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Judging model reduction of complex systems
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Model reduction is a common goal in the study of complex systems, consisting of many components with
a complex interaction structure. The quality of such reduction, however, may not be reflected correctly in the
stepwise prediction error in the model since it ignores the global geometry of the dynamics. Here we introduce a
general two-step framework, consisting of dimensionality reduction of the time series followed by modeling of
the resulting time series, and propose the use of the shadowing distance to measure the quality of the second step.
Using coupled oscillator networks as a prototypical example, we demonstrate that our approach can outperform
those based on stepwise error and suggest that it sheds light on the problem of identifying and modeling
low-dimensional dynamics in large-scale complex systems.
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I. INTRODUCTION

Model reduction is an important concept found across
various fields of science and engineering. Finding a low-
dimensional model that captures the gross features of a high-
dimensional system is a fundamental problem in the physics of
complex systems, which touches upon such disparate fields as
partial differential equations [1], dynamical systems [2], and
network theory [3]. Consider, for example, a complex system
modeled by a network of coupled oscillators [4,5], which may
support processes such as disease spreading [6], the evolution
of afood web [7], or the dynamics of a power grid [8]. It is often
useful and desirable in such a system to average across parts so
that a system with only a few dynamical units is sufficient to
model the large-scale dynamical behavior of the original sys-
tem. In much the same way that community detection methods
partition the nodes of a complex network into groups based
on topological similarity [9,10], dynamical units in a complex
system may be grouped based on dynamical similarity.

For a given high-dimensional system, there are often many
different ways to obtain a low-dimensional reduced model,
which leads to the natural and fundamental question of how to
choose the best one. For example, is it best to simply average
the equations for individual units to obtain a reduced model?
Would it be better to use a weighted average of the units
reflecting their various roles within the system or to introduce
an extra component into the model to compensate for the loss
of information due to dimensionality reduction of the time
series? Addressing these questions requires quantifying the
quality of model reduction.

For a given time series, the best model of the same dimen-
sion as the time series is commonly selected based on the least-
squares (LS) criterion, which minimizes the sum of squared
stepwise errors. For chaotic systems, however, this criterion
can be inappropriate or even misleading [11-13], due to the
nature of the cost function, which is based on local, rather than
global and geometric, features of the system. If reduced models
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of lower dimension are considered, the LS criterion can still be
formulated, but its appropriateness is even more questionable.

II. METHOD

We are unaware of previous work addressing this problem
of quantifying the quality of model reduction beyond the LS
criterion. In this paper we introduce a framework (illustrated in
Fig. 1) that divides the problem into two steps: (i) finding a low-
dimensional representation of the time series generated by the
original system and (ii) finding a model that best describes the
reduced-order time series. This model will then be considered
areduced-order model for the original system. Our framework
allows for a separate treatment of dimensionality reduction
and time-domain modeling, two aspects of the problem that
can involve model deficiency of a very different nature. Using
n and € to represent the error caused in the first and second
steps, respectively (to be discussed in detail below), the quality
of a model f, can be quantified as

J(fo) = (1 — n + pe, (D

where € [0,1] can be chosen (by the modeler) to emphasize
either part of the model reduction process.

The first step is essentially a problem of finding a low-
dimensional manifold that best fits the original time series
as a set of points in high-dimensional state space. Once a
best-fit manifold is found, the loss of information 1 can be
quantified by measuring the amount of residual, i.e., deviation
from the manifold. There are several relatively well-developed
methods for this problem, such as the principal component
analysis [2] for finding linear manifolds and ISOMAP [14] for
finding nonlinear manifolds.

In contrast, the second step is a subtle problem that appears
largely unexplored in the literature. To simplify our discussion,
consider a scalar time series produced by an unknown one-
dimensional map, where the goal is to measure the quality of a
given map as a model for the unknown map. On the one hand,
a small stepwise error (or, equivalently, a small difference in
the two maps as functions) may not imply that the model is
good since the error can accumulate over time, leading to a
poor long-term prediction. This is particularly problematic for
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FIG. 1. (Color online) Two-step approach for judging model
reduction of large complex systems. Since direct comparison is
impossible due to the difference in dimensionality (top horizontal
arrow), we first find a low-dimensional representation of the measured
time series (bottom horizontal arrow) and then model the resulting

time series (up arrow). Here we propose the use of the shadowing
distance (defined in the text) to measure the quality of the second step.

a chaotic system due to the sensitivity to initial conditions. On
the other hand, for a chaotic system large accumulated error
does not necessarily mean that the model is poor since this
can occur even when the two maps match perfectly, due to
sensitivity to perturbations.

To avoid this fundamental difficulty, we propose a measure
of model quality based on the concept of shadowing [15-17],
which was originally designed to test whether a simulated
time series suffering from numerical inaccuracy could have
come from a given model system. The shadowing distance €sp
for a given finite-length time series is defined as the smallest
distance within which a model trajectory can follow the time
series. This can be regarded as a measure of the level of
confidence in saying that the noisy time series came from
the model and thus as a measure of how good the model is for
the time series. (Another possibility is to use the distribution
of shadowing times. See Ref. [13] for details.) Symbolically,
given a time series {x,}_,, we define the shadowing distance
for a given model f as

= inf - 2
esp(f) nf) IIQZXTHX’ yell, 2

where D is the state space, y; for t > 2 is given recursively

by y:+1 = f(y:), and || - || denotes the Euclidean distance.
This definition can be naturally extended to continuous-time
systems.

To estimate esp we find a numerical shadowing trajectory
using a procedure developed for systems of arbitrarily high
dimension, in both discrete time [18] and continuous time [19].
Starting with the given time series, we iteratively generate
an incrementally less noisy trajectory that still stays close to
the time series. This leads to a trajectory that has a stepwise
error within machine precision and whose distance to the time
series is likely to be near its minimum possible value egp.
Since we do not expect a long shadowing trajectory for a very
noisy time series, such as a reduced time series resulting from
(nonlinear) dimensionality reduction, we estimate egp for all
possible time-series segments of length 7; < T. To avoid the
adverse effect of rare, nonshadowable segments (i.e., esp =
00), we discard the largest 10% of the estimated egp, values and
compute the average over the remaining values. This choice

PHYSICAL REVIEW E 83, 046125 (2011)

0.5

0.4f ;

0.3
Shadowing distance ———
0.2f €sD Stepwise error |

€SE
0.1F

\

O L
-0.01 —-0.005 0 0.005 0.01
AQ
0.01 |(b) Difference in rotation number |
O 4
-0.01 -0.005 0 0.005 0.01
AQ

FIG. 2. (Color online) Shadowing distance €sp vs stepwise error
esg for judging model quality. A periodic time series {x,}]_,
was generated by the standard circle map [20], x;41 = x, + Q2 —
0.12sin(2mx,), with = 0.35 and a random choice of x;. Using
the same map with Q2 = 0.35 + AQ as a model for this time series,
we have esg = |AQ2| [lower solid curve in (a)]. Despite the small egg,
error can accumulate over time and reach 0.5 (the maximum possible
error on the unit circle) for AQ > 0.002 due to (b) the difference
in the rotation number for the two maps. In contrast, esp [solid and
dashed curves in (a), computed with 7y = T] correctly reflects this
effect, as well as the dependence on 7' and asymmetry with respect
to AS2, none of which is captured at all by egg.

of 10% is a conservative one to guarantee that the artificially
large values of €gp at glitch points do not affect the measure
of model quality of typical segments of the time series, which
is consistent with the quantile statistics suggested in Ref. [13],
where shadowing time is considered. An appropriate choice of
T, is T, ~ log(6~!)/A, where § is the machine precision and
A is the maximum Lyapunov exponent of the system, since a
longer trajectory is likely to suffer from the accumulation of
computational error.

A critical feature of egp is that it correctly reflects the
model’s ability to produce a trajectory that closely follows the
entire time series. In contrast, the stepwise error, which can be

measured by ese(f) = VI |1 £(x,) — 4112/ T fora given
time series, may be small even when large error accumulation
along the time series is unavoidable. This is clearly illustrated
in Fig. 2 for a nonchaotic time series from the standard circle
map. The contrast would be even more dramatic for chaotic
systems. Based on this observation, we propose to use the
optimal shadowing (OS) criterion, in which we select a model
with the smallest shadowing distance, instead of one with
smallest egg (the LS criterion).

III. EXAMPLES OF APPLICATION

To demonstrate that our approach is well suited to address-
ing fundamental questions on model reduction, consider a
general network of coupled discrete-time dynamical systems
described by

n
x,@l = g(x,(l),a(i)) —(o/ci) Zéijg(xt(j),a(j)), 3)
j=1
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where {(x®}'_,, with x{” € RY, represents the states of
n oscillators at time t, the function g(x,a) describes the
dynamics driving individual oscillators (which can be different
and are parametrized here by a), and o is the global coupling
strength. The effective diffusive coupling among the oscillators
is represented by the discrete Laplacian matrix, obtained from
the adjacency matrix B = [b;;] of the network by setting
lij = —(1 = 8;)bi; + &;; Zk bix, where §;; is the Kronecker
delta function. The coupling function has been chosen to
have the same form as the individual dynamics [g(x,a)],
which corresponds to the situation where each oscillator
receives a direct signal from the output of its neighbors. The
normalization by ¢; = ) ; bij scales the effective coupling
strength at node i to keep the trajectory of individual dynamics
within its (bounded) domain.

As a concrete example consider networks of logistic maps:
g(x,a) = ax(1 — x). We generate random directed networks
as follows. Starting with two nodes and one directed link from
node 2 to node 1, at each step, anew node k > 3 is added to the
network with directed links pointing to d (>2) existing nodes,
chosen at random. Each new directed link is assigned weight
1 and the associated backward link is created with weight
0.05. For each network, the coupling strength is chosen to
be o =1 and the node parameters are set as a) = 3.96 4
(i/mn)0.04, filling the interval [3.96,4] uniformly. With this set
of parameters, the oscillators are nearly synchronized [21],
i.e., the trajectory of any one oscillator stays close to that of
any other oscillator.

For a given network generated as above, we ask if there
is a simplified system that can model this n-dimensional
coupled chaotic system. Since the oscillators are nearly
synchronized, a reasonable guess might be a one-dimensional
model f(x) = ax(l —x), wherea = >_; a'”)/n is the average
parameter. Such uniform averaging, however, does not respect
the nonhomogeneity of the network, resulting from the fact
that the oscillators introduced at an early stage of network
generation have a much larger influence than the others. Since
the parameters for these nodes are closer to 3.96, we expect
that an optimal value for the parameter a in the family of
candidate models f,(x) = ax(1 — x) would be smaller than
the average a.

To find this optimal value we first consider a randomly
generated network with n =500 and d = 8. In Fig. 3(a)
we compare the candidate models using both stepwise error
(esg) and shadowing distance (esp). For the reduced time
series, we take the average trajectory, x, = ) ; x,(i) /n (we will
discuss other possibilities below). The two criteria give clearly
distinct values of a as the best choice. In Fig. 3(b) we show
the difference between the estimate of the largest Lyapunov
exponent of the original system and that from f,(x). In
Fig. 3(c) we plot the prediction error as a function of a for
the prediction of five steps away from present. The curves
in both Figs. 3(b) and 3(c) follow closely the shadowing
distance shown in Fig. 3(a) instead of the stepwise error,
providing clear evidence that the model quality in this case
is better and naturally judged by the proposed OS criterion.
By varying the network parameter d to test the generality
of the proposed approach we see in the inset of Figs. 3(b)
and 3(c) that the models chosen by the OS criterion clearly
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FIG. 3. (Color online) Judging the quality of f,(x) = ax(1 — x)
as the reduced model for a large network of coupled nonidentical
logistic maps (details in the main text). (a) Shadowing distance
(esp) and stepwise error (esg). We used 7y = 50 and T = 5000.
(b) Difference between the maximum Lyapunov exponent of the
original system (X,) and of f, (A,). (c) The k-step prediction
error, defined as 8(k) = | f*(xo) — x|, where f is the model and
{x;} is the time series. Here we plot the curve for k =5. The
insets of (b) and (c) show the estimation error of the maximum
Lyapunov exponent and the prediction error, respectively, with
k = 5 for the OS-based models ((J on the bottom) and LS-based
models (x on the top). We used random directed networks of size
n =500 and d = 8,12, ...,32. Each data point is an average over
20 independent realizations. In all panels the vertical dashed line
and the vertical dash-dotted line correspond to the values of a that
minimize the shadowing distance esp and the stepwise error €sg,
respectively.

outperform those chosen by the LS criterion in the range of d
considered.

We now address the question of whether the average
trajectory is the best choice as areduced time series. Itis indeed
the best if we minimize only the dimensionality reduction error
[ = 0in Eq. (1)], but allowing a slightly larger reduction error
might reduce the shadowing error €sp significantly. To explore
this interplay between the two components of the model
reduction process and how their relative emphasis influences
the choice of the best model, consider the same networked
logistic map system in for Fig. 3. We now consider weighted
average of the individual trajectories: x, = Y, w@x”, where
w® =k /¥ j k’f for given B. Here k; is the out-degree of
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FIG. 4. (Color online) Interplay between the dimensionality
reduction error n(8) and the optimal shadowing distance esp(f8) for
the system used in Fig. 3(a). For each fixed value of u, the model
reduction error J(B) is plotted as a function of the parameter 8, which
determines the weights for averaging the time series (see the main
text for details).

node i. The dimensionality reduction error is then computed
asn(B) = VY., >, |1x: — x;”|>/nT. We define the shadowing
distance esp(B) for a given B to be the minimum value of
€sp over the parameter a of the reduced model f(x,a)=
ax(l — x). In Fig. 4 we show the 8 dependence for the model
reduction error ¢(8) = (1 — w)n(B) + nesp(B), for different
values of w, which controls the relative emphasis on the two
parts. If u = O (upper left panel of Fig. 4), the best choice is
B = 0 (uniform weights), as noted above. When we start to
focus on the quality of the model for the reduced time series
(n > 0, the three other panels in Fig. 4), giving more weight to
nodes with a larger out-degree yields a smaller model reduction
error.

To show that our OS criterion can be effective even when
individual trajectories are not necessarily close to each other,
but related nonlinearly, consider the simplest case of a two-unit
system:

X1 = () + {7 gyl — f(x)},

)
Vi1 = 8r) + o {®[f(x)] — g(y))}.

Here we choose f(x) =3.96x(1 —x), g(y) = v4y(l —y),
o =0.3,and d(x) = Vx. Although a naive comparison of x;
and y, might lead to the conclusion that no model reduction
is possible, nonlinear reduction techniques can be used to
find the intrinsic coherence between x; and y; [Fig. 5(a)]. A
one-dimensional model for the single trajectory {x;} is thus
sufficient to model the system. Considering the family of
models of the form f,(x) = ax(l — x), Fig. 5(b) compares
the predictive power of the optimal models selected by
the LS and OS criteria. It clearly shows that the error in
making seven- to ten-step predictions is as much as 45%
more for the LS-selected model than for the OS-selected
model.
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FIG. 5. (Color online) (a) Segments of the time series x, and y;.
Also plotted is the transformed time series ®~!(y;), which stays close
to x;. (b) Prediction error (defined in the caption of Fig. 3) for the
LS-based optimal model (§.s) and for the OS-based optimal model
(80s) with Ty = 50 and T = 5000.

IV. CONCLUSION AND OPEN PROBLEMS

To summarize, we have proposed a general approach for
judging the quality of low-dimensional reduced models for
high-dimensional complex systems. A key to our approach is
the decomposition of the problem into spatial and temporal
domains where the modeling error can be assessed separately.
Another prominent feature is the use of a shadowing-based
criterion in the temporal domain, which can be combined with
any nonlinear dimensionality reduction technique in the spatial
domain. We have shown that the models selected based on our
criterion are better than those selected by the traditional LS
criterion, in terms of both the Lyapunov exponent estimates
and short-term prediction error.

Using examples of random directed networks, we have
provided evidence that this approach is useful in address-
ing fundamental questions about model reduction for large
networks of nearly synchronized oscillators, especially when
there is dynamical inhomogeneity among the nodes and
directionality in the link structure. We emphasize that our
framework applies readily to systems in which individual
oscillators have a multidimensional state space and connected
through arbitrary network structure.

Open problems that can now be addressed using our
shadowing-based measure of model quality include the con-
struction of an optimal model from time series when explicit
equations for the dynamics are not known. One possible
procedure is to select generic basis functions and search for
an optimal model among all linear combinations using the OS
criterion. We expect to see many cases in which the proposed
criterion resolves the differences within the model that cannot
be resolved by previous criteria.
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