
Kolmogorov-Arnold Network Autoencoders

Mohammadamin Moradi
Arizona State University

Tempe, AZ 85201
mmoradi5@asu.edu

Shirin Panahi
Arizona State University

Tempe, AZ 85201
spanahi1@asu.edu

Erik Bollt
Clarkson University
Potsdam, NY 13699

ebollt@clarkson.edu

Ying-Cheng Lai
Arizona State University

Tempe, AZ 85201
Ying-Cheng.Lai@asu.edu

Abstract

Deep learning models have revolutionized various domains, with Multi-Layer
Perceptrons (MLPs) being a cornerstone for tasks like data regression and image
classification. However, a recent study has introduced Kolmogorov-Arnold Net-
works (KANs) as promising alternatives to MLPs, leveraging activation functions
placed on edges rather than nodes. This structural shift aligns KANs closely with
the Kolmogorov-Arnold representation theorem, potentially enhancing both model
accuracy and interpretability. In this study, we explore the efficacy of KANs in the
context of data representation via autoencoders, comparing their performance with
traditional Convolutional Neural Networks (CNNs) on the MNIST, SVHN, and
CIFAR-10 datasets. Our results demonstrate that KAN-based autoencoders achieve
competitive performance in terms of reconstruction accuracy, thereby suggesting
their viability as effective tools in data analysis tasks.

1 Introduction

In recent years, deep learning has seen unprecedented advancements, catalyzing breakthroughs in
various fields such as image recognition, natural language processing, medical diagnostics, and
cybersecurity [1, 2, 3, 4, 5, 6, 7, 8]. Central to these advancements are neural network architectures
like MLPs, which have proven effective in tasks ranging from simple regression to complex image
classification. MLPs are well-known for their ability to approximate a wide range of functions, a
property substantiated by the universal approximation theorem [9, 10, 11]. However, deep learning
architectures are constantly evolving, driven by the constant thirst for improved performance, in-
terpretability, and efficiency. One of the emerging paradigms challenging the dominance of MLPs
is the recently introduced KANs [12, 13]. KANs draw inspiration from the Kolmogorov-Arnold
representation theorem, which asserts that any continuous multivariate function can be represented
as a composition of functions of a single variable. This theorem underpins the structure of KANs,
where activation functions are trained and applied not at neuron nodes but directly on the edges of
the network graph. This alters the dynamics of information flow within the network and presents
intriguing implications: KANs potentially offer enhanced model capacity, better handling of complex
dependencies in data, and improved interpretability of learned representations compared to traditional
MLPs. By decentralizing activation functions to the edges, KANs facilitate a more modular ap-
proach to feature extraction and transformation, potentially yielding more structured and interpretable
representations of input data.

KAN has received a great deal of attention recently. MonoKAN builds on the KAN architecture
and is a version that enforces certified partial monotonicity. This modification ensures that model

Preprint submitted to arxiv.

ar
X

iv
:2

41
0.

02
07

7v
1 

 [
cs

.L
G

] 
 2

 O
ct

 2
02

4



predictions align with expert-imposed monotonicity constraints, making it highly interpretable and
suitable for applications requiring transparent, explainable AI. MonoKAN leverages cubic Hermite
splines to guarantee monotonicity while improving predictive performance over existing monotonic
MLP approaches [14]. Another paper compared KANs to MLPs in low-data environments. KANs’
reliance on complex, learnable activation functions increases parameter count, which becomes a
bottleneck when training on small datasets. In such cases, MLPs with custom activation functions
outperformed KANs significantly, especially when only a few hundred samples were available [15].
Moreover, to address KANs’ computational inefficiency, researchers proposed FastKAN, a version
that replaces B-splines with Gaussian radial basis functions. This approach drastically improves
training speed (by over three times) without sacrificing accuracy, particularly in benchmark tasks like
MNIST classification. This shows that KANs can be simplified while maintaining performance [16].
One significant development is the integration of KANs into transfer learning. A recent paper suggests
replacing the traditional linear probing layer in transfer learning with a KAN-based approach to
model more complex relationships between data points. By using KANs in combination with a pre-
trained ResNet-50 model, the researchers demonstrated improvements in accuracy and generalization,
particularly on the CIFAR-10 dataset [17]. Another notable contribution is the introduction of
the Kolmogorov-Arnold Transformer (KAT). This model replaces the MLP layers in standard
transformers with KAN layers, making it more expressive. The researchers behind KAT addressed
key challenges like computational inefficiency and weight initialization by implementing rational
functions and variance-preserving initialization techniques. This architecture shows promising results,
especially in scaling KAN-based transformers for modern GPU hardware [18]. Moroever, in Ref. [19]
authors focused on enhancing Implicit Neural Representations (INRs) by integrating Fourier series-
based activation functions to better capture task-specific frequency components. The study shows
that Fourier KANs (FKAN) improve on baseline models in terms of various metrics in both image
representation and 3D occupancy tasks.

Another key development is the introduction of convolutional layers into KANs, which enhances their
capacity to handle spatial information, as seen in experiments on the MNIST and Fashion MNIST
datasets. These models demonstrated higher accuracy compared to small CNNs and performed
slightly below medium CNNs, showing KANs’ competitive advantage in image recognition tasks
while keeping parameter complexity low by reducing the need for fully connected layers [20].
Motivated by these advancements, this study explores the application of KANs in the context of
autoencoders for image representation tasks. Autoencoders are neural network architectures designed
for unsupervised learning, tasked with learning efficient representations of input data through an
encoder-decoder framework [21, 22]. Traditionally, Convolutional Neural Networks (CNNs) have
dominated in tasks involving image data, owing to their ability to capture spatial hierarchies and
translational invariance [23]. In contrast to CNNs, KAN-based autoencoders leverage edge-based
activations to potentially capture more nuanced relationships and dependencies within images. This
suggests a novel perspective on how neural networks can be structured and optimized for image
representation tasks. There are multiple projects and studies in progress regarding KAN autoencoders.
For instance, NeuroBender combines the KAN with a Wasserstein Auto-Encoder to provide a unique
approach to image processing on the MNIST dataset [24]. Another project investigates the potential
of KAN to represent the sinusoidal and other complicated signals [25]. Moreover, Ref. [26] uses
KAN approach to latent factor conditional asset pricing models. This study aims to investigate
whether KAN autoencoders can achieve comparable or superior performance on benchmark datasets.

2 Methods

2.1 Autoencoders and Features Reduction

The primary objective of an autoencoder is to map input data into a lower-dimensional latent space
(encoding) and then reconstruct the original input from this compressed representation (decoding).
This process involves two main components: the encoder and the decoder. The encoding is achieved
through a series of neural network layers that reduce the dimensionality of the input while retaining
essential features. Mathematically, if x represents the input, the encoder function fθ transforms x
into a latent representation z (a.k.a. the “bottleneck”), where z = fθ(x). On the other hand, the
decoder reconstructs the input data from the latent representation. The decoder function gϕ aims to
reverse the encoding process, producing a reconstruction x̂ from z, such that x̂ = gϕ(z).

2



The loss function commonly used for training autoencoders is the Mean Squared Error (MSE)
between the input x and the reconstructed output x̂:

L(x, x̂) = ∥x− x̂∥2 (1)

Traditional autoencoders leverage fully connected layers or convolutional layers, particularly when
dealing with image data. Convolutional Autoencoders are a specialized form designed to exploit the
spatial hierarchies in image data where the encoder consists of convolutional layers that downsample
the input, followed by a bottleneck layer that represents the latent space. The decoder, in turn, uses
convolutional transpose layers to upsample the latent representation and reconstruct the original
image [27].

2.2 Kolmogorov-Arnold Networks (KAN)

KANs represent an innovative approach to neural network architecture, inspired by the Kolmogorov-
Arnold representation theorem. This theorem asserts that any continuous multivariate function can
be expressed as a composition of continuous functions of a single variable and addition operations.
KANs leverage this theorem by placing activation functions on the edges of the network graph rather
than at the nodes, as is typical in MLPs and CNNs. This means that each connection between neurons
includes an activation function, which transforms the information flow between nodes. Also, by
decentralizing the activation functions to the edges, KANs promote a more modular approach to
feature extraction and transformation. This modularity potentially enhances the interpretability and
flexibility of the network, allowing for more nuanced representations of the input data.

As mentioned above, the Kolmogorov-Arnold representation theorem states that any continuous
multivariate function f : Rn → R can be represented as a superposition of continuous univariate
functions. The general form of the theorem is:

f(x1, x2, . . . , xn) =

2n−1∑
i=1

ϕi

 n∑
j=1

ψij(xj)

 (2)

where ϕi and ψij are continuous univariate functions. Each of these functions is parameterized using
a linear combination of the residual and spline functions. Spline functions are piecewise polynomials
that can adapt to the data more flexibly than traditional linear models and are parametrized as a linear
combination of B-splines such that:

S(x) =

n∑
i=0

ciBi,d(x). (3)

where ci are the trainable coefficients and Bi,d(x) are the B-spline basis functions of degree d [28].
KANs scale more efficiently than traditional MLPs, which typically scale as O(n2) with the number
of neurons and layers. The spline-based structure of KANs allows them to achieve high accuracy
with fewer parameters. The empirical results suggest that KANs demonstrate faster scaling behavior
compared to MLPs, leading to improved accuracy and efficiency in tasks like data fitting and solving
partial differential equations (PDEs) [12, 13].

2.3 KAN Autoencoders

The encoder-decoder structure of KAN-based autoencoders mirrors that of traditional autoencoders
but with the key difference of edge-based activations. This architectural shift aims to capture
more complex dependencies within the data, potentially leading to better performance and more
interpretable latent representations. In this study, we integrate KANs into the autoencoder framework
to evaluate their efficacy in image representation tasks. We compare the performance of KAN-
based autoencoders with that of traditional convolutional autoencoders on the MNIST, SVHN, and
CIFAR-10 datasets, assessing both reconstruction accuracy and the quality of the learned features.

3



𝒙 Encoder ෝ𝒙DecoderBottleneck

Reconstructed 
Input

Reconstructed 

Input Minimize the reconstruction loss so that

 𝑥 ≈ ො𝑥

A compressed low dimensional 
representation of the input

KAN + ReLU + Dense Dense + ReLU + KAN

Figure 1: KAN Autoencoder Structure. The structure of our KAN autoencoder consists of an encoder
and a decoder. The encoder includes a KAN layer, a ReLU activation, and a dense layer, which
transforms the input size to a hidden size and then to the bottleneck size. For example, it maps from
784 to 8, followed by a ReLU activation, and then from 8 to 18. The decoder reverses this process,
starting with a dense layer, followed by a ReLU activation, and finally a KAN layer, mapping from
the bottleneck size back to the hidden size and the original input size, i.e., from 18 to 8, followed by
ReLU, and from 8 to 784.

Let the input image be x ∈ Rh×w, where h and w are the height and width of the image, respectively.
The encoder is represented as:

z = fEncoder(x) =Wdense ·max(0, fKAN_1(x)) + bdense. (4)

The latent representation z ∈ Rd captures the essential features of the input in a compressed form,
where d≪ h× w. The latent vector z is then passed to the decoder for reconstruction. The decoder
reconstructs the input image x̂ from the latent vector z afterwards. The decoder can be described as:

x̂ = fDecoder(z) = fKAN_2(max(0,W ′
dense · z + b′dense)). (5)

The autoencoder is trained by minimizing the reconstruction error between the original image
x and the reconstructed image x̂. The loss function is the MSE (see Eq. 1). The use of KAN
layers enhances the model’s ability to capture complex relationships in the data through learnable
spline-based functions. As shown, KANs have a strong theoretical foundation for approximating
arbitrary functions. In contrast, CNNs rely on convolution operations to extract spatial features. The
convolution of an image f with a filter g is given by:

(f ∗ g)(x, y) =
k∑

u=−k

k∑
v=−k

f(x− u, y − v)g(u, v) (6)

where f(x, y) represents the pixel intensity at location (x, y) in a 2D image and g(u, v) is the
convolution filter (also called a kernel) used to detect specific patterns or features in the image. The

4



filter has dimensions (2k + 1)× (2k + 1), meaning it covers a small region around the central pixel
in the image (e.g., a 3x3 or 5x5 filter). CNNs excel at detecting local spatial patterns (e.g., edges)
but assume translational invariance. There is strong evidence suggesting that CNNs can struggle
to capture global dependencies in data due to their inherent local receptive fields [29, 30]. KANs,
however, impose no such assumptions, allowing them to possibly capture both local and global
patterns, leading to better generalization in some cases. In other words, KANs model both local and
global dependencies simultaneously through their function decomposition. This allows KAN-based
autoencoders to reconstruct data with higher precision, especially in cases where global structure is
important.

On the other hand, since KAN layers use spline functions they are able to to adaptively model
nonlinear relationships in data with a fine level of detail. In contrast, CNNs rely on activation functions
like ReLU to introduce nonlinearity. Also, CNNs typically require explicit regularization techniques,
such as batch normalization or dropout, to prevent overfitting. Therefore, KAN autoencoders may
potentially provide a more natural and flexible way of modeling complex relationships.

3 Results

In this section, we present the results of our experiments on three datasets: MNIST, CIFAR-10, and
SVHN. We compare the performance of autoencoders built with CNNs and KANs.

3.1 Datasets

MNIST: The MNIST dataset consists of 70,000 grayscale images of handwritten digits, with each
image having a resolution of 28x28 pixels. The dataset is divided into 60,000 training images and
10,000 test images. Each image belongs to one of ten classes, representing the digits 0 through 9.
The simplicity and standardized format of MNIST make it a popular benchmark for evaluating image
processing algorithms.

SVHN: The Street View House Numbers (SVHN) dataset contains 600,000 color images of house
numbers extracted from Google Street View images. Each image is 32x32 pixels and includes
multiple digits, but the task typically involves classifying the digit at the center of the image. The
dataset is split into 73,257 training images, 26,032 test images, and 531,131 additional training
images. SVHN is more complex than MNIST due to its real-world origins and multi-digit context.

CIFAR-10: The CIFAR-10 dataset comprises 60,000 color images of size 32x32 pixels, divided into
10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each class contains
6,000 images, with 50,000 images used for training and 10,000 for testing. The dataset poses a more
challenging problem compared to MNIST due to its higher variability and color information.

3.2 Settings and Strudcture

Both types of autoencoders were evaluated on the MNIST, CIFAR-10, and SVHN datasets. The
autoencoders were trained for 10 epochs using the AdamW optimizer with a learning rate of 1e-3 and
a weight decay of 1e-4. We used the MSE loss function to measure reconstruction accuracy. The
performance of the autoencoders was assessed based on the reconstruction loss on the test sets. Our
AE-KAN also includes two extra dense layers compared to AE-CNN (see Fig. 1). Additionally, we
trained a KNN classifier on the latent representations learned by the autoencoders to evaluate the
quality of these representations for downstream classification tasks. The accuracy and F1-score of the
KNN classifier were used as additional metrics.

The KAN model used in our codes uses the efficient KAN implemantion [31]. The performance issue
in the original implementation arises from the need to expand all intermediate variables to perform ac-
tivation functions, requiring the input tensor to have the shape (batch_size, out_features, in_features).
Since all activation functions are linear combinations of a fixed set of basis functions, specifically
B-splines, the computation can be reformulated by activating the input with the basis functions
and then linearly combining them. This reformulation reduces memory cost and simplifies the
computation to a matrix multiplication, and it works naturally for both the forward and backward
pass. The original KAN proposed an L1 regularization defined on input samples, which requires
non-linear operations on the (batch_size, out_features, in_features) tensor and is incompatible with

5



the reformulation. Efficient KAN replaces this with an L1 regularization on the weights, which is
common in neural networks and compatible with the new formulation.

In a KAN, the total number of trainable parameters is determined by the number of activation
functions in close relation to the architecture of the network defined by the numbers of the input
nodes (Ni), of the hidden nodes in each hidden layer (Nh1, Nh2, . . . , Nhj), and of the output nodes
(No). The structural complexity of the KAN is then determined by the number of activation functions
(Na), expressed as:

Na = (Ni ×Nh1) + (Nh1 ×Nh2) + · · ·+ (Nhj ×No). (7)

Consider the numeric training phase of KAN. Each activation function within the KAN is parameter-
ized by a B-spline curve represented as a linear combination of the basis functions. Each B-spline
curve is characterized by (G+K) trainable coefficients. The total number of trainable parameters in
a KAN is then given by:

(G+K)×Na, (8)

which gives a direct relationship between the network’s architecture and its trainable parameters.
Increasing the number of hidden layers or nodes can significantly impact the total number of
parameters, influencing the network’s capacity and complexity of the learned representations.

The architecture of the KAN autoencoder consists of an encoder and a decoder. The encoder is
composed of a KAN layer, followed by a ReLU activation and a dense layer. This structure transforms
the input size (input_size) to a hidden size (hidden_size), and subsequently to the bottleneck size
(bottleneck_size). Specifically, the encoder can be represented as:

Encoder = KAN + ReLU + Dense =

(input_size × hidden_size) + ReLU + (hidden_size × bottleneck), (9)

e.g., (784 → 8) + ReLU + (8 → 18). The decoder mirrors this process, starting with a dense layer,
followed by a ReLU activation, and ending with a KAN layer. The decoder transforms the bottleneck
size back to the hidden size and finally to the original input size, as follows:

Decoder = Dense + ReLU + KAN =

(bottleneck × hidden_size) + ReLU + (hidden_size × input_size), (10)

e.g., (18 → 8) + ReLU + (8 → 784).

As illustrated in Fig. 2, we evaluated the performance of the KAN autoencoder considering the MSE
reconstruction loss analyzed as a function of the bottleneck size (hidden_size = bottleneck_size in
Eqs. 9 and 10). For the MNIST dataset, we observed that a bottleneck size of 150 produced the
best reconstruction results, achieving an excellent MSE score. A smaller bottleneck size of 50 also
provided reasonable performance, though the reconstruction quality was slightly lower compared
to the larger bottleneck. In the case of CIFAR-10, we found that a bottleneck size of 500 yielded
the best performance, resulting in an excellent MSE. Interestingly, a smaller bottleneck size of 200
also performed very well, though slightly less optimal compared to 500. For the SVHN dataset,
the autoencoder showed similar behavior to CIFAR-10, where a bottleneck size of 500 achieved
excellent performance, while a smaller size of 200 offered good performance but with a higher MSE
compared to the larger bottleneck. Figure 3 compares the reconstruction of compressed images from
the CIFAR-10 dataset with varying bottleneck sizes. For these reconstructions, we set the hidden size
equal to the bottleneck size, as defined in Eqs. 9 and 10. The figure illustrates: a) original samples, b)
reconstructions with a bottleneck size of 50, c) reconstructions with a bottleneck size of 150, and d)
reconstructions with a bottleneck size of 500. As observed, larger bottleneck sizes lead to clearer and
more defined reconstructions. This is because a larger bottleneck allows the model to retain more

6



a) b) c)

Figure 2: MSE reconstruction loss versus bottleneck size for the KAN autoencoder across three
datasets: a) MNIST, b) SVHN, and c) CIFAR-10. Let hidden_size = bottleneck_size in Eqs. 9
and 10. For the MNIST dataset, a bottleneck size of 150 achieves excellent performance, while
50 provides good performance. In the case of CIFAR-10, a bottleneck size of 500 yields excellent
performance, with 200 being very good. For SVHN, a bottleneck size of 500 is excellent, and 200
shows good reconstruction.

information from the original images, resulting in higher fidelity reconstructions. In contrast, smaller
bottleneck sizes tend to produce more blurred images. The limited capacity of the smaller bottleneck
compresses the information too much, leading to a loss of essential details and features present in the
original samples.

Consider a KAN autoencoder with a grid size of 5 with the autoencoder bottleneck size of 4, using
the MNIST dataset as input (dimension 28× 28). The architecture includes two dense layers each
with an dense size of 8 (see Fig. 1). The total number of parameters in this configuration is 62,796,
which includes the parameters of both the encoder and decoder KANs, as well as those of the dense
layers in the encoder and decoder. The total number of trainable parameters in a KAN autoencoder
can be calculated using the following formula:

Nparams = Nenc_params +Nenc_dense_params +Ndec_params +Ndec_dense_params

= grid × input_size × hidden_size + hidden_size × (bottleneck_size + 1)

+ grid × hidden_size × input_size + bottleneck_size × (hidden_size + 1) (11)

3.3 Results and Discussion

The results of our experiments are summarized in Table 1.

For the MNIST dataset (see the reconstruction sample with bottleneck_size = 8 in Figs. 4a and 5a),
the performance of AE-KAN and AE-CNN varies across different bottleneck configurations. At the
smallest bottleneck configuration (2x2 for AE-CNN and 4 for AE-KAN), AE-KAN demonstrates
superior reconstruction loss (0.2170) compared to AE-CNN (0.2667). This suggests that AE-KAN
is more effective at reconstructing the original data from a compressed representation, potentially
due to the unique structure of KANs where activation functions on edges might provide richer
transformations. Additionally, AE-KAN shows slightly higher accuracy and F1-score, indicating
better classification performance. However, this comes at the cost of significantly more parameters
(62,796 for AE-KAN versus 617 for AE-CNN), suggesting that AE-KAN’s improved performance
may partly stem from its higher complexity and capacity. As the bottleneck size increases to 3x3 for
AE-CNN and 9 for AE-KAN, AE-KAN continues to outperform AE-CNN in terms of reconstruction
loss (0.2024 vs. 0.2288) and achieves marginally better accuracy and F1-scores. Interestingly,
AE-KAN completes this task slightly faster (43.14 seconds) than AE-CNN (44.21 seconds), despite
having a higher parameter count (62,881 vs. 818). However, with the largest bottleneck configuration
(6x3 for AE-CNN and 18 for AE-KAN), AE-CNN outperforms AE-KAN. AE-CNN achieves a
reconstruction loss of 0.1722 and accuracy and F1-scores of 0.90, compared to AE-KAN’s 0.2238
reconstruction loss and 0.78 accuracy and F1-scores. This reversal indicates that AE-CNN can
leverage its structure more effectively for larger bottlenecks.

On the SVHN dataset (see the reconstruction sample with bottleneck_size = 64 in Figs. 4b and
5b) as well as the CIFAR-10 dataset (see the reconstruction sample with bottleneck_size = 64 in

7



b) c) d)a)

Figure 3: Reconstruction of Compressed Images from the CIFAR Dataset with Different Bottleneck
Sizes. Let hidden_size = bottleneck_size in Eqs. 9 and 10. a) Original samples b) Reconstructed
samples with bottleneck_size = 50, c) Reconstructed samples with bottleneck_size = 150, and d)
Reconstructed samples with bottleneck_size = 500.

Figs. 4c and 5c), the pattern remains consistent with AE-KAN generally outperforming AE-CNN in
terms of reconstruction loss across all bottleneck sizes. For instance, with a bottleneck size of 8x4
for AE-CNN and 32 for AE-KAN, AE-KAN achieves a reconstruction loss of 0.0129 compared to
AE-CNN’s 0.0251.

The results show that AE-KAN consistently outperforms AE-CNN in both reconstruction accuracy
and classification, especially on datasets with complex features such as SVHN and CIFAR-10. The
key difference lies in the structural adaptation of KANs, which offers a greater representation capacity,
leading to improved performance metrics. However, this benefit comes at the cost of increased model
complexity and a higher parameter count, potentially raising computational demands. Moreover, we
need to emphasize that AE-KAN includes two extra dense layers, an addition that AE-CNN does not
require since its bottleneck size can be tuned using multiple CNN layers. This difference may also
partially contribute to AE-KAN’s superior performance.

4 Discussion

In this study, we investigated the application of KANs in the context of autoencoder architectures for
image representation tasks. Our experiments focused on comparing KAN-based autoencoders with
traditional CNN-based autoencoders across three benchmark datasets: MNIST, CIFAR-10, and SVHN.
The primary objectives were to evaluate reconstruction accuracy and assess the quality of learned
representations using classification tasks. To ensure a fair comparison between the CNN and KAN
autoencoders, we maintained identical training conditions for both models. This included using the
same optimizer, learning rate, weight decay, number of epochs, and batch size. Our findings indicate
that KAN-based autoencoders performed competitively compared with CNN-based autoencoders in
terms of reconstruction accuracy on all three datasets. Specifically, in some cases KANs achieved

8



Table 1: KAN Autoencoders vs CNN Autoencoders - Reconstruction and Classification Results.

Model Dataset Bottle. Param. Time Param/Time Loss Acc. F1

AE-CNN MNIST 2× 2 617 39.24 15.72 0.2667 0.74 0.74
AE-KAN MNIST 4 62796 40.82 1538.36 0.2170 0.76 0.75
AE-CNN MNIST 3× 3 818 44.21 18.50 0.2288 0.82 0.82
AE-KAN MNIST 9 62881 43.14 1457.60 0.2024 0.84 0.84
AE-CNN MNIST 6× 3 891 43.47 20.49 0.1722 0.90 0.90
AE-KAN MNIST 18 63034 42.94 1467.95 0.2238 0.78 0.77

AE-CNN SVHN 8× 4 3509 71.70 48.94 0.0251 0.67 0.66
AE-KAN SVHN 32 9.97e5 72.70 13713.89 0.0129 0.67 0.68
AE-CNN SVHN 12× 4 6854 71.53 95.81 0.0167 0.67 0.66
AE-KAN SVHN 48 1.00e6 73.07 13685.50 0.0089 0.69 0.68
AE-CNN SVHN 16× 4 30731 71.88 427.53 0.0114 0.67 0.66
AE-KAN SVHN 64 1.01e6 73.30 13778.99 0.0082 0.69 0.68
AE-CNN CIFAR 8× 4 6709 43.32 154.87 0.0659 0.55 0.56
AE-KAN CIFAR 32 1.99e6 44.09 45227.27 0.0497 0.57 0.58
AE-CNN CIFAR 12× 4 6854 44.68 153.40 0.0523 0.57 0.57
AE-KAN CIFAR 48 2.00e6 45.99 43487.71 0.0402 0.58 0.58
AE-CNN CIFAR 16× 4 6999 45.82 152.74 0.0414 0.57 0.57
AE-KAN CIFAR 64 2.02e6 46.70 43254.81 0.0341 0.59 0.59

a) b) c)

Figure 4: KAN Autoencoders Image Reconstruction Results: a) MNIST Dataset (bottleneck_size =
8) b) SVHN Dataset (bottleneck_size = 64) c) CIFAR-10 Dataset (bottleneck_size = 64).

lower MSE losses, suggesting their ability to capture more informative and discriminative features
from the input data. Furthermore, the latent representations learned by KAN-based autoencoders
improved classification accuracy and F1-scores when evaluated with a KNN classifier.

While the employed datasets provide a good range of complexity, they are still limited to image
classification tasks. The generalizability of KAN-based autoencoders to other domains, such as text
or time-series data, remains unexplored. Although we observed improved performance in our experi-
ments, the training time and resource requirements for KAN-based models were higher compared
to traditional CNN-based autoencoders. For instance, KAN-based reinforcement learning models
have been shown to perform comparably to MLP-based models but with fewer parameters. This has

9



a) b) c)

Figure 5: KNN Classification Results Given the Latent Representations of the KAN Autoencoders:
a) MNIST Dataset (bottleneck_size = 8) b) SVHN Dataset (bottleneck_size = 64) c) CIFAR-10
Dataset (bottleneck_size = 64).

sparked debates on whether KAN’s added complexity is justified, given that similar performance
levels are achievable with simpler architectures like MLPs. Researchers are still evaluating whether
KAN offers enough distinct advantages in various domains, such as physics and offline reinforcement
learning [32]. This could be a limiting factor for large-scale or real-time applications. Also, while
we discuss the potential for improved interpretability with KANs, our study did not include formal
metrics or methods to quantify this aspect. Future work should focus on developing and applying
interpretability metrics to rigorously evaluate the interpretability of learned representations.

Future work should explore applying KAN-based autoencoders to real-world problems, particularly in
fields requiring high interpretability and accuracy, such as medical imaging, finance, and autonomous
systems. Case studies and domain-specific evaluations would provide a more comprehensive under-
standing of their impact. Also, investigating hybrid architectures that combine the strengths of KANs
with other neural network architectures, such as Recurrent Neural Networks (RNNs) or Graph Neural
Networks (GNNs), could lead to novel models with enhanced capabilities.

Acknowledgments and Disclosure of Funding

This work was supported by AFOSR under Grant No. FA9550-21-1-0438.

Code Availability

The code used for experiments in this study is publicly available at GitHub [33].

References
[1] Mohammadamin Moradi, Yang Weng, and Ying-Cheng Lai. Defending smart electrical power

grids against cyberattacks with deep q-learning. PRX Energy, 1(3):033005, 2022.
[2] Mohammadamin Moradi, Shirin Panahi, Zheng-Meng Zhai, Yang Weng, John Dirkman, and

Ying-Cheng Lai. Heterogeneous reinforcement learning for defending power grids against
attacks. APL Machine Learning, 2(2), 2024.

[3] Mohammadamin Moradi, Zheng-Meng Zhai, Aaron Nielsen, and Ying-Cheng Lai. Random
forests for detecting weak signals and extracting physical information: a case study of magnetic
navigation. APL Machine Learning, 2(1), 2024.

[4] Zheng-Meng Zhai, Mohammadamin Moradi, Ling-Wei Kong, Bryan Glaz, Mulugeta Haile, and
Ying-Cheng Lai. Model-free tracking control of complex dynamical trajectories with machine
learning. Nature communications, 14(1):5698, 2023.

[5] Meiyin Wu and Li Chen. Image recognition based on deep learning. In 2015 Chinese automation
congress (CAC), pages 542–546. IEEE, 2015.

[6] Yoav Goldberg. Neural network methods in natural language processing. Morgan & Claypool
Publishers, 2017.

10



[7] Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applications in medical
image analysis. Ieee Access, 6:9375–9389, 2017.

[8] Yinglong Li. Research and application of deep learning in image recognition. In 2022 IEEE
2nd international conference on power, electronics and computer applications (ICPECA), pages
994–999. IEEE, 2022.

[9] Mark R Baker and Rajendra B Patil. Universal approximation theorem for interval neural
networks. Reliable Computing, 4:235–239, 1998.

[10] Yulong Lu and Jianfeng Lu. A universal approximation theorem of deep neural networks
for expressing probability distributions. Advances in neural information processing systems,
33:3094–3105, 2020.

[11] Felix Voigtlaender. The universal approximation theorem for complex-valued neural networks.
Applied and computational harmonic analysis, 64:33–61, 2023.

[12] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

[13] Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024.

[14] Alejandro Polo-Molina, David Alfaya, and Jose Portela. Monokan: Certified monotonic
kolmogorov-arnold network, 2024.

[15] Farhad Pourkamali-Anaraki. Kolmogorov-arnold networks in low-data regimes: A comparative
study with multilayer perceptrons, 2024.

[16] Ziyao Li. Kolmogorov-arnold networks are radial basis function networks, 2024.
[17] Sheng Shen and Rabih Younes. Reimagining linear probing: Kolmogorov-arnold networks in

transfer learning, 2024.
[18] Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer, 2024.
[19] Ali Mehrabian, Parsa Mojarad Adi, Moein Heidari, and Ilker Hacihaliloglu. Implicit neural

representations with fourier kolmogorov-arnold networks, 2024.
[20] Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau.

Convolutional kolmogorov-arnold networks. arXiv preprint arXiv:2406.13155, 2024.
[21] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Machine learning for data

science handbook: data mining and knowledge discovery handbook, pages 353–374, 2023.
[22] Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and Andrea Mechelli. Autoen-

coders. In Machine learning, pages 193–208. Elsevier, 2020.
[23] Debasish Jana, Jayant Patil, Sudheendra Herkal, Satish Nagarajaiah, and Leonardo Duenas-

Osorio. Cnn and convolutional autoencoder (cae) based real-time sensor fault detection, local-
ization, and correction. Mechanical Systems and Signal Processing, 169:108723, 2022.

[24] Jaroslaw Hryszko. Kan-neurobender: Kolmogorov-arnold network implementation. https:
//github.com/JaroslawHryszko/KAN-NeuroBender, 2024.

[25] Sekiro Rong. Kan-autoencoder: Kolmogorov-arnold network autoencoder implementation.
https://github.com/SekiroRong/KAN-AutoEncoder, 2024.

[26] Tianqi Wang and Shubham Singh. Kan based autoencoders for factor models, 2024.
[27] Ali Alqahtani, Xianghua Xie, Jingjing Deng, and Mark W Jones. A deep convolutional auto-

encoder with embedded clustering. In 2018 25th IEEE international conference on image
processing (ICIP), pages 4058–4062. IEEE, 2018.

[28] Carl de Boor. Package for calculating with b-splines. SIAM Journal on Numerical Analysis,
14(3):441–472, 1977.

[29] Tianping Li, Zhenyi Zhang, Mengdi Zhu, Zhaotong Cui, and Dongmei Wei. Combining
transformer global and local feature extraction for object detection. Complex & Intelligent
Systems, pages 1–24, 2024.

[30] Jian Wang, Yueming Song, Ce Song, Haonan Tian, Shuai Zhang, and Jinghui Sun. Cvtrack:
Combined convolutional neural network and vision transformer fusion model for visual tracking.
Sensors, 24(1), 2024.

11

https://github.com/JaroslawHryszko/KAN-NeuroBender
https://github.com/JaroslawHryszko/KAN-NeuroBender
https://github.com/SekiroRong/KAN-AutoEncoder


[31] Blealtan. Efficient kan (kolmogorov-arnold network). https://github.com/Blealtan/
efficient-kan, 2024.

[32] Haihong Guo, Fengxin Li, Jiao Li, and Hongyan Liu. Kan v.s. mlp for offline reinforcement
learning, 2024.

[33] Amin Moradi. Kan autoencoders: Kolmogorov-arnold network autoencoder models. https:
//github.com/AminMoradiXL/kan_ae, 2024.

12

https://github.com/Blealtan/efficient-kan
https://github.com/Blealtan/efficient-kan
https://github.com/AminMoradiXL/kan_ae
https://github.com/AminMoradiXL/kan_ae

	Introduction
	Methods
	Autoencoders and Features Reduction
	Kolmogorov-Arnold Networks (KAN)
	KAN Autoencoders

	Results
	Datasets
	Settings and Strudcture
	Results and Discussion

	Discussion

