: Convergence Analysis for Skew Tent Maps

hn(x) =


ahn(

bn

an
x), 0 ≤ x ≤ a,

1 − (1 − a)hn(
bn

an
(1 − x)), a < x ≤ 1.

Also notice that hn maps monotone segments of the graph of Tan,bn onto monotone

segments of T . i.e. hn maps segment on the interval [0, an] of Tan,bn onto the segment on

the interval [0, a] of T . Also notice that the inverse function of T exists on each of these

intervals.

First consider 0 ≤ x ≤ a,

||hn − I||p,[0,a] = ||T−1 ◦ hn ◦ Tan,bn − T−1 ◦ I ◦ T ||p,[0,a]

≤ L||hn ◦ Tan,bn − I ◦ T ||p,[0,a]

Here, we are dealing with the system T (x) = 1/ax. Thus it is easy to see that the lipshitz

for T−1(x) is a.
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Thus,

||hn − I||p,[0,a] ≤ a||hn ◦ Tan,bn − I ◦ T ||p,[0,a]

≤ a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a||hn ◦ T − I ◦ T ||p,[0,a]

= a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a(
∫ a

0
|hn(

1
a

x) − 1
a

x|pdx)
1
p

Let 1
a x = u, we can substitute x = au on the above equation because of its absolute

continuity [2].

So,

||hn − I||p,[0,a] ≤ a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a(
∫ a

0
|hn(

1
a

x) − 1
a

x|pdx)
1
p

= a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a(
∫ 1

0
|hn(u) − u|pdau)

1
p

= a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a1+ 1
p ||hn − I||p,[0,1]

(2.18)

On the other hand, for a ≤ x ≤ 1, we are dealing with the system T (x) = 1/(1−a)(1−x).

Thus it is easy to see that the lipshitz for T−1(x) is (1 − a).

||hn − I||p,[a,1] ≤ L||hn ◦ Tan,bn − I ◦ T ||p,[a,1]

≤ L||hn ◦ Tan,bn − hn ◦ T ||p,[a,1] + L||hn ◦ T − I ◦ T ||p,[a,1]

= (1 − a)||hn ◦ Tan,bn − hn ◦ T ||p,[a,1]

+ (1 − a)(
∫ 1

a
|hn(

1
1 − a

(1 − x)) − 1
1 − a

(1 − x)|pdx)
1
p

Again, let 1
1−a (1 − x) = u, we can substitute x = 1 − (1 − a)u on the above equation

because of its absolute continuity [2].
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So,

||hn − I||p,[a,1] ≤ (1 − a)||hn ◦ Tan,bn − hn ◦ T ||p,[a,1]

+ (1 − a)(
∫ 1

a
|hn(

1
1 − a

(1 − x)) − 1
1 − a

(1 − x)|pdx)
1
p

= (1 − a)||hn ◦ Tan,bn − hn ◦ T ||p,[a,1]

+ (1 − a)(
∫ 0

1
|hn(u) − u|pd(1 − (1 − a)u))

1
p

= (1 − a)||hn ◦ Tan,bn − hn ◦ T ||p,[a,1]

+ (1 − a)(
∫ 1

0
|hn(u) − u|p(1 − a)du)

1
p

= (1 − a)||hn ◦ Tan,bn − hn ◦ T ||p,[a,1]

+ (1 − a)1+ 1
p ||hn − I||p,[0,1]

(2.19)

Since 1 ≤ p < ∞, by raising p power on (16)+(17), we can get

||hn − I||pp,[0,a] + ||hn − I||pp,[a,1] ≤ (||hn − I||p,[0,a] + ||hn − I||p,[a,1])p

≤ (a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a1+ 1
p ||hn − I||p,[0,1]

+ (1 − a)||hn ◦ Tan,bn − hn ◦ S ||p,[a,1]

+ (1 − a)1+ 1
p ||hn − I||p,[0,1])p

So,

||hn − I||p,[0,1] ≤ a||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] + a1+ 1
p ||hn − I||p,[0,1]

+ (1 − a)||hn ◦ Tan,bn − hn ◦ S ||p,[a,1] (2.20)

+ (1 − a)1+ 1
p ||hn − I||p,[0,1]

As we assume that max{a, 1 − a} < 1, so a < 1 and (1 − a) < 1. We also notice that

a1+ 1
p < a and (1 − a)1+ 1

p < (1 − a). So here we have a1+ 1
p + (1 − a)1+ 1

p < a + (1 − a) < 1.
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Rearrange the above equation, we get

||hn − I||p,[0,1] ≤
a

(1 − a1+ 1
p − (1 − a)1+ 1

p )
||hn ◦ Tan,bn − hn ◦ T ||p,[0,a]

+
1 − a

(1 − a1+ 1
p − (1 − a)1+ 1

p )
||hn ◦ Tan,bn − hn ◦ T ||p,[a,1]

By the continuity in Lp[2], since

||Tan,bn − S ||p,[0,a] → 0, ||Tan,bn − S ||p,[a,1] → 0 ((an, bn)→ (a, 1))

we have

||hn ◦ Tan,bn − hn ◦ T ||p,[0,a] → 0, ||hn ◦ Tan,bn − hn ◦ T ||p,[a,1] → 0

Thus

||hn − I||p,[0,1] → 0 as (an, bn)→ (a, 1), 1 ≤ p < ∞.

�

We note that the above analytic results also applied to general unimodal systems besides

tent maps. Later in this chapter, we give an example about modeling a time series data,

generated from a short logistic map, by minimizing the defect.
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2.4 The Measurability of Commuter Functions

The goal of this section is to prove the measurability of the commuter functions, and thus

we can measure the homeomorphic defect. We apply most of the lemmas and theorems

from classical real analysis, which can be found from [4].

Theorem 2.4.1. For the commuter functions sequence { fn} generated from the iterative

schema, if f1, the initial guess commuter, is measurable, i.e. the identity function, the

sequence fn is measurable.

Remark 2.4.2. f is measurable means {x ∈ E : f (x) > a} is measurable for every finite

a, E is measurable. Since fn+1[IXi] = g−1
2i ◦ fn ◦ g1[IXi], g−1

2i is continuous on Y. fn : X → Y.

Suppose the range of g1[IXi] is a measurable set.

Lemma 2.4.3. If φ is continuous, f is finite a.e. and measurable on E, then φ ◦ f is

measurable.

Remark 2.4.4. Notice that the product of two measurable functions may not be measurable.

That’s the reason that I force the assumption of the measurability of the range of g1[IXi].

(More details are in “Proof of Theorem 2.4.1”) In fact, this assumption would not be too

strong since the dynamical systems g1, g2 in our project are “regular” in some sense.

Proof of Theorem 2.4.1. From the relation that

f2[IXi] = g−1
2i ◦ f1 ◦ g1[IXi], g−1

2i

Since f1 is measurable on the range of g1[IXi] as we suppose, i.e. most of the time we

will start with f1 = I, identity function.

So f2 is measurable, so is f3... fn, by Theorem 2.4.1. �

Lemma 2.4.5. If { fn}is a sequence of measurable functions, then supk fk(x) and infk fk(x)

are measurable. Here {x : supk fk(x) > a} = ∪k{x : fk(x) > a}
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Proof. [3] Since infk fk = − supk(− fk), it is enough to prove the result for supk fk. This

follow from the fact that {supk fk > a} = ∪k{ fk > a}. �

Theorem 2.4.6. From Theorem 2.4.1, fn converges to f . We claim that f is also measur-

able, and hence f is in Lp because we assume the commuter function f is bounded.

Proof. Since

limk→∞ sup fk = inf j{supk≥ j fk}

limk→∞ inf fk = sup j{infk≥ j fk}

and limk→∞ fk exists, so it equals to limk→∞ sup fk and limk→∞ inf fk, hence f is measur-

able. �

2.5 Homeomorphic Defect

In this section, we briefly review the definition and computation of homeomorphic defect

in paper [2], with a slight modification.

Suppose we have two dynamical systems, g1 : X → X and g2 : Y → Y , and suppose we

have the commuter f such that f ◦ g1 = g2 ◦ f , we denote

λO( f ) = {amount that f is not onto},

λ1−1( f ) = {amount that f is not 1 − 1},

λC( f ) = {amount that f is not continuous},

λC−1 = {amount that f −1 is not continous},

where we note that f −1 may not be well defined. Then we define the homeomorphic

defect of f , denoted λ( f ), as a convex combination

λ( f ) = α1λO( f ) + α2λ1−1( f ) + α3λC( f ) + α4λC−1( f ), (2.21)

where 0 ≤ α ≤ 1, and
∑
αi = 1.
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Theoretically, λ( f ) ≥ 0, with equality when f is a homeomorphism. We note that the

converse argument does not hold since the definitions are measure based, but the goal here

is to maintain the flexibility of the definitions to allow broader applicability.

Detail definitions and interpretations of each defect can be found in paper [2]. In the

following, I provide my computation method for each of the defects for unimodal systems,

which differs a little bit from the one in paper [2], but with an easier implementation and a

more convenient algorithm.

For the onto defect, a typical feature in the commuter is the appearance of vertical gaps.

I simply measure the onto defect λO( f ) by measuring such gaps, which is given by

λO( f ) =
∫

x
| f (x + δx) − f (x)|dx, (2.22)

We note that in the numerical implementation, this computation will over estimate the

onto defect, since even for a homeomorphism it will have a non-zero onto defect. But the

goal of measuring the defect is to find the best model among a family of candidates (typ-

ically with the same formation) by minimizing the defect. So computationally, we prefer

to use this surrogate defect measure to do approximation, but at the same time retain the

regularity properties of commuters. Since the commuter has the fractal structure, most of

the time we choose to only take the largest vertical gap as a surrogate onto defect measure.

For the 1-1 defect, we try to find the measure of x ∈ X such that f (x) = f (x′) but x , x′.

Thus we calculate the 1-1 defect as

λ1−1( f ) =
sizeo f (x : f (x) is not unique)

sizeo f (x)
, (2.23)

We note that we use the unique function in matlab to help implement this estimation.

For the continuous defect, we measure it by:

λC( f ) =
sizeo f (x : | f (x) − f (x + δx)| > ϵ)

sizeo f (x)
(2.24)

38



with ϵ pre-determined as a small value.

While calculating the inverse continuous defect, we simply rotate the function f , then

compute the continuous defect.

And finally, we should consider the scaling of each defect, where we can adjust it by

setting each weight αi.

We remark that in the previous section, we show the “monotone property” for the onto

defect. Similar conclusions should be given for the other types of defects, which we reserve

as future works. But we point out that λ( f ), a convex combination of convex functions, may

not be convex. So the optimization process may result in non-unique local minimizers,

which requires the modeler to judge which one is more likely to work.

2.6 Modeling Time Series Data by Minimizing Defects

Now that we have established sufficient analysis for commuters, the next goal is to apply it

to modeling problems. In particular, given a time series data generated by a deterministic

system, how can we give the “best model” in the sense of mostly conjugacy.

First, we choose the family of candidate models with a parameter that we want to esti-

mate, where the commuter between the data and the best model has the least defect among

the family. In the implementation, we can write down the general algorithm as follows:

(1) Choose the family of candidate models {g2b}, with parameter b;

(2) Compute the commuters fb from the data to each model g2b, and the corresponding

defect λ( fb);

(3) Choose the best model g2b′ such that b′ minimizes λ( fb).

Note we achieve steps (2) and (3) by the bisection method.

Figure 2.7(a) shows the first 50th data points out of 2000 from a time series data gen-

erated by a short logistic map g1(x) = rx(1 − x), where r = 3.87, and the initial value is

randomly picked. So given this time series data only, our goal is to determine the parameter
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in the candidate models by mostly conjugacy. For the entire data set, which is of length

2000, we plot the time delay embedding xn versus xn+1 in Figure 2.7(b). We note Figure

2.7(b) is the invariant set of the logistic system g1.
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Figure 2.7: Model Optimization

We choose our candidate models {g2b} to be defined as follows:

yn+1 = g2b(yn) =


b − yle f t

a − xle f t
(y − a) + b, yn ≤ 1/2,

b − yright

a − xright
(y − a) + b, yn > 1/2.

which is the invariant set of the symmetric tent map with height b, the left fulcrum at

(xle f t, yle f t), and the right fulcrum at (xright, yright) (see Figure 2.8 red tent map). We note

that yright = g2b(b) and yle f t = g2
2b(b). So essentially the candidate model needs only 1

parameter b to build up. Now let’s look at the model g2b with b = 0.9 in Figure 2.9(a),

where the commuter is presented in Figure 2.9(b). We can see the commuter exhibits the

onto defect with vertical gaps observed. This tells that our model at this height is over

estimate since the onto defect means there are some dynamics from the model that can not

be represented by the data. On the other hand, if we take the model g2b with b = 0.8 in

Figure 2.9(c), where the commuter is presented in Figure 2.9(d). We can see the commuter

exhibits the 1-1 defect with flat spot observed. This tells that our model at this height

is under estimate since the 1-1 defect means there are some dynamics from the data that
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can not be represented by the model. We write down our defect function in the following

equation (2.26), where we put 0 weight on the continuous defect and inverse continuous

defect. This particular choice of the weights relies on the fact that the continuous defect

overlaps the onto defect; while the inverse continuous defect overlaps the 1-1 defect. But

we point out that in principle, modelers have their own weights on each of the defect terms

in order to achieve their specific modeling purpose.

λ(b) = 0.5λ1−1(b) + 0.5λonto + 0λC + 0λC−1 . (2.26)

So the next step is to try to find the best model by minimizing the defect across {g2b}

where b ∈ [0.7, 1]. And here, we define the surrogate onto defect measure λonto(b) to be the

largest vertical gaps in each commuter; and the surrogate 1-1 defect measure λ1−1(b) to be

the largest flat spot in each commuter.
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Figure 2.8: Candidate Model

By implementing our algorithm, we obtain the function λ(b) in Figure 2.10(a), where

we can achieve the minimum of λ(b) at b′ = 0.8242424. We plot the corresponding model

g2b′ in Figure 2.10(b) with red coloring. We can see that the best tent map is significantly

shorter than the data (the logistic map). This makes sense since the tent map would exhibit

more dynamics than the logistic map with the same height, unless they all reach height 1.

In Figure 2.10(c), we also provide the commuter between the data and our best model, from
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Figure 2.9: Different Models

which we rarely observe 1-1 defect or onto defect since, in theory, since these two systems

are conjugate.

Now, how is our best model doing? One of the major goals of modeling is prediction,

where accuracy is quantified by the “matching” between the time series data and the ones

from model, which we plot it in Figure 2.11 for our example. As we discussed in the intro-

duction, mostly conjugacy, as with regression analysis, seeks to match systems behaviors

as much as possible. From Figure 2.11, the data emitted from the best model matches the

data qualitative behaviors. In principle, they should have a perfect match for any length, but

there might be inaccuracy which comes from computational aspects, which we will discuss

in the next section. Nevertheless, we should presume that in most of the cases when we

do modeling, we have no knowledge of what kinds of candidate models we should choose.

And thus, we shouldn’t expect that the best model is conjugate to the data with a 0 defect

measure. In other words, it is only the best among the candidates, the one which captures
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the most dynamics of the data.
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Figure 2.11: Comparison between data and data from the best model

At last we also want to note that, although the optimization process is straight forwards

with the mostly conjugacy setting, the implementation can be very difficult for general

systems especially non-unimodal systems. The main problem is, the defect of commuters

may not be a piecewise monotone function with respect to the parameter. This due to the

fact that we may have various types of defects at the same time, i.e. 1-to-1, onto, continuous

and inverse continuous, which may not result in any convexity of λ(b).

2.7 An Improvement On Piecewise Interpolation

As we mentioned in the previous section, we may have some computation aspects which

affects the accuracy of the “best” model. Besides computational precision, the main sources

of error come from the construction of commuters, which we always use piecewise step

functions to interpolate and approximate. In particular, we compute the actual commuter

function f by f̂ , which is a piecewise interpolation function of the smoothed function of f ,

as showed in the following diagram:

f
Blur−−−→ fϵ

PiecewiseInterpolating−−−−−−−−−−−−−−−→ f̂
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Where f is the original commuter, in Lp space, 1 ≤ p < ∞. While fϵ = f ∗ Kϵ =∫
f (x − t)Kϵ(t)dt and f̂ is the piecewise interpolation to fϵ .

Remark 2.7.1. Define Kϵ(x) = ϵ−nK( x
ϵ
) = ϵ−nK( x1

ϵ
, x2
ϵ
, ..., xn

ϵ
) with K ∈ L1(Rn), ϵ > 0, then

it follows,

(i)
∫

Rn
Kϵ =

∫
Rn

K = 1;

(ii)
∫
|x|>δ
|Kϵ | → 0 as ϵ → 0, f or any f ixed δ > 0

For example, if K(x) = χ{|x|<1}(x), then Kϵ(x) = ϵ−nχ{|x|<ϵ}(x). In the following, we pro-

vide a error analysis on such approximation, and of course, to show that the approximated

commuter can approach the actual one once we increase computational resolution.

Theorem 2.7.2. If f ∈ Lp(Rn), 1 ≤ p < ∞, then ∀η > 0, ∃δ > 0, s.t.

|| f − f̂ ||p ≤ || f − fϵ ||p + || fϵ − f̂ ||p

≤ ||K||
p
p′

1 · [η||K||1 + (2|| f ||p)p
∫
|t|≥δ
|Kϵ(t)|dt] +

L1L2C1|| f (n+1)
ϵ ||p

(n + 1)!
hn+1

(2.27)

Where h is the mesh size for xn, L1, L2 is the Lipchiz constant, C1 is a constant, n is the

degree of interpolation degree, p and p′ are conjugate components.

Proof. For the first term,

|| f̂ − fϵ ||p ≤ L1 · || f̂ ◦ g1(x) − fϵ ◦ g1(x)||p

≤
L1C1|| f (n+1)

ϵ ||p
(n + 1)!

max{g1(xi) − g1(xi−1), i = 1, 2...N}n+1

≤
L1L2C1|| f (n+1)

ϵ ||p
(n + 1)!

hn+1
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Notice that in the second inequality, we just apply the basic error estimate for piecewise

interpolation. This can be found in many books about Numerical Analysis [3].

This finishes the first term. For the second term, we apply the analysis in book [4],

f̂ (x) = f̂ (x)
∫

Rn
Kϵ(t)dt =

∫
Rn

f̂ (x)Kϵ(t)dt

So

| f̂ (x) − fϵ | = |
∫

Rn
[ f̂ (x − t) − f̂ (x)]Kϵ(t)dt

≤
∫

Rn
| f̂ (x − t) − f̂ (x)| · |Kϵ(t)|

1
p · |Kϵ(t)|

1
p′ dt

(2.28)

In 2.28, we apply Holder’s Theorem for the term
∫

Rn Kϵ(t)dt with conjugate components

p and p′. Now we raise 2.28 to pth power and integrate with respect to x, we get

∫
Rn
| f̂ (x) − fϵ(x)|pdt ≤ ||K||

p
p′

1 [
∫

Rn

∫
Rn
| f̂ (x − t) − f̂ (x)|p|Kϵ(t)|dt]dx

= ||K||
p
p′

1 ·
∫

Rn
|Kϵ(t) · [

∫
Rn
| f̂ (x − t) − f̂ (x)|p|dx]dt

(2.29)

So

|| fϵ − f̂ (x)||pp ≤ ||K||
p
p′

1 ·
∫

Rn
|Kϵ(t) · || f̂ (x − t) − f̂ (x)||ppdt (2.30)

Notice that in 2.30, we can change the order of integration because the function ( f (x −

t) − f (x))p(Kϵ(t)) is in Lp(Rn × Rn). And this comes from the fact that both f (x) and Kϵ(t)

are in Lp(Rn × Rn).

For δ > 0, write

∫
Rn
|Kϵ(t)| · || f̂ (x − t) − f̂ (x)||ppdt =

∫
|t|<δ
+

∫
|t|≥δ

= Aϵ,δ + Bϵ,δ
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Continuity of Lp space says: If f ∈ Lp, 1 ≤ p < ∞, then

lim|h|→0 || f (x + h) − f (x)||p = 0

So ∀η > 0, ∃δ > 0, s.t. i f |t| < δ, || f (x + h) − f (x)||pp < η.

Then

Aϵ,δ ≤ η
∫
|t|<δ
|Kϵ(t)|dt ≤ η · ||K||1 f or all ϵ (2.31)

Moreover, || f̂ (x − t) − f̂ (x)||pp is a bounded function. By Minkowski’s Inequality,

|| f̂ (x − t) − f̂ (x)||pp ≤ (|| f̂ (x − t)||p + || f̂ (x)||p)p

= (2|| f̂ (x)||p)p
(2.32)

So,

Bϵ,δ ≤ (2|| f̂ (x)||p)p ·
∫
|t|≥δ
|Kϵ(t)|dt → 0 as ϵ → 0 f or some f ixed δ > 0. (2.33)

From 2.32 and 2.33,

|| fϵ − f̂ ||p ≤ ||K||
p
p′

1 · [η||K||1 + (2|| f ||p)p
∫
|t|≥δ |Kϵ(t)|dt]

This finishes the second term. �

2.8 Discussion

In summary, we develop a contraction mapping from the commutative relation between

dynamical systems in Lp spaces. We derive regularity work for the commuter function in Lp

spaces. Then we apply mostly conjugacy to do a modeling problem, where we provide the

best model to a given time series data by minimizing the commuter defect. In addition, we

give an error analysis on our computation of commuters, which allows us to approximate

singular functions with smooth functions of arbitrary degree of differentiability.

47



In the next chapter, we will study the case where the underlying dynamical systems

are stochastic. We would similarly develop a so-call “random commuter” to describe the

random change of coordinates between two stochastic systems. Regularity property would

also be studied.
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Chapter 3

Randomly and Mostly Conjugacy:

Comparison on Stochastically Perturbed

Dynamical Systems

A central issue in the applied sciences is that of reduced modelling. It is often difficult if

not impossible to differentiate a seemingly good model from an actually good one. The

questions a modeler has to keep in mind are manyfold. What are the salient features of the

physical process that should be captured by the model? What dynamical properties of the

underlying process should be mimicked? What can perhaps be discarded? In the dynamical

systems literature two systems are considered the same if there exists a conjugacy between

them. This is essentially a homeomorphic change of coordinates that allows us to change

freely between the two systems. However, for most real world applications this is seldom

observed. No pragmatic model captures all the features of the process it is representative of.

Thus a physical process and a “representative” model for it, are never quite conjugate. Once

you accept that this discrepancy will almost always occur in most real world modelling

applications, it becomes imperative to investigate the issues therein. This endevour seems

to be important not only from a dynamical systems point of view, but from the more general
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standpoint of modelling in science.

The work of Bollt and Skufca, [2], has investigated some of these issue in great detail.

They develop a systematic methodology to compare systems which are not quite conju-

gate, thus coining the phrase “almost conjugacy”. They lay down rigorously the notion

of the commuter function, in such a setting. The commuter now departs from having the

standard properties of a homeomorphism. Bollt and Skufca thus associate to this object a

defect measure associated with how much it fails to be a homeomorphism. They prove the

convergence of this object and derive a robust algorithm for its numerical computation. In

[5] they give a symbolic dynamic interpretation to the commuter. This extends results form

[2], confined mostly to one dimensional maps, to a higher dimensional setting. In my work

et al., [6], rigorously justifies these computations by proving various regularity results con-

cerning the commuter functions considered therein. I also makes various error estimates

concerning the computation of the commuter function via the algorithm presented in [6].

A central theme of the above mentioned works is that they have all focused on a de-

terministic setting. In the current manuscript we will study the conjugacy between two

dynamical systems, when one of these is perturbed via a stochastic term. Our hope is to lay

down a rigorous first step in the direction of “mostly conjugacy” to stochastically perturbed

dynamical systems. We endevour to thus extend the works of Bollt and Skufca in a random

setting. Thus the foremost goal of this manuscript is to address the question, “How do

you compare noisy systems, in the sense of conjugacy?”. We hope to provide a reasonable

answer to this question, detailing the nuances involved in the process, and discussing how

we overcome them.

The outline of this chapter is as follows. In section 2 we outline certain heuristics

as concerns the derivation of the Frobenius-Perron operator in some simple cases. This

hopefully will provide the reader with sufficient intuition to grasp the analysis that follows.

We also work out explicitly the evolution of densities via two dynamical systems (without

any external noise) which are known to be conjugate. Here the exact form of the commuter
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is known. We also present a definition of the random commuter. In section 3 we extend

this analysis to cases where there is external noise. We deal with the case of uniform noise

and normal noise and present our convergence results therein. In section 4 we present an

alternate view of the commuter function. We present results when the commuter is viewed

as a random operator. In section 5 we present some concluding remarks. We also provide

appendicies where some detailed calculations are made to support some of the hypothesis

made in the text.

3.1 Introduction

Consider the following dynamical system

xn+1 = S (xn) (3.1)

We can ask the question as to how densities of initial conditions evolve under this

system as opposed to a particular initial condition. There is a standard methodology to this

end. Note, no external noise is needed for this procedure. We can view the “randomness”

as coming from the initial data. That is the initial data is unknown exactly apriori, we only

know its distribution. We present certain heuristic ideas to lay down the frame work for the

forthcoming analysis. For details the reader is referred to [7].

Given our dynamical system f and N initial conditions x0
1, x

0
2, ..., x

0
N , we apply S on

them to obtain N new states

x1
1 = S (x0

1), x1
2 = S (x0

2), ..., x1
N = S (x0

N) (3.2)

Given the N initial conditions, x0
1, x

0
2, ..., x

0
N . We can perform an experiment in which

we throw these onto the interval [0,1]. We could then count what fraction of these landed in

say some predecided (not too small) interval ∆ ⊂ [0, 1]. This probability/quantity is easily
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represented by the following sum

1
N

N∑
j=1

1∆(x0
j) (3.3)

Suppose now that we have a density function f0(x) for these initial states. This function

governs the probabilities/likelyhood of these states falling inside ∆. Heuristically it must

be true that

∫
∆

f0(u)du =
1
N

N∑
j=1

1∆(x0
j) (3.4)

proceeding exactly as before we can say map these initial states via f onto the interval.

The density function f1(x) for the states x1
1, x

1
2, ..., x

1
N should then satisfy

∫
∆

f1(u)du =
1
N

N∑
j=1

1∆(x1
j) (3.5)

Our aim is to derive a relation between f0 and f1. To this end we define the pre-image

of the interval δ

S −1(∆) = {x : S (x) ∈ ∆} (3.6)

Of course x1
j ∈ ∆ if and only if x0

j ∈ S −1(∆). With this in mind we can explicitly write

down a relation between f0 and f1.

∫
∆

f1(u)du =
∫

S −1(∆)
f0(u)du (3.7)

We can choose ∆ = [0, x] to yield

∫ x

a
f1(u)du =

∫
S −1([0,x])

f0(u)du (3.8)

We can differentiate the above with respect to x as a parameter in the limits of integra-
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tion to obtain

f1(x) =
d
dx

∫
S −1([0,x])

f0(u)du (3.9)

We drop the subscripts in the above and define the Frobenius-Perron operator P cor-

responding to the map S as

P f (x) =
d
dx

∫
S −1([0,x])

f (u)du (3.10)

This operator now gives us a rule to evolve densities. Although derived heuristically

here, we will make extensive use of this operator in the forthcoming analysis. Equation

(3.67) can be applied to the tent and logistic maps to see what the form of the Frobenius-

Perron operator in this case is. Consider the full tent map

g(x) = 2x, 0 ≤ x ≤ 1
2

(3.11)

g(x) = 2(1 − x),
1
2
≤ x ≤ 1 (3.12)

Now we can invert g piecewise to obtain

g−1([0, x]) = [0,
x
2

] ∪ [1 − x
2
, 1] (3.13)

so using (3.67) we have
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Pg(x)

=
d
dx

∫
S −1([0,x])

g(u)du

=
d
dx

∫ x
2

0
g(u)du +

∫ 1

1− x
2

g(u)du


=
1
2

g(
x
2

) +
1
2

g(1 − x
2

) (3.14)

Now we use an iterative trick and assume f (u) = 1. Usually plugging this form into the

above would give and expression for P(Pg), and we’d proceed iteratively. Here however

we have

Pg(x) =
1
2

(1) +
1
2

(1) = 1 (3.15)

If we plug this in again for g we get

P(Pg(x)) =
1
2

(1) +
1
2

(1) = 1 (3.16)

Thus we obtain

Pg(x) =
1
2

g(
x
2

) +
1
2

g(1 − x
2

) (3.17)

We can apply a similar analysis to the logistic map

g(x) = 4x(1 − x), 0 ≤ x ≤ 1, (3.18)

to yield the Perron-Frobenius operator in this case.

Pg(x) =
1
2

f (
1
2
− 1

2

√
1 − x) +

1
2

f (
1
2
+

1
2

√
1 − x) (3.19)
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We will use equations (3.17) and (3.19) extensively.

3.1.1 Preliminaries

Consider the following dynamical systems

g1(x) : X → X (3.20)

g2(y) : Y → Y (3.21)

Recall that the dynamical systems are called conjugate if there exists a homeomorphism

f : X → Y (3.22)

Such that the following diagram commutes

X
g1→ X

↓ f ↓ f

Y
g2→ Y

This in particular implies that the following equation holds pointwise

f (g1(x)) = g2( f (x)). (3.23)

Our aim in the current manuscript is to adopt the above methodology to the case where

one of the dynamical systems is forced by noise. It is of interest to see how the above plays

out when we wish to evolve densities. This will lead naturally to our definition of a random
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commuter which is the next order of business. We assume now that instead of X our phase

space is given by

L1(X) (3.24)

where X = [0, 1]. Formally we will confine our attention to

D =
{
ρ ∈ L1(X) :

∫
X
|ρ(x)|dx = 1, ρ ≥ 0

}
(3.25)

D is a space consisting of densities on X. Furthermore instead of Y our phase space will be

given by

L1(Y) (3.26)

where Y = [0, 1]. Again we are essentially looking at

D
′
=

{
ρ ∈ L1(Y) :

∫
Y
|ρ(y)|dy = 1, ρ ≥ 0

}
(3.27)

Now instead of points x ∈ X moving under the action of the dynamics of g1 and points

y ∈ Y moving under the action of the dynamics of g2, we have densities ρ(x) ∈ D, and

ρ(y) ∈ D
′

that are evolved under the action of transfer operators. These operators are given

formally by the Frobenius-Perron operators

Pg1ρ(x) : L1(X ×Ω)→ L1(X) (3.28)

Pg2ρ(y) : L1(Y)→ L1(Y) (3.29)

With this in mind we can make the following definition.
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Definition 3.1.1. Consider the following dynamical systems

g1(xn) = S 1(xn) (3.30)

g2(xn) = S 2(xn) + ξn (3.31)

Where ξn is a stochastic forcing term. Furthermore assume the Frobenius-Perron operators

for the systems are given by

Pg1ρ(x) : L1(X ×Ω)→ L1(X) (3.32)

Pg2ρ(y) : L1(Y)→ L1(Y) (3.33)

The commuter function between the two dynamical systems is a density point-wise, in

the sense that the following holds

f (Pg1ρ(x)) = Pg2 f (ρ(x)) (3.34)

This can be viewed as the following diagram commuting

L1(X ×Ω)
Pg1→ L1(X)

↓ f ↓↓ f

L1(Y)
Pg2→ L1(Y)

The two arrows on the right are a representation for any number of arrows each for a

particular realisation of the noise. So in essence, for any particular realisation of the noise

ω, the Frobenius-Perron operator Pg1 acts on a density ρ(x, .) ∈ L1(X×Ω) to produce a new

density Pg1(ρ(x, .)) ∈ L1(X). This density is carried by the commuter f to a new density

f (Pg1(ρ(x, .))) ∈ LY .
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Along the other leg the commuter f acts on the density ρ(x, ω) and carries it to L1(Y).

Here it is picked up by the Frobenius-Perron operator Pg2 and carried to L1(y). The action

of the commuter f can be viewed as a change of coordinates, following the standard theory

of change of variables for densities. Here the jacobian of the transformation is essentially

the Radon-Nikodym derivative. The next subsection will highlight this.

3.1.2 The case without external forcing noise

We will next work out explicitly what (3.23) turns out to be with two conjugate dynamical

systems. However we will use (3.34). This will demonstarte that equation (3.34) is just

a generalisation of equation (3.23), when we are evolving densities instead of individual

points.

For purposes of testing we will assume g2 to be the logistic map with r = 4 and g1 to be

the full tent map. In this case the form of the commuter f (x) is well known. It is explicitly

given as,

f (x) =
1 − cos(πx)

2
(3.35)

Also the invariant densities under g1(x) and g2(x) are known. For the full tent map the

invariant density is

ρ(x) = 1[0,1](x) (3.36)

For the full logistic map it is

ρ(x) =
1

π
√

x(1 − x)
(3.37)

Furthermore the explicit form of the Frobenius-Perron operators are also known, see

equations (3.19), (3.17), for quick derivations. In any event, we can compute
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Pg1ρ(x) =
1
2
ρ(

x
2

) +
1
2
ρ(1 − x

2
) (3.38)

Pg2ρ(x) =
1

4
√

1 − x

{
ρ(

1
2
− 1

2

√
1 − x) + ρ(

1
2
+

1
2

√
1 − x)

}
(3.39)

Also note the change of variable formula that allows one to get at a density ρ(y) of a

random variable y, under the change of variable

y = f (x) (3.40)

If the density under the random variable x, say ρ(x) is known. The change of variable

formula reads

ρ(y) =
∣∣∣∣∣ 1
f ′( f −1(y))

∣∣∣∣∣ ρ( f −1(y)) (3.41)

We will now attempt to work out equation (3.34) explicitly for the case when our 2

systems are the full tent map and the logistic map, with parameter value r = 4. Thus given

a ρ(x) ∈ D, f (ρ(x)) can be viewed as the new density under a change of variable already

known to us. Essentially

y = f (x) =
1 − cos(πx)

2
(3.42)

Thus

f
′
(x) = π

sin(πx)
2

(3.43)

and

f −1(x) =
1
π

cos−1(1 − 2x) (3.44)
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Using the above, consider the action of the change of variable on a density ρ(x) ∈ D

f (ρ(x)) = ρ(y) =
1

π
√

y(1 − y)
ρ(

1
π

cos−1(1 − 2y)) (3.45)

Now under the action of the Frobenius-Perron operator Pg2 the above is carried to

Pg2 f (ρ(x)) =
1

2π
√

y(1 − y)

(
ρ(

1
π

cos−1(
√

1 − y)) + ρ(
1
π

cos−1(−
√

1 − y))
)

(3.46)

Similarly we can compute

f (Pg1(ρ(x)))

=
1

π
√

y(1 − y)

1

4
√

1 − 2
π
cos−1(1 − y)

(ρ(
1
2
− 1

2

√
1 − 2
π

cos−1(1 − y)))

+ (
1

π
√

y(1 − y)

1

4
√

1 − 2
π
cos−1(1 − y)

)ρ(
1
2
+

1
2

√
1 − 2
π

cos−1(1 − y))) (3.47)

If we make a change of variable

y
′
=

2
π

cos−1(1 − y) (3.48)

and then change

y
′
= y (3.49)

treating y
′

as a dummy variable, then the following will hold

f (Pg1ρ(x)) = Pg2 f (ρ(x)), (3.50)
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if it is true that that

ρ(y) =
1

2
√

1 − 2
π
y

(ρ(1 −
√

1 − y)) (3.51)

This follows easily by making the change of variable

y = 1 − (1 − y
′
)2 (3.52)

to yield

ρ(y) =
1

2
√

1 − 2
π
y′

(ρ(1 −
√

1 − y′)) (3.53)

but then changing y
′
= y it follows that

1

2
√

1 − 2
π
y′

(ρ(1 −
√

1 − y′)) =
1

2
√

1 − 2
π
y

(ρ(1 −
√

1 − y)) (3.54)

Thus we have demonstrated that the following holds

f (Pg1ρ(x)) = Pg2 f (ρ(x)), (3.55)

3.2 ∗The case with noise

This section was written by the first author Rana D. Parshad in the paper [49], which

mainly analysis conjugacy between stochastic systems with different types of external

noise. I keep this section in my thesis for the completeness of our discussion.

3.2.1 Uniformly distributed noise

We now consider the following two dynamical systems g1 and g2 as defined below.
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g1(x, ξx) = 2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 ≤ x ≤ 1.

 (3.56)


g2(y) = 2y, 0 ≤ y < 1/2,

2(1 − y), 1/2 ≤ y ≤ 1.

 (3.57)

We assume that ξx is uniformly distributed in the interval unit interval [0, 1]. We wish to

show the convergence of the Frobenius-Perron operator under g1. Note the operator under

consideration now contains a stochastic kernel. This can be written out explicitly following

[7]. Let (X, A, µ) be a measure space. For any f ∈ D we have

P f (x) =
∫

X
K(x, y) f (y)dy (3.58)

Here K(x, y) is a stochastic kernel that satisfies

K(x, y) ≥ 0, (3.59)

and ∫
X

K(x, y)dx = 1 (3.60)

For our purposes

K(x, y) = g(x − S (y)) (3.61)

where

g(x) = 1[0,1](x) is the density of ξ. (3.62)

We begin by introducing some definition and then recalling a theorem form [7].

Definition 3.2.1. Let (X, A, µ) be a measure space and P : L1(X) → L1(X) a Markov
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operator. Then {Pn} is said to be asymptotically stable if there exists a unique f∗ ∈ D such

that P f∗ = f∗ and

lim
n→∞
||Pn f − f∗|| = 0 for every f ∈ D (3.63)

Theorem 3.2.2 (Lasota & Mackey, 1991). Let (X, A, µ) be a finite measure space and P :

L1(X)→ L1(X) a Markov operator. Assume there is a p > 1 and K > 0 such that for every

density f ∈ D we have Pn ∈ Lp for sufficiently large n, and

lim sup
n→∞

||Pn f ||p ≤ K (3.64)

Then P is constrictive

Definition 3.2.3. A constrictive operator is asymptotically stable.

Note that P being constrictive implies the convergence of {Pn}. We next state our result

via the following Lemma,

Lemma 3.2.4. consider the dynamical system perturbed stochastically


g1(x, ξx) = 2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 ≤ x ≤ 1.

 (3.65)

where ξn is i.i.d uniformly distributed in [0,1]. The stochastic Frobenius-Perron op-

erator for this dynamical system converges to the stationary density of the system. That

is

lim
n→∞
||Pn f − f∗|| = 0 for every f ∈ D (3.66)

Proof. The form of the Frobenius-Perron operator is easily constructed via techniques from

[7]. It is given by the joint density of fn and ξ. That is

fn+1(x) = P fn(x) =
∫
R

fn(y)g(x − S (y))dy (3.67)
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Here g(x − S (y)) is the density of the random variable ϵξ. Since ξ is uniformly distributed

in [0,1], equation (3.67) reduces to

P fn(x)

=

∫
R

fn(y)ϵ 1[S −1(x),S −1(x−1)](x − S (y))dy

= ϵ

∫ S −1(x−1)

S −1(x)
fn(y)dy (3.68)

Thus it follows that

lim sup
n→∞

|P fn(x)|22

= lim sup
n→∞

|
∫
R

fn(y)ϵ 1[S −1(x),S −1(x−1)](x − S (y))dy|22

= |ϵ
∫ S −1(x−1)

S −1(x)
lim sup

n→∞
fn(y)dy|22 via Lebesgue dominated convergence theorem(3.69)

Note, that markov maps are dense in the space of piecewise linear maps, [8]. Thus it

follows that there exists an N such that for n ≥ N

| fn(y) − f ∗|2 ≤ ϵ1 (3.70)

Where f ∗ is the density of a markov map, thus is given by a piecewise constant function

lim sup
n→∞

k∑
i=1

Ci1[ai,bi](x) (3.71)

Note the following can also be obtained via approximating fn by a step function, since

fn ∈ L1(X) by definition. In any event we obtain,
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|ϵ
∫ S −1(x−1)

S −1(x)
(lim sup

n→∞
fn(y) −

k∑
i=1

Ci1[ai,bi](y))dy|22

≤ ϵ |
∫ S −1(x−1)

S −1(x)

k∑
i=1

Ci1[ai,bi](x)|22 + ϵ1

≤ ϵC|
∫ S −1(x−1)

S −1(x)
dy|22 + ϵ1

= ϵC|S −1(x − 1) − S −1(x)|10 + ϵ1

≤ K (3.72)

Thus we can conclude that

lim sup
n→∞

|P fn(x)|22 ≤ K, (3.73)

Thus the Lemma is proved via application of the earlier cited Theorem.

�

A 2-d figure of a random commuter is included below.

It is interesting to note that although a uniform noise is used to generate the above, we

could also have used a smooth sequence of increasing or decreasing maps. This is due to

the ergodicity property being present in the system given by (3.56). For details the reader

is referred to Appendix A.

3.2.2 The case of normal noise

Consider the following dynamical system


g1(x, ξx) = 2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 ≤ x ≤ 1.

 (3.74)
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Figure 3.1: Convergence Analysis for Skew Tent Maps
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We assume that g1 is identically zero outside the unit interval. In this section we consider

the case where ξ has a normal distribution. Since g1 is identically zero outside the unit

interval we have circumvented the problem of orbits wandering of to infinity. The Perron-

Frobenius operator P : L1(X)→ L1(X) for the system is computed to be

P f (x) =
∫

X
K(x, y) f (y)dy (3.75)

Here K(x, y) is the stochastic kernel defined by

K(x, y) =
1
√

2π
e

(x−S (y))2
2 (3.76)

We begin with the following definitions.

Definition 3.2.5. the sequence of iterates of the Frobenius-Perron operator {Pn} are said

to be asymptotically stable if there ∃ a unique f ∗ ∈ D such that

P f ∗ = f ∗ (3.77)

and

lim
n→∞
||Pn f − f || = 0 (3.78)

Definition 3.2.6. A function V(x) such that

lim
x→∞

V(x) = ∞ (3.79)

is called a Liapunov function.

We will use the following Theorem to demonstrate our result

Theorem 3.2.7. Let K(x, y) be a stochastic Kernel. Consider the Frobenius-Perron opera-

tor defined by

67



P f (x) =
∫

X
f (y)K(x, y)dy (3.80)

If there exists a liapunov function V(x) such that for an unbounded domain G ⊂ X,

∫
G

V(x)K(x, y)dx ≤ αV(y) + β, 0 ≤ α < 1, β > 0 (3.81)

then {Pn} is asymptotically stable

We now state our result in the following Lemma

Lemma 3.2.8. Consider the dynamical system defined by


g1(x, ξx) = 2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 ≤ x ≤ 1.

 (3.82)

where ξ has a normal distribution. Also assume g1 is identically zero outside the unit

interval. The stochastic Frobenius-Perron operator for this dynamical system is asymptot-

ically compact, hence converges to a stationary density.

Proof. It follows that

∫
G

V(x)K(x, y)dx =
∫

G
V(x)g(x − S (y))dx =

1
√

2π

∫
G

V(x)e−
(x−S (y))2

2 dx (3.83)

Note we have an explicit form for the density g now as normal noise is being considered.

We next set G = [0,∞), and define the following functional

F(y) =
1
√

2π

∫ ∞

0
V(x)e−

(x−S (y))2
2 dx (3.84)

We take the derivative of the above
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d
dy

F(y)

=
d
dy

(
1
√

2π

∫
G

V(x)e−
(x−S (y))2

2 dx
)

=
1
√

2π

∫ ∞

0

d
dy

V(x)e−
(x−S (y))2

2 dx

=
1
√

2π

∫ ∞

0
V(x)(x − S (y))(S

′
(y))e−

(x−S (y))2
2 dx

=
1
√

2π

∫ ∞

0
V(x)xS

′
(y)e−

(x−S (y))2
2 dx − 1

√
2π

∫ ∞

0
V(x)S (y)S

′
(y)e−

(x−S (y))2
2 dx

= S
′
(y)

1
√

2π

∫ ∞

0
V(x)xe−

(x−S (y))2
2 dx − S (y)S

′
(y)F(y) (3.85)

Since we are dealing with a phase space Y = [0, 1], with S (y) having different dynamics

on [0, 1
2 ] than [ 1

2 , 1], we will break our analysis into 2 cases. We first consider y ∈ [0, 1
2 ].

Recall the identity

S (y)S
′
(y) =

d
dy

(
S (y)2

2

)
(3.86)

From the form of S (y) in [0, 1
2 ], it is easily seen that (S (y))2 ↗. Thus we have that

S (y)S
′
(y) =

d
dy

(
S (y)2

2

)
> C1 > 0 (3.87)

We have a strict inequality here as S (y) is never constant. Furthermore we restrict

ourselves to the class of Liapunov functions that grow polynomially, so are O(xn). Then it

is seen that

S
′
(y)

1
√

2π

∫ ∞

0
V(x)xe−

(x−S (y))2
2 dx ≤ C

∫ ∞

0
xn+1e−

(x−1)2
2 dx ≤ C2 (3.88)

This yields the following inequality
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d
dy

F(y) ≤ −C1F(y) +C2 (3.89)

It now follows via Gronwall’s Lemma that

F(y) ≤ e−C1y(F(0) +C2y) ≤ e−C1(F(0) +C2) ≤ αV(y) + β (3.90)

For say α = 1
2 and β = e−C1(F(0) +C2)

For the case of y ∈ [ 1
2 , 1] the analysis is similar. Thus we obtain

d
dy

F(y) ≤ C1F(y) +C2 (3.91)

Gronwall’s Lemma now yields

F(y) ≤ eC1y(F(0) +C2y) ≤ eC1(F(0) +C2) ≤ αV(y) + β (3.92)

For say α = 1
2 and β = eC1(F(0) + C2) Thus the lemma is proved by application of the

earlier stated corollary. �

We perform some simulations to view the above object when the systems are a logistic

map with r = 3.75 perturbed by a uniform noise and a tent map with r = 0.9. This yields

the following

3.3 Random Fixed Point Theorem

We now change direction slightly and give yet another interpretation of the commuter func-

tion between randomly forced dynamical systems. It is possible to view the action of the

commuter on densities as the action of a random operator. There is a vast literature on prob-

abilistic functional analysis, [9], [10], and the use of random operator theory. We begin via

the following definitions
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Definition 3.3.1. Let (X, A, µ) be a measure space. A mapping T : X × ω → X is called

a random operator if for each fixed x ∈ X the mapping the map T (., x) : ω → X is

measurable.

Definition 3.3.2. A measurable map ξ : Ω → X is a random fixed point of a random

operator T : X × ω→ X if

T (ω, ξ(ω)) = ξ(ω), for each ω ∈ Ω (3.93)

We recall the following theorem, as best suited for our application.

Theorem 3.3.3 (Random Fixed Point Theorem). Let T be a continuous random operator

on L1([0, 1] × Ω) to L1[0, 1]. Let λξ be a real-valued random variable such that λξ < 1

almost surely and

||T f1 − T f2||1 ≤ λξ || f1 − f2||1 (3.94)

for every two functions f1, f2 ∈ L1[0, 1]. Then there exists an L1[0, 1]-value random func-

tion fξ, which is the unique fixed point of T , i.e.

T fξ = fξ (3.95)

Our goal is to use the above to prove that the commuter function that we have considerd

earlier, when viewed as a random operator posesses a fixed point, thus converges. This

reinforces our result about the convergence of this object for various classes of noise, via

stochastic Frobenius-Perron operator methods, that we considered in the previous section.

Recall again the commutative diagram in our random setting

L1(X ×Ω)
Pg1→ L1(X)

↓ f ↓↓ f

L1(Y)
Pg2→ L1(Y)

The above implies that the following holds
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f (Pg1(ρ(x))) = Pg2( f (ρ(x))) (3.96)

Clearly the commuter acts on densities in both legs of the diagram. Thus it is natural to

view it as a random map, acting on densities, so as to bring in the afforementioned random

fixed point theory. We first carefully define the right random operator in our setting. We

take our cue from earlier works, [?]. Recall in the deterministic setting f satisfies

f (g1(x)) = g2( f (x)) (3.97)

Since we know what g1 and g2 are, a functional equation for f can be set up explicitly.

We adopt the same methodology to the random setting. Consider


g1(x, ξx) = 2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 ≤ x ≤ 1.

 (3.98)


g2(y) = 2y, 0 ≤ y < 1/2,

2(1 − y), 1/2 ≤ y ≤ 1.

 (3.99)

For any fixed density ξ, the following equation holds

fξ(g1(x, ξx)) = g2( fξ(x)) (3.100)

where fξ : L1(X ×Ω)→ L1(Y)

This yields


2 fξ(x) = fξ(2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2

2(1 − fξ(x)) = fξ(2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 < x ≤ 1
(3.101)

Thus we have a functional equation for fξ(x),
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fξ(x) =

1
2

fξ(2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2

fξ(x) = 1 − 1
2

fξ(2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 < x ≤ 1
(3.102)

We use the above to define a random operator as follows


T fξ(x) =

1
2

fξ(2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 1 − 1
2

fξ(2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 < x ≤ 1.
(3.103)

This follows ∀ f1, f2 ∈ L1[0, 1], 1 ≤ p < ∞. For the above defined random operator we can

state the following result

Lemma 3.3.4. Consider the following dynamical system


g1(x, ξx) = 2(1 − 2ϵ)x + (ξx + 1)ϵ, 0 ≤ x < 1/2,

= 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ, 1/2 ≤ x ≤ 1.

 (3.104)


g2(y) = 2y, 0 ≤ y < 1/2,

2(1 − y), 1/2 ≤ y ≤ 1.

 (3.105)

The commuter function f : L1(X×Ω)→ L1(Y) between the systems above, when viewed

as an appropriate random operator, such as defined in (3.103), posesses a random fixed

point.

Proof. We consider the difference of T f1 and T f2 piecewise on [0, 1/2] and [1/2, 1] as
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defined.

||T f1 − T f2||[0,1/2] = (
∫

[0,1/2]
|T f1(x) − T f2(x)|dx)

= (
∫

[0,1/2]
|1
2

f1(2(1 − 2ϵ)x + (ξx + 1)ϵ) − 1
2

f2(2(1 − 2ϵ)x + (ξx + 1)ϵ)|dx)

= (
∫ (1−2ϵ)+(ξx+1)ϵ

(ξx+1)ϵ
|1
2

f1(y) − 1
2

f2(y)| 1
2(1 − 2ϵ)

dy)

=
1
2

(
1

2(1 − 2ϵ)
)|| f1 − f2||[(ξx+1)ϵ,(1−2ϵ)+(ξx+1)ϵ].

or

||T f1 − T f2||[0,1/2] =
1
2

(
1

2(1 − 2ϵ)
)|| f1 − f2||[(ξx+1)ϵ,(1−2ϵ)+(ξx+1)ϵ] (3.106)

We now set

y = 2(1 − 2ϵ)x + (ξx + 1)ϵ, (3.107)

in the above.

On the other hand, when 1/2 < x ≤ 1, we have

||T f1 − T f2||[1/2,1] =

∫
[1/2,1]

|T f1(x) − T f2(x)|dx

=
1
2

(
∫ (ξx+1)ϵ

(1−2ϵ)+(ξx+1)ϵ
|1
2

f1(y) − 1
2

f2(y)| 1
−2(1 − 2ϵ)

dy)

=
1
2

(
∫ (1−2ϵ)+(ξx+1)ϵ

(ξx+1)ϵ
|1
2

f1(y) − 1
2

f2(y)| 1
2(1 − 2ϵ)

dy)

=
1
2

(
1

2(1 − 2ϵ)
)|| f1 − f2||[(ξx+1)ϵ,(1−2ϵ)+(ξx+1)ϵ].

or

||T f1 − T f2||[1/2,1] =
1
2

(
1

2(1 − 2ϵ)
)|| f1 − f2||[(ξx+1)ϵ,(1−2ϵ)+(ξx+1)ϵ] (3.108)

Again we set
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y = 2(1 − 2ϵ)(1 − x) + (ξx + 1)ϵ (3.109)

in the above equation.

We now add (3.106) to (3.108) to obtain

||T f1 − T f2||[0,1] =
1
2

(
1

1 − 2ϵ
)|| f1 − f2||[(ξx+1)ϵ,(1−2ϵ)+(ξx+1)ϵ]

≤ 1
2

(
1

1 − 2ϵ
)|| f1 − f2||[0,1].

Thus we have

||T f1 − T f2||[0,1] ≤ λ|| f1 − f2||[0,1], (3.110)

where

λ =
1
2

(
1

1 − 2ϵ
). (3.111)

We can choose ϵ < 1/4, so ( 1
1−2ϵ ) < 2. Thus we obtain

λ =
1
2

(
1

1 − 2ϵ
) < 1. (3.112)

This completes the proof of the Lemma. �

3.4 conclusion

In conclusion we have laid down a rigorous definition of a random commuter. We have

established its convergence via use of the Frobenius Perron theory, under pertubation of

uniformly distributed noise and normally distributed noise. This result is seen via our nu-

merical simulations also. Our results concerning the commuter when viewed as a random

operator reinforce these earlier derived convergence results. However various questions
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remain open at this point. Most of our analysis is confined to the case of one dimen-

sional dynamical systems represented as maps. It would be interesting to consider how

our methodologies apply when the underlying dynamical systems are flows. White noise

perturbation in such a setting cam also be considered. This would lead us to investigate

the SDE case. The continuous version of the Frobenius-Perron operator might provide a

valuable tool in this case. It is also interesting to try some of the above mentioned tech-

niques when the commuters are not quite homeomorphic, which is getting at the true spirit

of “almost conjugacy”. To this end we provide some details in Appendix B, where some of

the associated difficulties can be circumvented via bringing in appropriately defined delta

functions. These and related questions are the subject of current investigation.

76



Chapter 4

Comparing Dynamical Systems by

Graph Matching Method: A Graph

Matching Interpretation of Mostly

Conjugacy

In this chapter, we consider comparing dynamical systems by using graph matching method

either between the graphs representing the underlying symbolic dynamics, or graphs ap-

proximating the action of the systems on a fine but otherwise non generating partition. For

conjugate systems, the graphs are isomorphic and we show that the permutation matrices

that relate the adjacency matrices coincides with the solution of Monge’s mass transport

problem. We use the underlying Earth Mover’s Distance (EMD) to generate the “approxi-

mate” matching matrix to illustrate the association of graphs which are derived from equal-

distance partitioning of the phase spaces of systems. In addition, for one system which

embeds into the other, we show that the comparison of these two systems by our method is

an issue of subgraph matching.
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4.1 Introduction

A basic question in science and in dynamical systems models of scientific problems is

how to compare two systems. For an equivalence relation on dynamical systems, standard

practice is to use the notion of conjugacy. The problem in practice is that it can be difficult

in the general scenario of more than one dimension to find such a homeomorphic change

of variables that relates the two systems, even if one exists. Furthermore if no such exact

equivalence exists, the question becomes “is one system a good approximation of another?”

In [2, 11], we explore this isuue by generating a change of variables between the systems,

and then we measured the quality of the comparison by discussing the deviation of the

resulting change of variables from a homeomorphism, which we called homeomorphic

defect. The problem is the contraction mapping methods we used to identify the change of

variables do not easily extend to the general scenario of multi-variate dynamical systems.

Thus the need to develop alternative methods in the spirit of our goal [2, 11] of relaxing

conjugacy to compare somewhat related dynamical systems. Here we will resort to a variant

of the classic Monge-Kantorovich optimization problem [12, 13] to both built a useful

change of variables and measure quality of the comparison through the underlying cost

called the Wasserstein distance, in a spirit such as the related work for time series in [14].

In symbolic dynamics [15, 16, 18], a shift space is a set of infinite symbol streams rep-

resenting the trajectory of a dynamical system. Shifts spaces with a finite set of forbidden

blocks are called shifts of finite type. Such shifts spaces have a simple representation as a

special case of so-called sophic shifts, that is a directed graph, where nodes are symbols.

Furthermore we may define edges weights as the probability of a transition from one sym-

bolic word to another. As such, the directed graph becomes a discrete representation of the

Frobenius-Perron operator, [19] through an approximation method related to the Ulam’s

method, [20].

Within the usual dynamical systems framework, the determination of whether two sys-

tems are dynamically equivalent is based upon whether or not there is conjugacy between
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them, [16]. In terms of a symbolic dynamics representation [18, 15] of the underlying

systems, the conjugacy matches symbol sequence from each symbolic space. System com-

parison within the concept of “conjugacy” would be straightforward, since all we need is

to check is the existence of a similarity transformation that relates the adjacency matrices

(one for each system) which generates the grammars of the underlying subshifts. Here we

will demonstrate that such a matrix is equivalent to finding the Monge solution [13] to a

specific mass transport problem. Because of well understood difficulties in finding Monge

solutions, we instead choose to solve for the relaxed “matching matrix”, which is actually a

Kantorovich solution to relating the adjacency matrices of the dynamical systems. We use

the earth mover’s distance (EMD) [21] to generate such matching matrices which we show

serves as a suitable commuter for the dynamical system. In addition, we prove that if one

system embeds into the other, the comparison becomes a subgraph matching problem.

The outline of this chapter is as follows: in section 2, we introduce the idea of our graph

matching method to compare dynamical systems; In section 3, we give some theoretical

results regarding the comparison between conjugate systems, with a particular example; In

section 4, we consider the error analysis, with a numerical result to study the regularity

property of our algorithm; in section 5, we extend our methods to compare systems where

one embeds into the other, with both theoretical and numerical results given; In section 6,

we show that our method can be easily extended to compare higher dimensional dynamical

systems. We summarize our results in section 7.

4.2 Graph Representations of Dynamical systems

We adopt our notations from Lind and Marcus [18]: A graph G consists of a finite set ν =

ν(G) of vertices, and with a finite set ε = ε(G) of edges. Each edge e ∈ ε(G) starts at a vertex

denoted by i(e) ∈ ε(G) and ends at a vertex t(e) ∈ ε(G). The weighted adjacency/stochastic

matrix of G, denoted as AG, is a conditional probability matrix where the (i, j) entry assigns
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the probability P( j|i) (or P(i → j|i)), the conditional probability from node i to j given the

current state is in node i. The stochastic matrix is essentially a matrix description of a

Markov chain on the graph G = (ν, ε) [18]. We note that some references may distinguish

a stochastic matrix and the graph adjacency matrix, defining the latter as a binary matrix

which assigns 1 to connected nodes, otherwise 0. In this paper, the transition matrix and

stochastic matrix are used interchangeably, and (unless specifically stated otherwise) when

we refer to “the adjacency matrix,” we mean a weighted adjancency matrix with weights

assigned to describe the appropriate transition probabilities.

In practice, given a test orbit {xk}Nk=1 s.t. xk+1 = f (xk) from dynamical system f , then

the transition probabilities can be estimated as follows,

P( j|i) ≈
#({xk|xk ∈ Bi and f (xk) ∈ B j})

#({xk ∈ Bi})
(4.1)

as Ulam-Galerkin approximation of the Frobenius-Perron operator with a partition Γ =

{Bi}, which is a finite family of connected sets with nonempty and disjoint interiors that

covers the phase space [20, 52].

As example, Figure 4.1 shows a partition on the logistic map. We label the interval

[0, 1/2] with L, and (1/2, 1] with R. Start from any initial point that yields a chaotic trajec-

tory, record L or R in each iteration based on the evolution of dynamics. Then a weighted

directed graph is built based on the recorded link list. In this example, the transition matrix

would be a 2 by 2 matrix where entries are all 1/2.

The weighted directed graph is a simple representation of the dynamical system in that

the adjacency matrix of the graph records all the allowable bi-infinite walks. Consequently,

we assert that one way to relate the dynamics of two different systems is to perform a graph

matching operation on the associated graph representations of the symbol dynamics. A key

benefit of using a graph matching approach is that the study of graph matching techniques
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Figure 4.1: Graph

and algorithms is well developed in the field. Among many of the efficient graph matching

methods, we use the Earth Mover’s Distance, which essentially solves the discrete case

of the Kantorovich’s problem. What we hope to answer in this paper is,“what does the

matching of the graphs using EMD tell us about the similarity of the dynamical systems?”

As preliminary explanation, we briefly recall the Monge-Kantorovich problem.

4.2.1 Monge-Kantorovich Problem

The Monge-Kantorovich problem is an optimal transportation problem [13]: Specially,

given two distributions µ for space X and ν for Y , one is required to find the optimal trans-

portation plan within a given some metric describing the transportation cost. The Monge’s

problem is formalized as:

Minimize I[T ] :=
∫

X
c(x, T (x)))dµ(x)

for all measurable map T : X → Y such that ν is a push-forward [13] of µ by T . The

term c(x, T (x)) defines the cost to transport a unit from x to T (x).

On the other hand, the Kontorovich’s problem is a relaxed version of the Monge’s one.

It allows each point in X to be associated to different points in Y . We can no longer use a

map T to describe this association. We shall use a probability measures π, the transference

plan, on the product space X × Y , where informally dπ(x, y) measures the amount of mass

transferred from location x to y. We denote the set of all such probability measures by
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Π(µ, ν) = {π ∈ P(X × Y) : π[A × Y] = µ[A], π[X × B] = ν[B] f or all measurable A, B}

And the Kontorovich’s optimal transportation problem can be formalized as follow:

Minimize I[π] :=
∫

X×Y
c(x, y)dπ(x, y)

for π ∈ Π(µ, ν), where Π(µ, ν) (defined above) is called the space of transference plans

from X to Y .

In the later discussion of this paper, we focus on the discrete version of the Monge-

Kantorovich problem, with solution given as a matrix F that expresses the optimal trans-

portation in that matrix entry fi j gives the amount of mass to be moved from discrete loca-

tion xi to location y j. In that setting, the special case of a Monge solution would then be a

permutation matrix, because the Monge problem requires that the full mass at location xi

be moved to a single site y j.

We will compare two systems by studying the Monge-Kantorovich solution between

the first eigenvectors of their associated adjacency matrices relying on Ulam’s conjecture.

Ulam’s conjecture was proposed by S. Ulam [20] and referred that Ulam-Gelerkin matrix

determined by Eq. 4.1 has dominant state/eigenvector that converges weakly to invariant

measure/distribution of the Frobenius-Perron operator, which has been proven for certain

special dynamical systems.

4.3 Analysis

In this section, we relate graph matching and conjugacy. Particularly, we prove an inter-

esting relationship between the matching matrix F that describes the Monge solution to a

particular problem, and the adjacency matrices, AG1 and AG2 , that describe the dynamics of

the two systems:

F · AG1 = AG2 · F.
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We first introduce the notation: A partition Γ = {x0, x1, · · ·, xm} on interval [a, b] is a set

of points where a = x1 < x1 < · · · < xm = b. We denote |Γ| as the number of subintervals

after partitioning, which we call the cardinality of partition. Let G be a graph with edge

set ε and adjacency matrix AG. The edge shift XG or XA is the shift space over the alphabet

A = ε specified by XG = XA = {ξ = (ξi)i∈Z ∈ εZ : t(ξi) = i(ξi+1) for all i ∈ Z}. The shift

map on XG or XAG is called the edge shift map and is denoted by σG or σAG .

4.3.1 Conjugate Systems

Two dynamical systems are said to be topologically conjugate if there exists a homeomor-

phism which describes the change of coordinates between systems. Consequently, when we

associate these systems to dynamics on graphs, we may use that homeomorphism to relate

the partition in one system to the partion in the other. Because trajectories in each system

are matched (via the homeomorphism), allowable paths through the graphs must also be

matched, and the graphs of the two systems would be. So in this case, the associated graph

adjacency matrices, say A (for one system) and B (for the other), are similar, and related

by a permutation matrix P. Essentially, P tells how the nodes of the compared graphs are

associated, in a 1-to-1 way, so that A = P−1BP. In addition, P relates the eigenvectors of A

and B as a linear isomorphism [18]. And, we can identify conjugate edge shifts from these

conjugate systems (Theorem 4.7.1 in Appendix), which also determines a so-called “strong

shift equivalent” relationship. More precisely, we have the following definition:

Definition 4.3.1 ([18]). Let A and B be nonnegative integral matrices. An elementary

equivalence from A to B is a pair (R, S ) of rectangular nonnegative integral matrices sat-

isfying

A = RS and B = S R

In this case we write (R, S ) : A u B. A strong shift equivalence of lag l from A to B is a

sequence of l elementary equivalences
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(R1, S 1) : A = A0 u A1, (R2, S 2) : A1 u A2 · · · (Rl, S l) : Al−1 u Al = B

In this case we write A ≈ B (lag l). We say that A is strong shift equivalent to B (and write

A ≈ B) if there is a strong shift equivalence of some lag from A to B.

In the following we show that, for isomorphic graphs, which we obtain from conjugate

systems by an appropriate partitioning, the permutation matrix P which provides the simi-

larity transform between the associated adjacency matrices is the same matrix identified by

the Monge solution to an appropriately defined transport problem.

Theorem 4.3.2. Suppose we are given two conjugate systems S YS 1 and S YS 2, and par-

titions Γi, i = 1, 2, with |Γi| = M, such that the resulting edge shifts XG1 is conjugate to

S YS 1, XG2 is conjugate to S YS 2. Let AG1 be the adjacency matrix of the graph generated

from S YS 1 with this partition, and similarly AG2 for S YS 2. Suppose AG1 is isomorphic to

AG2 . Let F be the Monge solution between dominant eigenvectors of adjacency matrices 1

of graphs from S YS 1 and S YS 2, then F satisfies

F · AG1 = AG2 · F.

Proof. Since S YS 1 is conjugate to S YS 2, XG1 u XG2 . By Theorem 4.7.1, AG1 ≈ AG2 (strong

shift equivalent). By Definition 4.7.2 and Theorem 4.7.3, AG1 ∼ AG2 (shift equivalent).

By Definition 4.7.4 and Theorem 4.7.5, AG1 ∼Z AG2 (shift equivalent over Z). On the

other hand, since AG1 is isomorphic to AG2 , there exists a permutation matrix P such that

1

Remark 4.3.3. Note that in the proof, we apply theorems and definitions from the appendix. Some of the
fundamental theorems and definitions that we are using require matrices to be over Z or Z+. But as we define
before in section 4.2, we generally consider adjacency matrices to be stochastic matrices. The stochastic
matrix setting makes our method easy to be implemented, as will be illustrated in section ??. Because
these stochastic weights are determined by counting transitions in a long trajectory, and then normalizing
each row (to row sum one), each of these stochastic matrices has rational entries, and appropriate scaling
yields an integer matrix. This renormalized matrix is similarly interpretable as a weighted adjacency matrix.
Consequently, the proofs that rely on integer matrix theorems remain valid under such a renormalization.
The Monge’s solution would be interpreted as showing how to move “counts” instead of “densities.” Even
though some references [18, 23] discuss shift equivalence issues for irreducible shift of finite type with a
Markov measure, we prefer not to introduce additional theorems and definitions to address this technical
detail, relying simply on the frequency counting to justify our approach.
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AG1 = P−1AG2 P. Now if we let S = P, R = P−1AG2 , then AG1 ∼Z AG2(lag 1) according

to Definition 4.3.1. By Theorem 4.7.6 and Theorem 4.7.7, w = S v , 0 where v and w

are Perron eigenvectors of AG1 and AG2 , respectively, and S satisfies S · AG1 = AG2 · S . In

addition, S is a permutation matrix, hence S is invertible.

On the other hand, let F be the Monge solution between v and w, where v and w are

dominating eigenvectors of AG1 and AG2 , then F satisfies w = Fv , 0. We claim that F = S .

By Choquet′s theorem and Birkho f f ′s theorem [13], F is a permutation matrix, which

implies F is invertible. Substitute v = F−1w into w = S v, we have

w = S · F−1w, (4.2)

where S ·F−1 is also always a permutation matrix, regardless of the cardinality of partition.

We note that (4.2) is not sufficient in that S · F−1 could be a rotation matrix other than

identity matrix that satisfies w = S · F−1w.

We prove by induction that, S · F−1 is an identity matrix. In the following, we let

EN = S · F−1, where the cardinality of partition M = N, where we intent to use induction

on N.

When N = M = 2, the only permutation matrices that S · F−1 can take are

E2 =

 1 0

0 1


or

Ê2 =

 0 1

1 0


but |Ê2| = −1, so Ê2 can not be a rotation matrix. Thus S · F−1 = E2.

Now we suppose when M = N, EN is an N by N identity matrix, so that w = S · F−1w.

When M = N + 1, in order that the resulting edge shifts with cardinality of partition

N +1 is conjugate to the one with cardinality of partition N, the graph with N +1 nodes has
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to be a splitting of the one with N nodes [18]. Without loss of generality, we can assume

the first node of the graph splits into two nodes, from cardinality of partition N to N + 1.

Then the first bin of dominate eigenvector w of case N would break into two for case N +1,

with the rest of bins unchanged. For example, from Figure 4.2(a) to Figure 4.2(b), bin 1

breaks into bin 1a and bin 1b.

Regardless of how bin 1a and bin 1b match each other, we claim that the rest bins of

w, like bins from 2 to 5 in Figure 4.2(b), match themselves identically as before. Because

otherwise, if we amalgamate bin 1a and bin 1b back into bin 1, or say from case N + 1

back to case N, the bins of w would not match themself identically. This contradicts to our

assumption of the matching of bins of w when M = N.

Also, since S · F−1 is a permutation matrix, EN+1 would has the forms of

EN+1 =

 E2 0

0 EN−1


or

ˆEN+1 =

 Ê2 0

0 EN−1


where EN−1 is a N − 1 by N − 1 identity matrix. Thus, by the calculation of determinant

of block matrix, we know that | ˆEN+1| = −1, which can not be a rotation matrix. Thus,

S · F−1 = EN+1, which is a N + 1 by N + 1 identity matrix.

Similar for the case v = F · S −1v. Thus, we have S = F.

�

So we can consider finding the similarity matrix P as a process of choosing the associ-

ation matrices that minimize the transportation cost.

However, there is not a general algorithm to find the similarity matrix P. Although we

prove the equivalence between finding the similarity matrix and finding Monge’s solution,

that equivalence does not mean that either problem is easily solved. In fact, Monge’s prob-
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lem is difficult because the metric that defines the topology of the transport problem could

be very degenerate from the point of view of convexity properties [13]. For non-conjugate

systems (and non-isomorphic graphs), there still exists a Monge solution which associates

nodes of the two graphs in a 1-to-1 fashion in a way that minimizes the “cost of association”

with respect to a particular choice of norm to measure the transportation cost. We observe

that the Monge solution yields a linear transformation from the dominate eigenvector of

one graph to the other. On the other hand, the Monge solution, does not provide a simi-

lar linear transformation between the adjacency matrices when the underlying graphs are

not isomorphic. Consequently, the relaxed version, i.e. Kantorovich’s problem, provides a

more natural and implementable method to find an “optimal matching”, where optimality

is with respect to the relaxed transport problem.

4.3.2 Partitioning Issues

As additional reasons for framing this “system matching” as a Kantorovich problem is that

framing as a Monge problem requires that we our partition is such that the edge shift is

conjugate to the original dynamics. In most practical cases, it is hard or costly to find an

appropriate partition (i.e. Markov partition) so that the resulting graph can fully describe

the original dynamical system. Rather, we seek a method that can be applied to comparing

general dynamical systems without solving the “hard” problem of finding a Markov parti-
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tion. As alternative, we will use an equal-distance partition. We have to be very careful

here, because in general the equal-distance partition won’t give a conjugate shift space. So,

in principle, if we proceed our method by comparing dynamical systems via equal-distance

partition, we are actually comparing different systems than what we really would like to

compare. However, this issue can be addressed as an “approximation problem.” If we re-

fine our equal-distance partition to sufficiently small cells, then the resulting shift space can

approximate the one that would be observed from a Markov partition.

As example of this approximation via grid refinement, L. Billing and E. Bollt proved

that the family of skew tent map is Markov for a dense set of parameters in the chaotic

region [24]. In particular, in any given neighborhood of a non-Markov map in this chaotic

region, there exists a Markov map that uniformly approximates the non-Markov one. J.

Zheng proved that this approximation implies approximation in the sense of conjugacy

[11]. In addition, H. Teramoto and T. Komatsuzaki showed that if a Markov partition has a

certain relationship called “map-refinement of the other Markov partition”, the shift spaces

corresponding to these two Markov partitions are topologically the same [25]. Thus, an

adequately refined equidistant partition can approximate a Markov partition in the sense

of conjugacy. In section 4.4.1, we examine this numerical error estimate for a tent map

example.

There are several cases where the Kantorovich’s solution coincides with the Monge’s

solution. When we consider the structure of the space with metric, or say the cost function,

defined with a regular p > 1 norm, the strict convexity of the metric guarantees there is a

unique solution to the Kantorovich problem, which turns out to be also the solution to the

Monge problem [13].

However, because of the partitioning issues that we have discussed before, the graphs

representations of the systems are somehow an “approximation”. So the adjacency matrices

from conjugate systems are no longer similarly related due to inexact partition of phase

space. However, we seek to relax the problem in the way of allowing partial matching,
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which is to find the Kantororich’s solution, to describe the association.

In probability theory, the Earth Mover’s Distance (EMD) is a measure of distance be-

tween two probability distributions. EMD can be viewed as the solution of the discrete case

of Kantorovich problem. It is a bipartite network flow problem which can be formalized as

a linear programming problem [21]: Let I be the set of supplies, J be the set of consumers,

and ci j be the cost to ship a unit from i ∈ I to j ∈ J. We want to find a set of flow (matching

matrix) fi j to minimize the overall cost:

∑
i∈I

∑
j∈J ci j fi j,

subject to the constrains:

fi j ≥ 0, i ∈ I, j ∈ J∑
i∈I fi j = y j, j ∈ J∑
j∈J fi j ≤ xi, i ∈ I

where xi is the total supply of supplier i, and y j is the total capacity of consumer j.

Here we consider the cost function ci j = |x − y|2, with the metric to be the regular 2

norm. In this case, the optimal matching/flow is the gradients of the convex functions,

which are monotone and orientation preserving. On the other hand, we consider the matrix

norm to be the induced 2 norm, since with induced norm, the matrices can be viewed as

operators. And if two systems are conjugate, they are isomorphic as linear transformations

if we restrict the operators/matrices to their eventual range [18].

We give the example about how to create the matching matrix between systems: sup-

pose we are given two dynamical systems, i.e. the logistic map and tent map, we make a

equidistant partition on the phase space with partitionning numbers M and N, respectively.

We randomly choose an initial starting point, and then iterate it on each system, record the

interval/node that the trajectory passes, and built the graphs based on the recording link list.

Figure 4.3 presents the graphs of logistic map and tent map.
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(a) Adjacency Matrix of Tent Map
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(b) Adjacency Matrix of Logistic
Map

Figure 4.3: Graph

The matching matrix (Figure 4.4) generated by Earth Mover’s distance associates the

nodes between tent graph and logistic graph in the way of minimizing the overall cost

determined by predefined topology. Notice the matching itself is a matrix. In Figure 4.4,

the x-axis are nodes for tent graph, y-axis are for logistic graph. Color intensity implies

similarity of the matching. We also plot the homeomorphsim function of tent and logistic

in blue curve. We can see that both the matching matrix and the conjugacy describe the

dirt of the tent distribution is moved in the direction so that it can match the logistic map

distribution.
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Figure 4.4: Graph matching between Logistic map and Tent map.
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4.3.3 Further Discussion about the Measure on Adjacency Matrices

In Figure 4.4, we present the matching matrix between tent map and logistic map, which

are conjugate systems. Note we apply the Earth Mover’s Distance on their adjacency ma-

trices whose entries are assigned the conditional probability measure. We can think of

the matching matrix as a different representation of conjugacy, since the EMD is actually

giving the transformation between the first eigenvectors of the tent map and logistic map.

This matching method may be confusing sometimes, since there are systems that are

not conjugate but generating a “conjugate like” matching matrix. For example, if we are

comparing a two hump tent map, instead of the one hump tent map, to the logistic map, our

method would still give a matching matrix as shown in Figure 4.4. This comes from the

fact that, different systems may have the same invariant measures.

Thus we also present an alternative but similar approach for our matching method.

Instead of assigning the conditional probability measure to the entries of the adjacency

matrices of underlying systems, we equalize these non-zero weights of each row of the

adjacency matrices.

Figure 4.5 shows the matching matrix between the tent map and the logistic map with

equalized weights on their adjacency matrices. This focuses more on the topological rela-

tion between systems. In the following section, we will discuss regularity properties when

using the adjacency matrices with probability measure.

4.4 Error Analysis and Regularity Property Analysis

The graph matching method to compare dynamical systems that we discussed in the pre-

vious section suffers from both numerical and theoretical errors: the partition errors that

we mentioned in section 4.3.2; the statistical errors from comparing the graphs which are

constructed by a particular finite trajectory; the linear program solver error from the Earth

Mover’s distance algorithm, which can be reduced by resetting the stopping criteria stricter.
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Figure 4.5: Matching Matrix using Equalized weights on the Adjacency Matrices

In this section, we will show, numerically, that these errors can be reduced by refining the

partition and increasing sampling size.

On the other hand, we will consider the regularity of our method, i.e. we will show

whether “closer” systems gives a smaller number of “dissimilarity” for matching. As our

goal of this work is to compare general dynamical systems by graph matching method. We

seek to study the metric of “dissimilarity” as the measure of distance from being conjugacy,

or isomorphism for the associate graphs.

4.4.1 Partition Error

As we have discussed the partitioning issue in section 4.3.2, we can use the equidistant

partition to approximate the Markov partition with more and more cardinality of parti-

tion M. Continuing the example in previous section, we consider the logistic map T1

and the symmetric full tent map T2, and the value || f low∗AT2−AT1∗ f low||2
||AT1 ||2 , a relative error of

being isomorphic, when increasing M. Figure 4.6 suggests the error is decreasing approxi-

mately polynomially as M increases. In particular, when cardinality of partition is 100, i.e.

M = 100, || f low∗AT2−AT1∗ f low||2
||AT1 ||2 = 0.46%.
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Figure 4.6: Partition error || f low∗AT2−AT1∗ f low||2
||AT1 ||2 with number of partition M increasing.

4.4.2 Statistical Error

We apply the Earth Mover’s distance to compare graphs which are from taking a particular

finite trajectory of systems. If we let F be the matching matrix between the exact graphs

from systems, which can be solved analytically in this example, and let Fapproximate be

the matching matrix between the approximate graphs from finite trajectories, and ||F −

Fapproximate||2 be the error. Then by taking longer iterations for the trajectory and transient,

we have a more precise statistical results, which gives a smaller number of error.

On the other hand, as shown in Figure 4.7, if we let the cardinality M increase, the error

is decreasing approximately polynomially.
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Figure 4.7: Error analysis for refining partition
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4.4.3 Regularity Property for the Metric

We have discussed the issue for conjugate systems, which allows perfect matching for the

corresponding graphs. What we are going to consider is, whether “closer” systems implies

smaller measure of the dissimilarity, which we regard as a regularity issue of the method.

Here we consider an example with a logistic map L and a symmetric full tent map with

additive noise T . We let the measure of dissimilarity to be ||F ∗ AT − AL ∗ F||2, where F is

the matching matrix by Earth Mover’s distance. As shown in Figure 4.8, when we decrease

the amplitude of the additive noise, the dissimilarity value ||F ∗ AT − AL ∗ F||2 is decreasing

to a certain value monotonously.
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Figure 4.8: Measure of dissimilarity || f low ∗ AT − AL ∗ f low||2 with decreasing scale of
noise for the noisy tent map.

4.5 For Embedding Systems

We have established the graph matching method to compare conjugate systems. However,

in most of the cases, the underlying systems are not perfectly homeomorphic. It is our goal

of this topic to develop the graph matching method to compare general dynamical systems.

But the difficulty is, even we can follow the same procedure to present the matching matrix

like Figure 4.4 for general non-conjugate systems, the theoretical explanation and justifica-
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tion stand in our way. But at this stage, we have shown that, if one system embeds into the

other, the issue would become a subgraph matching problem.

We have the following definitions regarding to embedding:

Definition 4.5.1. If ϕ : X → Y is one-to-one, then ϕ is called an embedding of X into Y.

Definition 4.5.2. P(X) denote the set of all periodic points in X. qn(X) is the number of

points with least periodic n, i.e. qn(X) = |{x : ϕn(x) = x, ϕk(x) , x, 0 < k < n}|.

Note that if ϕ : X → Y is an embedding, then ϕ restricts to a one-to-one shift-

commuting mapping from P(X) into P(Y). The existence of such a mapping is equivalent

to the condition qn(X) ≤ qn(Y) for all n ≥ 1.We denote these equivalent conditions by

P(X) ↪→ P(Y), and call this the embedding periodic point condition.

In addition, we refer “the induced subgraph” as:

Definition 4.5.3. Let H be a graph with vertex set v. For each subset w of v define the

induced subgraph of H from w to have vertex set w and edge set the collection of all edges

in H that start and end in w. An induced subgraph of H is one that is induced by some

subset of v,

Note that if H has adjacency matrix B, and G is an induced subgraph of H, then AG is a

principal submatrix of B; i.e., AG is obtained from B by deleting the jth row and j column

for a certain set of j’s.

We would first give the proof of Theorem 4.5.4, which is similar to the proof of Masking Lemma

(Theorem 4.7.10). But the difference is, our proof is like “cutting edges”, while the proof

of Masking Lemma is “adding edges”.

Theorem 4.5.4. Let G and H be graphs. Suppose that XG embeds into XH. Then there is a

induced subgraph K of H, such that XG � XK .

Proof. Let G′ and H′ be graphs constructed in Theorem 4.7.9. Then AH � AH′ . So there is

a sequence of graphs
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H′ = H0, H1 · ··, Hk = H

such that AHi u AHi+1 for 0 ≤ i ≤ k − 1. By the next Lemma that will be proved, we will

find a sequence of graphs

G′ = G0, G1 · ··, Gk

such that each Gi is an induced subgraph of Hi, and the elementary equivalence from AHi

to AHi+1 extends to one from AGi to AGi+1 . We set K = Gk. Then AK � AG′ � AG and K is an

induced subgraph H. �

Lemma 4.5.5 (“cutting edges”). Let G1, H1, H2 be graphs such that AH1 � AH2 and G2 is

an induced subgraph of H1. Then there is a graph G2 such that AG1 � AG2 and G2 is an

induced subgraph of H2.

Proof. Let A = AH1 and B = AH2 . Let (R, S ) : A � B so that RS = A and S R = B. Let

GR,S be the auxiliary graph. This graph has vertex set which is the disjoint union of v(H1)

and v(H2). It contains a copy of H1, whose edges are called A − edges, and a copy of G2,

whose edges are B − edges. For each I ∈ v(H1) and J ∈ v(H2), there are RIJ edges from I

to J, called R − edges, and S JI edges from J to I, called S − edges.

We use G1 to reduce GR,S , forming a new graph Ḡ as follows. Let v = v(H1) \ v(G1)

and ε = ε(H1) \ ε(G1). Subtract v ∪ ε to the vertex set of GR,S to form the vertex set of Ḡ.

To avoid notational confusion, let Ie denote the subtracted vertex corresponding to e ∈ ε.

It will be helpful to think of vertices in v as being subtracted to the “H1 − part” of GR,S .

And vertices Ie, for each e ∈ ε, as being subtracted to the “H2 − part” of GR,S . For each

e ∈ ε, subtract a R − edges r(e) from the initial state of e to Ie, and S − edge s(e) from Ie

to the terminal state of e. For each R, S − path from I to I′ that this cuts, subtract to Ḡ an

A − edge from I to I′; similarly, for each S ,R − path from J to J′ that this cuts, subtract to

Ḡ a B − edge from J to J′ (see Figure 4.9). This completes the construction of Ḡ.

Each e ∈ ε determines a cut R, S − path r(e)s(e) from GR,S with the same initial and

terminal states in G1 as in Ḡ, and these are the only subtracted R, S − paths. Hence the
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graph with vertices v(H1) \ v and A − edges of Ḡ is isomorphic to G1. Let G2 be the graph

with vertices v(H2) \ {Ie : e ∈ ε} and all B − edges of Ḡ. Let R̄ and S̄ record the incidences

of R − edges and S − edges in Ḡ. The Ḡ is the auxiliary graph GR̄,S̄ corresponding to the

elementary equivalence (R̄, S̄ ) : AG1 � AG2 . Furthermore, G2 is the subgraph of H2 induced

from the vertex subset vG2 . �

Figure 4.9: Auxiliary graph

Combine Theorem 4.5.4 and Theorem 4.3.2, we have the following theorem, which

establish the theory for non-conjugate systems where one embeds into the other.

Theorem 4.5.6. Suppose we are given two non-conjugate systems S YS 1 and S YS 2, and

a partition Γ with |Γ| = M, such that the resulting edge shifts XG1 is conjugate to S YS 1,

XG2 is conjugate to S YS 2, where AG1 is the adjacency matrix of graph that generated from

S YS 1 with this partition, and AG2 is from S YS 2. Suppose XG1 embeds into XG2 . Then there

is a induced subgraph G′2 of G2, such that there is a matrix F (the Earth Mover’s Distance

matching matrix between graphs from XG1 and XG′2
), satisfies

F · AG1 = AG′2
· F.

A simple illustration would be the short symmetric tent map and full tent map, which

are not conjugate systems, and the short one embeds into the full one.
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(b) Adjacency Matrix for full tent
map

Figure 4.10: Induced Subgraph

Figure 4.10(a), denote AG, is the graph for short symmetric tent map, whose peak is at

0.95, while Figure 4.10(b), denote AK , is the graph for short symmetric tent map. We claim

that Figure 4.10(a) is a induced subgraph of Figure 4.10(b), or say Figure 4.10(a) can be

enlarged to Figure 4.10(b).

4.6 For Higher Dimensional Dynamical Systems

The graph matching method for higher dimensional dynamical systems can be easily ex-

tended from the 1-d case. For 2-d dynamical systems, we partition the phase by equal sized

boxes. Then the graphs are determined by investigating the trajectory of a randomly cho-

sen starting point, like the procedure for 1-d maps. And EMD can be applied to obtain the

matching matrix.

As a example, we use the graph matching method to compare two conjugate Henon

map (blue and red Henon maps in Figure 4.11). We choose the blue Henon map as:


xn+1 = 1 − ax2

n + yn

yn+1 = bxn

(4.3)

with parameters a = 1.4, b = 0.3, and the red Henon map, which is a cubic transforma-

tion of the blue one, i.e. xred = x3
blue; yred = y3

blue, which is a smooth change of coordinate.
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Figure 4.11: Conjugate Henon Maps

Figure 4.12(a) and Figure 4.12(b) show the graphs of the blue Henon and red Henon, re-

spectively. Applying EMD on this two graphs gives us the matching matrix Figure 4.12(c).

Note that due to the coarse partition, which is good for visualization, the matching matrix

only suggests a rough association between the boxes in Figure 4.11.
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(c) Matching Matrix

Figure 4.12: Graph Matching for 2D Dynamical Systems

4.7 Conclusion

In this paper, we compare dynamical systems by using graph matching method. For con-

jugate systems, which have isomorphic graphs, we show that the permutation matrix that

relates the adjacency matrices of the graphs is the same as the solution of Monge’s problem.

We use Earth Mover’s Distance (EMD) to generate the “approximated” matching matrix

to illustrate the association of graphs which are derived from equal-distance partitioning of
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the phase spaces of systems. In addition, for one system embedding into the other, we show

that the comparison of these two systems by our method is an issue of subgraph matching.

In the end we show how to extend the method to compare higher dimensional systems.

For our ultimate objective and future work, we seek to theoretically extend the graph

matching method to compare more general dynamical systems, which are not necessary

conjugate or embedding. On the other hand, the regularity property of our method should

be justified. In particular, “closer” systems in the metric of graphs’ distance should imply

closer dynamical relationships, as considered in paper [2]. And by this setting, finding an

optimal system to model a time series data or approximate a system can be achieved by

minimizing the “dissimilarity” of matching.

Appendix

Here we list the theorems and definitions that we used in our proof. The reader can refer to

Lind [18] for further details.

Theorem 4.7.1 ([18]). The edge shifts XA and XB are conjugate if and only if matrices A

and B are strong shift equivalent, we write

XA � XB ⇐⇒ A ≈ B

Definition 4.7.2 ([18]). Let A and B be nonnegative integral matrices and l ≥ 1. A shift

equivalence of lag l from A to B is a pair (R, S ) of rectangular nonnegative integral matrices

satisfying the four shift equivalence equations

(i)AR = RB, S A = BS

(ii)Al = RS , Bl = S R
(4.4)

Denote by (R, S ) : A ∼ B (lag l). We say that A is shift equivalent to B, written A ∼ B, if

there us a shift equivalence from A to B of some lag.
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Theorem 4.7.3 ([18]). Strong shift equivalence implies shift equivalence, we write

A ≈ B =⇒ A ∼ B.

Definition 4.7.4 ([18]). Let A and B be integral matrices. Then A and B are shift equivalent

over Z with lag l, written A ∼Z B (lag l), if there are rectangular integral matrices R and S

satisfying the shift equivalence equations Definition 4.7.2 (i) and (ii). In this case we write

(R, S ) : A ∼Z B (lag l).

Theorem 4.7.5 ([18]). A ∼ B =⇒ A ∼Z B. If A, B are primitive, A ∼Z B =⇒ A ∼ B.

Theorem 4.7.6 ([18]). Let A and B be integral matrices, and suppose that R and S are

rectangular integral matrices so that (R, S ) : A ∼Z B. If µ , 0 and v , 0 are such that

Av = µv, then w = S v , 0 and Bw = µw. Hence A and B have the same set of nonzero

eigenvalues, so that λA = λB.

Theorem 4.7.7 (Perron-Frobenius Theorem, [18]). Let A , 0 be an irreducible matrix.

Then A has a positive eigenvector vA with corresponding eigenvalue λA > 0 that is both

geometrically and algebraically simple. If µ is another eigenvalue for A, the |µ| < λA. Any

positive eigenvector for A is a positive multiple of vA. We call λA the Perron eigenvalue of

A, and vA a Perron eigenvector of A.

Theorem 4.7.8 (Embedding Theorem, [18]). Let X and Y be irreducible shifts of finite type.

Then there is a proper embedding of X into Y if and only if h(X) < h(Y) and P(X) ↪→ P(Y).

Theorem 4.7.9. ([18]) Suppose that XG embeds into XH. Then there are graphs G′ and H′

so that XG′ � XG, XH′ � XH, and G′ is a subgraph of H′.

Note that the Masking Lemma, state below, strengthens this result by showing that we

only need to modify H, leaving G exactly as it is, and that G can be realized as a particular

kind of subgraph of H′.

Theorem 4.7.10 (Masking Lemma, [18]). Let G and H be graphs. Suppose that XG embeds

into XH. Then there is a graph K such that XK � XH and G is an induced subgraph of K.
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Chapter 5

The Bundle plot: A presentation of

symbolic space’s evolution under the

system’s parameter changes

In this chapter, we will study a topological dynamics perspective on the full bifurcation

unfolding in unimodal mappings. We present a bundle structure, visualized as a bundle

plot, to show the evolution of symbolic space as we vary a system parameter. The bundle

plot can be viewed as a limit process of an assignment plot, which are lines assignments

between points from two dynamical systems. Such line assignments are determined by

a commuter, which is a coordinates transformation function that satisfies a commuting

relationship but not necessary a homeomorphism. The bundle structure is studied with

understanding of implication from system’s qualitative changes. In addition, the case of

the bundle plot with higher dimensional parameter variation is also considered. A main

concern in the bundle plot is a special structure, called “joint”, which determines a critical

value of the parameter where the kneading sequence becomes periodic.

102



5.1 Introduction

An interesting and fundamental question in science and dynamical systems is how do we

describe evolution of systems due to parameters changes. Bifurcation theory characterizes

qualitative changes in the way of tracking fixed points’ creation, or destruction, or stability

changes. A bifurcation occurs when a small change made to a system’s parameter causes

a topological difference in its behavior. So two similar systems with the same formation

but slightly different parameters values may behave qualitatively different. Some “differ-

ence measurements” such as least square method fail to reveal the underlying topological

distinction. Bollt and Skufca introduced a concept of a commuter to extent the equivalence

relationship of conjugacy to measure the distance from being conjugate , which can also be

thought of as the degree of “matching” between trajectories[2, 6]. Later, they extended and

interpreted the concepts of “commuter” and “defect measure” to symbol space, and intro-

duced a new visualization technique, called assignment plot, to show matchings between

symbol sequences of two topological spaces [5].

Based on this perspective, we consider a “limit process” of assembling assignment plots

from a set of different system’s parameter values. We extend here the idea of studying the

qualitative difference between two systems to that within a family of systems, where we

give the name “bundle plot” to the resulting structure. Compared to traditional Bifurcation

theory, instead of studying the qualitative changes of fixed points, we picture the symbolic

space’s evolution due to continuous changes of systems’ parameter. The bundle structure

implies trajectories, or say symbolic sequences, creation or destruction, and the “speed”

of such changes. In addition, a special structure “joint” implies the kneading sequence is

periodic, which happens shortly after periodic window’s opening.

This chapter is organized as follows: in section 5.2, we review the concept of “mostly

conjugacy” and “commuter; in section 5.3, we extended and interpreted the concepts in a

symbolic dynamics perspective; in section 5.4, we extend the assignment plot to the bundle

plot; we consider the bundle plot in higher dimensional parametric changes in section 5.5;
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then we compare our result to that of bifurcation theory in section 5.6; we finish our paper

with discussion and future work in section 5.7.

5.2 Comparing dynamical systems: review of non-homeomorphic

commuter

An essential question within the modeling context is “how close is the models to the true

phenomena.” Where the natural system under consideration is dynamic, with possibly com-

plex behavior. The field of dynamical systems seeks to provide an appropriate framework

for study of these systems. Since the inception of the field of dynamical systems by Henri

Poincare [1], the fundamental approach has been to examine topological and geometric

features of orbits, rather than focusing on numerical specifics of particular solutions of the

dynamical system, as measured in some specific coordinate system. Characterization of

the system relies upon deciphering coordinate independent properties, such as the periodic

orbit structure - the count and stability of periodic orbits.

In dynamical systems, the usual way to relate two dynamical systems is with the topo-

logical notion of conjugacy, related by the following commuting diagram,

X
gb1−−−−−→ Xy fb1b2

y fb1b2

Y
gb2−−−−−→ Y

The conjugacy function fb1b2 : X → Y satisfies the commuting relationship

fb1b2 ◦ gb1 = gb2 ◦ fb1b2 , (5.1)

with bi the parameter of system gbi . The conjugacy fb1b2 is a homeomorphism from sys-

tem gb1 to gb2 , i.e. fb1b2 is 1-to-1, onto, continuous and has a continuous inverse function. It
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is the change of coordinates that the mappings behave exactly the same in either coordinate

system. However, a commuter is an arbitrary function, not necessary a homeomorphism,

that satisfies the commuting relationship, in which case it is a non-homeomorphic change of

coordinates translating between dissimilar systems. Note the commuter provides a match-

ing between trajectories for gb1 and gb2 over- and/or under-representations are reflected as

1-to-1 and onto problems in f , while trajectories that permit matching only for finite time

are related to discontinuities in f . We therefore developed measures of commuters f to

quantify ”how much” f fail to be a “perfect match”, i.e. homeomorphism [2, 6]. For two

topological conjugate systems which are related by a homeomorphism, the dynamics of

one system completely describe the dynamics of the other. Thus, the notion of “distance

to conjugacy” should provide a means of determining the extent to which the dynamics are

similar. Paper [2] defined and studied the measure of the deviation from homeomorphism,

named homeomorphic defect, which provides a weighted average based on measurements

of possible failure of f being onto, 1-1, continuous and inverse continuous. This defect

measure is proven to have certain regularity properties [6], which supports the our defini-

tion of “distance”.

On construction of commuter fb1b2 , we define a commuter operator f n+1
b1b2

(x) = C
gb2
gb1

f n
b1b2

(x) =

g−1
b2
◦ f n

b1b2
◦ gb1(x), with f 1

b1b2
= I. The subscript of f n

b1b2
means this is a n-iterate commuter

from system gb1 to gb2 . We require g−1
b2

to be a well defined inverse function and piecewise

Lipshitz continuous with constant L < 1, which guarantees there is a unique fixed point,

say fb1b2 , of the commutation operator C
gb2
gb1

. The left column of Figure 5.1 shows example

of commuters between a short logistic map and skew full tent map, and between skew full

tent map and short logistic map. Notice the vertical gaps of the first commuter shows that,

there are some intervals of the full tent can not be matched by the short logistic.
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5.3 A symbolic dynamics interpretation of commuter func-

tions

The commuter function in the previous section describes a point-wise matching from one

coordinate system to the other. We discuss the idea of a commuter in a symbolic dynamics

interpretation, which illustrates the non-homeomorphism in a broader setting. In particu-

lar, each point x in gb1 is represented in a different coordinate system gb2 by y = fb1b2(x).

The degree to which the commuter fails to be a homeomorphism defines what we call a

homeomorphic defect. However, there were limits in the mathematical technology requir-

ing that the transformations be one-dimensional mappings for rigorous construction of the

construction of the commuters by fixed point iteration. Further, there are difficulties in

numerically computing defects in the more complicated one dimensional cases, and fur-

ther limits to higher dimensional problems. Interpretation of dynamical systems through a

symbolic representation has become the standard tool for identifying key dynamical struc-

tures and behaviors, particularly when studying chaotic systems [?]. Therefore, Bollt and

Skufca et [5] extend the “commuter” theory to a symbolic dynamics setting, which al-

lows for multivariate transformations, with construction methods separate from the fixed

point iteration, and new methods to compute defect. In addition, we introduce assignment

mappings/plots, which is a new visualization technique of commuters, to understand and

illustrate commuters in a broader perspective (see Figure 5.1).

In fact, the symbolic commuter matches points in X to points in Y such that the respec-

tive symbolic sequences will match for as many symbols as possible, which is proven in

paper [5]. This also provides us an optimization criterion to construct commuters for higher

dimensional dynamical systems. In principle, we assume that the dynamical systems under

consideration are presented to us with a known symbolic dynamic partitioning. In practise,

if necessary, we can use the uniform partitioning to approximate the “actual” partition that

can fully describe the original system, which we concern in a later work [44].
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To define symbol dynamics for systems, we assume a shift space (or say grammarr) on

Σn, with integer symbols 1, ..., n. We associate symbol i with interval IXi for the dynamics

on X and with [yi−1, yi] for the dynamics on Y . A trajectory of systems gb1 , given by

{x, gb1(x), g2
b1

(x), ...} has an associated symbolic trajectory S (x) = s0s1, ..., where g j
b1

(x) ∈

IXi ⇒ s j = i. Similarly, a trajectory of system gb2 , given by {y, gb2(y), g2
b2

(y), ...} has an

associated symbolic trajectory S (y) = s0s1, ..., where g j
b2

(y) ∈ [yi−1, yi] ⇒ s j = i. We

remark that because the closed partition on Y gives an overlap at endpoints, the symbolic

trajectory is non-unique for any preimage of any element of Ey. We denote Σy as the

subshift of all possible symbolic sequences for y.

The algorithm to construct symbolic commuter, which is given in detail in paper [5],

yields a unique commuter after one has assigned an appropriate partitioning from the spaces

X and Y . An assignment plot shows line segments from representative points in X, under

g12 to their images in Y . Figure 5.1 illustrates the characterization of the commuter as

providing a matching between points/symbolic sequences/trajectories via lines.

In Figure 5.1, we show assignment plots (blue lines) taken from the commuters between

the maps on the left side of the diagram. The top assignment plot is taken from the com-

muter between a subshift logistic map gb1 and a full shift skew-tent map gb2 . The vertical

gap of the commuter says gb2 has some dynamics that gb1 doesn’t. For example, gb1 admits

neither abaa nor bbaa, which can be observed from the first assignment plot, associated

to the largest vertical gap in the first commuter. Similarly for the second assignment plot,

gb2 is a full shift on two symbols, the words abaa and bbaa exist in the dynamics of gb2 ,

but cannot be “matched” to a depth of four symbols with any point of gb1 . Those intervals

associate to the largest horizontal portion of the second commuter. The commuter maps

those points to 0.5, on the boundary between symbols a and b of the gb1 dynamics, yielding

a match to a depth of three symbols, either aba or bba as appropriate.

In the next section, we generalize the idea of assignment plot for comparison among a

family of systems, named a bundle plot. A bundle plot can be regarded as an evolution of
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Figure 5.1: Commuter as the matching of symbol dynamics. (Left column) A sequence
of maps: (1) gb1 = 3.6x(1 − x), a subshift logistic map; (2) the commuter between gb1

and (3) the full shift skew-tent map gb2; (4) the commuter from gb2 back (5) map gb1 .
(Right column) The symbol dynamic partition of the unit interval for maps gb1 (at top and
bottom) and gb2 (in the middle), where we show all intervals for word length of four or
fewer symbols. The assignment plot (blue lines) is taken from the commuters between the
maps (as computed from the fixed point iteration), and shows that the commuter also gives
a symbolic dynamic match between the two systems. Observe: (1) Map gb1 admits neither
abaa nor bbaa, associated to the largest vertical gap in the first commuter. (2) Because
gb2 is a full shift on two symbols, the words abaa and bbaa exist in the dynamics of gb2 ,
but cannot be “matched” to a depth of four symbols with any point of gb1 . Those intervals
associate to the largest horizontal portion of the second commuter. The commuter maps
those points to 0.5, on the boundary between symbols a and b of the gb1 dynamics, yielding
a match to a depth of three symbols, either aba or bba as appropriate.
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the shift space of a particular system, under a variation of a parameter. It shows how the

system gains or loses dynamics/grammar when we increase or decrease the parameter.

5.4 The bundle: assignment plots of commuters for a fam-

ily of maps

For a discrete dynamical system xn+1 = g(xn, bi) := gbi(xn), where bi is the parameter

of the system, we want to study the creation or destruction of allowable symbolic se-

quences/trajectories of the system as we vary bi. We let gb1 be the base system with a

particular fixed parameter b1, and compare it to mappings {gbi}. Denote fb1bi to be the com-

muter from gb1 to gbi . Denote f n
b1bi

be the n − step commuter between gb1 and gbi in the

iteration scheme that generates the commuter. We let f 1
b1bi

, i.e. the initial guess, to be I.

For each x in the base space X, we line up all the range points of { fb1bi(x)}, with {bi}

values in an interval. Figure 5.2 illustrates such association from the family of tent maps

across .5 ≤ bi ≤ 1, with b1 = 1.

xn+1 = gbi(xn) =

 2bixn, 0 ≤ xn ≤ 1/2,

2bi(1 − xn), 1/2 < xn ≤ 1.

We call g1, the full (b1 = 1) symmetric tent map, the base system. Each curve describes

the matching between each x and { f1bi(x)}. We name the entire structure as “bundle”, and

each curve as a “fiber”. The names of “bundle” and “fiber” here are consistent with the

concept of bundles in Topology, as we cite the definition below:

Definition 5.4.1 (Fiber bundle [50]). A fiber bundle (also called simply a bundle) with fiber

F is a map f : E → B where E is called the total space of the fiber bundle and B the base

space of the fiber bundle. The main condition for the map to be a fiber bundle is that every

point in the base space b ∈ B has a neighborhood U such that f −1(U) is homeomorphic to
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Figure 5.2: A Bundle Plot of one dimensional mappings f1bi : X → Y , with the domain
X = [0, 1] shown at the top, and the range Y ⊂ [0, 1]. Line segments show assignments
from X to each Y of a uniform grid of sample points representing the commuters f1bi from
gb1 and gbi , where gb1 is the full symmetric tent map and gbi is short symmetric tent map
with height bi ∈ [1/2, 1].

U × F in a special way. Namely, if

h : f −1(U)→ U × F (5.3)

is the homeomorphism, then

pro jU ◦ h = f| f −1(U)|, (5.4)

where the map pro jU means projection onto the U component. The homeomorphisms h

which ”commute with projection” are called local trivializations for the fiber bundle f . In

other words, E looks like the product B × F (at least locally), except that the fibers f −1(x)

for x ∈ B may be a bit ”twisted”.

So following this definition, if we let B = {bi}, F = { f1bi(x)}, then E = B× F is a trivial

fiber bundle.

In Figure 5.2, we can see that some of the fibers merge to singletons as we decrease

the height of the tent map. A similar story happens for family of symmetric logistic maps

(Figure 5.3), i.e. {gbi(x) : xn+1 = gbi(xn) = 4bixn(1 − xn)} with the height 0.89 < bi < 1 and
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Figure 5.3: A Bundle Plot of one dimensional mappings f1bi : X → Y , with the domain
X = [0, 1] shown at the top, and the range Y ⊂ [0, 1]. Line segments show assignments
from X to each Y of a uniform grid of sample points representing the commuters f1bi from
gb1 and gbi , where gb1 is the full logistic map and gbi is short logistic map with height
bi ∈ [0.89, 1].

b1 = 1. Note bi > 0.89 guarantees the existence of the commuter between gb1 and gbi .

Here we only concern about “symbolic fibers” { f1bi(x)} where x are the generating par-

tition boundary points. In particular,

Definition 5.4.2. Let P = {x| gn
b1

(x) = 1/2}, the set of all pre-image of 1/2 of gb1(x). The

symbolic fibers is the set F = {{ f1bi(x)}|x ∈P}.

A singleton from mergence of symbolic fibers at b simply implies ∃x1, x2 ∈P , x1 , x2

with { f1bi(x1)} = { f1bi(x2)}, ∀bi ≥ b. The fibers from non-generating partitioning end points

are “bounded” by two symbolic fibers and do not cross each other.

In the following, we study the bundle and those symbolic fibers in terms of symbolic

dynamics. We shall start our discussion of bundles in terms of the tent map and hopefully

it is apparent that other maps can be handled similarly. As can be observed from Figure

5.2, we identify some basic “branch” structures which assemble the entire bundle plot. As

roughly sketch in Figure 5.4, we investigate the “branch” structure as 3 elemental struc-

tures, which demonstrate in Figure 5.4 top. Top left shows one symbolic fiber on each

side of the mid vertical fiber join together; Top middle only have one symbolic fiber from

one side joins the mid fiber; while top right has two symbolic fibers on each side of mid
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fiber join together. The whole bundle structure is a fractal structure such that any elemen-

tal structure repeats others include itself. In the following, we theoretically interpret the

elemental structures in terms of symbolic dynamics.

Figure 5.4: Elemental structure of a bundle: Suppose we have a generating partition, which
consists of these four intervals abab, abaa, bbaa, bbab in gb1 system. (Top left) For the
system gb2 , suppose the sequences abaa and bbaa are not allowable, the intervals abaa and
bbaa in gb1 map to a singleton of gb2 . We called this case to be “losing 2 words of length
4”; (Top Middle) only an interval on the left side of the mid fiber lose 1 word, while the
right side still has a perfect matching; (Top right) bbaa, bbab, abaa and abab (or say the
entire aba and bba) are lost at the same time, which describes a “lost of 4 words of length
4, or lost of 2 words of length 3”. (Bottom) The entire bundle plot is assembled by the top
three elemental structures.

We first focus on the top left elemental structure in Figure 5.4. As we decrease the

height of the tent map, the system loses dynamics by losing allowable symbolic sequences.

Suppose we have a generating partition, which gives four intervals abab, abaa, bbaa, bbab
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in gb1 system. Then, for instance, the points in the interval abab has an infinitely long

sequence and starting with the word abab. Now suppose we compare gb1 to itself (Figure

5.6 left column). The commuter is trivially the identity maps, meaning every symbolic

sequence matches itself perfectly (“perfect” means the commuter is a homeomorphism);

But as we lower the height of gb2 below 1 (Figure 5.6 mid column, the red tent map is

lower), the abaa and bbaa intervals are compressed, since they lose allowable symbolic

sequences starting with abaa or bbaa due to loss of dynamics of the gb2 system; Until a

critical value of b, the abaa and bbaa intervals completely disappears, and the abaa and

bbaa of gb1 map to a singleton of gb2 . We simply called this case to be “losing 2 words of

length 4”, in the sense that we lose the word abaa and bbaa at the same time; In fact, in this

case, we lose the word baa. To see this, we notice when we lower the height of tent map

gb2 , the invariant set is smaller and exclude the interval baa, which appears as the most right

interval under the generating partition (see Figure 5.5(a)). Thus the system loses the ability

to generate any word with baa included, like abaa and bbaa. Therefore the words abaa

and bbaa are not allowable in the grammar. What’s more important is, we lose both words

simultaneously. A step further, the lost of baa implies the associated kneading sequence is

periodic (which will be proven in section 5.6). For example, Figure 5.5(a) shows the tent

map bundle plot on the generating partition up to 4 symbols, with the red line at around

0.809 crossing a singleton, which is from the fibers of the left end point of abaa and right

end point of bbaa. Consider the tent map with that associate height (around 0.809), whose

kneading sequence happens to be period-3 with Cba (or say g0.809(g0.809(g0.809(.5))) = .5).

If we start with an initial point slightly greater than 0.5 (see Figure 5.5(b)), we can only

have the symbolic sequence bbab.... In other words, bbaa... is impossible. Similarly if we

start with an initial point slightly less than 0.5, we only have abab. But if we have the tent

map higher than 0.809, both abaa and bbaa are allowable. For the family of symmetric

tent map, the lost of words with certain length can be in pairs.

The top right structure in Figure 5.4, however, describes a “lost of 4 words of length
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Figure 5.5: Illustration of lost of 2 words of length 4: (a) The tent map bundle plot
on the generating partition up to 4 symbols, with the red line at around 0.809 crossing a
singleton, which is from the fibers of the left end point of abaa and right end point of bbaa.
The singleton across the red line implies the lost of words abaa and bbaa, which further
implies the lost of the word baa. This is due to the fact that the invariant set of tent map
at height 0.809 excludes the interval baa, and thus abaa and bbaa are not allowable in
the grammar; (b) The tent map with that associate height (around 0.809), whose kneading
sequence happens to period-3 with Cba (or say g0.809(g0.809(g0.809(.5))) = .5). Note both
abaa and bbaa... are not allowable under the system.
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4”, which due to the fact that abab, abaa, bbaa and bbab are lost at the same time. This

correspond to a “faster” lost of words comparing to the case of “losing 2 words of length

4”.

Figure 5.6: Degeneration of intervals: (Left column) suppose we compare gb1 to itself,
the commuter is trivially the identity maps, meaning every symbolic sequence matches
itself perfectly; (Middle column) as we lower the height of gb2 below 1, the abaa and
bbaa intervals are compressed; (Right column) at a critical value of b, the abaa and bbaa
intervals completely disappear, the abaa and bbaa in gb1 map to a singleton of gb2 .

Based on these observations and analysis, we call the singleton a “joint”, and define its

associate parameter b as follow:

Definition 5.4.3 (Joint). A joint parameter is denoted as

b joint(ω) = sup{b | the grammar Σ loses a word ω o f length N}. (5.5)
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Figure 5.7: Joint: the existence of a joint implies lost of a word/words

As long as there is no confusion, we talk joint as the topological behavior and the asso-

ciated parameter values. Whenever there is no need to distinguish b joint(ω1) from b joint(ω2),

we simplify the notation b joint(ω) as b joint. In this paper, we concern problems about the

joint: When does joint happen? Is there any relationship between the joints and the bi-

furcation? Generally speaking, when we decrease the height of the tent maps or logistic

maps, the complexity and entropy of the systems would decrease, due to the loss of peri-

odic orbits. For instance, in Figure 5.8, we calculate the total number of fibers for each bi,

which, as expected, gives a monotone increasing function, as we increase bi towards 1. As

we increase the size of the grid points in X space and b space, the “flat spot” and “jump” in

Figure 5.8 still exist, because once a particular symbolic sequence is lost, all the symbolic

sequences of its pre-image disappear simultaneously. Thus, as we decrease the value of bi,

we may lose symbolic sequences that already lost.

In particular, the following theorem proves that the lost of symbolic sequences are ac-

tually non-smooth. More precisely, it can be represented as a Lebesgue singular function.

In other words, the derivative of commuters with respect to parameter b is not a smooth

function, but 0 almost everywhere (though it is monotone non-decreasing from 0 to 1). We

introduce one theorem and two lemma to prove this claim.

Theorem 5.4.4. The derivative of commuter with respect to the model parameter b exists
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Figure 5.8: fibers’ number: As we decrease the height of the tent map, the system loses
dynamics in the way of losing allowable symbolic sequences. We calculate the total number
of fibers for each bi.

almost every where.

Proof. Since the commuter function is a piecewise monotone function with respect to pa-

rameter b [2, 6], and hence of bounded variation. Thus its derivative exists a.e. [4]. �

Lemma 5.4.5. f n
1b(x0)→ fb(x0) for all x0 ∈ [0, 1] as n→ ∞.

The proof of this lemma refer to our former work [2]. It shows the existence and

uniqueness of the commuter function by contraction mapping theorem.

Lemma 5.4.6. f n
1bi

(x0)→ f n
1b(x0) uniformly for x0 ∈ [0, 1] as bi → b.

Proof. For x0 ∈ [0, 1/2], we want to show, for ∀ϵ, ∃δ, for all |bi−b| < δ, we have | f n
1bi

(x0)−

f n
1b(x0)| < ϵ.

We show by induction:

For n = 1, since f 1
1bi
= f 1

1b = I, the uniform convergence holds;

Now assume the case n is true, that is ∀ϵ, ∃δ, for all |bi − b| < δ, we have | f n
1bi

(x0) −

f n
1b(x0)| < ϵ.
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For the case n + 1, since f n+1
1bi

(x0) = g−1
bi
◦ f n

1bi
◦ g1(x0) = 1

2bi
f n
1bi

(2x0), for the above ϵ in

case n, ∃ δ = ϵ, so that:

| f n+1
1b (x0) − f n+1

1bi
(x0)|

=| 1
2b

f n
1b(2x0) − 1

2bi+1
f n
1bi

(2x0)|

≤ 1
2b
| f n

1b(2x0) − f n
1bi

(2x0)| + | 1
2b
− 1

2bi
| f n

1bi
(2x0)

<
ϵ

2b
+
ϵ

2bbi
= (

1
2b
+

1
2bbi

)ϵ < 3ϵ.

For x0 ∈ [1/2, 1], the proof is similar. �

Note that we are considering bi, b ∈ [1/2, 1].

Theorem 5.4.7. The derivative of the commuter with respect to the parameter b is 0 when-

ever it exists.

Proof. For x0 ∈ (0, 1
2 ), we let H′ = limb2→b3

| f1b2 (x0)− f1b3 (x0)|
|b2−b3 | . We want to show H′ = 0

whenever it exists.

Denote (Hn)′ = limb2→b3

| f n
1b2

(x0)− f n
1b3

(x0)|
|b2−b3 | , then by Lemma 5.4.5 and Lemma 5.4.6, we can

interchange the limit and have

H′ = lim
b2→b3

lim
n→∞

| f n
1b2

(x0) − f n
1b3

(x0)|
|b2 − b3|

= lim
n→∞

lim
b2→b3

| f n
1b2

(x0) − f n
1b3

(x0)|
|b2 − b3|

= lim
n→∞

(Hn)′. (5.6)

We show (Hn)′ = 0 by induction.

For that case when n = 1, since f 1
1b2
= f 1

1b3
= I, the conclusion holds;

Assume the case n is true, that is (Hn)′ = 0 whenever it exists;

For the case n + 1, (Hn+1)′ = limb2→b3

| f n
1b2

(x0)− f n
1b3

(x0)|
|b2−b3 | , x0 ∈ [0, 1]. Since f n+1

1i = g−1
bi
◦

f n
1bi
◦ gb1 , we have
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(Hn+1)′ = lim
b2→b3

| 1
2b2

f n
1b2

(x0) − 1
2b3

f n
1b3

(x0)|
|b2 − b3|

, x0 ∈ [0, 1/2]. (5.7)

Note the proof for x0 ∈ [1/2, 1] is similar.

Without loss of generality, we assume 1
2b2

f n
b1b2

(x0) > 1
2b3

f n
b1b3

(x0) and b2 > b3, then we

have

1
2b2

( f n
1b2

(2x0)− f n
1b3

(2x0))

b2−b3
≤

1
2b2

f n
1b2

(2x0)− 1
2b3

f n
1b3

(2x0)

b2−b3
≤

1
2b3

( f n
1b2

(2x0)− f n
1b3

(2x0))

b2−b3

We take the limit of b2 → b3 on the above inequality, and by assumption of case n,

we have (Hn+1)′ = 0. We note that for the assumption in case n, the conclusion is true for

x0 ∈ [0, 1]. While in case n + 1, we are actually considering (Hn+1)′(2x0), x0 ∈ [0, 1/2].

But the measure of x0 for (Hn)′ , 0 is 0 by Theorem 5.4.4. So in other words, (Hn)′ = 0

a.e. for x0 ∈ [0, 1], which is what we want to show.

�

Now we have proven that the variation of system parameter leads to a non-smooth re-

duction of the system’s dynamics. A typical symptom is the joint of fibers, which indicates

the “loss of words” of some length. This gives rise to homeomorphic defect since some

symbolic sequences of the base system can not be matched. In the next section, we give

another type of bundle, which we call “conjugate/skew bundle”. Still, we vary the param-

eter of the system, but it only exhibits a homeomorphic change of the system. In other

words, the bundle plot draws associations within the conjugate classes of the system, with

no joint and no symbolic sequences lost.

5.4.1 Skew bundle

In the previous section, we consider the loss of symbolic sequences as we vary one pa-

rameter of the system. In this section, we are considering the bundle plot for a family of

equivalent systems where all the systems are conjugate. We use the tent map as an exam-

ple. It is known [2], that skew tent maps with height 1 are conjugate systems. We fixed
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the heights of the tent maps bi ≡ 1, while change the peak point’s x-axis ai from 0 to 1. In

particular, the family of skew tent maps is given by the following:

xn+1 = gai(xn) =


1
ai

xn, 0 ≤ xn ≤ 1/2, (5.8)

1
1 − ai

(1 − xn), 1/2 < xn ≤ 1.

As shown in Figure 5.9, the skew bundle exhibits a discontinuity that said colloquially,

reminds us of a “side-parted hairstyle”, with a single hair separating two sides. The fibers

don’t intersect each other, which indicate there is not lost of symbolic sequences of the

system. Notice that the bundle plot in Figure 5.9 is not symmetric and, unlike the case in

the previous section, the vertical gaps of commuters (see Figure 5.9 top) do not mean there

are homeomorphic defects. In fact, in this case the commuters are singular functions [2].

There are no joints except at ai = 0 and ai = 1, whose tent maps have only one leg.

For 0 < ai < 1, the tent map changes under conjugacies, as Figure 5.9(a) and Figure 5.9(b)

show two particular conjugacies, which are between the symmetric tent map and skews tent

maps.

The non-symmetric structure of the bundle plot in Figure 5.9 is due to the stable fixed

point’s location. We solve the non-trivial fixed point from x∗ = 1
1−a (1 − x∗), and have

a = 2 − 1
x∗
, x∗ > 1/2. (5.9)

We plot it with red dash line in Figure 5.9(c), which is exactly the “single hair”. Points

x < 1/2 of ga1 match points x < ai of {gai}; 1/2 < x < x∗ of ga1 match points ai < x < x∗ of

{gai}; x > x∗ of ga1 match those of {gai}; While the fixed point x∗ of ga1 matches to those of

{gai}. As ai moves from 0 to 1, the stable fixed point moves from 1/2 to 1, which skews the

bundle to the right.
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Figure 5.9: A Bundle Plot for skew tent maps: Line segments show assignments from
X to each Y of a uniform grid of sample points representing the commuters f1ai from ga1

to gai , where ga1 is the full symmetric (a1 = 1/2) tent map and gai is skew tent maps with
peak points at (ai, 1). (Top left) The commuter between the full symmetric tent map and
a skew tent map with peak at (0.090909, 1); (Top right) The commuter between the full
symmetric tent map and a skew tent map with peak at (0.890909, 1); (Bottom) the skew
bundle, which exhibits a “side-parted hairstyle”, with a single hair, which is the stable
fixed points’ location for different gai .
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5.5 Bundle for higher dimensional parameter space

Here we consider the bundle plot where we change two parameters of the system simul-

taneously, which gives a 3 dimensional bundle. For instance, Figure 5.10 and Figure 5.11

show bundle plots for comparing full symmetric tent map and tent maps with different fixed

bi while varying ai of the tent map, with peak location (ai, bi).
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Figure 5.10: Bundle plots for comparing full symmetric tent map and tent maps with dif-
ferent fixed bi while varying ai of the tent map with peak location (ai, bi).

5.6 Bundle plot v.s. bifurcation plot

The bifurcation plot keeps track on the changes of the stable fixed points. Bifurcation

happens due to creation, or destruction, or stability changes of fixed points. On the other

hand, we have “joint” where symbolic fibers merge (Figure 5.7). As a joint exists, we lose

a word/words of some length. In terms of mostly conjugacy, we say that a homeomorphic

defect is born. So both bifurcation and the bundle plot seem to provide information about
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Figure 5.11: A 3-d bundle plots for comparing full symmetric tent map and tent maps with
different fixed bi while varying ai of the tent map with peak location (ai, bi).

qualitative changes of systems, but in a different perspective. In order to relate and compare

these two objects, we seek to answer questions like, for which parameter does joint occur?

Does a joint occur when a bifurcation does? It turns out that joint happens shortly after

bifurcation. In fact, the joint describes the qualitative changes of the kneading sequence

as we vary a system parameter. In this section, we use the kneading theory to study the

bundle’s joints.

The kneading sequence is defined as follow:

Definition 5.6.1. [53] Let x ∈ [0, 1]. The itinerary of x under g is the infinite sequence

S (x) = (s0s1s2...) where

s j =


0, g j(x) < 1/2,

1, g j(x) > 1/2,

C, g j(x) = 1/2.
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The kneading sequence K(g) of g is the itinerary of g(1/2), i.e., K(g) = S (g(1/2)).

The Kneading theory provides a critical understanding of the dynamics of unimodal

maps. The kneading sequence determines which periodic orbits exist. We refer readers to

Devaney’s book [17] and Milnor’s [53] for more details about the Kneading theory, where

the underlying system g is a general unimodal map. Here we cite an important theorem, the

Intermediate value theorem for kneading sequences[51], which we will use in later proof.

Theorem 5.6.2. [Intermediate value theorem for kneading sequences][51] If a one-parameter

family gb of continuous unimodal maps depends continuously on b and the topological en-

tropy h(gb) > 0 for all b, then if K(gb0) < K < K(gb1) and K ∈ M where M is call the

class of sequences which occur as kneading sequences of gb for all b, then there exists b′

between b0 and b1 with K(gb′) = K.

Notice if we consider a full family of system {gb} where b ∈ [b0, b1], the class of

kneading sequences M would consists of all possible symbolic sequences starting with

symbol C between K(g0) and K(gb1).

The opening of a periodic window, for instance the logistic map xn+1 = gbi(xn) =

4bixn(1− xn), can be specified by looking at the local structure of gN
bi

. Figure 5.12 shows the

graphs of g3
bi
= gbi(gbi(gbi)). As bi increases, the “hump” inside the box of Figure 5.12(a),

which resembles the “upside-down” of the original quadratic map, grows until it is tangent

to the identity line. Then for this bi, period-3 window is open. As we further increase bi

a little bit, the identity line cross the kneading point, which implies g3
bi

(1/2) = 1/2. The

kneading point becomes a point of period-3 and super-stable. In Figure 5.13, we plot the

opening of period-3 with red horizontal line, and the period-3 kneading point with green

horizontal line. We can see that there is a joint shortly after the bifurcation point, and close

to the period-3 kneading point. Is this joint at the same location as the period-3 knead-

ing point? Or more generally, what is the relationship between the joints and the periodic

kneading points? The following theorem states that the joint happens shortly after bifurca-

tion, and implies the kneading sequence is periodic.
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Figure 5.12: Bifurcation points and Kneading points: (Left) the “hump” of f 3(x) inside the
box resembles the “upside-down” of the original quadratic map; (Middle) as bi increases,
the “hump” grows until it is tangent to the identity line, which indicate the opening of
period-3 window; (Right) As we further increase bi a little bit, the identity line cross the
kneading point, which implies g3
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Figure 5.13: The Kneading point and Bifurcation point: we plot the bifurcation point (the
opening of period-3) with red horizontal line, and the period-3 kneading point with green
horizontal line. As Theorem 5.6.3 proves, the joint (green line) happens shortly after bifur-
cation, and implies a period-N kneading point.
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Theorem 5.6.3. The existence of a joint implies the kneading sequence is periodic.

Proof. Suppose we have a joint. By definition, WOLOG, assume we have b joint s.t. we lose

a word ω = × × ×... × × × 1︸              ︷︷              ︸
N

of length N from the grammar. Assume at bhigher > b joint, we

have not lost the word yet. Assume

K(gbhigher ) = C ∗ ∗ ∗ ... ∗ ∗ ∗ × × ×... × × × 1︸              ︷︷              ︸
N

∗ ∗ ∗..., (5.11)

and suppose we have lost the word ω = × × ×... × × × 1︸              ︷︷              ︸
N

of length N at blower < b joint,

then either

K(gblower ) = C ∗ ∗ ∗ ... ∗ ∗ ∗ × × ×... × × × C︸               ︷︷               ︸
N

∗ ∗ ∗... = C ∗ ∗ ∗ ... ∗ ∗ ∗ × × ×... × ××︸           ︷︷           ︸
N-1

, (5.12)

or

K(gblower ) = C ∗ ∗ ∗ ... ∗ ∗ ∗ × × ×... × × × 0︸              ︷︷              ︸
N

∗ ∗ ∗..., (5.13)

If it is in case 1 with K(gblower ) given by equation (5.12), then b joint = blower since there

is no b′ s.t. K(gblower ) < K(gb′) < K(gb joint), blower < b′ < b jointand we lose ω at b′. In other

words, blower is the supreme of b that loses ω. In this case, K(gb joint) is periodic.

If it is in case 2 with K(gblower ) given by equation (5.13), then for K = C ∗ ∗ ∗ ... ∗ ∗ ∗

× × ×... × × × C︸               ︷︷               ︸
N

∗ ∗ ∗... = C ∗ ∗ ∗ ... ∗ ∗ ∗ × × ×... × ××︸           ︷︷           ︸
N-1

, we have K ∈M and

K(gblower ) < K < K(gb joint), (5.14)

Then by the Intermediate Value Theorem for Kneading Sequences (Theorem 5.6.2),

there exists b′ s.t. blower < b′ < b joint, K(gb′) = K and we lose ω at b′. So in this case,

b joint = b′ and K(gb joint) is periodic. This finishes our proof.

�
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We give the bundle plot and the bifurcation of logistic map in Figure 5.14. The vertical

red lines are positions of some joints, which are shortly after the bifurcation points. On

the other hand, as a well-known phenomenon, “Period Three Implies Chaos” [37] proves

the fact that the existence of a period-three orbit implies the existence of a large set of

sensitive points. The can actually be suggested in the bundle plot. In Figure 5.13, the red

line indicates the period-3 opening. Later, the green line crosses a joint. Notice there are

multiple fibers join at this joint. As we discussed before (see Figure 5.6 top right), the

more symbolic fibers merge at one joint, the more words we lose at one time. Through our

computation, we realize this joint is a special one in that it always has more fibers joins than

others, within a given grid size of X space and {bi}. In other words, when the parameter bi

is at this joint (green line), the symbolic sequences are gained/lost more than others, which

says the system dynamics exhibits significantly ”faster” qualitative changes at this moment.

0.9 0.92 0.94 0.96 0.98 1

0.9 0.92 0.94 0.96 0.98 1

Figure 5.14: Comparison between Bundle Plot and Bifurcation Plot: the vertical red lines
are positions of some joints, which are shortly after the bifurcation points.
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5.7 Discussion

In this chapter, we consider a different perspective of studying a system’s qualitative changes

due to parameter variation. We provide a bundle plot, which is from commuters, to pic-

ture such evolution of the symbolic space. The joint implies qualitative changes where the

kneading points become periodic. And it happens shortly after bifurcation.

The construction of bundle plots is applicable to other unimodal systems. Generally

speaking, we only require the family of maps {gbi} piecewise invertible and

• ĝ−1
bi

is piecewise continuous on Y;

• ĝ−1
bi

is piecewise Lipshitz continuous, with Lipshitz continuous L < 1.

which guarantees there is an unique commuter. We believe that the family maps gbi

can be generalized to be maps with positive Lyapunov exponents, since such “average”

contraction of g−1
bi

can also result in a unique commuter, which gives rise to the bundle plot.

On the other hand, we are also trying to extend this method to higher dimensional systems,

where we assume that the dynamical systems under consideration are presented to us with

a known symbolic dynamic partitioning.

We also note that the study in this chapter is based on a given system. In fact, in the

construction of bundle, the base function gb1 can be given by a time series data. In this case,

we are to provide a family of system {gbi}, and see how these systems match the original

data set.
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Chapter 6

Heart Rate Variability: Time Series

Analysis on EKG as Determinism with

Jump Stochastic Parameters

In this chapter, we use measured heart rate information (RR intervals) to develop a one-

dimensional nonlinear map that describes short term deterministic behavior in the data.

Our study suggests that there is a stochastic parameter with persistence which causes the

heart rate and rhythm system to wander about a bifurcation point. We propose a modified

circle map with a jump process noise term as a model which can qualitatively capture

such this behavior of low dimensional transient determinism with occasional (stochastically

defined) jumps from one deterministic system to another within a one parameter family of

deterministic systems.

6.1 Introduction

Modeling the behavior of human cardiovascular system is an interesting problem which

draws extensive attention from researchers. A fundamental and challenging question is
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how best to provide a simplified representation of both the deterministic and stochastic

aspects of heart dynamics. Suder et al. [26] recorded RR intervals while restricting the

paced respiration cycle lengths above 8 s, from which they observe that heart rate variability

obeyed a dynamic rule that can be expressed by a one-dimensional, nonlinear circle map.

Later, Jason et al. [27] showed that even during spontaneous breathing (with subject at

rest), the angle component of RR-interval still has a highly deterministic structure after

filtering out low frequency components. Shiau et al. [28] argued that the deterministic

characteristic could result from sympathetic activation and thermo-regulation, which are

primarily evidenced in the low frequency component of the RR-interval signal. They used

a simple nonlinear noise-reduction method [29] to remove the high frequency component

and used the next angle map to reconstruct a deterministic attractor.

Our approach is based on Shiau’s work, but we use cubic smoothing spline to remove

the high frequency component of RR-intervals time series data. This filter approach (via

spline) was selected (1) for ease of implementation1, but also (2) because the smooth-

ing spline enforces a continuity, consistent with our expectation that heart rate variability

should vary continuously . We find the resultant data can be easily related to a modified

sine circle map, but with an interesting noise behavior which we describe as a stochastic

parametric factor with persistence. Here we define ‘persistence’ as piecewise constant in

time, with occasional random jumps. The stochastic behavior that we find is similar in

character to that identified in Lerma’s recent study on the stochastic aspects of Cardiac

Arrhythmias [30], which argued that in the neighborhood of bifurcation points, the fluc-

tuations induced by the stochastic opening and closing of individual ion channels in the

cell membrane results in membrane noise that may lead to randomness in the observed dy-

namics of cardiac rhythm systems. In [31], Kuusela et al. give a simple one-dimensional

Langevin-type stochastic difference equation which can model the heart rate fluctuations

in a time scale from minutes to hours. The similarity between to our work is that both

1Smoothing spline requires choice of a single smoothing parameter, while Schreiber’s noise-reduction
methods requires optimizing over a pair of parameter values.
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provide a stochastic model which aims at uncovering the interaction of determinism and

stochastic control of cardiac dynamics. However, we focus our study on the low frequency

component of RR-intervals data, which relates to sympathetic and vagal activity of heart,

to reveal the stochastic jump with persistence around a bifurcation point.

The paper is organized as follows: Section 2 discusses our filtering approach and our

decision to focus on the low frequency (LF) component of the Heart Rate Variability signal

(HRV) in the phase space reconstruction. Section 3 discusses the phase reconstruction from

the ECG data and discusses the complex behaviors observed in the data. In Section 4, we

give a reasonable model to simulate these observed behaviors, with conclusions in section

5.

6.2 Spectral Components of HRV

Over the past two decades, the general body of research has recognized a significant re-

lationship between the autonomic nervous system and cardiovascular mortality, including

sudden cardiac death. Although cardiac automaticity is intrinsic to various pacemaker tis-

sues, heart rate and the rhythm are largely under control of the autonomic nervous system

[32]. Different frequency ranges of the HRV have been related to various physiological

phenomenons [32]. Studies of spectral components of short term recordings of HRV show

that the efferent vagal activity is a major contributor to the high frequency (HF) component,

while the LF component is considered as a marker for sympathetic modulations, with some

studies also suggesting that LF reflects both sympathetic and vagal activity [32].

In Suder’s experimental method [26], they obtain a one-dimensional, nonlinear deter-

ministic observable from the HF component by restricting the respiration-cycle to greater

than 8s. Their theoretical foundation is that controlling respiration can induce an increase

in the HF signal. After high pass filtering, they identify a one-dimensional deterministic

process. Similarly, Janson’s work [27] obtains a low-dimensional structure by extracting
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the HF component of HRV, but without control on respiration. In contrast, Shiau [28] ob-

tains a one-dimensional deterministic process from the LF component under spontaneous

breathing conditions. Regardless of the frequency domain being studied, there is evidence

showing that low-dimensional deterministic processes describing the autonomic nervous

system can be observed, with the low-dimensional models providing insight into heart rate

dynamics [33, 34]. In this paper, we focus on the LF component while generating a one-

dimensional map, which corresponds to sympathetic and vagal activity [32]. A primary

reason for choosing to analyze the LF component is that it is easier to reduce the effects of

noise introduced by measurement error.

6.3 Electrocardiogram Data

From an open source repository (physionet.org), we obtained RR-intervals data taken from

volunteers who were supine and asked to breathe at a fixed rate of 0.25 Hz for 10 min.

(Data originally from [35].) The two-dimensional embedding of the raw data, shown in

Figure 6.1(a), has no apparent low dimensional structure. To identify a low-dimensional

model, we apply the following sequence of processing steps: First, we filter out the HF

component by applying a cubic smoothing spline interpolation to the RR-intervals data, as

illustrated in Figure 6.1(b), an alternative filtering technique to that of [29].

As second step, for each filtered data point, we compute an angular coordinate repre-

sentation ϕn measured relative to the centroid of the data set, RR :

ϕn =
1
π

arctan
RRn+1 − RR

RRn − RR

 mod 1. (6.1)

We then construct a time delay embedding of the angular coordinates to produce the “next

angle map.”

Figure 6.2(a) shows the time delay embedding representation of the next angle map

(6.1) data, which appears to be reasonably well described by a one dimensional curve, but
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Figure 6.1: ECG Data. (Left) Time delay embedding of raw RR-interval data has no appar-
ent low-dimensional deterministic structure. (Right) A cubic smoothing spline is applied to
filter out the high frequency component of series data of RR. The remaining low frequency
component would lead to a low-dimensional structure after we extract the angle part in
polar coordinates.

with data lying nearly on, but both above and below, the identity line on that graph. We

find that there exist two typical cases for the portion of the trajectory that lies near the

intersection between identity line and the data:

• Case 1: The trajectory evolves along a lower branch, below the identity line, resulting

in decreasing values;

• Case 2: The trajectory evolves along an upper branch, which intersects the identity

line with two fixed points, generating increasing values.

Figure 6.2(b)) illustrates these two behavior. We observe from our data that the trajec-

tory appears to persist along a branch (either upper or lower) for several iterations before

“jumping” to the other branch. Of special importance is that although the full data set may

appear as a “cloud” as if it were noisy observations, any particular trajectory follows a

smooth (seemingly deterministic) path for several iterates. The noisy cloud appearance

results from overlaying numerous deterministic partial trajectories, each with slightly dif-

ferent parameters. We describe this behavior as “persistence,” and view it as parametric
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Figure 6.2: Next Angle Map data. (a) A time delay embedding of data computed from
next angle map (6.1) indicates that a one-dimensional representation may be a reasonable
approximation. (b) Cobweb along typical data trajectories. Highlighting three trajectory
segments near the line ϕn+1 = ϕn.We note that the trajectory sometimes travels following a
lower branch (below the line and decreasing — case 1) while at other times, it follows an
upper branch (above the line and increasing— case 2).

134



noise. Describing this phenomena as noise is not meant to imply that the underlying pro-

cess is truly stochastic, but is simply a recognition that even if it is deterministic, we are

not modeling the complex control system behavior, which would be affected by the body

condition, circumstance, emotion,etcetera.
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Figure 6.3: Data trajectories. (Top) Demeaned RR data (RRn−RR). We label ‘1’ to the case
when the trajectory follows the lower branch, and ‘2’ to the case when the trajectory follows
the upper branch. (Bottom) Series data of ϕ. Decreasing ϕn relates to ‘1’; increasing ϕn

relates to ‘2.’ For both graphs, the data is discreet, with the curve drawn for clarity of
illustration.

For convenience, the following discussion uses ‘1’ as shorthand notation for case 1

trajectories, and ‘2’ for case 2. In 6.3, we plot the sequence data of RRn and ϕ(n). From

(6.1), we can understand the relationship between these data for each monotone interval of

ϕ(n) :

Case 1 — ϕ(n + 1) < ϕ(n), or ϕ(n) is decreasing, with data below the identity line of

Fig. 6.1(b) . The corresponding interval for RRn would be the one where RRn is concave

down above the average line or concave up and below average.

Case 2 — ϕ(n + 1) > ϕ(n), or ϕ(n) is increasing, data above the identity line in
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Fig. 6.1(b), corresponding to RRn intervals of downward cavity when below average or

upward concavity when above average.

These observed behaviors lead to a natural symbolic labeling and transition graph rep-

resentation using symbols ’1’ and ’2.’ In this context, the “persistence” of the system

to stay on a particular branched for several iterates would be evidenced in the transition

diagram (Figure 6.4) as pii > 1/2, with larger values indicating greater persistence. We re-

mark that our data and case description admits some ambiguity that might appear in longer

dataset: (1) it is possible that the trajectory following some branch may experience a pa-

rameter ‘jump’, but land on a new branch that is the same case as before the jump, and that

jump would not result in a transition to the other node, (2) the trajectory might jump to a

Case 2 branch (with a stable fixed point) while the system state is above the fixed point, in

which case the trajectory would decrease toward the stable fixed point, with this behavior

essentially indistinguishable from a Case 1 trajectory.

Figure 6.4: Transition relationship between upper and lower branch trajectories, as ob-
served in the data. When pii is large, the system will tend to “persist” along a either the
upper or lower branch.

In this paper, we are not trying to provide a physiological explanation for this behavior.

Rather, we simply have observed the phenomena. In the next section, we build a model

based on the circle map [36, 38] which can mimic the features discussed above through

representation as a stochastic process with an interesting form of ‘noise’ in that process.
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6.4 The Circle Map

The circle map is a generic term describing a family of dynamical systems whose state

space can be interpreted as angles of a circle. A simple example of circle map using the

modulo function and is given by ϕn+1 = f (ϕn) = ω + ϕn (mod T ), where ω and T are

constant. A second example is the sine circle map, which was introduced by Kolmogorov

and well studied by Vladimir Arnold [36, 38], is defined by

ϕn+1 = (ϕn + ω + k sin ϕn) modulo 2π (6.2)

where ω and k are constants. Figure 6.5 plots the Sine Circle Map with ω = 5 and k = 1.25

as the red curve, while the plotted points (green) are from the data. The circle map provides

a prototypical model for systems that are controlled by two pacemakers, with the term

k sin ϕ describing the effect of the nonlinear oscillator coupling [38], which is why it has

been previously studied as a model for the heart [36].
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Figure 6.5: The Sine Circle Map. A scaled version of the Sine Circle Map (red) overlaid
on our data from the two-dimensional embedding of ϕn (green), with ω = 5 and k = 1.25.
The circle map is not intended to interpolate the points, but the family of such curves does
provide qualitatively similar dynamics. (color online)

Figure 6.6(a) shows the sine circle map with ω = 5 and k = 1.2, 1.275 and 1.35.When
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k = 1.2 trajectories would mimic the Case 1 trajectories of our data. As k is increased,

the map gets closer to the identity line, yields trajectories with slow passage between the

identity line and the curve [39], a ghost of the fixed point associated to the saddle node

bifurcation that occurs at approximately k = 1.283.When k = 1.35, the curve has crossed

through the identity line. Two fixed points are created, one is stable, the other is unstable.

Trajectories on this map would mimic Case 2 behavior during the transient approach toward

the stable fixed point.

In order to simulate similar behaviors of our ECG data using the circle map, we pro-

ceed as follows: We assume that k is piecewise constant (the persistence) with changes

to k occurring as Poisson arrivals. When k changes, the new value for k is chosen as an

i.i.d. variable from a Gaussian distribution:

kn =

 1.1938 + 0.25ϵn, pn < pc,

kn−1, else, (6.3a)

where 0 ≤ pc ≤ 1, pn ∼ U[0, 1], and ϵn ∼ N[0, 1]. Critical value pc governs how often

kn changes its value. (The Gaussian scale parameters as well as the choice pc = 1/17

were selected heuristically to provide a good visual match to the observed data trajectory.)

A visualization of such kn is given in Figure 6.6(b). Whenever kn < 1.283 (below the

red horizontal line in Figure 6.6(b)) the dynamics are similar to case 1 of our data. For

kn > 1.283, the behavior is like case 2.

Figure 6.7(a) shows an example of a typical trajectory generated by our model. The cob-

web around the crossover section is plotted in Figure 6.7(b) for a few trajectory segments,

illustrative reasonable qualitative agreement with our data. We note that long sequences

of ‘2’ behavior results in the nearly horizontal part of ϕn in Figure 6.7(a). We similarly

give a graph representation for the modified circle map in Figure 6.8. For our model, we

can compute the transition probabilities as follows: Define a k-refresh as the condition that

kn , kn−1, the situation where the system has jumped to a new parameter value. Then the
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Figure 6.6: The Sine Circle Map. (Left) Zoomed to the portion of the map where saddle-
node bifurcation first occurs. We fix ω = 5, and show the curves for k = 1.2, 1.275, 1.35,
with the identity line y = x plotted in black. For k = 1.35, (the upper red curve), the curve
has pushed through the identity line to create a stable fixed point. (Right) A simulation of
sequence {kn}, using the stochastic process defined in (6.3a). Whenever kn is above the red
horizontal line, the sine circle map is behaves similarly to case 2 of our data; whenever kn

is below the red horizontal line, the sine circle map is behaving similarly to case 1 of our
data;

conditional probability that refresh results in an “upper branch” (Case 2) behavior is given

by

pu := P(kn > 1.283 | kn , kn−1), (6.4)

is independent of system state and is easily computed from the normal distribution function.

For the particular parameters described above, this yields pu ≈ 0.361. The transition from

‘1’ to ‘1’ is due to either no refresh of parameter or a refresh, but with new kn < 1.283, so

that

p11 = (1 − pc) + pc(1 − pu) ≈ 0.979.

The other transition probabilities can be easily computed in a similar fashion.

6.5 Conclusion and Discussion

In summary, we apply cubic smoothing spline to the RR-intervals data to remove the HF

component, and then we extract the angles coordinate. A delay embedding of the data in-
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Figure 6.7: The Modified Circle Map. (Left) For our modified circle map, we label 1 to
the interval of ϕn when the model’s curve is below the identical line; 2 to the interval when
the model’s curve is above the identical line and intersects it with two fixed points. (Right)
Cobweb representation of trajectory segments near the intersection of the circle map and
the identity line.

Figure 6.8: Transition relationship between Case 1 and Case 2 trajectories in Modified
Circle Map, with transition probabilities labeled.
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dicates that a low-dimensional representation is reasonable, but analysis of structure in the

time series indicates that a better representation can be achieved by viewing the heart rate

as driven at a parameter point near a saddle node bifurcation. Stochastic fluctuations (with

persistence) cause the system to wander back and forth through that bifurcation. To model

this behavior which derives from combination of deterministic and stochastic factors, we

propose a stochastically perturbed modified circle map. The model shows qualitative agree-

ment with the two-dimensional embedding of angles from heart rate data in the sense of

simulating the stochastic behaviors. We remark that our choice to model the stochastic

behavior of parameter k as piecewise constant with Poisson arrival of jumps was based on

the simplicity of the approach. It is certainly reasonable to also consider the case where

k experiences small fluctuations (rather than constant behavior between jumps), in which

case a standard jump-diffusion model might be appropriate. However, our noisy data did

not appear to be sufficient to resolve that low level diffusion.

In this paper, we do not address the question why this modified circle is “good” to

model this heart rate data, leaving as open question the issues of what physiological effects

might generate such behavior. Moreover, the question of “goodness,” from a mathemati-

cal framework, requires that we have some way to quantify deviation of model and system.

The degree to which a “toy model” might be representative of a more complicated system is

a fundamental issue from dynamical systems that is not easily resolved. For example, com-

parisons between dynamical systems based on Lp spaces may fail to be a good judgment if

the systems turn out to be chaotic. Mostly Conjugacy [2] appears to be a promising method

to address this problem, because it compares dynamical systems in a way of judging the

quality of “matching” by looking at their topological difference (homeomorphic defect).

Additionally, our choice of specific model parameters was based primarily on a qualita-

tive assessment. Using tools from the theory of commuters [2], tailored to this stochastic

setting, may allow for a reasoned way to choose parameters to best match system dynam-

ics. Comparing the models and the heart rate data by using Mostly Conjugacy method
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will be our next work on this topic. We suggest that applying these parameter estimation

techniques to data collected during regular physical examination of heart could provide a

new method for automated “change detection” with respect to cardiac function, where one

might hope that detection of such changes in dynamics might have clinical relevance.

6.6 Appendix: Test for Determinism using Surrogate Data.

A primary concern when conducting analysis of processed data is that observed structures

may be an artifact of the processing, with no relevance to the true phenomena under study.

To show that the low dimensional structure of successive angles does not simply result from

the low-pass filtering, we compare our observations with surrogate data created by linear

Gaussian stochastic process which preserves both the spectrum and the histogram of the

empirical RR-interval data [41]. We process that surrogate data using the same filtering

methods, as described in Section 6.3. Figure 6.9 plots the Angle map based on data from

the experimentally measured data [35] compared with processed surrogate data.
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(a) Angle map from measured data
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Figure 6.9: Test for nonlinearity. (Left) Angle map based on data [35] after low-pass filter-
ing. (Right) Angle map based on surrogate data using linear Gaussian stochastic process
with the matching amplitude spectrum and distribution as the data.

In the “eyeball” metric, treating the data as a cloud of points in R2, we observe lit-
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tle qualitative difference between measured and surrogate data. However, as a dynamic

process, we see distinguishing features. As described in Section 6.4, in our data, we ob-

serve that trajectories (in delay coordinates shown in Figure 6.9) that are near the line

ϕ(n) = ϕ(n+1) that either track upward (when above the diagonal) or downward (when be-

low) with trajectories only infrequently “crossing” the line. Examining the surrogate data,

generated from a Gaussian stochastic process with the matching spectrum and distribution

as the data, we find frequent crossings of that main diagonal after processing the surrogate

data, as represented by the illustration in Figure 6.10 .

Figure 6.10: Data vs. Surrogate trajectories. Cartoon illustration of (L) Data trajectories,
and (C) Surrogate trajectories, illustrating the difference in character. To build a test statis-
tic, (R) we project data onto the main diagonal, and compare distributions.

In particular, if focus on that portion of trajectories lying near the diagonal (in delay

space) where ϕn+1 = ϕn, and project data onto that line (as illustrated Figure 6.10(R)). We

test as follow: We take as null hypothesis that the time series of RR-interval is generated by

a linear stochastic process. Let sampled data c be the projection of the selected (select the

points around near the main diagonal in phase space) onto the diagonal. We then generate

10 surrogate data sets {s1, s2, ...s10} for the RR interval data, where we model as a guassian

process with the same power spectrum and distribution as the empirical RR-interval data,
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using method iAAFT [42]. Let cc = [s1 s2 ... s10] bet the concatenation of all 10 surrogate

data sets. Then cc can be viewed as the “average” behavior of surrogate data sets. We

perform a Kolmogorov − S mirnov test on c and cc. The test results in the rejection of the

null hypothesis at the 5% significance level, with p − value = 3.4037e − 004.

Our test is meant to establish that the low dimensional structure of RR-interval data

does not come from a Gaussian stochastic process. In some sense, this test seems to ar-

gue for greater structure to the underlying process, reasonably captured by our model of

deterministic transient behavior, though the formal result is simply rejection of that null

hypothesis.
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Chapter 7

Uncovering the Dynamics of Heart

Rhythms by Graph Matching Method

In this chapter, we continue our study on heart rate variable data analysis, but focus more

on uncovering the dynamics of the heart rhythms. Based on the low dimensional structure

that we obtain from a person’s 24 hour-record, we use Hidden Marko Models (HMM) to

characterize the pattern of heart rhythms. Then we apply the graph matching method to

compare the models to investigate the difference to a reference model.

7.1 Introduction

An interesting question in Cardiac Arrhythmias is how do we model and study the dynamics

of the cardiac system. Once the raw ECG or RR intervals data are given on different dates,

how can we tell the person’s cardiological conditional changes from day to day. The heart

rate rhythm is largely under control of the autonomic nervous system, which fluctuates

due to both intrinsic and extrinsic factors. Thus a first concern is whether we can have

a simplified representation of both the deterministic and stochastic aspects of the cardiac

system. Our previous work [43] suggested that a low dimensional nonlinear map, which

exhibits a stochastic parametric jumps with persistence, can be constructed within the low
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frequency component of RR-interval time series data. This complicated stochastic behavior

occasionally pushes the system across a bifurcation back and forth. As the second trend,

which is the primary interest of this work, we produce reasonable chronological models

and compare them where the “dissimilarity” can quantify how much the systems fail to be

the same within dynamical systems perspective.

In our recent study [44], we built Markov models from deterministic systems by con-

structing a weighted directed graph with equal-distance partitioning the invariance set.

Then we used Earth Mover’s Distance (EMD) [21] to compare associated graphs. The

matching matrix is shown to coincide with the solution of the corresponding Kantorovich

problem. In addition, the dissimilarity measures the distance between systems, in the sense

of “distance” from being conjugate [2, 11]. But the problem of direct application of the

method is that, in theory, we need a sufficiently large number of partition number so that

the resulting symbolic representation can well translate the original dynamics. But the cost

would be the computation time. On the other hand, the particular stochastic behavior of

the low dimensional representation of HRV that we derived may not be appropriate to be

modeled by a first order Markov model. As was consider by Silipo R. et [45, 46], where

the minimum order of the Markov model charaterizes the complexity of the underlying

nonlinear structure of RR-interval signals, which is typically not first order.

We therefore employ Hidden Markov Models (HMM), which is a “hidden” first order

Markov model that governs the observable signals, so that the resulting “dissimilarity” from

Graph Matching Method applied on HMMs enables us to interpret the dynamical variance

due to actual changes, hopefully.
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7.2 Low Dimensional Deterministic Process of Electrocar-

diogram Data

Given a time series data of RR-interval, we develop a method to reduce the data to a low di-

mensional curve in our previous work [43]. We first use a cubic smoothing spine to extract

the low frequency component of RR-interval data, which corresponds to sympathetic and

vagal activity [32], then we compute the angular coordinate via the next angle map. We

observe that the time delay embedding representation of the next angle map data suggests a

low dimensional “deterministic” curve”, which we show in Figure 7.1(a). If we connect all

the successive data points in Figure 7.1(a), we have another Figure 7.1(b), which suggests

a small circle is embedded in a large circle in the phase space.
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Figure 7.1: Low dimensional map obtained from RR-interval data

We also observe a phenomenon that, the trajectories lie nearly on, but both above and

below, the identity line on the figure. We find that there exist two typical cases for the

portion of the trajectory that lies near the intersection between identity line and the data:

• Case 1: The trajectory evolves along a lower branch, below the identity line, resulting

in decreasing values;

• Case 2: The trajectory evolves along an upper branch, which intersects the identity

line with two fixed points, generating increasing values.
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In addition, the trajectory appears to persist along a branch (either upper or lower)

for several iterations before “jumping” to the other branch. This behavior is a common

nonlinear phenomena called “intermittency” [42, 38]. We roughly sketch the idea of case

1 and case 2 in Figure 7.2.

Figure 7.2: Stochastic behavior

7.3 Compare Dynamical Systems via Graph Matching Method

The idea of comparing dynamical systems via graph matching method [44] is: 1. partition

the phase space into finite subintervals/nodes; 2. construct a directed weighed graph based

on the record of the subintervals/nodes that a sufficiently long trajectory visits; 3. compare

graphs by Earth Mover’s distance (EMD) [21], which is essentially comparing the “ap-

proximated” invariant density distributions of the systems. The resulting matching matrix,

which we have shown, is an “relaxed” matrix to the permutation matrix for the isomorphic

graphs constructed from conjugate systems. The advantage of such “relaxation” allows us

to numerically compare non-perfect conjugate systems where the “dissimilarity” implies

how far the systems are from being homeomorphic.
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Direct application of the Graph Matching method is problematic, since the equal-

distance partitioning for the low dimensional map from the empirical RR-interval data

might not produce a Markov models. As a matter of fact, even for deterministic map,

if the underlying partitioning is not Markov, the symbols generated may not necessarily

describe the evolution of signals using the right order of memory of the Markov model.

We can use a sufficient large number of partitioning number to obtain an “approximated”

Markov model [44]. However, this would highly reduce the efficiency.

We thereby employ Hidden Markov Models to address this issue.

7.3.1 The Hidden Markov Model

A hidden Markov model (HMM) [47] is a first order Markov model governing unobserved

hidden states, while generating sequences of symbols which are observable. HMM is good

at classifying and predicting signals. It has a wide range of application in human behav-

iors like speech recognition, finance like stock market forecasting and credit card fraud

detection, bioinformatics like DNA sequence analysis.

A HMM is characterized by the following:

• 1: number of hidden states N. We let S (t) = {S 1(t), S 2(t), · · ·, S N(t)} to be the set of

hidden states at time t. Note that each of the hidden states in S is a first order Markov

process for any time t;

• 2: number of observation states M. We let O = {O1,O2, · · ·,OM} to be the set of

observation states. Note that each of the observation states in O is not necessary a

first order Markov process;

• 3: the hidden states transition probability matrix A = [ai j], where ai j = P(S j(t +

1)|S i(t)). Note that
∑N

j=1 ai j = 1, 1 ≤ i ≤ N;

• 4: the emission matrix B = [bik], where bik = P(Ok(t)|S i(t)) for 1 ≤ i ≤ N, 1 ≤ k ≤

M. Note that
∑M

k=1 bik = 1, 1 ≤ i ≤ N;
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• 5: the initial hidden states probability π = [πi], where πi = P(S i(0)). Note that∑N
i=1 πi = 1;

We let λ = (π, A, B) to be the parameter of a hidden Markov model. Given a sequence

of observations OT
1 of length T , the goal is to find the best λ̂ to maximize P(OT

1 |λ) to charac-

terize the signal OT
1 . For the resulting Markov model, we denote its stationary distribution

for the hidden states by Π = {Π1,Π2, · · ·,ΠN}, where Π = πA. And we can obtain the

stationary distribution for the observation states that are driven by the hidden dynamics by

P(O) = {P(O1), P(O2), · · ·, P(OM)}, where P(Ok) =
∑N

i=1Πibik.

As we mentioned before, it is inappropriate if we directly model the observations by a

first order Markov model and obtain the “approximated” stationary distribution by looking

at the dominating eigenvector, which is different from P(O), since the underlying structure

of the signals may not be a first order Markov process. But P(O) can well describe the

stationary distribution of observation, since it is obtained from the linear transformation of

the stationary distribution of hidden states.

A widely used method to compare HMM, or more precisely the stationary distributions

P(O), is to use Kullback-Leibler (KL), which is a measure based on the relative entropy

between distributions. But KL does not define a metric since it fails to satisfy the triangle

inequality. Here we apply the Earth Mover’s Distance (EMD), which is the solution of

the discrete case of Kantorovich’s problem. As EMD is also recognized as Wasserstein

distances [13], which is a well defined metric when we consider the underlying topology is

a Lp space with p ≥ 1, the resulting dissimilarity implies the distance from being conjugacy

within the dynamical systems framework [44].

In particular, EMD is a bipartite network flow problem which can be formalized as a

linear programming problem [21]: Let I be the set of supplies, J be the set of consumers,

and ci j be the cost to ship a unit from i ∈ I to j ∈ J. We want to find a set of flow (matching

matrix) fi j to minimize the overall cost:

∑
i∈I

∑
j∈J ci j fi j,
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subject to the constrains:

fi j ≥ 0, i ∈ I, j ∈ J∑
i∈I fi j = y j, j ∈ J∑
j∈J fi j ≤ xi, i ∈ I

where xi is the total supply of supplier i, and y j is the total capacity of consumer j.

Here we consider the cost function ci j = |x − y|2, with the metric to be the regular

2-norm. In this case, the optimal matching/flow is the gradients of the convex functions,

which are monotone and orientation preserving. On the other hand, we consider the matrix

norm to be the induced 2 norm, since with induced norm, the matrices can be viewed as

operators. And if two systems are conjugate, they are isomorphic as linear transformations

if we restrict the operators/matrices to their eventual range [18].

7.4 Analysis of the Heart Rate Variability for 24-Hour RR-

interval data

24-hour of RR-interval records are analyzed from randomly selected subjects in the cate-

gory “MIT-BIH Normal Sinus Rhythm Database” in PhysioNet.org [48]. The subjects in

this category are healthy and had no significant arrhythmias; they include 5 men, aged 26

to 45, and 13 women, aged 20 to 50. The ECG records are sampled at 128 Hz with 12 bits

resolution. We pick two subjects with full analysis process which discussed before to show

the performance, comparing to some widely used indices as reference. RR-interval record

from subject 16265 starts from 8:04 to 9:31 in the next day, with total length of 25.5 hours

and 11,730,944 intervals; RR-interval record from subject 17453 starts from 9:20 to 9:42

in the next day, with total length of 24.37 hours and 11,235,328 intervals.

As we don’t have a detailed note of the subjects’ activity within the whole day to qual-

ify our method’s performance, we study some widely used indices, HR and pNN30, as
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references. The HR, average heart rate, quantifies subjects average heart beat per minute

(bmp) over a period of time. NN30 is the number if successive RR intervals that differ by

more than 30 ms, and pNN30 is the proportion of NN30 divided by the total number of RR

intervals. The pNN30 is a good descriptor of long-term HR variations. Generally speaking,

HR is lower and pNN30 is larger at night, especially during sleeping.

7.4.1 Modeling

We separate each 24-hour RR-interval data into 48 time segments, so each segment would

last for approximated half an hour. We use the first 2,000 RR-interval, which is around

20 min of each segment, as windows to construct the hidden markov models with 10 ob-

servation states and 15 hidden states. And we take 60 runs for each window to result in

the best hidden markov model, since the EM algorithm only gives a local optimal point

for a particular initial guess. This process then provide us with 48 hidden markov models.

Meanwhile, we compute the associate HR and pNN30 for each window.

We then set the last model as reference, compare it the rest of 47 models and itself using

the method described in section 7.3, which result in distance numbers. The figures for time

series of distances, HR, and pNN30 for subjects 16265 and 17454 are given in Figure 7.3.

7.4.2 Discussion

Now we examine 24-hour dynamics of cardiac rhythm using the modified Graph Matching

Method and compare it to the HR and pNN30 trends.

The HRV’s dynamics of subject 16265 is illustrated on the left column of Figure 7.3. As

we can see from the HR and pNN30 figures, the subject begins sleeping at around 21:00 till

the end of the record, where a large decrease of HR and increase of pNN30 are observed.

During this time, the HMM distance is relatively stable and smooth comparing to the one at

day time, indicating that there is no large fluctuation to the sympathetic and vagal activity

of heart during sleep time. Similar observation can be found from subject 17453 (right
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column of Figure 7.3), where the subject clearly sleep at around 01:00. A sharp decrease of

HR and increase of pNN30 at 01:00 are corresponding to the sharp decrease of the HMM

distance. And during the sleep time, the stable HMM distance also suggests controls of

sympathetic and vagal activity of heart are stable.

08 10 12 14 16 18 20 22 00 02 04 06
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Subject 16265 HMMs distance using the last one as reference

hour

H
M

M
 d

is
ta

nc
e

09 11 13 15 17 19 21 23 01 03 05 07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Subject 17453 HMMs distance using the last one as reference

hour

H
M

M
 d

is
ta

nc
e

08 10 12 14 16 18 20 22 00 02 04 06
0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028
Subject 16265 HR

hour

H
R

09 11 13 15 17 19 21 23 01 03 05 07
65

70

75

80

85

90

95
Subject 17453 HR

hour

H
R

08 10 12 14 16 18 20 22 00 02 04 06
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Subject 16265 pnn30

hour

pn
n3

0

09 11 13 15 17 19 21 23 01 03 05 07
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Subject 17453 pnn30

hour

pn
n3

0

Figure 7.3: 24-hour ECG records
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Chapter 8

Conclusion

A primary concern of this thesis is to develop principles and methods to compare dynam-

ical systems when they are not necessarily conjugate (topologically the same). The first

main body of this thesis provides an understanding of “mostly conjugacy (mostly home-

omorphism)” between dissimilar systems in Lp space, which enables us to measure and

interpret the distance from being conjugate. We also generalize this idea from comparing

deterministic systems to stochastic systems.

As a second theme, we extending and interpreting the concepts of “mostly conjugacy”

in symbolic dynamics, where we resort to a variant of the classic Monge-Kantorovich op-

timization problem to both built a useful change of variables and measure quality of the

comparison through the underlying cost called the Wasserstein distance. Later, we build up

a bundle structure, visualize as a bundle plot, to show the evolution of symbolic space as we

vary a system’s parameter. The main object is a specific structure “joint”, which happens

shortly after bifurcation, implies qualitative changes of system where the kneading points

become periodic.

Finally, we apply the above techniques to study time series analysis and modeling on

heart rate data, which we have shown to be a one-dimensional nonlinear map that has a

stochastic parameter with persistence causing the heart rate and rhythm system to wander
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about a bifurcation point.

8.1 Contributions

Modeling is a fundamental problem whereby we seek to represent a system or data’s be-

haviors. In this thesis, we introduce a brand new method “mostly conjugacy” to compare

dynamical systems by judging the quality of “matching” by looking at their topological dif-

ference (homeomorphic defect). Comparing to the traditional regression’s method, which

based on normed linear spaces such as L2, “mostly conjugacy” focuses more on systems’

orbit structures. We provide solid analysis to address the meaning of the degree to which a

simple model might be representative of a more complicated one. In addition, we apply the

techniques and spirit to study actual data, i.e. the heart rate data, which provides interesting

implications on its own right.

8.2 Future works

The thesis focuses on theoretical construction of “mostly conjugacy”, with a lot of ex-

amples and applications are on well formulated systems. It is our goal to apply “mostly

conjugacy” to various data sources, and provide both dynamical perspectives and practical

implications to the actual data, like the topic in section 2.6 and section 7. On the other hand,

it is always our objective to improve the method and algorithm of “mostly conjugacy”, such

that it can be applicable to more general classes of systems.
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