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Abstract

We study mathematical aspects of the behaviors of animal groups, both to empirically

reveal underlying simplicity, and to model possible mechanisms of them. Social groups

consisting of multi-agents perform spatially coherent behaviors to self-defense against

predation or to attain dietary benefits. As positions of agents in a group at a time

can be represented as a point in a higher-dimensional space, all such points describing

the behavior create a hidden manifold in the higher-dimensional space. Dimensional

Reduction (DR) methods revealing the underlying manifold sometimes misinterpret

the topology of the embedding. In fact, multi-agent systems may undergo abrupt

changes defined as phase transitions, due to natural perturbations. A phase transition

splits the underlying manifold into two sub-manifolds with distinct dimensionalities

and often immobilizes DR methods. However, behavioral coherence is costly, as it

requires agents to change their activities such as eating and resting in a communal

time rather than their ideal time. Segregation of a group into subgroups may reduce

the cost if subgroups are homogeneous, but it may also create small subgroups that

are then vulnerable to predation.

Here we first construct an alternative DR approach that demands a two-dimensional

embedding which topologically summarizes the higher-dimensional data. Then, we

device a method to detect phase transitions in a multi-agent system. We also adopt

a distinct metric that is capable of computing changes in a multi-agent group, and

characterizing alternation of manifolds. Finally, we model an efficient segregation of a

group by optimizing a cost function.
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Chapter 1

Introduction

Multi-agent systems such as crowds of people [66, 94, 144], schools of fish [58, 103],

flocks of birds [11, 95], colonies of molds [107] and ants [108], and herds of cows [128]

often synchronize their activities and exhibit discrete patterns as shown in Figure 1.1.

Animals manifest synchronization as it offers a high vigilance from potential predator

attacks and increases the ability to attain and defend food sources [46, 73].

The study of multi-agent systems has become a very popular topic in the area of

nonlinear dynamical systems during the past few decades as they are rich with abstract

mathematical concepts. In nature, most of such systems yield a high-dimensionality

as they consist of plenty of agents. For instance, consider a flock of birds with three

agents such that each agent moves in a three dimensional space as in Figure 1.2. This

system attains the best coordination when the agents have similar speeds and directions

and requires only three variables to describe the motion. Thus, the three dimensional

coordinates of the centroid of the system may be used as variables to describe the

whole motion. In contrast, the flock of birds reaches the worst coordination when each
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Rich collective behavior in (a) human, (b) fish, (c) birds, (e) molds, (f)
ants, and (g) cows.

agent has different speeds and directions, thereby the same system is described by nine

dimensions (each bird is in three dimensions for three birds).

As the number of agents increases, the dimensionality of the system increases even

faster. The study of such systems requires to manipulate higher-dimensional data which

is arduous even for the latest technology. Thus, revealing the best (coarse) observables

those describe the dynamics of a complex system and reducing the dimensionality is

vital. Even in the same system, describing the motion at a transition made by change of

an activity requires complex mathematical frameworks. Sometimes, collective behavior

undergoes alternation between two or more activities due to natural perturbations

and makes the study even more arduous. Communal decisions in multi-agent groups

are made either despotically by a dominant (or dominants) or democratically by the
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Figure 1.2: A flock of birds with three agents. While the length of an arrow relates to
the speed of the corresponding agent, orientation indicates the direction of the motion.
At the beginning, (a) all the agents evolve in the same speed to the same direction,
and then they (b) evolve with different speeds and directions.

majority of individuals in the group [29]. Even though the agents benefit from the

synchronization made by communal decisions, it requires a significant portion of agents

to change their desired activity at a worst time which would incur a lack of efficiency.

This low efficiency can be reestablished by segregating the multi-agent group into

subgroups such that the agents’ activities in each group are homogeneous.

My research presented in this thesis mainly focuses on four components:

1. Development of a novel Nonlinear Dimensionality Reduction (NDR) method us-

ing cubic smoothing splines.

2. Detection of phase transitions in collective motion using the manifold’s curvature.

3. Characterization of alternating manifolds in collective motion using a metric

which assesses changes of speed, coordination, and structure of agents.

4. Model an efficient segregation of a herd of cows by minimizing the cost incurred

by hunger, fatigue, and predation risk.
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We present introductory details including the literature review and the problem defini-

tion for each of the aforesaid component in the rest of this chapter. However, we make

an individual chapter for each of those to present detailed methods and explanatory

examples.

1.1 Dimensionality reduction

Dynamics of a multi-agent system can be studied either by tracking agents’ trajec-

tories or reducing the dimensionality of the system. As tracking of all agents’ tra-

jectories and deriving conclusions about the whole system is exhaustive due to the

high-dimensionality, filming the whole system and studying the collective behavior to

comprehend social aspects in a biological sense is desired. However, analyzing these

datasets is still a nontrivial task due to the high volume. A desirable step that may

ease the experimenter’s task of locating events of interest is to identify coarse observ-

ables [50, 72, 89] and behavioral measures [88] as the group navigates through the

space. In this context, Dimensionality Reduction (DR) offers a large set of tools to in-

fer properties of such complex multi-agent dynamical systems. Thus, we use methods

from machine learning to reduce the dimensionality and to identify low-dimensional

embedding manifold for higher-dimensional data.

We can reveal a hidden manifold in an abstract higher-dimensional space which

describes the collective motion of a group at time t such that each instant Y (t), of the

data D, describing the multi-agent system corresponds to a point x(t) on the manifold
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M [1, 53]. Thus, the multi-agent system evolves according to the underlying flow

Φ : D →M such that Φ
(
Y (t)

)
= x(t). (1.1)

The data

D =
{
Y (t)

∣∣t = 1, . . . , T
}
, (1.2)

for some T , describing the collective motion can either be configurations or frames. For

a system of n agents, a configuration is a vector of positions of agents Y (t), such that

Y (t) =
[
y

(t)
1 ;y

(t)
2 ; . . . ;y(t)

n

]
, (1.3)

where y(t)
i is a column vector of the position of the i-th agent.

If the data is frames partitioned from a video of collective motion having the pixel

dimensionality of m1 ×m2, then for all t, we reshape each intensity matrix of a frame

into a column matrix as



y
(t)
1 y

(t)
m1+1 . . . y

(t)
(m2−1)m1+1

y
(t)
2 y

(t)
m1+2 . . . y

(t)
(m2−1)m1+2

. . . . . . . . . . . .

y
(t)
m1 y

(t)
2m1

. . . y
(t)
m1m2


m1×m2

=⇒
[
y

(t)
1 , y

(t)
2 , . . . , y

(t)
m1+1, . . . , y

(t)
m1m2

]T
.

Thus, an entry of input data D, in this case is

Y (t) =
[
y

(t)
1 , . . . , y

(t)
i , . . . , y

(t)
m1m2

]T
, (1.4)
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Figure 1.3: One dimensional (green) embedding of a particle moving in three dimen-
sional spiral (orange). While red points represent the start and end of the trajectory,
blue represent intermediate positions. Here, t1, t2, t3, and t4 are four arbitrary time
steps.

where y(t)
i is the intensity of the i-th pixel of the reshaped frame. As an example,

consider a particle (a single-agent system) revolves in a three dimensional spiral as

shown in Figure 1.3. As n = 1 and the motion is three dimensional, Equation (1.3)

reduces to Y (t) =
[
y

(t)
1

]
where y(t)

1 ∈ R3 for all t. This spiral is embedded in one

dimension, thus x(t) ∈ R for all t.

Traditional DR methods based on linear techniques such as Principal Components

Analysis (PCA) have been shown to possess limited accuracy when input data is nonlin-

ear and complex [135]. Dimentionality reduction entails finding the axes of maximum

variability [71] or retaining the distances between points [32]. Multi Dimensional Scal-

ing (MDS) with Euclidean metric is another DR method which attains low-dimensional

representation by retaining the pairwise distance of points in low-dimensional repre-

sentations [32]. However, Euclidean distance calculates the shortest distance between

two points on a manifold instead of the genuine manifold distance, which may lead to
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a difficulty of inferring low-dimensional embeddings. The isometric mapping algorithm

(Isomap) resolves the problem associated with MDS by preserving the pairwise geodesic

distance between points [130]; it has recently been used to analyze group properties in

collective motion such as the level of coordination and fragmentation [1, 7, 34]. Within

Isomap, however, short-circuiting [117] created by faulty connections in the neighbor-

hood graph, manifold non-convexity [35, 131] and holes in the data [82] can degrade

the faithfulness of the reconstructed embedding manifold.

Diffusion maps [26] have also been shown to successfully identify coarse observables

in collective phenomena [8] that would otherwise require hit-and-trial guesswork [50].

Beyond Isomap and diffusion maps, the potential of other NDR methods to study

collective motion is largely untested. For example, Kernel PCA (KPCA) requires the

computation of the eigenvectors of the kernel matrix instead of the eigenvectors of the

covariance matrix of the data [122], but this is computationally expensive [135]. Local

Linear Embedding (LLE) embeds high-dimensional data through global minimization

of local linear reconstruction errors [135]. Hessian LLE (HLLE) minimizes the curviness

of the higher-dimensional manifold by assuming that the low-dimensional embedding

is locally isometric [44]. Laplacian Eigenmaps (LE) perform a weighted minimization

(instead of global minimization as in LLE) of distance between each point and its given

nearest neighbors to embed high-dimensional data [13].

Iterative NDR approaches have also been recently developed in order to bypass

spectral decomposition which is common in most of NDR methods [56]. Curvilinear

Component Analysis (CCA) employs a self-organized neural network to perform two

tasks, namely, vector quantization of submanifolds in the input space and nonlinear
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projection of quantized vectors onto a low-dimensional space [37]. This method min-

imizes the distance between the input and output spaces. Manifold Sculpting (MS)

transforms data by balancing two opposing heuristics: first, scaling information out

of unwanted dimensions, and second, preserving local structure in the data. The MS

method which is robust to sampling issues, iteratively reduces the dimensionality by

using a cost function that simulates the relationship among points in a local neighbor-

hoods [56]. The Local Spline Embedding (LSE) is another NDR method which embeds

the data points using splines that map each local coordinate into a global coordinate

of the underlying manifold by minimizing the reconstruction error of the objective

function [141]. This method reduces the dimensionality by solving an eigenvalue prob-

lem while the local geometry is exploited by the tangential projection of data. Local

spline embedding assumes that the data is not only unaffected by noise or outliers,

but also sampled from a smooth manifold which ensures the existence of a smooth

low-dimensional embedding.

Due to the global perspective of all these methods, none of them provides suf-

ficient control over the mapping from the original high-dimensional dataset to the

low-dimensional representation, limiting the analysis in the embedding space. In

other words, the low-dimensional coordinates are not immediately perceived as use-

ful, whereby one must correlate the axes of the embedding manifold with selected

functions of known observables to deduce their physical meaning [50, 130]. In this con-

text, a desirable feature of DR that we emphasize here is the regularity in the spatial

structure and range of points on the embedding space, despite the presence of noise.

With regard to datasets of collective behavior, nonlinear methods have limited use
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for detailed analysis at the level of the embedding space. This is primarily because the

majority of these methods collapse the data onto a higher-dimensional space, whose

coordinates are not guaranteed to be linear functions of known system variables [79].

In an idealized simulation of predator induced mobbing [43], a form of collective motion

where a group of animals forages around a moving predator, two degrees of freedom

are obvious, namely the translation of the group and the rotation about the predator

(center of the translating circle). This two-dimensional manifold is not immediately

perceived by Isomap, even for the idealized scenario presented in Figure 1.4, where a

group of 20 individuals (n) simulated in 2000 time steps (T ), input as data

D =
{
Y (t)

∣∣t = 1, . . . , 2000
}
, (1.5)

of configurations

Y (t) =
[
y

(t)
1 ;y

(t)
2 ; . . . ;y

(t)
20

]
, (1.6)

where y(t)
i =

[
y

(t)
1,i , y

(t)
2,i

]T
∈ R2 for all i, rotate about a predator moving at a constant

speed about a line bisecting the first quadrant (Figure 1.4(a)).

Isomap running on the data is unable to locate a distinct elbow in the residual

variance versus dimensionality curve, notwithstanding substantial tweaking of the pa-

rameters. Thus, the inferred dimensionality is always 1 (Figure 1.4(b)). For a two-

dimensional embedding (Figure 1.4(c)), visual comparison of the relative scale of the

axes indicates that the horizontal axis represents a greater translation than the verti-

cal axis. It is likely that the horizontal axis captures the motion of the group along

the translating circle. The vertical axis could instead be associated with either the
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Figure 1.4: Using Isomap to create a two-dimensional embedding of a simulation of
collective behavior. (a) Predator mobbing of twenty agents moving on a translating
circular trajectory on a plane (enclosing a predator moving at constant speed at a
45◦ angle), axes y1,i, y2,i generally represent coordinates for the i-th agent. (b) Scaled
residual variance of candidate low-dimensional embeddings produced by Isomap using
different nearest neighbor values α (green-circle, brown-square, and black-triangle),
and (c) two-dimensional representation of the data for six nearest neighbors (black-
triangle). Green and blue crosses mark the start and end points of the trajectories,
respectively.

motion about the center of the circle or noise, which is independent and identically

distributed at each time step. The ambiguity in determining the meaning of such di-

rection indicates a drawback of Isomap in providing meaningful interpretations of the

low-dimensional coordinates.

We propose an alternative approach to NDR in Chapter 2 that directly work on the

input data in the higher-dimensional space [10, 62], and doesn’t require heavy matrix

computations or orthogonalization like most of other DR methods. The new method

enhances data regularity as it computes embedding coordinates using the geodesic dis-

tance like Isomap rather than using Euclidean distance. As this method constructs the

manifold using cubic smoothing splines, the smoothnesses of the manifold is strongly

preserved. The method undergoes three steps: clustering the raw data, smoothing the
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manifold, and embedding of higher-dimensional data. The clustering step partitions

the data into two sets of non-overlapping segments called slices as in [10], using two

reference points. Smoothing step first creates a neighborhood graph within each cluster

using the range search in [51], with a specific distance parameter. Then, it locates the

longest geodesic using the Dijkstra’s algorithm [42, 81] in each neighborhood graph.

In [62], one-dimensional curves are used to represent the high-dimensional data in

which points on the curve coincide with the average of raw data projected on itself.

Similarly, a cubic smoothing spline is used to fit to the longest geodesic. The second

set of slices and corresponding splines are created in a similar way resulting a two-

dimensional grid structure known as the PM surface. The grid structure made by two

sets of cubic smoothing splines serves as the intrinsic coordinate system on the manifold.

In the embedding step, the virtual intersection points between pairs of cubic smoothing

splines, one from each reference point, are constructed. Any point in the input space is

projected on the PM in terms of the intersection points and their respective distances

along the cubic splines. We demonstrate stepwise computations of the method using

a three dimensional dataset called a swiss-roll. Then we validate the method on three

different datasets, including an instance of collective motion similar to that in Figure

1.4.

1.2 Phase transitions in multi-agent systems

In multi-agent animal groups, the response to a perturbation — internal or external —

is often manifested in the form of changes in group speed, coordination, or structure
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[12, 23, 31, 64, 90, 96, 137]. Such changes are witnessed in schools of fish and flocks

of birds under attack [83, 102, 133], foraging animal groups [30, 38], and crowds of

human exposed to alarm situations leading to panic [65, 123]. Based on recent efforts

demonstrating that the collective motion is associated with a low-dimensional embed-

ding [1, 21, 34, 36, 53], we expect that such behavioral changes should be manifested

in variation of the topology of an underlying manifold.

A phase transition, defined as an abrupt change of the behavior in a multi-agent

system, shifts the system from one state to another [39, 125] which is topologically

represented as an existence of two distinct manifolds separated at a locus of singu-

larity where the transition physically exists. A manifold containing singularity may

immobilizes DR methods and reveals unfaithful embeddings. Thus, detection of such

transitions, especially in humans [4], is an ongoing research problem [6].

As an instance to demonstrate the aforesaid pitfall, we partition 120 frames (T )

from a video of a human crowd containing a transition at the 61-th time step from

walk (Figure 1.5(a)) to run (Figure 1.5(b)) presented in Figure 1.5. Here, the data

D =
{
Y (t)

∣∣t = 1, . . . , 120
}
, (1.7)

consists of frames in the format

Y (t) =
[
y

(t)
1 , y

(t)
2 , . . . , y(t)

m1m2

]T
, (1.8)

where m1 ×m2 is the pixel dimension of a frame and y
(t)
i is the intensity of the i-th
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Figure 1.5: An abrupt change in a crowd behavior where a (a) walking crowd suddenly
starts (b) running [101]. (c) Scaled residual variance with respect to the dimensionality,
where the dimensionality of the underlying manifold is given by an elbow, is obtained
by running Isomap upon frames in each phase with six nearest neighbors. Embedding
dimensionalities of sub-manifolds representing walking (blue circle) and running (red
square) of the crowd are three and four, respectively.

pixel of the reshaped frame at the t-th time step as explained in Equation (1.4). As

we know the frame number at the phase transitions, we partition the frames into two

phases and run Isomap, available in [130], at each phase separately. We observe that

each phase is embedded in a different space (Figure 1.5(c)), since their dimensionalities

are different.

The mapping in Equation (1.1) switches from one manifold to another at a phase

transition. Thus, the system can be represented as two distinct sub-manifolds, M(j)

where j = 1 and 2, along with a locus singularities (L) where the sub-manifolds

intersect as

L =
⋂
M(j) (1.9)

[54]. As a phase transition splits a manifold into two sub-manifolds, prior to utilize

DR algorithms, the transitions in the collective behavior should be detected.

We detect transitions based on revealing high curvature on the manifold which dif-
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ferentiate phases of the motion in Chapter 3. We hypothesize that a phase transition

is manifested in the form of change in local curvature which can be detected by ratios

of singular values. We formalize this concept in two dimensions by proving a relation

between curvature and singular value ratio, and then extend it to higher dimensions.

We justify that the same transition can also be detected by analyzing the ratio of the

smallest singular value to the largest singular value computed locally upon a neighbor-

hood of points on the manifold. Based on the distribution of a moving sum of absolute

moving difference of the singular value ratios, we detect transitions and order their

magnitudes.

1.3 Alternation of collective motion

Another salient scenario is that the collective motion sometimes alternates between

behavioral patters through transitions. Thus, the dimensionality of the manifold un-

derlying the motion is also alternates. As an illustrative example of alternation between

high and low coordination in a multi-agent group, we simulate 50 self-propelled parti-

cles (n) in 180 time steps (T ) using the Vicsek model [136] by alternatively imposing

low and high noise to their individual dynamics in three distinct phases. Figure 1.6

shows the resulting variation in the coordination of agents. Following [1, 21, 34, 36],

an established DR algorithm called Isomap [130] is applied to data

D =
{
Y (t)

∣∣t = 1, . . . , 180
}
, (1.10)
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Figure 1.6: A simulation of self-propelled particles in two dimensions. Changes in
coordination can be seen as switching of embedding manifolds of different dimensions.
The top row shows snapshots of self-propelled particles as they move with low, high,
and then low noise again. The bottom row displays the normalized Isomap residual
variance for each instance (a, b, c) and the whole motion (d). The location of elbow in
each plot indicates that low noise instances are low-dimensional (3), high noise instance
results into a high-dimensional embedding (6). The embedding dimensionality for the
whole motion is four.

of configurations

Y (t) =
[
y

(t)
1 ;y

(t)
2 ; . . . ;y

(t)
50

]
, (1.11)

where y(t)
i ∈ R2 for all i (Equation (1.3)), obtained from each phase as well as the

whole dataset comprising all three phases to infer the dimensionality of the underlying

embedding. The residual of the reconstruction error shows that the first and last

instances (low noise) embed on manifolds with lower-dimensionality than the middle

instance (high noise) [1]. However, when the same algorithm is applied to the full

dataset, we find an embedding dimensionality that is neither an indicator of high nor

low group coordination. This example suggests that group behavior is manifested in

distinct embedding manifolds, and a naive implementation of DR could result in a loss

of information about critical changes in collective motion [1].
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We also propose a method to study higher-dimensional alternating manifolds in re-

sponse to an internal or external perturbation to a group of agents in Chapter 4. Our

approach shares similarities with the coarse-grained analysis of stochasticity-induced

switching in one-dimensional model of collective motion [72]. Therein, a single coarse

observable, the average nearest-neighbor distance is used to distinguish between the

stationary and mobile states in the collective motion. We characterize group motion by

using a single coarse observable which computes the distance between sub-manifolds

corresponding to distinct group activities. Specifically, we use agent positions in each

configuration to create a single weighted metric of group speed, orientation, and struc-

ture. The positions of agents between consecutive time steps are mapped using a

nearest-neighbor search in position and velocity which suffices to characterize the group

motion.

1.4 Efficient segregation of herds

Animals in a multi-agent group gain many advantages from grouping and synchroniz-

ing together including greater vigilance from more pairs of eyes, coordinated defense

against predators, and increased ability to find and defend food sources [46, 73]. How-

ever, living in large groups also carries disadvantages, such as increased risk of disease

and parasitism [5, 20], having food stolen [40], and interference with movement [132].

Specially, perfect synchronization requires animals to change their activities in a com-

munal time rather than their ideal time, which would then encounters low efficiency.

Even when the segregation of the group into homogeneous subgroups enhances the
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efficiency, it may also create small subgroups which are then vulnerable to predation

[33, 63]. The balance between synchrony and risk of predation varies with individuals’

occupancy in groups and can be described by a Cost Function (CF), formulated as a

convex combination of cost components contributed through synchrony and risk.

As groups of animals become very large, the cost gain through synchrony tend

to exceeds that of risk as a significant number of individuals change their desirable

activities like eating or resting to agree with the majority. At some stage, the group

can become sufficiently large that it can segregate into two groups and give more benefit

to its members than the overloaded single group [124]. Thus, there is a point at which

the CF should be optimized to determine the best segregation of the group. However,

an optimum group size is not necessarily stable [124]. Even when a group is already at

its optimum, extra individuals will still benefit from joining the group. A stable group

size is therefore likely to be consistently larger than an optimum group size [124, 127].

Sometimes, the context even be more complex as individuals within a group differ in

many ways that relate to their fitness. For example, if males and females differ in their

nutritional needs and yet all benefit from staying with the group, some individuals may

have to interrupt valuable feeding time to keep up with the herd when it moves off [28,

114]. Individuals may stay within a group, however they pay a cost by synchronizing

activities with others and being forced to switch between eating, resting, or moving

at a communal time rather than the time that is optimal for them as individuals [45].

Alternatively, the group may segregate into sub-groups consisting individuals with

more similar switching times such as all-males and all-females or juveniles and adults

where the cost of synchronization is consequently lower [27, 45, 87, 106, 116]. The cost
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of synchronization will depend both on the range of different types of animals in the

group and on the particular activities involved, so that some animals such as baboons

will break up into sub-groups for foraging, particularly when food is scarce, and come

together into larger groups for sleeping [120].

Degree of social activity segregation between two classes has been assessed using a

model and the performance was tested using data on inter-sexual social segregation in

red dear [28]. However, even in the same class (e.g. male), activity synchronization can

vary significantly, and it can depend on the age, body mass, or health of animals. Thus,

class-based segregation can creates weak groups such that agents are homogeneous

across many classes. Moreover, segregation between classes is seasonal sometimes, as

an example, inter-sexual social segregation is not observed during the mating season

in nature.

The ideal time that the switching of an activity occur had been modeled quasinor-

mally in [45], and the grouping benefit was revealed as linearly increasing with the group

size. This work hypothesizes that segregation never occurs due to synchronization cost

and the different levels of synchronization always beneficial. It is also expected that

a herd attempts to assure the synchrony by either dispersing or staying together. We

assume that large groups encounter a higher synchronization cost while small groups

increase predation risk [33, 63]. Therefore, the perfect group size is neither too large

nor too small.

Communal decisions in herds are made either despotically by a dominant (or dom-

inants) or democratically by the majority of individuals in the herd [29]. The synchro-

nization cost has also been modeled to compare despotic and democratic groups in
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[29], and revealed that the cost for despotic groups are higher than that of democratic

groups.

Specifically, cows (Bos taurus) make regular decisions over staying with their herd

or split from their herd due to their two-stage feeding process that involves first grazing

(standing up) and then ruminating (largely lying down). Lying down and ruminating

can occupy up to 65% of a cow’s day [70, 74]. Both grazing and lying (including

ruminating) are essential to successful digestion of grass [118], but they have to be

terminated if the herd decides to move to another area, which can happen about 15–

20 times a day [70]. Figure 1.7 shows the cycle of states as we observe often in free

range cows. Individual cows have similar, but not identical, needs for lying and grazing

[74, 110], so that keeping up with the herd each time it moves can incur a considerable

cost in interrupted grazing or lying times. This cost can include reduced growth rate in

young cattle [91, 98], and physiological and behavioral symptoms of “stress” deprived

of adequate opportunities for lying down [49, 93].

We model an efficient segregation of a herd of cows by minimizing a CF quantifying

their hunger, fatigue, and predation risk in Chapter 5. We always rely on a perfect

synchronization, thus we model segregation of a herd into groups, fission-fusion of

groups and switch of agents between groups such that groups are highly homogeneous

with respect to their hunger and fatigue. Moreover, we rely on democracy in our

study when they take communal decisions as it ensures high efficiency. We define

cows’ grazing demand as hunger, while the demand for lying as fatigue. We compute

their hunger and fatigue at each time step using the Evolution Scheme (ES) in [128]

and quantify synchronization cost based on cows’ hunger and fatigue. We assess the
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Figure 1.7: Cycle of states eating (E), lying down (R), and standing (S) of cows.

cost incurred by the hunger (or fatigue) as the mean of standard deviations of hunger

(or fatigue) computed in each group and the cost from risk is modeled as inverse

exponentially of the group size. The CF is defined as a convex combination of costs

associate with hunger, fatigue, and risk. During each time step, we minimize this CF

over all plausible groups created from a given herd with known maximum allowance of

groups and determine the efficient segregation.
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Chapter 2

Dimensionality Reduction by

Principal Manifolds

Dimensionality Reduction (DR) is defined as a transformation of higher-dimensional

data into a meaningful representation of lower dimension without loosing any informa-

tion [135]. Dimensionality reduction evaluates the coarse observables and then reveals

the underlying manifold M, hidden in the higher-dimensional data D, along with the

underlying map

Φ : D →M such that Φ
(
Y (t)

)
= x(t). (2.1)

This map is also known as a topological embedding of the data D onto the manifold

M. As Φ is a topological embedding, it also provides the inverse mapping Φ−1 which

maps points on the manifold with the points in the higher-dimensional space. Let

assume a d-dimensional input dataset is embedded onto an e-dimensional space such

that e << d. Thus, the map from a point x(t) ∈ Re in the embedding space to a point
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Y (t) ∈ Rd in the original dataset is

Φ−1 : Re → Rd such that Φ−1
(
x(t)
)

= Y (t). (2.2)

Definition 2.0.1. Dimensionality reduction [135]. A transformation of higher-

dimensional data into a meaningful representation of lower dimension which preserves

certain properties.

Definition 2.0.2. Coarse observables [135]. The best observables (dimensions)

those describe the dynamics of a complex system.

Definition 2.0.3. Topological space [92]. A topology on a set X is a collection T

of subsets of X possessing the following properties:

• ∅ and X are in T .

• The union of elements of any subcollection of T is in T .

• The intersection of the elements of any finite subcollection of T is in T .

Then, (X, T ) is called a topological space.

Definition 2.0.4. Homeomorphic [92]. A function h : (X, TX) → (Y, TY ) between

two topological spaces (X, TX) and (Y, TY ) is called a homeomorphism, if it possesses

the following properties:

• h is bijective.

• h is continuous.
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• The inverse function h−1 is continuous.

Two topological spaces (X, TX) and (Y, TY ) are homeomorphic, if there is a homeomor-

phism.

Definition 2.0.5. Hausdorff space [92]. A topological space (X, T ) is called a Haus-

dorff space, if for each pair x1 and x2 of distinct points of X, there exist disjointed

neighborhoods N1 and N2 in T , respectively.

Definition 2.0.6. Countable basis [92]. A space X is said to have a countable

basis at x, if there is a countable collection B of neighborhoods of x such that each

neighborhood of x contains at least one element of B.

Definition 2.0.7. An m-dimensional manifold [92]. An m-dimensional manifold

is a Hausdorff space (X, T ) with a countable basis such that each point x ∈ X has a

neighborhood that is homeomorphic with an open subset of m-dimensional Euclidean

space (Rm).

Definition 2.0.8. Subspace topology [92]. Let (X, T ) be a topological space and Y

is a subset of X. The collection

TY := {Y ∩ U |U ∈ T } (2.3)

is a topology on Y , called the subspace topology.

Definition 2.0.9. Topological Embedding [92]. Let f : (X, TX) → (Y, TY ) is

an injective continuous map, where (X, TX) and (Y, TY ) are topological spaces. If

f ′ : (X, TX) → (f(X), Tf(X)) be a homeomorphism and Tf(X) is subspace topology
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inherent from Y , then f : (X, TX)→ (Y, TY ) is a topological embedding (or simply, an

embedding).

As given in Equations (1.2), (1.3), and (1.4), the data,

D =
{
Y (t)

∣∣t = 1, . . . , T
}

(2.4)

for some T , describing the collective motion can either be configurations or frames.

For a multi-agent system of n agents, a configuration is a vector of positions of agents

Y (t), such that

Y (t) =
[
y

(t)
1 ;y

(t)
2 ; . . . ;y(t)

n

]
, (2.5)

where y(t)
i is a column vector of the position of the i-th agent. If the data is frames

partitioned from a video of collective motion having pixel dimensionality m1×m2, then

for all t,

Y (t) =
[
y

(t)
1 , . . . , y

(t)
i , . . . , y

(t)
m1m2

]T
, (2.6)

where y(t)
i is the intensity of the i-th pixel of the column matrix formed by reshaping

the t-th frame.

Definition 2.0.10. Collective motion [137]. A spontaneous emergence of ordered

movement in a system compound of a large number of self-propelled particles/agents.

Embedding of a three dimensional swiss-roll is presented in Figure 2.1 to demon-

strate the concept. This example presents a single-agent system evolving over time.

Thus, Equation (2.5) reduces to Y (t) =
[
y

(t)
1

]
, where y(t)

1 =
[
y

(t)
1,1, y

(t)
2,1, y

(t)
3,1

]T
∈ R3, for

all t. This swiss-roll embeds in two dimension, thus x(t) =
[
x

(t)
1 , x

(t)
2

]
∈ R2 for all t.
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Figure 2.1: The map Φ embeds three dimensional (a) swiss-roll data onto a two dimen-
sions rectangle. As the map Φ is homeomorphic, the raw data can be retrieved if the
map Φ−1 is applied to the embedding data. Points are colored to highlight the relative
configuration.

In this thesis, we use a well established NDR method named as Isomap [130] to

compare our method and sometimes to compute the dimensionality of underlying man-

ifolds. Thus, we provide a detailed review about Isomap in Section 2.0.1.

2.0.1 Review of Isomap

Isomap is a widely using NDR method available in [130]. This is a simple and a ro-

bust method to reveal lower-dimensional embedding of a higher-dimensional data. It

preserves the neighborhood distance and approximates intrinsic dimensionality of the

embedding using geodesic distance induced by a neighborhood graph. Thus, Isomap is

an extension of the classic Multi-Dimensional Scaling (MDS) method [75, 76], which

used Euclidean metric to approximate neighborhood distance. Isomap defines geodesic

distance between two nodes as the shortest path computed using the Dijkstra’s algo-
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rithm [42, 81]. The Isomap method is presented as Algorithm 1.

Algorithm 1 Isomap: This algorithm inputs data D and the parameter α for number
of nearest neighbors. Algorithm outputs d-dimensional embedding coordinates.
1: procedure Isomap(D, α)
2: Search α nearest neighbors for each point in the data D.
3: Construct a neighborhood graph by adjoining neighbors together.
4: Compute lengths of edges using the Euclidean distance.
5: Compute the shortest path between each pair of nodes (points) using Dijkstra’s

algorithm [42, 81], and denote lengths of all paths by DG.
MDS: Computes lower-dimensional embedding.

6: Apply the double centering to the matrix DG: For n total points, if the double
centering matrix is τ(DG), then τ(DG) = −HDSH/2, where DS is the matrix of
squired distances, (DS)k1,k2 = ((DG)k1,k2)

2 for k1, k2 = 1, . . . , n , and the centering
matrix H = I − [1, . . . , 1][1, . . . , 1]T/n [60].

7: Let λj be the j-th eigenvalue (in the descending order) of the matrix τ(DG),
and let vj be the j-th eigenvector. Then, the d-dimensional embedding coordinates
are first d entries of

√
λjvj.

8: end procedure

Isomap residual variance between data and embedding is used to analyze the ac-

curacy of the embedding. A input dataset is embedded into all the dimensions 1–11

one at a time and then the residual variances are computed. The residual variance

is computed using 1 − R2(DY ,Dx), where DY is a matrix representing the distance

between points in the neighborhood graph and Dx is the matrix of Euclidean distances

between points in the Isomap’s low-dimensional embedding.

Figure 2.2 shows the residual variance versus the dimension of the data presented in

Figure 2.1(a). Therein, one dimensional embedding encounters the largest error while

the embedding dimensions 2–11 encounter similar residual variances. Even though all

the embedding dimensions higher than two entails the same amount of residual, it is

always important to consider the smallest dimensionality as the embedding dimen-

sionality when the error is saturated. This is because, the embedding which is low in
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dimension ease the subsequent analysis of the manifold. Thus, the best embedding di-

mension of this data set is two, as it is simple and addition of more dimensions doesn’t

improve the embedding.
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Figure 2.2: Isomap residual variance plot of the dataset presented in Figure 2.1(a).
The dimensionality of the underlying manifold is two as indicated by the elbow.

Section 2.1 provides the detailed DR algorithm. Differently from other DR ap-

proaches the proposed method is based on a Principal Manifold (PM) of the raw

dataset, obtained by constructing a series of cubic smoothing splines in slices of data

that are partitioned using locally orthogonal hyperplanes. The resulting PM finding

approach summarizes the data in the form of a two-dimensional embedding, that is

e = 2 in Map (2.2).

2.1 Constructing the algorithm

Here we propose an alternative approach to NDR, one that does not require heavy

matrix computations or orthogonalization, involves working directly on raw data in the

high-dimensional space [10, 62]. The new method relies on geodesic distance rather
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than Euclidean distance and emphasizes manifold regularity. Our approach is based

on a spline representation of data that allows us to control the expected manifold

regularity. Typically, this entails conditioning the data so that the lower dimensions

are revealed. For example, in [10], raw data is successively clustered through a series

of lumping and splitting operations until a faithful classification of points is obtained.

In [62], one-dimensional parameterized curves are used to summarize the high-

dimensional data by using a property called self-consistency, in which points on the

final curve coincide with the average of raw data projected on itself. In a similar

vein, we construct a PM of the high-dimensional data using cubic smoothing splines.

Summarizing the data using splines to construct a PM of the data has two advantages:

(i) it respects the data regularity by enabling access to every point of the dataset, and

(ii) it gives direct control over the amount of noise rejection in extracting the true

embedding through the smoothing parameter.

We demonstrate stepwise computations of the method using a three dimensional

dataset called a swiss-roll as shown in Figure 2.1(a). As we mentioned at the beginning

of this chapter, swiss-roll dataset represents positions of a temporally evolving single-

agent system input as D =
{
Y (t)

∣∣t = 1, . . . , T
}
for some T , where Y (t) =

[
y

(t)
1

]
and

y
(t)
1 =

[
y

(t)
1,1, y

(t)
2,1, y

(t)
3,1

]T .
2.1.1 Clustering the raw data

The clustering makes two sets of slices of the data such that slices between sets are

mutually orthogonal. Input data D is described by the Equation (1.2) such that each

data entry Y (t) is a d-dimensional point in the higher-dimensional space. Therein, T
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is the total number of time steps that the data is sampled from. As each time step

generates a higher-dimensional data point, the underlying manifold consists of T total

points.

The clustering begins by partitioning the data into non-overlapping clusters. The

partitioning is performed by creating hyperplanes orthogonal to the straight line joining

an external reference point q ∈ Rd through the mean µ ∈ Rd to some point q̃ ∈ Rd.

Although any reference point may be selected, we use Principal Components (PCs) to

make the clustering procedure efficient in data-representation. In particular, Principal

Component Analysis (PCA) of the data matrix

Dm =
[
Y (1),Y (2), . . . ,Y (T )

]
(2.7)

is performed to obtain two largest principal components (v1, σ1) and (v2, σ2), where

vi is the d-dimensional coefficients and σi is the eigenvalue of the i-th PC. The first

reference point is chosen such that q1 = µ + 3σ1v1. To cover the full range of the

dataset, the line joining the points q1 and the point q̃1 = µ − 3σ1v1 is divided into

n1
C equal parts using the ratio formula in a d-dimensional space [104]. The j-th point

aj ∈ Rd on this line is

aj = µ+
3σi(2j − niC)vi

niC
; j = 0, . . . , niC (2.8)

where i = 1 for this case of dealing with the first reference point.

All points between hyperplanes through points aj−1 and aj are assigned to the
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Figure 2.3: Clustering three dimensional swiss-roll data into slices. (a) Assigning
points, Y (t)’s, between hyperplanes thought the points aj−1 and aj into the cluster
C1
j by using the angles Y (t)ajq1 and Y (t)aj−1q1 as explained in Inequalities (2.9). (b)

Using a single reference point (black square) located far from the data points, the
dataset can be sliced into non-overlapping sections which are perpendicular to the line
joining the centroid (gray asterisk) and the reference point, then slices are used to draw
a grid pattern using splines. (c) A hole in the data will result in multiple sub-clusters
(shown in different colors red and blue) within a cluster.

cluster C1
j , j = 1, . . . , n1

C, by using the inequalities

cos−1


(
Y (t) − aj−1

)T

(qi − aj−1)

‖Y (t) − aj−1‖‖qi − aj−1‖

 < π/2 , cos−1


(
Y (t) − aj

)T

(qi − aj)
‖Y (t) − aj‖‖qi − aj‖

 ≥ π/2,

(2.9)

for t = 1, . . . , T with i = 1 (Figure 2.3(a) and (b)). The clustering method is adapted

to detect gaps or holes in the data by setting a threshold on the minimum distance

between neighboring points based on a nearest neighbor search [97]. If a set of points

do not satisfy the threshold, they are automatically assigned into another cluster giving

rise to sub-clusters [84], as shown in Figure 2.3(c).

The above procedure is repeated for the second reference point q2 = µ + 3v2σ2
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to partition the dataset along the line joining µ ± 3v2σ2 using Equation (2.8) with

i = 2. Then, Equation (2.9) is used for t = 1, . . . , T with i = 2 to make another set of

clusters C2
j ; j = 1, . . . , n2

C. The resulting clustering algorithm inputs the data D, and

the number of clusters n1,2
C with respect to each reference point, which can be set on

the basis of data density in each direction. Choosing the best values for parameters n1
C

and n2
C in the clustering algorithm is important to have an accurate embedding which

is further addressed in Chapter 6 where we include the discussion. The set of clusters

for each reference point are stored for subsequent operations. The clustering step is

presented as Algorithm 2.

Algorithm 2 Clustering : Clustering algorithm makes two sets of non-overlapping
slices of data, one from each reference point. This inputs data matrix D and number of
clusters with respect to the first (n1

C) and second (n2
C) reference points. As the output,

this produces two sets of clusters Cij ; j = 1, . . . , niC for i = 1, 2 from D such that one
set for each reference point.
1: procedure Clustering(D, n1

C, n
2
C)

2: Compute the mean µ ∈ Rd of the input data D.
3: Perform PCA [59, 68] on the input data matrix Dm =

[
Y (1),Y (2), . . . ,Y (T )

]
to obtain two largest principal components (v1, σ1) and (v2, σ2), where vi is the
d-dimensional coefficients and σi is the eigenvalue of the i-th PC for i = 1, 2.

4: In order to assure that two reference points are in the directions of two PCs
from the mean, compute the first reference point q1 = µ + 3σ1v1, and the second
q2 = µ+ 3σ2v2.

5: for each reference point qi; i = 1, 2 do
6: Segment the line joining the reference points qi = µ + 3σivi and the point
q̃i = µ − 3σivi into niC parts with equal width using the ratio formula given in
Equation (2.8) to obtain a set of points aj; j = 0, . . . , niC [104], where a0 = q̃i and
aniC = qi.

7: For j = 1, . . . , niC, choose data between hyperplanes, which are made through
points aj−1 and aj normal to the line joining q̃i and qi, into the cluster Cij by
satisfying Inequalities (2.9).

8: end for
9: end procedure
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2.1.2 Smoothing the manifold

The clustering step is followed by smoothing, where cubic splines are used to represent

the data in clusters. This approach of using a spline to approximate the data is similar

to forming a principal curve on a set of points [62, 15]. Briefly, the principal curve

runs smoothly through the dataset such that any point on the curve coincides with the

average of all points that project orthogonally onto this point [62]. The algorithm in [62]

searches for a parameterized function that satisfies this condition of self-consistency.

In the context of smoothing splines on a cluster with ns points Y (1), . . . ,Y (ns), the

principal curve g(λ) parameterized in λ ∈ [0, 1] minimizes over all smooth functions g

[62]
ns∑
k=1

‖Y (k) − g(λk)‖2 + p′
∫ 1

0

‖g′′(λ)‖2dλ, (2.10)

where p′ weights the smoothing of the spline and λk ∈ [0, 1] for k = 1, . . . , ns. As

Y (k) ∈ Rd, Equation (2.10) yields d individual expressions such that one for each

dimension in the input space.

Since the principal curve is created in a multi-dimensional space, it is not necessarily

follow the general curvature of the dataset. To follow the general curvature of the

points that are input to the Equation (2.10), we perform an additional operation to

build an geodesic within each cluster before making a principal curve. The geodesics

are created using the range-search1[14], with range distance set as the cluster width

6σ1/n
1
C or 6σ2/n

2
C depending on the reference point. Specifically, first we search all the

points within the specific distant to the i-th point using the range-search and adjacent
1A neighbor search which choses all neighbors within a specific distance.
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them with the i-th point. We continue this search for all the agents and make a

neighborhood graph. An geodesic is a shortest path between any two nodes (points)

in the graph constructed using the Dijkstra’s algorithm [42, 81]. The longest geodesic

within the cluster is used to represent the full range and curvature of the cluster. Using

ng number of d-dimensional points
{
Y (l) =

[
y

(l)
1 , . . . , y

(l)
d

]T∣∣l = 1, . . . , ng
}
on the longest

geodesic, the d-dimensional cubic smoothing spline S(λ) = [S1(λ), S2(λ), . . . , Sd(λ)]T

parameterized in λ ∈ [0, 1] is computed as a piecewise polynomial that minimizes the

quantity [62, 17]

p

ng∑
l=1

|y(l)
j − Sj(λl)|2 + (1− p)

∫ λng

λ1

[
S ′′j (λ)

]2
dλ, (2.11)

where p ∈ [0, 1], in each dimension j = 1, . . . , d. Thus, p weights the sum of square

error and (1 − p) weights the smoothness of the spline such that p = 0 gives the

natural cubic smoothing spline and p = 1 gives an exact fit (Figure 2.4(a)). This

procedure is repeated for all clusters for each reference point (Figure 2.4(b)) resulting

in a grid-like surface of smoothing splines. We denote cubic smoothing splines made

with respect to the first reference point by S1
j ; j = 1, . . . , n1

C, and second reference point

by S2
j ; j = 1, . . . , n2

C. The smoothing step is given as Algorithm 3.

Definition 2.1.1. Geodesic [41]. A geodesic of a graph is a shortest path between

two vertices.
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Figure 2.4: Approximating clusters with smoothing splines. (a) A cubic smoothing
spline is fit onto two-dimensional data, D =

{
Y (t)

∣∣t = 1, . . . , T
}

for some T , where
Y (t) =

[
y

(t)
1

]
and y(t)

1 =
[
y

(t)
1,1, y

(t)
2,1

]T , using different values of the smoothing parameter
p. (b) Smoothing splines fit clusters of a swiss-roll dataset from a single reference point.

Algorithm 3 Smoothing : Smoothing algorithm produces two sets of cubic smoothing
splines with respect to both reference points to represents the data in clusters. This al-
gorithm inputs spline smoothing parameter p and two sets of clusters Cij ; j = 1, . . . , niC
for i = 1, 2 made in the clustering algorithm, and outputs two sets of cubic smoothing
splines Sij ; j = 1, . . . , niC for i = 1, 2.

1: procedure Smoothing(p; Cij, j = 1, . . . , niC for i = 1, 2)
2: for each reference point qi; i = 1, 2 do
3: for all clusters Cij; j = 1, . . . , niC do
4: Compute the neighborhood graph using range-search with the distance

set as the cluster width 6σi/n
i
C.

5: Compute the longest geodesic Gij using Dijkstra’s algorithm [42, 81]. Gij
is a set of points, where each point is in Rd.

6: For points in Gij, use Expression (2.11) and the value of the smoothing
parameter p to produce a smoothing spline Sij ∈ Rd representation for data in the
cluster Cij.

7: end for
8: end for
9: end procedure
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Figure 2.5: Embedding the data into two-dimensional coordinates. (a) The intersection
point (red) between two splines lies midway on the shortest distance between them.
(b) Intersection points (red) for a swiss-roll, and (c) the two-dimensional coordinate of
a point (triangle) is the geodesic distance along the intersecting splines (grey) to the
axis splines (blue) from an origin (circle).

2.1.3 Embedding

Here we compute intersections of splines and construct an intrinsic coordinate system

for embedding. Intersection points between all pairs of splines, one from each reference

point, are located as landmarks to embed new points onto the PM. Since the splines

from two reference points may not actually intersect each other unless p = 1 for all

splines, virtual intersection points between two non-intersecting splines are located at

the midpoint on the shortest distance between them (Figure 2.5(a)). The embedding

algorithm loops through all pairs of splines to locate such points, and once located they

are denoted as ik,l ∈ Rd where (k, l) ∈ S1
k × S2

l (Figure 2.5(b)). In order to define the

embedding coordinates, an intersection point is selected randomly and assigned as the

manifold origin O of the PM. The set of smoothing splines corresponding to the origin

are called axis splines (Figure 2.5(c)).

The embedding coordinates of a point z ∈ Rd are defined in terms of the dis-
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tances along the axis splines as shown in Figure 2.6. For that, first we find the closest

intersection z̃ for z in Euclidean distance as

z̃ = argmink,l‖ik,l − z‖ (2.12)

and unit tangents to splines at this point are called the local spline directions and

denoted by (ŝ1
z̃, ŝ

2
z̃). Distance from O to z̃ is computed along the axis splines by

[x̃1, x̃2]T =
[
dk(z̃,O), dl(z̃,O)

]T
, (2.13)

where dk(a1,a2) is the distance between points a1 and a2 along the spline k. We

project the vector z̃ − z on the local tangential directions (ŝ1
z̃, ŝ

2
z̃) as

δx1 = (z̃ − z)T ŝ1
z̃,

δx2 = (z̃ − z)T ŝ2
z̃,

(2.14)

at the intersection point z̃. The final embedding coordinates are obtained by summing

the quantities in Equations (2.13) and (2.14) as

[x1, x2]T = [x̃1 + δx1, x̃2 + δx2]T . (2.15)

The embedding step is given as Algorithm 4.
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Algorithm 4 Embedding : This produces a grid structure by approximating the in-
tersections of splines, followed by embedding of a new point based on this structure.
Embedding algorithm inputs a new point z ∈ Rd to embed and two sets of cubic
smoothing splines Sij ; j = 1, . . . , niC for i = 1, 2 produced by smoothing algorithm,
and this outputs two dimensional embedding coordinates [x1, x2]T of z.

1: procedure Embedding(Sij, j = 1, . . . , niC for i = 1, 2 ; a point z ∈ Rd for embed-
ding)

2: for all pairs (k, l) of smoothing splines S1
k ×S2

l belonging to reference points 1
and 2 do

3: Approximate the minimum distance between the two splines after discretiz-
ing each spline.

4: Choose the midpoint between the two closest points of the splines as the
intersection point ik,l ∈ Rd.

5: end for
6: Pick a random intersection point as the origin O ∈ Rd, and smoothing splines

corresponding to the origin as axis splines.
7: Find the closest intersection point z̃ for z in terms of Euclidean distance by

Equation (2.12), and the unit tangents to the splines at this point are called the
local spline directions (ŝ1

z̃, ŝ
2
z̃).

8: Compute the distances [x̃1, x̃2]T from the manifold origin O to z̃ along axis
splines by Equation (2.13).

9: Project the vector z̃−z onto the local coordinate system created using the spline
directions as Equation (2.14) at the intersection point z̃ and find the projections
[δx1, δx1]T. The final embedding coordinates are given as x1 = x̃1 + δx1, x2 =
x̃2 + δx2.

10: end procedure
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Figure 2.6: Embedding a higher-dimensional point z onto the manifold using distances
along the axis splines from the origin O to the closest intersection z̃ and the local
distance form z̃ to z. Local distances are computed by projecting the distance z̃ − z
onto the unit tangent vectors ŝ1

z̃ and ŝ2
z̃.

2.1.4 Mapping between the manifold and raw data

In this section, we propagate points in the embedding apace to the higher-dimensional

space which is similar to find Φ−1 in Equation 2.2. All the intersections and splines

describing the intrinsic coordination system are available at this point to recover the

point Y (t) ∈ Rd corresponds to the point x(t) ∈ R2.

The mapping between the manifold and the raw data is created by inverting

the steps of the embedding algorithm. In particular, a two-dimensional point x =

[x1, x2]T in the embedding space is located in terms of the embedding coordinate

xk,l =
[
xk,l1 , x

k,l
2

]T of the closest intersection point ik,l ∈ Rd. We then complete

the local coordinate system by finding the two adjacent intersection points. The re-

sulting three points on the PM, the origin and the two adjacent points denoted by{
xk,l =

[
xk,l1 , x

k,l
2

]T
,xk,l+1 =

[
xk,l+1

1 , xk,l+1
2

]T
,xk+1,l =

[
xk+1,l

1 , xk+1,l
2

]T}, are used to
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‘

Figure 2.7: The mapping of the point x on the underlying manifold to the original high-
dimensional space is done by finding the projections γ1, γ2 locally and propagating the
same into the high dimensions. Local approximation can be created using adjacent
splines {k, k + 1}, and {l, l + 1} and their intersections {ik,l, ik,l+1, ik+1,l}.

solve for ratios γ1 and γ2 such that

γ1 =
x2 − xk,l2

xk,l+1
2 − xk,l2

,

γ2 =
x1 − xk,l1

xk+1,l
1 − xk,l1

.

(2.16)

The ratios are then propagated to the high-dimensional space (Figure 2.7) by using the

same relation on the corresponding points in the higher dimension
{
ik,l, ik,l+1, ik+1,l

}
to obtain the high-dimensional point

y = ik,l +
(
ik,l+1 − ik,l

)
γ1 +

(
ik+1,l − ik,l

)
γ2. (2.17)
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2.2 Examples

In this section, we evaluate and compare the PM finding algorithm with other DR

methods on three different datasets: a three-dimensional paraboloid, a swiss-roll con-

structed with a high additive noise (noisy swiss-roll), and a simulation of collective

motion. Specifically, we use standard versions of eight different DR methods imple-

mented in the Matlab Toolbox for DR [134] with default parameters listed in Table

2.1.

Table 2.1: Default parameters implemented in Matlab Toolbox for DR [134] are used
in the paraboloid and noisy swiss-roll examples.

Method Parameters

MDS [75, 76] none
Isomap [130] nearest neighbors = 12
Diffusion maps [77] variance = 1 and operator on the graph = 1
KPCA [119] variance = 1 and Gaussian kernel is used
LSE [141] nearest neighbors = 12
LLE [113] nearest neighbors = 12
HLLE [44] nearest neighbors = 12
LE [13] nearest neighbors = 12 and variance = 1

2.2.1 Paraboloid

A three-dimensional paraboloid (Figure 2.8(a)) of having 2000 points (T ) is generated

using

y
(t)
3,1 =

(
y

(t)
1,1

)2

+
(
y

(t)
2,1

)2

+ ε, (2.18)
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with y
(t)
1,1, y

(t)
1,2 ∈ [−2, 2], and ε ∼ U(−0.05, 0.05) is a noise variable sampled from a

uniform distribution ranging between -0.05 and 0.05. This example represents a single-

agent system revolving in three dimensions, thus it produce the data D =
{
Y (t) =[

y
(t)
1

]∣∣ t = 1, . . . , 2000
}

; y(t)
1 =

[
y

(t)
1,1, y

(t)
2,1, y

(t)
3,1

]T . Since the data is generated along

the y1,1, y2,1 axes (Equation (2.18)), the two reference points are selected along the

directions just outside the range for each value. We run the clustering algorithm with

the value of n1,2
C = 14 for each reference point to generate corresponding sets of clusters

with Algorithm 2. Next, we run the smoothing algorithm with a smoothing parameter

p = 0.9 to produce a set of representative splines for the data (Figure 2.8(b)). Finally,

we embed the manifold by first finding the intersection points and then computing the

distance of each point from the axis splines (Figure 2.8(c)).

Definition 2.2.1. Uniform distribution [24]. A distribution having a random vari-

able x restricted to a finite interval [a, b] and a constant density function

U(x) =


1
b−a , a ≤ x ≤ b

0 , otherwise.

The two-dimensional embedding manifold generated using our algorithm preserves

the topology of the data as shown in Figure 2.8(c). Furthermore, the axes in the em-

bedding manifold retain the scale of the original data in terms of the distance between

individual points. For a comparison, we run other DR methods on this data set with

parameters specified in Table 2.1 (Figure 2.9). Results show that except Isomap and
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Figure 2.8: Embedding of raw data from (a) a three-dimensional paraboloid with 2000
points is attained after (b) smoothing the data by using cubic smoothing splines (black).
The red points herein show the virtual intersections of splines. (c) Two dimensional
embedding manifold of the data along with the intrinsic coordinates. Points are colored
to highlight the relative configuration.

the proposed method, none of the DR methods are able to preserve the two-dimensional

square-shape embedding after reducing the dimensionality. However, we observe that

the PM method retains the scale of the manifold than that of Isomap.

2.2.2 A noisy swiss-roll

In the second example, we run our algorithm on a three-dimensional noisy swiss-roll

dataset having 2500 points (T ) (Figure 2.10(a)). The dataset is generated using

y
(t)
1,1 =

(
θ

(t)
1

)0.8

cos θ1 + ε

y
(t)
2,1 =

(
θ

(t)
1

)0.8

sin θ1 + ε

y
(t)
3,1 = θ

(t)
2 + ε

(2.19)
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Figure 2.9: Two-dimensional embeddings of the paraboloid by MDS (a), Isomap (b),
Diffusion maps (c), KPCA (d), LSE (e), LLE (f), HLLE (g), and LE (h). Points are
colored to highlight the relative configuration with the raw data in Figure 2.8(a).

where θ(t)
1 ∈ [0.25π, 2.5π], θ

(t)
2 ∈ [−2, 2], and ε ∼ U(−0.4, 0.4) is a noise variable

sampled from a uniform distribution ranging between -0.4 and 0.4. This example also

represents a single-agent system having data D =
{
Y (t) =

[
y

(t)
1

]∣∣ t = 1, . . . , 2500
}

; y(t)
1 =

[
y

(t)
1,1, y

(t)
2,1, y

(t)
3,1

]T . Two reference points are chosen along two major principal

component directions v1 and v2 at a distance of 3σ1 and 3σ2 units away from the data

centroid µ.

We run the clustering algorithm with the value of n1,2
C = 15 for each reference

point, however, due to folds and therefore holes in the data, the clusters along v2 are

further split into 42 subclusters. The value of the smoothing parameter p is set to

0.75. Figure 2.10(b) and Figure 2.10(c) show the smoothing splines in a grid pattern

that are used to embed the manifold, and the resulting embedding. For a comparison,

we run other DR methods on this data set with parameters specified in Table 2.1
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(Figure 2.11). Comparison between existing DR methods show that while only Isomap

and KPCA are able to flatten the swiss-roll into two dimensions, Isomap preserves

the general rectangular shape of the flattened swiss-roll. A majority of DR methods

suppress one component out of the two principal components in the raw data revealing

an embedding that resembles a one-dimensional curve. In contrast, the PM approach

is able to embed the swiss-roll into a rectangle while preserving the scale.

We note that by changing the value of the smoothing parameter we control for

the level of noise rejection in the original data, a feature that is not available in the

existing DR algorithms [135]. Although the splines form illegal connections, our al-

gorithm is still able to preserve the two-dimensional embedding; this is due to the

inherent embedding step which is able to overcome such shortcuts while computing the

low-dimensional coordinates. Furthermore, we note that our method is able to better

exclude noisy data from the embedding automatically in the form of outliers; neigh-

borhood based algorithms would be mislead to attempt to include these as valid points

[130]. For example, the two-dimensional embedding obtained using Isomap shows an

unforeseen bend demonstrating that, despite fewer outliers, the general topological

structure is compromised more heavily. This global anomaly is a direct consequence

of the Isomap’s attempt to include noisy points in the embedding; points that are

otherwise ignored by the principal manifold.

2.2.3 Collective motion: simulation of predator mobbing

In the third example of low-dimensional embedding, we generate a dataset representing

a form of collective motion. We simulate point-mass particles revolving on a translat-
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Figure 2.10: Two-dimensional embedding of the noisy swiss-roll with 2500 points. (a)
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Figure 2.11: Two-dimensional embeddings of the noisy swiss-roll by MDS (a), Isomap
(b), Diffusion maps (c), KPCA (d), LSE (e), LLE (f), HLLE (g), and LE (h). Points
are colored to highlight the relative configuration with the raw data in Figure 2.10(a).

45



ing circle to represent a form of behavior called predator induced mobbing [43]. In

prey animals, predator mobbing, or foraging around a predator, is often ascribed to

the purpose of highlighting the presence of a predator [43]. In our idealized model, we

assume that n agents (n = 20) are revolving on the circumference of a circle whose

center marks the predator and translating on a two-dimensional plane which is orthog-

onal to the axis of the revolution. To generate a two-dimensional trajectory with ω

revolutions around a translating center, we represent the two-dimensional position of

an agent i at t, y(t)
i =

[
y

(t)
1,i , y

(t)
2,i

]T

, y(t)
i ∈ R2

y
(t)
i = r

(t)
i

cos(2πωt/T + πi/n)

sin(2πωt/T + πi/n)

+ tw(t)
p + ε(t), (2.20)

where w(t)
p = [1, 1]T/80 is the velocity of the predator, r(t)

i = 2 is the radius of the

rotation of the agent i, T is the total time steps, and ε(t) ∼ N(0,1/100) is the Gaussian

noise variable with mean 0 ∈ R2 and standard deviation 1/100 ∈ R2. In this setup,

the data is D =
{
Y (t) =

[
y

(t)
1 ; . . . ;y

(t)
20

]∣∣ t = 1, . . . , T
}
where y(t)

i =
[
y

(t)
1,i , y

(t)
2,i

]T . The

first term of Equation (2.20) assigns the relative positions of n agents onto equally

spaced points on the circumference of a half circle which rotates with the speed of

w
(t)
i units, and the second term gives the velocity of the virtual center (predator) of

the translating circle. The agent-dependent phase πi/n creates spatial separation of

individual members around the virtual center.

Figure 1.4(a) shows the resulting trajectories for 2000 time steps (T ) with ω = 14

in a d-dimensional space (note that d = 2n in this case, where n is the number of
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agents). The interaction between the agents is captured in the form of noise ε(t). A

high value for ε(t) means that the agents interact less with each other. The underlying

manifold obtained by Isomap is shown in Figure 1.4(c) with the start and end points

of the trajectory. For comparison, we also run the Isomap algorithm on this dataset

with a neighborhood parameter value (α) set to 10. To ensure that the embedding is

consistent and robust to our choice of neighborhood parameter, we run the algorithm

with neighborhood parameters 5 and 15 and verify that the output is similar. Figure

1.4(b) shows the resulting two-dimensional embedding with different neighborhood

parameters, while Figure 1.4(c) shows two dimensional embedding.

We run our algorithm over the data with smoothing parameter p = 0.9 and n1,2
C =

20, 3, respectively. Unlike the paraboloid and the noisy swiss-roll, the predator mobbing

dataset represents a multi-agent dynamical system. Therefore, we also run Isomap

over this data to compare the embedding results. We transform the original data by a

clockwise rotation of π/4 such that

ỹ
(t)
i =

1√
2

 1 1

−1 1

y(t)
i (2.21)

and consider this be the ground truth. The position of the first agent ỹ(t)
1 =

[
ỹ

(t)
1,1, ỹ

(t)
2,1

]T

is used for further analysis as all the agents in this system have approximately similar

dynamics. The distribution
{
ỹ

(t)
1

∣∣t = 1, . . . , 2000
}
serves as a descriptive global observ-

able of the predator mobbing agents separated by a constant phase, than, for example,

the group centroid, where the revolving motion is suppressed due to the instantaneous
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Figure 2.12: Embedding a forty dimensional dataset of an idealized simulation of preda-
tor mobbing where twenty particles move around a translating circle. A comparison of
individual axes of the embedding produced by out method and those produced using
Isomap shows that our method performs distinctly better in terms of preserving the
time signature as well as range of the axes. The nearest neighbor parameter used for
Isomap is equal to 10.

two-dimensional arrangement.

Two time series of the coordinates of the first agent’s position are shown separately

in Figure 2.12(a). Therein, the top panel represents the transverse motion while the

bottom panel represents the oscillatory motion. As the length of this trajectory is

180 units in 2000 time steps, the size-of-unit is 180/2000 = 0.09. Figure 2.12(b)

and Figure 2.12(c) represent the time series of the embedding under our method and

Isomap, respectively. Selection of axes in the intrinsic coordinate system is a automated

process in any DR method which is specifically done using first two largest principal

components in our method. As the ranges of the axes are fully depend on how they are

chosen, quantitative comparison between embedding results is not effective. However,
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visual comparison of the variations of the time series convinces that the embedding

result in our method is closely represents the ground truth comparative to that of the

Isomap.

2.3 Performance analysis

In this section, we assess the performance of the method using two factors; error and

computational complexity. Error associated with smoothing, noise, and data den-

sity are computed separately using a distance-preserving matrix. The computational

complexity encounters from algorithms clustering, smoothing, and embedding are also

computed.

2.3.1 Error analysis

We compute the error of the embedding using a distance-preserving metric between

the original and the embedding data in terms of distance of graph connectivity. For

both the original and the embedding data, we first search α-nearest neighbors through

the algorithm given in [51] and then produce two individual weighted graphs based on

points connectivity in the data sets. A graph constructed through nearest neighbor

search is a simple graph that does not contain self-loops or multiple edges.

Definition 2.3.1. Simple graph [9]. A simple graph is an undirected graph that does

not contains loops (edges connected at both ends to the same vertex ) and multiple edges

(more than one edge between any two different vertices).
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We compute the distance matrix A for the original data as

Ai,j =


d(i, j) ;∃ an edge ij in the graph of the original data,

0 ; otherwise,

(2.22)

and the distance matrix Ã for the embedding data as

Ãi,j =


d(i, j) ;∃ an edge ij in the graph of the embedding data,

0 ; otherwise.

(2.23)

Here, Aij and Ãij are the (i, j)−th entries of the adjacency matrices A and Ã, respec-

tively, and d(i, j) is the Euclidean distance between nodes i and j. For n points, this

metric is computed as the normalized number of pairwise errors between entries of the

adjacency distance matrices as

Γ(Ã, A) =
1

nα

∑
i,j

| Ãij − Aij | . (2.24)

Equation (2.24) is a modification of the structure preserving metric in [121] where the

connectivity is replaced by the distance and the denominator n2 with the number of

edges nα. We study the dependence of Γ(Ã, A) on the smoothing parameter, the noise

in the dataset, and the data density.
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Figure 2.13: Variation of Γ with respect to p and the corresponding linear fit for (a)
a noise free swiss-roll, and (b) a noise free paraboloid. Γ is computed using Equation
(2.24) between raw and embedded data.

Error dependence on smoothing

The primary input to the algorithm is the smoothing parameter that controls the

degree of fitness and noise-rejection by the cubic smoothing splines. Figure 2.13 shows

the dependence of the distance preservation error Γ in term of adjacency distance

on the smoothing parameter p. Using a noise-free swiss-roll dataset and a noise free

paraboloid each comprising 3000 points in three dimensions, we vary the smoothing

parameter between 0 and 1 with an increment of 0.01 while keeping the location of

reference points and cluster width consistent. The error dependence shows a linear

decay in both cases with coefficient of determination or simply R2-value2 of 0.9728 in

the swiss-roll and 0.9881 in the paraboloid. In the swiss-roll example, the error becomes

nearly constant at a p = 0.88, beyond which the change in error for an increase in the

value of p is negligible, contrast to the paraboloid example that saturates the error

at around p = 0.82. A higher value of p improves the data-fit, however a low value
2The R2-value ranges between 0 and 1, measures the goodness between data and the fit so that 1

is the best fit while 0 is the worst fit.
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improves the smoothness. Since the graph connectivity is dependent on the relative

point configuration, it is expected that Γ will rise with increasing smoothness. On

the other hand, the error dependence shows that a given degree of smoothing can be

attained beyond some value of p without an accompanied increase error. Thus, as a

design parameter, the value p = 0.9 may be used as a starting point for all datasets to

investigate the embedding manifold.

Definition 2.3.2. Coefficient of determination [9]. For a set of points {zi}Ti=1

associated with fitted values {fi}Ti=1, coefficient of determination or R2-value is defined

as

R2 = 1−
∑T

i (zi − fi)2∑T
i (zi − z̄)2

; where z̄ =
T∑
i

zi/T.

Error with noise

To analyze the change in pairwise error with increase in noise, we create multiple same

sized swiss-roll datasets generated using Equation (2.19) with noise value ε ranging

between 0 and 1.035 with an increment of 0.015. The number of points in the dataset

are 3000 and the value of smoothing parameter p is 0.9. Figure 2.14 shows the variation

of Γ with respect to ε. The error Γ increases quadratically with R2-value of 0.9983 when

noise increases. This relationship shows that the error of the embedding is affected

quadratically by the intense of the associated noise in the data.

Data density

To analyze the dependence of Γ on data density we sub-sample the swiss-roll dataset

such that the number of points are systematically increases. The amount of noise is
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Figure 2.14: Variation of Γ with respect to noise (ε) and the corresponding quadratic
fit Γ is computed between adjacency matrices for the raw data and embedded data by
Equation (2.24).
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Figure 2.15: Variation of Γ with respect to number of points (T ) and the corresponding
exponential fit with p = 0.9 and ε = 0.2. Γ is computed between adjacency matrices
for the raw data and embedded data by Equation (2.24).
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set at ε = 0.2 and a sequence of data sets are generated with number of points between

500 and 3500 with increment of 40. The value of the smoothing parameter p is fixed at

0.9. We see that the pairwise error (Γ) decreases exponentially with R2-value of 0.9713

when data density increases (Figure 2.15).

2.3.2 Computational complexity

The three steps of the algorithm, namely, clustering, smoothing, and embedding have

different computational complexities. In particular, for T points with dimensionality

d, the clustering algorithm has a complexity of

O
(
Td2 + d3

)
(2.25)

which is dominated by the PCA [68, 67] step. This is a summation of costs encoun-

ters through the computation of the covariance matrix, O(Td2), and singular value

decomposition in that matrix, O(d3).

The computational complexity of the smoothing algorithm is dominated by the

Dijkstra’s algorithm [42] for calculating the longest geodesics. Here, we first assume

that each cluster with respect to the first reference point contains an equal number of

points. Thus, partitioning a data set of T points into n1
C clusters yields T/n1

C points

in a cluster. The complexity of generating the longest geodesic in each such cluster is

O (T/n1
C log (T/n1

C)) [42, 81], which sums-up n1
C times and implies the total complexity

O (T log (T/n1
C)) of making all geodesics with respect to the first reference point. Sim-

ilarly, for the second reference point, the same procedure is followed for all n2
C clusters,
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each containing T/n2
C points, to obtain a complexity of O (T log (T/n2

C)). Altogether,

geodesics from both reference points contributes a computational complexity of

O

(
T log

(
T 2

n1
Cn

2
C

))
(2.26)

for the smoothing algorithm.

In the embedding algorithm, discretizing splines and approximating the minimum

distance are dominant in the total cost of that algorithm. Here, we first calculate the

mean length of splines with respect to the first reference point, denoted as s̃1 ∈ Rd, and

the one for the second reference point, denoted as s̃2 ∈ Rd. Then, the computational

cost associated with approximating intersection of these two splines are computed. For

a pair of d-dimensional splines, computation of the Euclidean distance between any two

points, one from each spline, has complexity of 3d from the operations of subtraction,

square, and summation along all d dimensions. Since each spline s̃1,2 is discretized at a

mesh size ms, while s̃1 has s̃1/ms points on it, s̃2 has s̃2/ms points. The computational

cost of approximating closest distance between any two points one from each spline s̃1,2

is 3ds̃1s̃2/m2
s. Here, for simplicity, we assume that the length of each spline with respect

to the first and second reference points have same lengths as s̃1 and s̃2, respectively.

Thus, the total complexity of the embedding algorithm, which has n1
C and n2

C number

of splines with respect to the first and second reference points, is

O

(
3d

m2
s

n1
Cn

2
C s̃

1s̃2

)
. (2.27)
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Clustering, embedding algorithms, and steps 1–6 in the embedding algorithm are per-

formed only once for a given data set, thus after they are completed, T ′ new points are

embedded with an additional complexity of O(T ′).

In this chapter, we presented a NDR method constructed using cubic smoothing

splines in three steps clustering, smoothing, and embedding. The smoothing parameter

assures the smoothness of the embedding even for noisy data sets. The examples em-

phasized the validity of the method for variety of data sets. The performance analysis

presented here provides a good insight about the method.

Dimensionality reduction reveals an underlying manifold of a higher-dimensional

dataset. However, a transition in collective motion, which is defined as singularities on

the manifold, splits the underlying manifold into two sub-manifolds such that they are

joined at the locus of singularities. The salient scenario is that the manifold possesses a

significantly high curvature at the locus of singularities. Thus, in order to detect tran-

sitions in collective motion, high curvature on the manifold can be detected. Chapter

3 provides a detailed presentation of a framework to detect transitions using the man-

ifold’s curvature.

56



Chapter 3

Detecting Phase Transitions using

Manifold’s Curvature

An internal or external perturbation such as a food source or a predator attack in a

multi-agent system results an abrupt change of the activity which is defined as a phase

transition [12, 23, 31, 64, 90, 96, 137]. As an example, a predator attack on a flying

flock of birds sometime causes landing [83, 102, 133]. As a distinct manifold underlies

in each phase about the transition, the manifold representing whole systemM, can be

represented as a union of two distinct manifoldsM1,2,

M =
⋃
j=1,2

Mj. (3.1)

Definition 3.0.3. Phase transition [136]. An abrupt change of an activity of a

multi-agent system.

We assert that a transition in a multi-agent system is represented as a locus of
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Figure 3.1: A cartoon of two manifolds (blue and red) and the locus of singularity
(orange) of the human crowd example in Section 1.2. Snapshots sampled at time t1
and t2 representing the first and second phases of the motion embed as points x(t1) and
x(t2) in the corresponding manifold, respectively.

singularity L, on the manifold where the manifold is not differentiable. Geometrically,

the intersection of these two manifolds represents the locus of the singularity as

L =
⋂
j=1,2

Mj (3.2)

[52]. A cartoon representing two manifolds and the locus of singularity for the example

in Section 1.2 is presented in Figure 3.1. The locus of singularity on the manifold

technically represents the transition from walk to run in the video.

Definition 3.0.4. Locus of singularity [52]. All x′ ∈ M such that dM
dx

∣∣∣
x=x′

is not

defined.

Infinite curvature at the singularity is not observed often in empirical data as it

mostly consists noise. However, we assert that the curvature of the underlying manifold
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is significantly high at the locus of singularities on the manifold created by a phase

transition in the empirical data derived form a multi-agent system. This assertion is

justified by the following simple geometric example illustrating a high curvature on a

manifold at the singularity. We use a three-dimensional joined-manifold that we call a

‘sombrero-hat’ (Figure 3.2(a)) of 2000 points produced by the equations

y1 = x1 cosx2 + ε,

y2 = x1 sinx2 + ε,

y3 =


4− x2

1 + ε, if x1 ≤ 2,

ε, if x1 > 2,

(3.3)

for x1 ∈ U[0, 4] and x2 ∈ U[0, 2π]. Here, ε is a noise parameter sampled from the

uniform distribution U[−0.05, 0.05]. This noise parameter ensures the generality of

the data such that it is sampled from a empirical process. We observe this sombrero-

hat joins two sub-manifold, brim (green) and crown (blue), along with the locus (red)

representing the singularities. In reality, while two manifolds represent two distinct

behaviors of the system, the locus represents the transition. Figure 3.2(b) showing a

vertical section at x2 = 0 indicates a infinite curvature at the locus (two red points).

Isomap residual plots (Figure 3.2(c)) reveal that the embedding dimensionality of the

locus is three, while that of two sub-manifolds are two each. If the noise parameter is

zero, we observe that the dimensionality of the locus is one in this example.

Dimensionality reduction algorithms running on a dataset having a transition finds

a non-existing single manifold instead of two manifolds which are joined together.

59



−5 0 5 −5

0

5

0

2

4

x2

x1
(a)

x
3

0 4 8 12
0

0.5

Dimensionality
(c)

R
es

id
ua

l

−5 0 5

0

2

4

x1
(b)

x
3

Figure 3.2: (a) A sombrero-hat of 2000 points having brim (green), crown (blue), and
locus (red). (b) The vertical section at x2 = 0 of the manifold indicates a high curvature
at red points. (c) Isomap residual plots showing embedding dimensionalities by elbows
reveal that the dimensionalities of two sub-manifolds (blue and green) are two while
the dimensionality of the locus (red) is three.

Thus, before utilizing DR algorithms existence of transitions should be checked and

the data should be split if a transition exists. Thereby, here we present a framework to

detect phase transitions via abrupt curvature changes on the manifold in the following

section.

3.1 Method of detecting a phase transition

In this section, we analyze the geometry of a manifold’s curvature based on points sam-

pled on it and develop a framework to detect transitions. Therein, we first approximate

the point-wise curvature of a curve in a two-dimensional space by using singular value

ratios computed over the data. Then, we extend the assertion into higher dimensions

by intersecting principal sections, made through the shape operator which we define in

Section 3.1.2, with the manifold. Finally, we attest that the same transition can also

be approximated locally by singular value ratios computed on the data sampled on the

manifold. Each of these is elucidated with details in the following sections.
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3.1.1 Approximating the curvature of a curve

Point-wise curvature of a curve is approximated by using singular value ratio computed

over the data sampled in a neighborhood at the point as follows: We assume that the

data is evenly distributed with density ρ along the curve. As in Figure 3.3, for any

given point y on the curve, we can superimpose a neighborhood in it with an arc

y1yy2 of a translating circle such that the arc subtends a small angle 2Θ at the center,

O. We approximate the curvature of the circular sector y1yy2 (Figure 3.3(b)) in a

translating circle (Figure 3.3(a)) instead of that of the curve itself since they are similar

in aforesaid setup.

(a) (b)

Figure 3.3: (a) Superimposing a neighborhood of the curve C at point y with an
arc y1yy2 which subtend an small angle of 2Θ at the origin O of a translating circle
having a radius rc. (b) Circular sector y1yy2 which is rotated such that the blue arrow
represents the horizontal axis of the coordinate system.

Theorem 1. Given a circle with radius rc centered at the origin, let α points be uni-

formly distributed with density ρ on an arc which subtends an angle of 2Θ at the

center. Let σ1 and σ1, such that σ1 > σ2, are two singular values computed upon the

data sampled on the arc y1yy2 (Figure 3.3(b)), then σ2/σ1 ≈ Kκ where κ = 1/rc, and
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K = α
2ρ
√

15
∈ R+.

Proof. A point y(y1, y2) on the arc is given by y1 = rc cos θ , y2 = rc sin θ for θ ∈

[−Θ,Θ]. The expected values of variables y1 and y2 are computed as

µy1 =
1

2Θ

∫ Θ

−Θ

rc cos θ dθ =
1

Θ
rc sin Θ, (3.4)

µy2 =
1

2Θ

∫ Θ

−Θ

rc sin θ dθ = 0, (3.5)

respectively. We then compute pairwise covariance between variables as

cov(y1, y1) =
1

2T

∫ Θ

−Θ

(rc cos θ − µy1)2dθ =
r2
c

2Θ

(
Θ +

1

2
sin 2Θ +

2

Θ
sin2 Θ

)
, (3.6)

cov(y1, y2) =
1

2Θ

∫ Θ

−Θ

(rc cos θ − µy1)(rc sin θ − µy2)dθ = 0, (3.7)

cov(y2, y1) =
1

2Θ

∫ Θ

−Θ

(rc sin θ − µy2)(rc cos θ − µy1)dθ = 0, (3.8)

cov(y2, y2) =
1

2Θ

∫ Θ

−Θ

(rc sin θ − µy2)2dθ =
r2
c

4Θ
(2Θ− sin 2Θ). (3.9)

The covariance matrix ΣC , of the data on the arc is

ΣC =

 r2c
2Θ

(Θ + 1
2

sin 2Θ + 2
Θ

sin2 Θ 0

0 r2c
4Θ

(2Θ− sin 2Θ)

 . (3.10)

The covariance matrix which is approximated to 5th order of Θ by using the Taylor’s
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expansion is

Σ̃C =

 r2cΘ4

45
0

0 r2cΘ2

3

(
1− Θ2

5

)
+O(Θ6). (3.11)

Let, eigenvalues of Σ̃C are λ1 and λ2 such that λ1 > λ2, then

λ1 ≈
r2
cΘ

2

3

(
1− Θ2

5

)
and λ2 ≈

r2
cΘ

4

45
. (3.12)

As eigenvalues are computed upon the covariance matrix, they also relate to singular

values, denoted by σ1 and σ2 where σ1 > σ2 such that σ2/σ1 =
√
λ2/λ1 [57]. Then,

λ2

λ1

≈ Θ2

3(5−Θ2)
=⇒ σ2

σ1

≈ Θ√
3(5−Θ2)

. (3.13)

Further,

σ2

σ1

≈ Θ√
15

(3.14)

since Θ is small. Let, α points are uniformly distributed with the density ρ on the arc,

then,

Θ =
α

2ρ
κ , where κ =

1

rc
. (3.15)

By Equations (3.14) and (3.15),

σ2

σ1

≈ Kκ where K =
α

2ρ
√

15
∈ R+ (3.16)

Definition 3.1.1. Covariance [138]. The covariance of random variables y1 and y2
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is defined as

cov(y1, y2) = E[(y1 − µy1)(y2 − µy2)] (3.17)

where µy1 and µy2 are means of variables y1 and y2, respectively.

Definition 3.1.2. Covariance matrix [138]. For random variables {y1, y2, . . . , ym},

the covariance matrix is



cov(y1, y1) cov(y1, y2) . . . cov(y1, ym)

cov(y2, y1) cov(y2, y2) . . . cov(y2, ym)

. . . . . . . . . . . .

cov(ym, y1) cov(ym, y2) . . . cov(ym, ym)


. (3.18)

3.1.2 Approximating the curvature of a manifold

We extend the two dimensional assertion into higher dimensions by intersecting prin-

cipal sections, made through the shape operator which is defined bellow, with the

manifold. Curvatures of a manifold in mutually orthogonal tangential directions are

measured using eigenvalues and eigenvectors of the shape operator [99, 112], such that

eigenvalues provide magnitudes and eigenvectors provide directions of principal curva-

tures along tangential directions [3].

Definition 3.1.3. Mutually orthogonal [78]. A set of vectors {v1,v2, . . . ,vm} are

mutually orthogonal, if vi · vj = 0 for all i 6= j.

Let Mm = (f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)) represents the parametric form of
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Figure 3.4: Computation of principal sections Π
(1)
x and Π

(2)
x , and principal directions

v
(1)
x and v(2)

x , of a two-dimensional manifoldM2 at the point x. The principal sections
are mutually orthogonal as they are constructed from a mutual orthogonal tangential
basis.

the manifold embedded in the euclidean space Rm+1. For j = 1, . . . ,m,

u(j)
x =

∂Mm

∂xj
and û(j)

x =
u

(j)
x∥∥∥u(j)
x

∥∥∥ (3.19)

provide mutually orthogonal tangent and unit tangent vectors ofMm at x, respectively.

Thus,
{
û(j)

x

∣∣ j = 1, . . . ,m
}
is a orthonormal basis for the tangential space at x. The

shape operator Sx, of the manifoldMm at the point x is defined as

Sx =
(
−∇xj1

Nx · û(j2)
x

)
j1,j2

for j1, j2 = 1, . . . ,m, (3.20)

where Nx is the unit normal at x [99, 112].
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Let
(
κ
(
v

(j)
x

)
,v

(j)
x

)
for j = 1, . . . ,m denote eigenpairs of Sx, then magnitudes and

directions of principal curvatures are given by κ
(
v

(j)
x

)
and v(j)

x , respectively [3]. The

two-dimensional plane through x in Rm+1 which is spanned by the principal direction,

v
(j)
x , and Nx, is defined as the j-th principal section

Π(j)
x =

{
γ1v

(j)
x + γ2Nx

∣∣∣γ1, γ2 ∈ R
}
. (3.21)

Thus, for j = 1, . . . ,m, Π
(j)
x are mutually orthogonal. Intersection of Π

(j)
x ’s with the

manifold makes curves C(j)
x ∈ Rm+1 such that each passing through x. While Figure

3.4 illustrates this scenario when m = 2, an example of computing principal sections

is presented bellow.

Without loss of generality, for j = 1, . . . ,m, we assume that the data is distributed

uniformly with sufficiently density on C
(j)
x to contain α points in a neighborhood at

the point x. For all j, singular values σ(j)
1 and σ(j)

2 , such that σ(j)
1 > σ

(j)
2 , are computed

up on the data sampled in the neighborhood of x on C
(j)
x . By theorem 1, curvature

κ(j) on the curve C(j)
x is approximated by σ(j)

2 /σ
(j)
1 ≈ K(j)κ(j) for some K(j) ∈ R+. A

transition differentiates the manifold into two sub-manifolds such that each maps with

a different Euclidean space [80]. Thus, under a transition, the geometry permits that

some curves C(j)
x ’s, undergo abrupt changes in the curvature which also results abrupt

changes of the ratio σ(j)
2 /σ

(j)
1 .
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An example: computing principal curvatures using the shape operator

Here, we provide an example of computing principal curvatures and directions of a two

dimensional manifold in R3 (Figure 3.5) given in term of the parametric representation

M2 = (x1, x2, x
3
1 − 3x1x

2
2) ∈ R3. (3.22)

−2
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Figure 3.5: Two dimensional saddle surfaceM2, described by the Equation (3.22) for
x1, x2 ∈ U[−2, 2].

.

For an arbitrary point x = (x1, x2, x
3
1 − 3x1x

2
2) on the manifold, we compute tan-

gential and unit tangential vectors in orthogonal directions as,

u(1)
x =

∂M2

∂x1

=
(
1, 0, 3

[
x2

1 − x2
2

])
, u(2)

x =
∂M2

∂x2

=
(
0, 1,−6x1x2

)
, (3.23)
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and

û(1)
x =

u
(1)
x∥∥u(1)
x

∥∥ =

(
1, 0, 3

[
x2

1 − x2
2

])√
9
(
x2

1 − x2
2

)2
+ 1

, û(2)
x =

u
(2)
x∥∥u(2)
x

∥∥ =

(
0, 1,−6x1x2

)√
36x2

1x
2
2 + 1

(3.24)

respectively. Then, the unit normal at x Nx, is

Nx =
u

(1)
x × u(2)

x∥∥u(1)
x × u(2)

x

∥∥ =

(
− 3
[
x2

1 − x2
2

]
,−6x1x2, 1

)√
9
(
x2

1 + x2
2

)2
+ 1

, (3.25)

while the tangential directions are

∇x1Nx =
∂N

∂x1

=
−6
(
x1

[
18x2

2

[
x2

1 + x2
2

]
+ 1
]
, x2

[
9
[
− x4

1 + x4
2

]
+ 1
]
, 3x1

[
x2

1 + x2
2

])[
9
(
x2

1 + x2
2

)2
+ 1
]3/2

(3.26)

and

∇x2Nx =
∂N

∂x2

=
6
(
x2

[
18x2

1

[
x2

1 + x2
2

]
+ 1
]
,−x1

[
9
[
x4

1 − x4
2

]
+ 1
]
,−3x2

[
x2

1 + x2
2

])[
9
(
x2

1 + x2
2

)2
+ 1
]3/2 .

(3.27)

By Equations (3.23), (3.24), (3.26), and (3.27), we compute

S(1,1)
x = −∇x1Nx · û(1)

x =
−6x1√[

9
(
x2

1 + x2
2

)2
+ 1
][

9
(
x2

1 − x2
2

)2
+ 1
] , (3.28)

S(1,2)
x = −∇x1Nx · û(2)

x =
−6x2

[
9
(
x2

1 + x2
2

)(
x2

2 − 3x2
1

)
+ 1
]√[

9
(
x2

1 + x2
2

)2
+ 1
][

9
(
x2

1 − x2
2

)2
+ 1
] , (3.29)

S(2,1)
x = −∇x2Nx · û(1)

x =
6x2

[
9
(
x2

1 + x2
2

)2
+ 1
]√[

9
(
x2

1 + x2
2

)2
+ 1
][

9
(
x2

1 − x2
2

)2
+ 1
] , (3.30)
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S(2,2)
x = −∇x2Nx · û(2)

x =
6x1

[
− 9
(
x2

1 + x2
2

)(
x2

1 − 3x2
2

)
+ 1
]√[

9
(
x2

1 + x2
2

)2
+ 1
][

9
(
x2

1 − x2
2

)2
+ 1
] . (3.31)

Particularly, the shape operator Sx =

S
(1,1)
x S(1,2)

x

S(2,1)
x S(2,2)

x

, at x = (1, 0, 1) is

S(1,0,1) =

−3/50 0

0 −12/25

 . (3.32)

Eigenpairs (−3/50, (1, 0, 1)) and (−12/25, (0, 1, 1)) of S(1,0,1) describe two principal cur-

vatures and directions in the tangential space at x = (1, 0, 1). Since the unit normal at

x = (1, 0, 1), denoted as N(1,0,1), is 1√
10

(−3, 0, 1), principal sections in R3 at that point

are given by

Π
(1)
(1,0,1) =

{
γ1(1, 0, 1) + γ2(−3, 0, 1)

∣∣ ∀γ1, γ2 ∈ R
}
,

Π
(2)
(1,0,1) =

{
γ1(0, 1, 1) + γ2(−3, 0, 1)

∣∣ ∀γ1, γ2 ∈ R
}
.

(3.33)

3.1.3 Transition via local data distribution on the manifold

Constructing the shape operator at a neighborhood of each point on the manifold is

computationally expensive, thus here we present an alternative approach to compute

the singular value ratios and detect transitions. Therein, we first make a neighborhood

Nx ⊂ Rm+1 at each point x such that it contains α ∈ N points by running nearest

neighbor search algorithm [51, 142]. Then, we perform singular value decomposition

over the data in each Nx and denote the descending order by σ1, . . . , σα for some α ∈ N.
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Figure 3.6: Local distribution of data in the neighborhood Nx on a two dimensional
manifoldM2. Principal sections Π

(1)
x and Π

(2)
x are created by using the shape operator

around x, and curves C(1)
x and C

(2)
x are produced by intersecting Π

(1)
x and Π

(2)
x with

M2.

Without loss of generality, we assume that the data distribution in each C(j)
x is dense

enough for Nx to contain data from each curve C(j)
x for j = 1, . . . ,m, made in Section

3.1.2. However, Nx contains at least one point x, from each C(j)
x as shown in Figure

3.6 which depicts this scenario for a two dimensional manifoldM2, in R3.

Definition 3.1.4. Singular value decomposition [138]. Singular value decomposi-

tion finds two unitary matrices Un×α and Vm×α such that U ′α×nUn×α = V
′
α×mVm×α =

Iα×α those provide the decomposition Dn×m = Un×αΣα×αV
′
α×m for Σα×α = diag(σ1, σ2, . . . σα)

with σ1 > · · · > σα.

According to this setting, we can assert that the abrupt changes which are detected

by the ratio σ(j)
2 /σ

(j)
1 in some curves created through x are also detected by the ratio

σα/σ1 computed over the data in Nx on the manifold Mm. For clarity, from here

onward, the nearby points on the manifold are indexed with nearby values and the

point x on the manifold is denoted as the t-th point. Let consider T data points are
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embedded on the manifold, thus the distribution

{(σα/σ1)i | t = 1, 2, . . . , T} (3.34)

provides the magnitudes of the phase at each point. A group of agents evolving with

mutual interaction can be explained in terms of a hidden manifold structure such that

each frame corresponds to a single data point on the manifold. A behavioral change,

known as a phase change, between consecutive frames is measured by moving difference

of singular value ratios computed over neighborhoods of corresponding frames as

Tt = (σα/σ1)t+1 − (σα/σ1)t for t = 1, 2, . . . , T − 1. (3.35)

Definition 3.1.5. Phase change [136]. A change (small) of the collective activity of

a multi-agent system between two consecutive time steps (or frames).

Since we observe that the distribution
{
Tt
∣∣t = 1, . . . , T

}
is highly volatile, we utilize

α-points moving sum

Σα
t =

∑
k∈[t−dα2 e,t+dα2 e]∩N

Tk ; t ∈
[⌈α

2

⌉
, T − 1−

⌈α
2

⌉]
∩ N, (3.36)

where
⌈
α
2

⌉
is the smallest integer greater than or equal to α

2
, to smooth the distribution.

The distribution
{

Σα
t

∣∣t = 1, . . . , T
}
, for some T , provides the phase change of the multi-

agent system from one time step to the other. After a transition occurs, manifold

curvature is abruptly changed and then that abrupt change is also effected in singular

values. Thus, phase transitions can be quantified by abrupt changes of the distribution
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{
Σα
t

∣∣t = 1, . . . , T
}
.

3.2 Algorithm for detecting phase transitions

Here we present the algorithm of detecting phase transitions in multi-agent systems.

This algorithm inputs data in terms of a data matrix Dm and the parameter α con-

trolling number of nearest neighbors. As we use frames partitioned from a collective

motion videos for data, here we explain the process of constructing the data matrix

Dm form frames.

We assume gray-color images are used for the study. Let the dimensionality of

frames be m1 ×m2, then for all the time steps (t’s), we reshape each intensity matrix



y
(t)
1 y

(t)
m1+1 . . . y

(t)
(m2−1)m1+1

y
(t)
2 y

(t)
m1+2 . . . y

(t)
(m2−1)m1+2

. . . . . . . . . . . .

y
(t)
m1 y

(t)
2m1

. . . y
(t)
m1m2


m1×m2

,

of a frame into a column matrix

[
y

(t)
1 , y

(t)
2 , . . . , y

(t)
m1+1, . . . , y

(t)
j , . . . , y

(t)
m1m2

]T

[18], where y(t)
j is the intensity of the j-th pixel. Thus, the input data matrix is

D =
[
Y (1), . . . ,Y (t), . . . ,Y (T )

]
; Y (t) =

[
y

(t)
1 , . . . , y

(t)
j , . . . , y

(t)
m1m2

]T
. (3.37)
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In this setup, each m1m2 dimensional vector Y (t) is a data point on the manifold

representing the collective behavior. Thus, the Euclidean distance dD(t1, t2), between

any two points, t1 and t2, on the manifold is computed as

dD(t1, t2) = ‖Dm(t1, :)−Dm(t2, :)‖; t1, t2 = 1, . . . , T, (3.38)

where T is the total number of frames in the data. The nearest neighbor search

algorithm available in [142] computes nearest neighbors using Equation (3.38). Based

on this distance, the α nearest neighbors for the t-th point are extracted asNt ( same as

Nx in Section 3.1.3). Then, we compute
∑α

t from Nt as explained in Section 3.1.3. The

algorithm outputs the magnitudes of changes Σα
t , so we can chose the largest among

them as transitions. The method of detecting phase transitions is given as Algorithm

5.

Algorithm 5 Transition detection : This detects transitions in collective motion using
manifold’s curvature. Algorithm inputs data in terms of a matrix D and a parameter
α for number of nearest neighbors. The output observable Σα

t ranks the magnitude
of the phase change at each time step, thus the largest ones among them are used as
phase transitions.

procedure TRANSDETEC (α, D)
1: Perform nearest neighbor search in [142](this computes distance using Equation

(3.38)), and obtain α nearest neighbors for each entry of D. Denote data for α
nearest neighbors of the t-th point of Dm by Nt.

2: Perform singular value decomposition on Nt and denote the descending order of
singular values by σ1, . . . , σα for some α ∈ N.

3: Compute ratio σα/σ1 for all Nt and denote by (σα/σ1)t where t = 1, . . . , T .
4: Compute moving difference Tt = |(σα/σ1)t+1 − (σα/σ1)t| for t = 1, . . . , T − 1.
5: The α−points moving sum Σα

t of Tt for t ∈ [dα/2e, T − 1−dα/2e]∩N is computed
as, Σα

t =
∑

k∈[t−dα2 e,t+dα2 e]∩N Tk.
6: Based on the distribution Σα

t , phase transitions are extracted.
end procedure
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3.3 Group behavioral examples

In this section, we evaluate the transition detection algorithm on four datasets: a

synthetic dynamical simulation of the Vicsek model, and three natural data sets; a

crowd of human, a flock of birds, and a school of fish.

3.3.1 A simulation of the Vicsek model

A swarm of self propelled particles with three imposed transitions simulated by the

Vicsek model [136] is examined to investigate the sensitivity of the algorithm. Since

we simulate positions of particles in each frame, to avoid any ambiguity, notation for

the set of nearest neighbors is moderated as N (t)
i to denote all the nearest-neighbors

of the i-th agent within a unit distance at the t-th time step (each time step will be

converted into a frame later).

The Vicsek model in [136] updates the orientation θ(t)
i of the i-th agent at the t-th

time step as

θ
(t)
i = arg

(
φ

(t−1)
i

)
+ ε

(t−1)
i ;

φ
(t−1)
i =

1

|N (t−1)
i |

∑
j∈N (t−1)

i

cos
(
θ

(t−1)
j

)
sin
(
θ

(t−1)
j

)
 , (3.39)

where ε(t)i is the noise parameter sampled from a Gaussian distribution with mean zero

and standard deviation σ. Here, φ(t)
i is the average direction of motion of all the agent

in N (t)
i . The noise parameter plays an important role in this model as it determines
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Figure 3.7: A particle swarm simulated from the Vicsek model that evolves at four
consecutive time steps indicated by t− 1, t, t+ 1, and t+ 2. Gray color ellipses show
neighbors. As the red particle joins with the blue particles at the t-th time step and
becomes neighbors, the red particle’s orientation at the current time step is determined
as the average direction of the blue particles in the previous time step. This interaction
of the orientations is shown by colored arrows.

the strength of the interaction of agents. A large noise level decreases the interaction

and then collective behavior, while a low noise level causes the opposite.

The position y(t)
i of the i-th agent at the t-th time step is therefore updated as

y
(t)
i = y

(t−1)
i + w

(t−1)
i

cos
(
θ

(t−1)
i

)
sin
(
θ

(t−1)
i

)
ms, (3.40)

where ms is the time step size and w
(t−1)
i is the speed of the i-th agent at the time

step (t−1). In the Vicsek model, speed of a particle is independent of the interaction,

but the orientation of a particle at the current time step is computed as the average

direction of particles withing a neighborhood in the previous time step. The basic

mechanism of the Vicsek model is illustrated in Figure 3.7.

We run a simulation of this model and generate a synthetic data set of a particle

75



swarm of 50 agents in 200 time steps with periodic boundary conditions. We set

ms = 0.05, w(t−1)
i = 0.1 for all i and t, and impose three transitions by varying the

noise ε(t)i , using a variable standard deviation

σ =



0.25, if t < 50

1, if 51 ≤ t < 100

0.05, if 101 ≤ t < 150

0.75, if t ≥ 150

. (3.41)

for all i in the Gaussian distribution.

For t = 1, . . . , 200, we convert each set of point-mass positions of particles,
{
y

(t)
i

∣∣i =

1, . . . , 50
}
, into a gray-color frame such that each particle is represented by a black

square of pixel dimensionality of 10 × 10. Therein, we first convert the positions of

particles into a sparse matrix, P (t), at each time step t = 1, . . . , 200. We make a

rotationally symmetric Gaussian low-pass filter Q of size 10× 10 pixels with standard

deviation of 10 pixels and filter the matrix P (t) by Q to generate

R(t)(l1, l2) =
10∑
k1=1

10∑
k2=1

P (t)(l1 − k1, l2 − k2)Q(k1, k2) ; ∀ l1, l2 (3.42)

for t = 1, . . . , 200 [19]. Then, each matrix R(t) is converted into a frame, and all the

frames are finally converted into a one data matrix Dm, as explained in Section 3.2.

Definition 3.3.1. Gaussian low-pass filter [61]. Two dimensional Gaussian low
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Figure 3.8: Detecting transitions in a particle swarm simulated using the Vicsek
model with alternating noise levels. (a) Distribution of (σ4/σ1)t versus frame num-
bers. Therein, the range of frames representing each sub-manifold is marked by a
left-right arrow and the frame containing each transition is marked by a red circle
along with the frame number associated. (b) Descending order of 20 largest transitions
including frame numbers of three largest transitions. (c) Isomap residual variance ver-
sus dimensionality of each sub-manifold. Therein, while the numbers next to the plot
gives the underlying dimensionalities, colors refer to the corresponding sub-manifolds
in (a)

pass filter of size m1 ×m2 is

Q(k1, k2) =
1

2πσ2
e−

k21+k
2
2

2σ2 ,

where −dm1/2e ≤ k1 ≤ dm1/2e, −dm2/2e ≤ k2 ≤ dm2/2e, and σ is standard deviation.

We run the transition detection algorithm upon frames with several α values and

observe that the distribution (σ4/σ1)t generated by α = 4 (Figure 3.8(a)) shows clear

transitions with respect to noise changes. The plot of descending order magnitudes of

20 largest transitions (Figure 3.8(b)) reveals that three transitions at frame numbers
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Figure 3.9: Detecting a transition between phases of walking and running in a crowd of
human. (a) Distribution of (σ3/σ1)t versus frame numbers. Therein, left-right arrows
and the red circle represent ranges of frames in each sub-manifold and the frame at
the transition, respectively, while the snapshots show instances in each phase. (b) Plot
of descending order of 20 largest transitions representing the largest transition in red
along with the frame number.

150, 99, and 50 are more significant than others. Thus, the manifold representing the

whole motion is partitioned into transition free 4 sub-manifolds ranging 1–50, 51–99,

100–150, and 151−200. We run Isomap on each range of frames with the neighborhood

parameter (α) four and obtain the residual plots given in Figure 3.8(c). The Isomap

residual plots indicating the embedding dimensionality by an elbow, reveal that the

sub-manifolds are embedded in three, six, two, and four dimensions, respectively.

3.3.2 A crowd of human

A video of a crowd of human available on-line in [48] which contains a transition at

the 69-th frame from walk to run is considered next.

As explained in Section 3.2, we first convert all the frames into a data matrix Dm,

and then run transition detection algorithm on it. When α = 3, we observe that the

distribution (σ3/σ1)t given in Figure 3.9(a) shows a clear trade-off about the phase
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transition. Figure 3.9(b) shows only the first transition, having a magnitude of 0.23, is

significant. The manifold representing the crowd is partitioned such that frames 1–69

represent one sub-manifold and frames 70–90 represent the other sub-manifold. The

snapshots in Figure 3.9(a) show the phases walking (left) and running (right) of the

crowd. Isomap running on frames 1–69 and 70–90 with α = 3 reveals that embedding

dimensionalities of sub-manifolds are three and four, respectively.

3.3.3 A flock of birds

Now we detect a transition differentiating phases of sitting and flying at the 58-th

frame in a video of a flock of bird obtained on-line in [100].

We formulate the data matrix Dm as before and run transition detection algorithm

on Dm with several α values. As we observe that α = 3 produces clear transitions,

we use the distribution (σ3/σ1)t given in Figure 3.10(a) for further study. Magnitudes

of the descending order of 20 largest transitions in Figure 3.10(b) illustrates that one

transition with magnitude of 0.32 is significant at the 58-th frame. Then, the manifold

is partitioned into two sub-manifolds representing frames in the ranges 1 − 58 and

59− 100. Isomap running on ranges of frames 1− 58 and 59− 100 with α = 3 reveals

that the embedding dimensionalities of corresponding sub-manifolds are two and three.

3.3.4 A school of fish

Finally, we use a video of a school of fish having few transitions to validate the method.

This school is stimulated with panics and the behavior is recorded.

We run the algorithm on the data matrix Dm, with several α’s and study the
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Figure 3.10: Detecting a transition in a bird flock between phases sitting and flying.
(a) Distribution of (σ3/σ1)t shows ranges of frames representing two sub-manifolds by
left-right arrows and instances of phases by snapshots. (b) Descending order of 20
largest transitions. The frame at the largest transition is represented by red in Figures
(a) and (b).

0 50 100 150 200 250t
(a)

0.2

0.3

0.4

0.5

(σ
6
/σ

1
) t

40

112 185

222

0 10 20
Transitions

(c)        

0

0.05

0.15

0.25

Σ
6 t

112

185 222

40

(b)

40

112
185

222

Figure 3.11: Detecting transitions in a school of fish. (a) Distribution of (σ6/σ1)n
with left-right arrows showing ranges of frames in sub-manifolds, and red dots show-
ing frames at transitions. (b) Snapshots of the school before (left) and after (right)
each transition. (c) Descending order of 20 largest transitions consisting four largest
transitions marked in red with their frame numbers.
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dynamics of the distribution (σ6/σ1)t for α = 6 (Figure 3.11(a)). The plot of transitions

(Figure 3.11(c)) reveals that the first four transitions located at frames 40, 112, 185, and

222 are significant. Now, the manifold is partitioned into transition free sub-manifolds

representing frames in ranges 1–40, 41–112, 113–185, 186–222, and 223–250 as shown by

left-right arrows in Figure 3.11(a). According to Figure 3.11(b), the pair of snapshots

at the 40-th frame exhibits a large global abrupt change since the school reacts to

the panic together. However, by the evidence observed through Figure 3.11(b) and

snapshots, the second and the third transitions are abrupt and local while the last

is gradual and local. Isomap is run on all sub-manifolds with α = 6 and embedding

dimensionalities are obtained as two, four, three, two, and six, respectively.

In this chapter, we presented a framework of detecting phase transitions in collective

motion by using the underlying manifold’s curvature. A transition in the collective

motion can be explained as a singularity on the manifold. Two distinct manifolds

hidden in two phases of the motion intersect each other at the locus of singularities

having a high curvature. Thus, we assessed the high curvature on the manifold and

therein detected transitions in the collective motion. The approach is equipped with

a one dimensional relationship between curvature and singular value ratios, and then

an extension of the one dimensional assertion to higher dimensions using the shape

operator. The method was validated using one particle simulation and three different

real-life examples.

Collective motion sometimes undergoes alternation of behaviors resulting the same

alternation between representative underlying manifolds. Such alternation occurs due

to changes of the speed, coordination, and structure of the agents. We will charac-
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terize alternating manifolds using a metric assessing agents’ speed, coordination, and

structure. Therein we will compute their coordination using polarization and assess

their structure using connected components. The detailed method of characterizing

manifolds is presented in Chapter 4.
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Chapter 4

Characterizing Alternating Manifolds

As we discussed in the Introduction (Chapter 1), the manifold representing the motion

is switched to another manifold by an abrupt behavioral change (phase transition) of a

multi-agent system. This phenomenon is sometimes extended towards an alternation

between two manifolds due to alternation of the behavior of the system. In this chapter,

we discuss a novel method of characterizing such alternation of manifolds.

We assume that agents move in a two-dimensional space, so that the raw data for

the method consists of two-dimensional position vectors of all the agents in time. For a

group of n agents, the position vector of the i-th agent at the t-th time step is denoted

by y(t)
i ∈ R2. The configuration vector, defined as

Y (t) =
[
y

(t)
1 ;y

(t)
2 ; . . . ;y(t)

n

]
∈ R2n, (4.1)

is a point on the manifold that represents the entire group at time t. The order of

the agents in the configuration vectors is not required to be preserved for this method,

83



since the mapping scheme described in Section 4.1.1 determines the order of each agent

in consecutive configurations.

The data acquired from the multi-agent group at distinct times t = 1, 2, . . . , T is

consolidated in the dataset

D =
{
Y (t)

∣∣t = 1, . . . , T
}
. (4.2)

If the multi-agent system alternates between m distinct behaviors, then the complete

dataset D of configurations can be partitioned into m distinct sub-manifolds such that

M =
⋃

j=1,...,m

Mj. (4.3)

We can compute the dimensionality of each sub-manifold by implementing a DR al-

gorithm such as Isomap [130] over the sample of configurations representing that sub-

manifold. Our approach of characterizing the alternation of manifolds is based on a

metric that we construct in Section 4.1.

4.1 Construction of the metric

In this section, we construct a metric that is susceptible of assessing similar manifolds

created by the alternation of collective behavior. We hypothesize that the abrupt

changes of speed, coordination, and structure of the agents create transitions and then

aforesaid alternation in a multi-agent system. The metric consists of three components

each measures changes that contribute to the system either by speed, coordination, or
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structure.

As we explained in the beginning of this chapter, this method inputs only config-

urations. However, in future, we enhance this method such that it inputs frames par-

titioned from collective motion videos. For that, we extract their positions in frames

and apply the method presented here to characterize alternating manifolds. In that

purpose, we assume that the agents’ order is not preserved between consecutive time

steps. Thus, we define a simple mapping method to determine which agent is which

between consecutive configurations. This special mapping is presented in Section 4.1.1,

however, it can be bypassed when the agents are simulated from a deterministic process

that preserves their order.

4.1.1 Mapping of agents and computation of speed

Here, we first construct a bijective evolution function Φ(t), for agents between time

steps. This function arranges agents in configurations such that the same agent is

represented by the same entry in each configuration. Then we compute displacement

of agents between consecutive time steps and consider it as the speed since the unit of

time is the step size.

We assume that the position of an agent at the next step is in a neighborhood of its

position at the previous time step. For an agent, say y(t)
i ∈ Y (t), we search the nearest

neighbor [51], say y(t+1)
j ∈ Y (t+1), and define the map Φ

(t)
f as

Φ
(t)
f : Y (t) → Y (t+1) such that Φ

(t)
f

(
y

(t)
i

)
:= y

(t+1)
j , (4.4)
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Figure 4.1: Mapping of positions of agents between two consecutive time steps. Same
colored square and circle pair refers to the same agent. Squares represent agents’
positions at the t-th time step and circles represent agents’ positions at the (t+ 1)-th
time step.

see Figure 4.1.

Similarly, we apply Φ
(t)
f to all the agents at the t-th time step to map with the

corresponding agents at the (t + 1)-th time step. Since some agents at the t-th time

step may share the same nearest neighbor at (t+ 1)-th time step, Φ
(t)
f maps more than

one agents in Y (t) into the same agent in Y (t+1) and violate the uniqueness of the

mapping. In order to ensure the uniqueness of the mapping, Φ
(t)
f should be a bijection

which is defined to be a one-to-one correspondence of agents between consecutive time

steps. We define and extract the sub-domain D(t) ⊆ Y (t) as all agents those bijectively

mapped with agents in Y (t+1) by Φ
(t)
f .

Definition 4.1.1. Domain [126]. The set X of the function f : X → Y .

Definition 4.1.2. Injective mapping [126]. A function f : X → Y such that
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f(x1) 6= f(x2) whenever x1 6= x2 for x1, x2 ∈ X.

Definition 4.1.3. Surjective mapping [126]. A function f : X → Y such that each

y ∈ Y there exist x ∈ X satisfying f(x) = y.

Definition 4.1.4. Bijective mapping [126]. A function which is both injective and

surjective.

The rest of the agents are mapped using a different rule that assures bijection

between agents as described bellow. We denote the bijective mapping Φ
(t)
f in D(t) by

Φ
(t)
g

Φ(t)
g : D(t) → Y (t+1). (4.5)

Mappings Φ
(t)
f and Φ

(t)
g and the domainD(t) for six agents are illustrated in Figure 4.1.

For convenience and without loss of generality, we assume that the first n1 agents at

the t-th time step are in D(t). The velocity of the i-th agent in D(t), say w(t)
i ∈ R2 for

i = 1, 2, . . . n1, is defined as the displacement from the current positions to the next

position

w
(t)
i = Φ(t)

g

(
y

(t)
i

)
− y(t)

i . (4.6)

We compute the mean velocity of the agents in D(t) as µ(t)
1 = mean

{
w

(t)
i ; i =

1, 2, . . . , n1

}
and use this quantity to map the remaining agents in D(t).

Maps of the remaining agents in the configuration D(t), denoted as Y (t)
∖
D(t), with

the remaining agents in Y (t+1), denoted as Y (t+1)
∖

Φ
(t)
g

(
D(t)

)
, is presented below. We

choose an agent y(t)
i ∈ Y (t)

∖
D(t) for i = n1 + 1, . . . , n and compute displacement

components from that agent to all the agents y(t+1)
j ∈ Y (t+1)

∖
Φ

(t)
g

(
D(t)

)
; j = n1 +
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1, . . . , n. We use the mean velocity µ(t)
1 , to approximate the positions of unmapped

agents in the t-th time step. If the displacement from y
(t)
i to some y(t+1)

j is the closest

to the mean velocity µ(t)
1 , that is

∥∥y(t)
i − y(t+1)

j

∥∥ ≈ ∥∥µ(t)
1

∥∥ and arg
(
y

(t)
i − y(t+1)

j

)
≈ arg

(
µ

(t)
1

)
, (4.7)

then y(t)
i is mapped to y(t+1)

j and define a new map Φ
(t)
h as

Φ
(t)
h : Y (t)\D(t) → Y (t+1)\Φ(t)

g (D(t)) such that Φ
(t)
h

(
y

(t)
i

)
:= y

(t+1)
j . (4.8)

We apply this map for all the agents and map each y(t)
i ∈ Y (t)

∖
D(t) with y(t+1)

j ∈

Y (t+1)
∖

Φ
(t)
g

(
D(t)

)
for i, j = n1 + 1, . . . , n. Figure 4.1 illustrates the mapping Φ

(t)
h , the

domain Y (t)\D(t), and the range Y (t+1)
∖

Φ
(t)
g (D(t)) for six agents. The velocity compo-

nents w(t)
i for i = n1 + 1, . . . , n, of agents in Y (t)

∖
D(t) are defined as the displacements

of position

w
(t)
i = Φ

(t)
h

(
y

(t)
i

)
− y(t)

i . (4.9)

The set w(t) =
{
w

(t)
1 ,w

(t)
2 , . . . ,w

(t)
n

}
represents all the individual velocity compo-

nents at the t-th time step. The mapping Φ(t) in Equation (1.1) is defined as

Φ(t) =


Φ

(t)
g , if the domain is D(t),

Φ
(t)
h , if the domain is Y (t)\D(t).

(4.10)

The mean velocity, µ(t)
w = mean

(
w(t)

)
, is considered to be the velocity of the whole
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group at time t. The scaled mean speed

∥∥∥µ(t)
w

∥∥∥
max

{∥∥∥µ(t)
w

∥∥∥∣∣∣t = 1, . . . , T
} , (4.11)

is used to detect speed changes in the group.

As we mentioned before, the order of agents between configurations is not required

to be preserved for this method, as the mapping presented above automatically finds

agent’s position between consecutive time steps. Given that this mapping has a rather

modest computational cost of O(log n), we opt for this approach in favor of more

accurate but computationally costly methods [69, 139].

4.1.2 Computation of coordination

Coordination of agents at the t-th time step is measured by the polarization [21],

P(t) =
1

n

∥∥∥∥∥∥∥∥
n∑
i=1

cos(θ
(t)
i )

sin(θ
(t)
i )


∥∥∥∥∥∥∥∥ , (4.12)

where θ(t)
i = tan−1

(
w

(t)
2,i/w

(t)
1,i

)
is the orientation of the i-th agent moving with velocity

w
(t)
i =

[
w

(t)
1,i , w

(t)
2,i

]T

computed through the aforesaid mapping of agents.

We expect all the agents to have the same orientation of motion, if the agents in the

group demonstrate a best coordinated behavior. Thus, Equation (4.12) adds similar

sine and cosine values and outputs 1 as the polarization. However, the agents orienting

into all different directions make the worst coordination. Thereby, Equation (4.12)

sums arbitrary sine and cosine values which are between -1 and 1 and produces a 0 as
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the polarization. Thus, the polarization ranges between 0 and 1, such that 1 identifies

perfect coordination, while 0 implies no coordination.

4.1.3 Computation of structure

Change in structure is measured as the number of connected components C(t), of the

interaction network of the agents at each time step, by representing the interaction

network of agent positions as a time-varying graph. This network is made at each

time step by linking the adjacent agents determined by the range search algorithm in

[51]. For each agent, this algorithm searches all other agents within a given Euclidean

distance

ε =
2

n(n− 1)T

T∑
t=1

∑
i,j=1,...,n

∥∥∥y(t)
i − y(t)

j

∥∥∥, (4.13)

which is the average distance of agents over all time steps. The scaled number of

connected components [129], C(t)
/
n ∈ [0, 1], is used to detect changes of the structure.

Definition 4.1.5. Graph [41]. A graph is an ordered pair G = (V,E) comprising a

set V of vertices and a set E of edges such that elements of E are 2-element subsets of

V.

Definition 4.1.6. Path [41]. A path is a non-empty graph P = (V,E) where V =

{v0, v1, . . . , vk} and E = {v0v1, v1v2, . . . , vk−1vk} such that all vi’s are distinct.

Definition 4.1.7. Connected component [41]. A subgraph G′ = (V ′, E ′) of G =

(V,E) such that, for any two vertices v′1, v′2 ∈ V ′, there exist a path between v′1 and v′2,

but all pairs of vertices v ∈ V and v′ ∈ V ′, no path between v and v′.

90



4.1.4 The metric

We define the set X =
{
X (t)

}T
t=1

, which contains the values generated from a convex

combination of the scaled speed, polarization, and number of connected components.

That is, for γ1, γ2 ∈ [0, 1] and γ1 + γ2 ≤ 1, we let

X (t) = γ1

∥∥∥µ(t)
w

∥∥∥
max

{∥∥∥µ(t)
w

∥∥∥∣∣∣t = 1, . . . , T
} + γ2P(t) + (1− γ1 − γ2)

C(t)

n
, (4.14)

so that the metric distance ∆ : {1, . . . , T} × {1, . . . , T} → R is defined as

∆(t1, t2) =
∣∣X (t1) −X (t2)

∣∣. (4.15)

Since X (t) is a convex combination, the relative importance of the speed, coordination

and structure can be changed by varying the scalars γ1 and γ2 so that distinct group

activities driven by changes in speed, coordination, and structure should be represented

through distinct manifolds. In other words, two configurations, Y (t1) and Y (t2), should

give a large metric distance, ∆(t1, t2), if they are sampled from different manifolds

representing different group activities.

Definition 4.1.8. Convex combination [111]. A convex combination of a set {X1, . . . , Xm}

is

γ1X1 + . . . , γmXm = 0 (4.16)

where real numbers γt’s satisfy γt ≥ 0 for all t and γ1 + · · ·+ γm = 1.
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4.2 Examples simulated from the Vicsek model

Here, we evaluate the metric on three simulations of self-propelled particles [136]. The

self-propelled particle model [136] updates the position and orientation of each particle

under the influence of its nearest-neighbors within a given distance. Briefly, for a

nearest-neighbor set N (t)
i , comprising all agents within a unit distance from agent i

(including agent i itself), the Vicsek model updates the orientation θ
(t)
i of the i-th

agent at the t-th time step as

θ
(t+1)
i = arg

(
φ

(t)
i

)
+ ε

(t)
i , (4.17)

where ε(t)i is the orientation noise parameter for the i-th agent at the t-th time step

and φ(t)
i is the average direction of motion of all nearest-neighbors including the agent.

As explained in Section 3.3.1, the noise parameter in this model is important as it

determines the strength of the interaction of agents. We assume that the noise is

sampled from a uniform distribution between α1 and α2, U[α1, α2].

We augment the model by including a two-dimensional rotation matrix R(t)
i for the

i-th agent at the t-th time step. Such a rotation matrix can be used to change the

orientation of select agents so that the group can split and rejoin. The position y(t)
i of

the i-th agent at the t-th time step is therefore updated as

y
(t+1)
i = y

(t)
i + w

(t)
i R

(t)
i

cos
(
θ

(t)
i

)
sin
(
θ

(t)
i

)
ms, (4.18)
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Figure 4.2: (Same as Figure 3.7) A particle swarm simulated from the Vicsek model
that evolves at four consecutive time steps indicated by t− 1, t, t+ 1, and t+ 2. Gray
color ellipses show neighbors. Since the red particle joins with the blue particles at
the t-th time step and becomes neighbors, the red particle’s orientation at the current
time step is determined as the average direction of the blue particles in the previous
time step. This similarity of the orientations is shown by yellow arrows.

φ
(t)
i =

1∣∣N (t)
i

∣∣ ∑
j∈N(t)

i

R
(t)
j

cos
(
θ

(t)
j

)
sin
(
θ

(t)
j

)
 , (4.19)

where ms is a duration of a time unit and w(t)
i is the speed of the i-th agent at the t-th

time step. The agent speed (assumed to be a constant in the original Vicsek model)

is modeled as time varying here. If R(t)
j is a 2× 2 identity matrix for all j and w(t)

i is

constant, the model in Equations (4.17), (4.18), and (4.19) specializes to the classical

Vicsek model. The speed of a particle is independent from interactions, however, the

orientation of a particle at the current time step is computed as the average direction of

the neighbors at the previous time step using Equation (4.17) and (4.19). This scenario

is shown in Figure 4.2 when R(t)
i = I2×2 for all t and i (the same illustration was given

in Figure 3.7, however we copy it here for convenience).
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In order to produce collective motion data, three simulations of the augmented

Vicsek model are carried out by changing w(t)
i , ε(t)i , and R

(t)
i for T time steps for n

agents in a rectangular domain of size 2L × 2H with periodic boundary conditions

[136]. Initial alignments of agents are set to zero, and positions are sampled from a

uniform distribution in a circle with radius 2 units and centered at (−L + 2, 0). The

size of the time step ms is taken to be 0.05.

The metric in Equation (4.15) is used to identify and characterize the distinct

manifolds representing different group activities. For all the examples shown here,

we set γ1 = 1/3 and γ2 = 1/3, so that the speed, coordination, and structure are

weighted equally. The pairwise metric distances are then used to identify separate

group activities which are then further analyzed using Isomap.

4.2.1 Switching speed

To study changes in collective motion governed by differences in group speed, we sim-

ulate 50 agents (n) through 150 time steps (T ) in a domain with L = 8 and H = 5

and impose the following speed changes,

w
(t)
i =



0.05 + εs, if t < 50

0.1 + εs, if 50 ≤ t < 100

0.05 + εs, if t ≥ 100

, (4.20)

where εs ∈ U[−0.01, 0.01] represents individual variability in speed with respect to the

time. We set the orientation noise ε(t)i ∈ U[−0.01, 0.01] for all agents and choose the
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Figure 4.3: (a) Distribution of X (t) versus time. Snapshots in each section show that
the structures and velocities of the agents. Therein, the length of the lines measure
the speeds and the directions quantify the orientations of motion. Normalized Isomap
residual variance versus dimensionality plots for each section are presented in the top
row. For any two given configurations Y (t1) and Y (t2) where t1, t2 ∈ 1, . . . , T , and
any arbitrary t0 ∈ 1, . . . , T , if the distance metric image (b) shows the same color at
two points (t0, t1) and (t0, t2) on the image, then those configurations lie on the same
manifold, or on different manifolds otherwise.

rotation matrix to be the identity matrix for all agents.

Figure 4.3(a) shows that configurations for t between 51 and 100 are characterized

by high values of X (t) compared to configurations through the time steps 51–100 and

101–150. This is evidenced from the right and left snapshots which display low speeds,

while the middle snapshot that shows high speed. Residual variance plots (Figure 4.3(a)

top row), obtained after running Isomap over the data, reveal that the first (red)

and last (yellow) sections lie on an underlying manifold of dimensionality two. In

contrast, Isomap indicates that the middle section (green) manifold has dimensionality

five. Metric distances between all pairs of configurations are computed and rescaled to

range between 0 and 1. Then, rescaled distances are converted to a gray color image,
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presented as Figure 4.3(b), such that black refers to 0 and white to 1. According to

the image, while configurations between 1–50 and 101–150 are embedded in the same

manifold, those between 51–100 are embedded in a different manifold.

4.2.2 Switching coordination

To study changes elicited by differences in group coordination, we simulate a group of

50 agents through 150 time steps with L = 6 and H = 6 and consider the following

noise levels for each agent in the three sections

ε
(t)
i ∈



0.01εc, if t < 50

0.2εc, if 50 ≤ t < 100

0.01εc, if t ≥ 100

, (4.21)

where εc ∈ U[−1, 1]. The speed of agents is set to 0.05 + εs where εs ∈ U[−0.01, 0.01]

and the rotation matrix is chosen to be the identity matrix.

Figure 4.4(a) demonstrates that configurations through time steps 51–100 are char-

acterized by higher values of X (t) than those between time steps 1–50 and 101–150.

Such a variation should be ascribed to the changes in the coordination of the group,

as further evidenced from the snapshots presented therein. Specifically, while the right

and left snapshots look similar, with agents moving with high coordination, the middle

snapshot displays low coordination. The Isomap residual plot in Figure 4.4(b) confirms

these similarities in terms of the dimensionality, in that the first (red) and last (yellow)

sections lie on an underlying manifold of dimensionality three, while the second (green)
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Figure 4.4: (a) Distribution of X (t) versus time with snapshots showing the structures
along with velocities of the agents. Therein, the lengths measure their speeds and
arrows quantify their orientations. Normalized Isomap residual variance plots for each
section (red, green, yellow) are shown in the top row. For any two given configurations
Y (t1) and Y (t2) where t1, t2 ∈ 1, . . . , T , and any arbitrary t0 ∈ 1, . . . , T , if the distance
metric image (b) gives the same color for pixels at two points (t0, t1) and (t0, t2) on the
image, then those configurations are in the same manifold, or in different manifolds
otherwise.

manifold has dimensionality four. As in the previous example, the metric distances be-

tween all pairs of configurations are computed and presented as an image in Figure

4.4(b). Empirical results presented therein indicate that configurations between time

steps 1–50 and 101–150 embed in one manifold, while configurations between 51–100

embed in a different manifold.

4.2.3 Switching number of clusters

In this example, we simulate a group of agents that initially move together, then break

into two subgroups, and eventually rejoin. We use a rotation matrix to change the

orientation of agents such that the two subgroups move in different directions (Figure
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4.5).

−6 −4 −2 0 2 4 6
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0
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4

6

y
(t)
1,i

y
(t
)

2
,i

Figure 4.5: Trajectories of agents, y(t)
i = [y

(t)
1,i , y

(t)
2,i ]

T , in two connected components
(sub-groups), with red and blue curves depicting the trajectories of their centroids.

First, we compute two-dimensional coordinates
{
ỹ(1), . . . , ỹ(T )

}
where ỹ(t) =

[
ỹ

(t)
1 , ỹ

(t)
2

]T ∈
R2 to obtain the movement of the centroid of the upper subgroup as shown by red in

the Figure 4.5. We discretize the horizontal axis into T segments ranges from −6 to 6

by

ỹ
(t)
1 = 6(2t− T )/T ; t = 0, . . . , T. (4.22)

Trajectory of the upper subgroup’s centroid is obtained by using difference of two

sigmoid function as

ỹ
(t)
2 = 5

(
1

1 + e−( 12
T
t−4)
− 1

1 + e−( 12
T
t−8))

)
; t = 0, . . . , T. (4.23)

The rotation angle of the centroid of the upper subgroup between t-th and (t + 1)-th

time steps is

γ(t) = tan
((
ỹ

(t)
2 − ỹ(t−1)

2

)/(
ỹ

(t)
1 − ỹ(t−1)

1

))
; t = 2, . . . , T. (4.24)
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Then the rotation angles of the centroid of the lower subgroup is −γ(t) for t = 2, . . . , T .

We arbitrarily split the whole group into two groups as

R
(t)
i =



cos γ(t) − sin γ(t)

sin γ(t) cos γ(t)

 , if 1 ≤ i ≤
⌈
n
2

⌉
,

 cos(−γ(t)) − sin
(
− γ(t)

)
sin
(
− γ(t)

)
cos
(
− γ(t)

)
 , if

⌈
n
2

⌉
+ 1 ≤ i ≤ n,

(4.25)

where
⌈
n
2

⌉
is the smallest integer greater than n

2
.

This special rotation matrix is used to simulate changes in group structure for 50

agents with L = H = 6. We select ε(t)i ∈ U[−0.01, 0.01] and w
(t)
i = 0.05 + εs with

εs ∈ U[−0.01, 0.01] .

Figure 4.6(a) reveals that configurations between 66–145 result in higher X (t) val-

ues than those in during time steps 1–65 and 146–220. The right and left snapshots

illustrate that the particles move as one group, while the middle snapshot indicates the

presence of two groups. Isomap (Figure 4.6(a)) implementation demonstrates that the

first (red) and last (yellow) sections lie on an underlying manifold of dimensionality two,

while the middle section’s (green) manifold has dimensionality four. Metric distances

presented as an image (Figure 4.6(b)) show that the configurations between 1–65 and

146–220 embed in one manifold and those between 66–145 in a different manifold.

Here we presented a framework to characterize alternating manifolds due to chang-

ing of behaviors of collective motion. We hypothesize that the cause for such alteration

is change of speed, coordination, and structure of the multi-agent group. Thus, we de-
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Figure 4.6: (a) Distribution of X (t) versus time with snapshots giving the structures
and velocities. Therein, the length of lines measure their speeds and arrows quantify
the their orientations. The top row of plots shows normalized Isomap residual variance
versus dimensionality for each section (red, green, yellow). For any two given con-
figurations Y (t1) and Y (t2) where t1, t2 ∈ 1, . . . , T , and any arbitrary t0 ∈ 1, . . . , T , if
the distance metric image (b) gives the same color for pixels at two points (t0, t1) and
(t0, t2) on the image, then those configurations are in the same manifold, or in different
manifolds otherwise.

velop a metric that is susceptible of assessing such alternations. Therein, we first

introduce a bijective map that maps agents in consecutive time steps while preserving

their collective motion and extract speed of agent from that. We assess the changes

due to coordination using polarization and changes due to structure using number of

connected components.

The synchronization is an important practice for foraging animals to self defense

against predators and attain food sources. However, the synchronization requires to

obey democracy and change their ideal behaviors into a one that most agents like. This

encounters a cost into a multi-agent system and reduces the overall efficiency. The

efficiency can be reestablished, if the multi-agent group is segregated into subgroups
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such that agents are homogeneous withing groups. However, further segregation creates

small groups which are then vulnerable to predation. Thus, the efficient segregation is

determined by optimizing a cost function assessing their hunger, fatigue, and predation

risk. The detailed method is presented in Chapter 5.
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Chapter 5

An Efficient Segregation of a Herd of

Cows

The content presented in this chapter is a different branch in the thesis than that of

Chapters 2–4 which are more about analyzing empirical observations of data. Here, we

entirely rely on a modeling perspective to understand group motion of bovine behavior.

Specifically, we model an efficient segregation of a herd of free range cows (Bos taurus)

using a cost function assessing their hunger, fatigue, and predation risk [55]. This work

has been a collaboration with Mason A. Porter and Marian S. Dawkins at University

of Oxford.

Animal groups benefit from synchronization in many ways, however it requires

them to switch their desired activity in a communal time rather than in the ideal

time. The low efficiency encounters through the synchronization can be reestablished

by segregating the group into subgroups such that activities are homogeneous within

groups. However, further segregation creates small subgroups which are then vulnerable
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to predation. Thus, here we assess the cost of a herd of cows as the sum of three

quantities: variation of hunger, variation of fatigue, and predation risk. An efficient

segregation is determined by minimizing this Cost Function (CF).

We use the temporal Evolution Scheme (ES) in [128] to simulate cows’ desire to

eat and desire to lie down, and change of states between eating, resting, and standing

(Figure 1.7). The predation risk is modeled as an inverse exponential function of group

size. Hunger, fatigue, and predation risk are then used in the CF that we construct

here to quantify the total cost in the herd.

5.1 Temporal evolution and change of states of cows

The ES that interacts multiple cows provides a useful tool to understand their coop-

erative activities. However, here we modify that model to an iterative scheme as it

can be easily combined with our CF. Moreover, without loss of generality, we reword

three phrases in [128]: “lying down” as resting ; “desire to eat” as hunger ; “desire to lie

down” as fatigue. In the model, the i-th cow in the t-th time step is described by three

variables: ψ(t)
i is for the state of the cow — either eating (E), resting (R), or standing

(S); x(t)
i ∈ [0, 1] represents the hunger; and y(t)

i ∈ [0, 1] represents the fatigue.

For t = 1, . . . , T − 1 and i = 1, . . . , n, the time-dependent coupling of cows is given

by the differential equations

ẋ
(t+1)
i =

[
αi

(
θ

(t)
i

)
+
σx

d
(t)
i

n∑
j=1

a
(t)
ij χE

(
θ

(t)
j

)]
x

(t)
i ,

ẏ
(t+1)
i =

[
βi

(
θ

(t)
i

)
+

σy

d
(t)
i

n∑
j=1

a
(t)
ij χR

(
θ

(t)
j

)]
y

(t)
i ,

(5.1)
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where

αi

(
θ

(t)
i

)
= −ξ′′i χE

(
θ

(t)
i

)
+ ξ

′

iχR

(
θ

(t)
i

)
+ ξ

′

iχS

(
θ

(t)
i

)
,

βi

(
θ

(t)
i

)
= ζ

′

iχE

(
θ

(t)
i

)
− ζ ′′i χR

(
θ

(t)
i

)
+ ζ

′

iχS

(
θ

(t)
i

)
,

(5.2)

with

χψ

(
θ

(t)
i

)
=


1, θ

(t)
i = ψ,

0, otherwise.

(5.3)

Here,

ξ′i : rate of increase of hunger,

ξ′′i : rate of decay of hunger,

ζ ′i : rate of increase of fatigue,

ζ ′′i : rate of decay of fatigue,

(5.4)

of the i-th cow for i = 1, . . . , n. We use the vector notations ξ′ = [ξ′1, . . . , ξ
′
n]T , ξ′′ =

[ξ′′1 , . . . , ξ
′′
n]T , ζ ′ = [ζ ′1, . . . , ζ

′
n]T , and ζ ′′ = [ζ ′′1 , . . . , ζ

′′
n]T . The time-dependent adjacency

matrix A(t) =
[
a

(t)
ij

]
n×n

, represents the network of cows at time t, so, d(t)
i =

∑n
j=1 aij is

the degree of the node i. Non-negative parameters, σx and σy, are coupling strengths

with respect to hunger and fatigue, respectively.

The switching condition of the state variable θ(t)
i of the i-th cow at the t-th time
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step is given by

θ
(t+1)
i →



E, if θ(t)
i ∈ {R,S} and x(t)

i = 1, δ ≤ y
(t)
i ≤ 1,

R, if θ(t)
i ∈ {E,S} and δ ≤ x

(t)
i < 1, y(t)

i = 1,

S, if θ(t)
i ∈ {E,R} and x(t)

i = δ, δ ≤ y
(t)
i < 1

(or δ < x
(t)
i < 1, y(t)

i = δ).

(5.5)

We construct a Poincaré section for the switching condition in Equation (5.5) and

present in Figure 5.1. For any time t and any agent i, the boundaries of this Poincaré

section are

∂E =
{(
x

(t)
i , y

(t)
i , θ

(t)
i

)∣∣x(t)
i = 1, δ ≤ y

(t)
i ≤ 1, θ

(t)
i = E

}
,

∂R =
{(
x

(t)
i , y

(t)
i , θ

(t)
i

)∣∣δ ≤ x
(t)
i < 1, y

(t)
i = 1, θ

(t)
i = R

}
,

∂Sx =
{(
x

(t)
i , y

(t)
i , θ

(t)
i

)∣∣δ < x
(t)
i < 1, y

(t)
i = δ, θ

(t)
i = S

}
.

∂Sy =
{(
x

(t)
i , y

(t)
i , θ

(t)
i

)∣∣x(t)
i = δ, δ ≤ y

(t)
i < 1, θ

(t)
i = S

}
,

(5.6)

We solve the dynamical system in Equation (5.1) for n cows in T time steps together

with the switching condition in Equation (5.5). We present the corresponding iterative
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Figure 5.1: Switching condition of an arbitrary cow [128]. Edges of the square in the
left panel represent boundaries given by Equation (5.6). Right panel shows three states
{E ,R,S} where S = Sx ∪ Sy, and the potential switching between states by arrows.
Same color of arrows between panels refers to the same dynamics.

scheme in Table 5.1. For the simplicity therein, we represent

η′i = ξ′i +
σx

d
(t)
i

n∑
j=1

a
(t)
ij χ

(t)
E

(
θ

(t)
j

)
,

η′′i = −ξ′′i +
σx

d
(t)
i

n∑
j=1

a
(t)
ij χ

(t)
E

(
θ

(t)
j

)
,

γ′i = ζ ′i +
σy

d
(t)
i

n∑
j=1

a
(t)
ij χ

(t)
R

(
θ

(t)
j

)
,

γ′′i = −ζ ′′i +
σy

d
(t)
i

n∑
j=1

a
(t)
ij χ

(t)
R

(
θ

(t)
j

)
,

(5.7)

where i = 1, . . . , n and t = 1, . . . , T . Figure 5.1 illustrates the switching between cases

stated in the table.

5.2 Cost module determining the segregation of herds

In this section, we construct the CF that we minimize later to determine the efficient

grouping which gives the total number of groups and cows’ occupancy in each group.
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Table 5.1: Iterative scheme for the temporal evolution given by Equations (5.1), (5.2),
(5.3), and (5.5). The Poincaré section describing the switching between cases is pre-
sented in Figure 5.2.

Case 1: If x(t)
i = 1, δ ≤ y

(t)
i ≤ 1 and θ(t)

i =E.
Case a: State change form eating to resting.

if y(t)
i ≥ δ

γ′i
η′′
i , then x

(t+1)
i =

[
y

(t)
i

] η′′i
γ′
i , y(t+1)

i = 1 and θ(t+1)
i =R.

Case b: State change form eating to standing.

if y(t)
i < δ

γ′i
η′′
i , then x

(t+1)
i = δ, y(t+1)

i = δ
− γ′i
η′′
i y

(t)
i , and θ(t+1)

i =S.

Case 2: If δ ≤ x
(t)
i < 1, y(t)

i = 1 and θ(t)
i =R.

Case a: State change form resting to eating.

if x(t)
i ≥ δ

η′i
γ′′
i , then x

(t+1)
i = 1, y(t+1)

i =
[
x

(t)
i

] γ′′i
η1
i , and θ(t+1)

i =E.

Case b: State change form resting to standing.

if x(t)
i < δ

η′i
γ′′
i , then x

(t+1)
i = δ

− η1i
γ′′
i x

(t)
i , y(t+1)

i = δ, and θ(t+1)
i =S.

Case 3: If x(t)
i = δ, δ ≤ y

(t)
i ≤ 1 and θ(t)

i =S.
Case a: State change form standing to eating.

if y(t)
i ≤ δ

γ′i
η′
i , then x

(t+1)
i = 1, y(t+1)

i = δ
− γ
′
i
η′
i y

(t)
i , and θ(t+1)

i =E.

Case b: State change form standing to resting.

if y(t)
i > δ

γ1i
η′
i , then x

(t+1)
i =

[
y

(t)
i

]− η′i
γ′
i δ, y(t+1)

i = 1, and θ(t+1)
i =R.

Case 4: If δ < x
(t)
i < 1, y(t)

i = δ and θ(t)
i =S.

Case a: State change form standing to eating.

if x(t)
i ≥ δ

η′i
γ′
i , then x

(t+1)
i = 1, y(t+1)

i =
[
x

(t)
i

]− γ1
η′1 δ, and θ(t+1)

i =E.

Case b: State change form standing to resting.

if x(t)
i < δ

η′i
γ′
i , then x

(t+1)
i = δ

− η
′
i
γ′
i x

(t)
i , y(t+1)

i = 1 , and θ(t+1)
i =R.
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Figure 5.2: Switching of states [128], {E ,R,S} where S = Sx ∪ Sy, corresponding to
Table 5.1. Here, an example, “1a” refers to the “case a” of the “case 1” in the table.

For some arbitrary L, suppose that the herd is allowed to segregates into a maximum

of L distinct groups, represented by sets N (t)
1 , . . . , N

(t)
L , such that

∣∣N (t)
l

∣∣ = n
(t)
l for

l = 1, . . . , L at each time step t ∈ T . If the herd segregates into L1 < L groups at some

time step t1, then for computational purposes, we set
∣∣N (t1)

l

∣∣ = 0 for L1 < l ≤ L. We

construct a CF based on the following assumptions:

(i) Herds are fully democratic1.

(ii) Cows are free to switch between groups, so that the groups are freely formed or

dissolved [2, 105, 25].

(iii) Fission and fusion of groups depend only on cows’ hunger, fatigue, and risk.

(iv) The predation risk of a group is inversely exponential versus the group size.
1Decisions are taken based on majority’s choice
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The CF is formulated in two modules, namely synchronization and risk. While the

Synchronization Module (SM) assesses the cost incurred by the variation of fatigue

and hunger of cows, the Risk Module (RM) assesses the predation risk.

5.2.1 Synchronization Module

Here we use cows’ hunger x(t)
i ∈ [0, 1] and fatigue y(t)

i ∈ [0, 1] simulated in Section

5.1. Without loss of generality, we re-index the variable x(t)
i as x(t)

k,l and x
(t)
i as y(t)

k,l to

denote the hunger and fatigue of k-th cow in l-th group at t-th time step, respectively.

As hunger and fatigue are two independent perceptions in cows, we separately make

the groups homogeneous to either hunger or fatigue. Thus, we compute the two best

groupings independently such that cows are homogeneous with respect to hunger in

case I, and then to fatigue in case II. We then select the best set of groups among all

possible groups in both cases that gives the lowest cost.

Case I: We sort cows such that the hunger is increasing, and first n(t)
1 cows are

chosen into N (t)
1 , next n(t)

2 cows into N (t)
2 , and so forth. The cost incurred by hunger is

the same as the heterogeneity of hunger within groups. Thus, we use the mean of the

standard deviations of cows’ hunger in groups,

h
(t)
1 =

1

L

L∑
l=1

√√√√√√∑n
(t)
l
k=1

(
x

(t)
k,l −

∑n
(t)
l
k=1 x

(t)
k,l/n

(t)
l

)2

n
(t)
l

, (5.8)

to assess the cost carried by hunger. Similarly, we quantify the heterogeneity of groups

with respect to fatigue as the mean of the standard deviations of cows’ fatigue in groups
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by

f
(t)
1 =

1

L

L∑
l=1

√√√√√√∑n
(t)
l
k=1

(
y

(t)
k,l −

∑n
(t)
l
k=1 y

(t)
k,l/nl

)2

n
(t)
l

. (5.9)

Case II: Similar to case I, we sort cows such that the fatigue increases and choose

them into groups N (t)
1 , . . . , N

(t)
L . Here we also compute hunger by Equation (5.8) and

fatigue by Equation (5.9), and we denote them as h(t)
2 and f (t)

2 , respectively.

5.2.2 Risk Module

Unlike hunger and fatigue, a herd’s predation risk is independent of individuals’ states

and only depends on the group size. Because the group size and the risk of being

attacked by predators is inversely related [33], we model the risk incurred by the l-th

group, r(t)
l ∈ (0, 1], having the size n(t)

l to be an inversely exponential function of group

size,

r
(t)
l = e

−
(

1−n(t)
l

)/
c
, (5.10)

where c is a constant.

In Figure 5.3(a), we show the risk function for a group with the safety level τ and

safe size ns. We assume that when a group consists of a sufficient number of cows, the

predation risk is negligible and use this condition to compute the constant c. We name

sufficient group size as safe size and denote by ns, and we name the small risk at this

size as safety level and denote by τ . This implies that the constant c is −(1−ns)/ ln τ
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Figure 5.3: (a) Predation risk as an inverse exponential function of group size. The
red curve segment shows significant risk and blue shows safe. (b) Risk of segregating
a herd of 20 cows (n) into two groups of sizes n(t)

1 and n(t)
2 = n − n(t)

1 , with τ = 1/30
and ns = 10 (yellow triangles), 20 (green squares), and 30 (brown circles).

and that the risk of the group is

r
(t)
l = τ

(
1−n(t)

l
1−ns

)
. (5.11)

Figure 5.3(b) showing predation risk of a herd under different safe sizes indicates that

large safe size contributes more risk to the herd independently of how they segregate.

For all safe sizes, the least cost is achieved when the herd remains intact (i.e., no

segregation), because larger group sizes entails safer herd. The second least cost is

achieved when the herd segregates into equally-sized subgroups.

We compute the risk incurred by each group and we treat its mean,

r(t) =
1

L

L∑
l=1

τ

(
1−n(t)

l
1−ns

)
, (5.12)

as the risk of the herd at time t.

In real-life situations, the safe size and safety level depend on the environment in

which the herd lives. If the environment is either dense with predators or vulnerable
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to predation, then the safe size should be comparatively large to achieve a significant

safety level.

5.2.3 Cost function

We formulate two CFs, one with respect to the grouping when the hunger is homoge-

neous in groups and the other when the fatigue is homogeneous. Each cost function

is formulated as a convex combination of costs incurred by hunger, fatigue, and risk.

That is,

C
(t)
1 (n

(t)
1 , . . . , n

(t)
L ) = γ1h

(t)
1 + γ2f

(t)
1 + (1− γ1 − γ2)r(t),

C
(t)
2 (n

(t)
1 , . . . , n

(t)
L ) = γ1h

(t)
2 + γ2f

(t)
2 + (1− γ1 − γ2)r(t),

(5.13)

where γ1, γ2 ∈ [0, 1] and γ1 + γ2 ≤ 1.

5.2.4 Optimization

Here we use an exhaustive optimization method to minimize the cost functions. That

is, for a given herd, denoted by the set N , along with known maximum number of

groups, denoted by L, we minimize each CF over all plausible sets of groups that can

be created from N . Let the grouping N (t)
1,1, . . . , N

(t)
1,L provides the minimum cost of C(t)

1,m

in the first CF and the grouping N (t)
2,1, . . . , N

(t)
2,L provides the minimum cost of C(t)

2,m in

the second CF. The best grouping ensuring the efficient segregation at the time step t

is determine as the candidate grouping attaining the minimum of {C(t)
1,m, C

(t)
2,m}.
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5.3 Cost module and temporal evolution

Now we execute the CF simultaneously with the temporal ES for t = 1, . . . , T . At each

time step we update the adjacency matrix A(t) =
[
a

(t)
i,j

]
n×n

in the scheme such that it

agrees with the best grouping provided by the optimization of the CF in the previous

time step. That is,

a
(t+1)
i,j =


1, if i, j ∈ N (t)

l for any l ∈ 1, . . . , L,

0, otherwise.

(5.14)

At each time step, optimization of the CF outputs the most efficient grouping until it

reaches the stopping criterion, the maximum time steps (T ). The process diagram of

the algorithm is shown in Figure 5.4.

5.4 Example

Now we carry out a detailed study of the CF to validate the method using two examples:

general segregation — a herd segregates into three groups; adults-calves segregation —

a herd containing half adults and half calves segregates into two groups.

5.4.1 General segregation

We investigate performance of the method using an example of a herd of 12 cows (n) in

30 time steps (T ), which allows them to segregate into maximum three groups (L). We

simulate hunger and fatigue using the ES followed by computing the CF and optimizing
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Figure 5.4: Process diagram of the algorithm. Algorithm inputs initial conditions for
variables hunger, fatigue, risk, and grouping adjacency matrix. Different parameters
input by ES, SM, RM, and CF are explained in Sections 5.1, 5.2.1, 5.2.2, and 5.2.4,
respectively. Algorithm validates the grouping adjacency matrix in each time steps
with the new grouping information obtained by optimizing the CF. Algorithm outputs
groups providing the efficient segregation at each time step and stops at the stopping
criteria which is the maximum number of time steps.
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it to reveal the efficient grouping at each t ∈ T . In the ES, we set the initial states of

cows arbitrarily as θ(0)
i ∈ U

{
E,R,S

}
for i = 1, . . . , n. We set initial variables, x(0)

i and

y
(0)
i for i = 1, . . . , n, based on initial states as,



x
(0)
i = 1 and y(0)

i ∈ U[δ, 1], if θ(0)
i =E,

x
(0)
i ∈ U[δ, 1] and y(0)

i = 1, if θ(0)
i =R,

x
(0)
i = δ and y(0)

i ∈ U[δ, 1],

or

x
(0)
i ∈ U[δ, 1] and y(0)

i = δ,

if θ(0)
i =S.

(5.15)

We choose the following parameters for the ES: ξ′i, ζ ′i ∈ U[.0495, .0505], ξ′′i ∈ U[.0995, .1005],

ζ ′′i ∈ U[.1245, .1255], δ = .25, σx = .05, and σy = .05. We set the parameters in the CF

and RM as ns = 4, τ = .2, γ1 = .33, and γ2 = .33.

Table 5.2: All plausible group sizes, if a herd of 12 cows is segregated into a maximum
of three groups.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
n

(t)
1 12 11 10 9 8 7 6 10 9 8 7 6 8 7 6 5 6 5 4
n

(t)
2 0 1 2 3 4 5 6 1 2 3 4 5 2 3 4 5 3 4 4
n

(t)
3 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 4

A herd of 12 cows can be segregated into a maximum of three groups in 19 differ-

ent combinations of group sizes as shown in Table 5.2. We assign an index for each

combination to simplify future referencing in figures. We also run the ES together

with the CF for another two instances of convex parameters: γ1 = .5, γ2 = .25 and

γ1 = .25, γ2 = .5. We extract the intermediate result at t = 20 for all three instances
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Figure 5.5: Total cost (red squares) at t = 20 and its components: hunger (blue trian-
gles), fatigue (green diamonds), and risk (yellow circles) versus the index representing
the combinations of group sizes as given in Table 5.2. Total cost and its components
for different convex parameters: (a) γ1 = .33 and γ2 = .33; (b) γ1 = .5 and γ2 = .25;
and (c) γ1 = .25 and γ2 = .5.

and present in Figure 5.5. The figure shows that the highest risk is encountered when

n
(20)
1,2,3 = 10, 1, 1, since two individual cows separated from the herd lead to a higher

predation risk. The second highest risk occurs when n(20)
1,2,3 = 0, 1, 11, since one cow is

separated from the herd. However, either staying together, as seen in the index one,

or segregating equally with size larger than the safe size, as in the index 7, incurs the

least risk. We can equally weight cost components in the convex representation (Figure

5.5(a)) or change the importance of components by weighting more on hunger (Figure

5.5(b)), fatigue (Figure 5.5(c)) or risk.

We analyze the temporal grouping using the instance γ1 = .33 and γ2 = .33. Figure

5.6(a) shows cows freely switch their groups until they meet the optimum efficiency.

The cow represented in red color remains in the same group for all the time, whereas
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Figure 5.6: Grouping dynamics and related cost over time. (a) Occupancy, N (20)
1,2,3, of

the first six cows in three groups where each one represented in a different color. (b)
The number of groups into which the herd is split is determined by (c) the total cost.

the one in green color switches its group frequently. Figure 5.6(b) representing total

number of groups of the herd shows that the herd remain as a single group at t = 3,

12, 16, and 29, and segregate into three groups at time steps t = 4, 6, 8 25 and 27.

Figure 5.6(c) representing the total cost reveals that the herd encounters a higher cost

(t = 3, 12, 16, and 29) when cows stay as a single group and a lower cost (t = 15, 28,

and 30) when the herd consists two or three groups.

5.4.2 Inter-sexual segregation

We now study the inter-sexual grouping dynamics of a herd that consists of two dis-

tinguishable groups of adult cows: males and females. Adult male cows require more

energy and rest, as their large body weights contrast to those of adult females having
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comparatively small body weights. We therefore assume that the males’ rates of change

of hunger and fatigue are larger than those of females. Mathematically, we implement

this assumption by using larger values for the parameters ξ′i, ξ′′i , ζ ′i and ζ ′′i of cows in

the male group than for those in the female group.

We consider a herd of 10 cows consisting of two groups such that the first group

has five cows (i = 1, . . . , 5) with large body weights and the second group has the

remaining five cows (i = 6, . . . , 10) having small body weights. As in Example 5.4.1,

we simulate hunger and fatigue of cows by the ES and reveal the efficient grouping by

optimizing the CF. We set the initial states of cows in the first and second groups as

eating and resting, respectively. Initial variables are also set similarly within groups

except for the addition of a small amount uniform noise as


θ

(0)
i = E and

(
x

(0)
i , y

(0)
i

)
= (1, δ) + φ, for i = 1, . . . , 5,

θ
(0)
i = R and

(
x

(0)
i , y

(0)
i

)
= (δ, 1) + φ, for i = 6, . . . , 10,

(5.16)

where φ = 10−3U[−1, 1] and δ = .25. We set σx = .2 and σy = .2 in ES, and we set

the other parameters such that the first group consists of cows with large body mass
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and the second group consists of cows with small body mass:





ξ′i, ζ
′
i ∈ U[.2495, .2505],

ξ′′i ∈ U[.2995, .3005],

ζ ′′i ∈ U[.3995, .4005],

for i = 1, . . . , 5,



ξ′i, ζ
′
i ∈ U[.0495, .0505],

ξ′′i ∈ U[.0995, .1005],

ζ ′′i ∈ U[.1225, .1255],

for i = 6, . . . , 10.

(5.17)

We set the parameters in the CF and RM to be ns = 4, τ = .2, γ1 = .33, and

γ2 = .33. We run the ES for 30 time steps (T ) and then run the CF. Figure 5.7(a)

shows that the cows occupy in their correct group during time steps 0–11, 15 and 20–

28. However, cows mix between groups at time steps 12–14 and 16–19 and encounter

a high cost as indicated by Figure 5.7(c). We compute the number of mismatched

cows in groups and represent this in Figure 5.7(b). We observe that when the cost

is large, the mismatching of cows is also large, and vice versa. We observe that the

CF minimizes the cost and achieves the best grouping even after cows shuffle between

groups.

In this chapter, we modeled an efficient segregation of a herd of cows by optimizing

a cost function. The ES simulates cows’ hunger and fatigue levels at each time step

and then SM computes the cost incurred by hunger and fatigue. The predation risk
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Figure 5.7: Dynamics of a herd of 10 cows in two groups and related cost over time. (a)
First group containing five cows are colored in red, while the second group containing
the other five cows colored in yellow. (b) Number of mismatched cows between groups
in the herd. (c) The cost that determine the cows’ occupancy in each group.

of a group is formulated in RM as an inverse exponential function of group size. The

total cost is defined as a convex combination of hunger, fatigue, and risk. The CF

is then optimized over all possible groups created from a input herd and determined

the optimum segregation. A detailed discussion including future work is presented in

Chapter 6.
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Chapter 6

Concluding Remarks and Future Work

In this thesis, we developed a mathematical perspective of group behavior of animals.

Manifold learning and dimensionality reduction of collective motion, and modeling of

animal behavior are two main branches addressed in this work.

Multi-agent systems perform higher-dimensional dynamics, thus Dimensionality

Reduction (DR) plays a vital role of revealing the lower-dimensional representation of

the system as an underlying manifold. Dimensionality reduction algorithms are not al-

ways amenable to manipulate all types of data, thereby construction of new algorithms

is an ongoing research. A phase transition in a multi-agent system often immobilizes

the DR methods as the underlying manifold splits and represents individual phases.

Thus, detection of transitions is essential before implementing DR algorithms. In fact,

alternation between two activities creates the same alternation of the underlying man-

ifolds. Characterization of this alternation without an aid of DR techniques is an

interesting research. Synchronization of activities in multi-agent systems is beneficial

for survival, however it may also encounters cost and then low-efficiency, as some of
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the agents require to change their ideal activity to agree with the majority. Thus, the

efficiency can be enhanced by modeling an segregation of the system.

In this chapter, we conclude remarks and future work under four sections as follows:

1. Dimensionality reduction by principal manifolds.

2. Detecting phase transitions using manifold’s curvature.

3. Characterizing alternating manifolds.

4. An efficient segregation of a herd of cows.

6.1 Dimensionality reduction by principal manifolds

As collective motion is exhibited by multi-agent systems containing plenty of individ-

uals, studying their behavior as a whole is non trivial. Dimensionality reductions is a

smart tool which capable of identifying coarse observables and extract only the vital

observables [50, 72, 89]. However, the DR is sometimes inept to reveal the underlying

manifold or sometimes lose topological features.

In order to preserve the topology, we have introduced a novel DR algorithm that

works directly on raw data by approximating the data in terms of cubic smoothing

splines. We constructed the splines on two sets of non-overlapping slices of the raw

data created using parallel hyperplanes that are known distance apart. The resulting

splines are a grid-like structure that is embedded on a two-dimensional manifold. The

smoothness of the splines was controlled via a smoothing parameter that selectively

weighs fitting error versus the amount of noise rejection. The underlying manifold was
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represented by the intersection points between all pairs of splines, while the embedding

coordinates were represented in the form of distance along these splines.

Except the smoothing parameter, this method also inputs two parameters n1
C and

n2
C for number of clusters in two directions of largest principal components. Small

values for these parameters generate fewer clusters and thereby fewer splines in the

intrinsic coordinate system. As the embedding was performed on these splines, sparse

splines yield significantly large linear approximations to compute δx1 and δx2 in Section

2.1.3 and consequently encounter a high error. However, large values for these param-

eters generate dense grids and thereby they increase the computational complexity as

computing their virtual intersections are highly cost according to Equation (2.27) in

Section 2.3.2. Thus, choosing the ideal values for n1
C and n2

C, which are neither small

nor large, depends on the user’s prior knowledge about the data.

The spline representation improves the regularity of noisy datasets. We demon-

strated the applications of the algorithm on three separate examples including a paraboloid

(Section 2.2.1), a noisy swiss-roll (Section 2.2.2), and a simulation of collective behav-

ior (Section 2.2.3). Upon embedding these datasets on two-dimensional manifolds, we

found that in the case of the paraboloid, the algorithm is successful in preserving the

topology and the range of the data (Figures 2.8 and 2.9). In the case of the noisy

swiss-roll, we found that the algorithm was able to reject high noise, thereby preserv-

ing the regularity in the original dataset (Figure 2.10). Unlike Isomap, our algorithm

for finding PM is able to maintain a general structure (Figure 2.10 and 2.11). In other

words, the algorithm fails gracefully giving the user enough indication of the trend of

increasing error differently than Isomap, which fails abruptly and dramatically [85].
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This property has a distinct advantage over other methods that are more sensitive to

input parameters and therefore make it difficult to identify when the algorithm is em-

bedding correctly. In contrast, the proposed algorithm on the swiss-roll dataset shows

that in its current form, is inefficient to embed the dataset with holes faithfully onto

a two-dimensional space, since it is highly focused on revealing a smooth underlying

manifold (Figure 2.10).

We used a simulation of twenty particles moving in a translating circle as a rep-

resentation of a two-dimensional data embedded in a forty-dimensional state (Section

2.2.3). In collective behavior, this form of motion approximates predator mobbing.

Visual comparison between the embedding and the ground-truth available in the form

of a rotated embedding shows that our algorithm is able to replicate the time-history

on a low-dimensional space than for example Isomap (Figure 2.12). Furthermore, we

saw that the range of axes in the embedding manifold available from our algorithm is

closer to that in the original data than Isomap.

Operating and representing raw data for DR provides an opportunity for extracting

true embeddings that preserve the structure as well as regularity of the dataset. We

have also shown that this approach is amenable to high-dimensional dynamical systems

such as those available in dataset of collective behavior.

The analysis of the error (Γ) using distance preserving ability between data and

embedding of our algorithm with respect to the smoothing parameter reveals that an

increase in the smoothing parameter reduces the error in the structure (Section 2.3.1).

This is expected because a high value of p implies that the cubic smoothing spline

weights data fit more than smoothing. However, we also noted that the amount of
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error saturates near p = 0.9, showing that values close to but not equal to one may

also be used to represent the data (Figure 2.13). We observed a similar trend with

respect to the amount of noise introduced in a swiss-roll dataset (Section 2.3.1), where

we found that the amount of error increases quadratically with an increase in noise

(Figure 2.14).

We found that the algorithm is able to work on sparse datasets (Section 2.3.1),

up to a representation with five hundred points (Figure 2.15). The exponential fit

indicates that the least error of the embedding is 0.2021 that is attained when T goes

to infinity. This significant error is due to the approximations we made in Section 2.1.3

for computing intersections and local intrinsic coordinates.

6.1.1 Future work

We provided a useful visualization tool to analyze high-dimensional datasets by de-

manding a two-dimensional embedding. However, we will extend this two-dimensional

approach to an arbitrary higher dimension by increasing the number of reference points.

Each additional reference point will introduce an additional set of principal manifolds

and adds one extra dimension to the intrinsic coordinate system. This extension will

permit to analyze data sets that are inherently embedded in higher dimensions such

as a sequence of images of an object which changes the orientation over time in three

dimensions.
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6.2 Detecting phase transitions

Multi-agent systems often undergo phase transitions due to natural perturbations [23,

31, 64, 96, 137]. Existing phase transitions in collective motion would always fail DR

algorithms as transitions split the underlying manifold into two sub-manifolds at some

singularities where the manifold’s curvature is not defined. Thus, prior to utilize such

algorithms, careful study should be conducted to detect and eliminate such transitions.

Here, we have proposed a robust method to detect phase transitions in collective

motion using ratio of singular values encountering high curvature of the underlying

manifold. Therein, we first introduced an assertion to approximate the curvature of

a curve by means of singular value ratios computed on it and then we extend the

assertion to higher dimensions using the shape operator. Finally, we asserted that the

same transition can also be detected through singular value ratios computed over the

local data distribution on the manifold. We validated the method through four diverse

examples ranging from simulations to natural.

In Section 3.3.1, we simulated a training data set of a particle swam consisting of

known transitions to test the method’s performance. Noteworthy shifts of the distri-

bution (σ4/σ1)t from one transition to another justify the sensitivity of the method

(Figure 3.8). Therein, our method was capable of detecting the exact transitions at

frames 50 and 150, however, it approximated the transition at 100-th frame as at 99-th

frame with 1 frame of error. Since this approximation was accurate enough, we parti-

tioned the manifold into four sub-manifolds about the frames 50, 99, and 150. Thus,

we conclude that the method is adept of perceiving the nature of the collective motion
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and spatial distribution of agents to approximate transitions.

The algorithm running on a school of fish consisting four transitions ranked their

magnitudes and provided a comparison (Figure 3.11). Embedding dimensionalities of

sub-manifolds in each example revealed by isomap affirmed that the data was embedded

in distinct smooth sub-manifolds which were joined at singularities. Examples also

ensured the applicability of the method for variety of data sets ranging from simulations

to natural (Figures 3.9 and 3.10), as the method requires one input parameter α for

number of nearest neighbors.

We detect transitions based on the curvature which is a local property on the

manifold, thus, choosing the best value for α is always important for the method to

extract correct traditions. Therefore a user can either use one’s prior-knowledge about

the data or can run the algorithm with several α’s to determine the best value which

differentiates and highlights transitions. However, we can always rely on a small α value

when the data on the manifold is sufficiently dense [130]. As video recording devices

are featured with high frame rates, we can always generate sufficiently large quantity

of frames those would then be densely represented as data points on a manifold. Thus,

in this study, we ran the transition detection algorithm with all the α values less than

10 and then decided the best α by analyzing corresponding transition plots.

6.2.1 Future work

In future, we will fabricate an automated extension for this approach to determine the

best α which gracefully extracts the significant transitions. For that, we will use a

clustering method such as k-mean clustering to distinguish significant transitions at
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each α and then choose the best α which provides the strongest clustering. We will

also establish a novel approach of detecting transitions under gradual changes of the

behavior of a multi-agent system which is not considered in this method. Therein, we

will extract the trend component of the time series (σα/σ1)1, . . . , (σα/σ1)T and then

analyze the local slope to detect gradual changes.

6.3 Characterizing alternating manifolds

Multi-agent systems sometimes alternate between two behaviors causing the same al-

ternation in the representative underlying manifolds [1, 34, 136]. A dimensionality

reduction free framework to characterize an alternation provides an efficient tool to

manipulate such data. Thus, we have proposed a novel metric which is plausible of

characterizing alternating manifolds of a multi-agent system.

This method takes two-dimensional positions at each time step as input. Individual

positions in successive configurations are mapped for each agent by a simple bijective

mapping. While more accurate methods exist for individual tracking [143], we found

that this approach of having computational complexity O(logN) is fast and then robust

to errors in position assignments to individual agents in successive configurations, much

in the spirit of a coarse observable.

The relative importance of average speed, polarization, and normalized connected

components associated with the convex representation (Equations (4.14) and (4.15))

in the proposed metric can be changed by tuning the scalers γ1 and γ2 so that the

metric can effectively encounter the similar group activities. Compared to [72], where
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average nearest neighbor distance is used to analyze group motion, the combined metric

proposed here captures change across multiple group motions. Different than [72], the

connected component weighting is able to identify differences in group structure in

terms of group splits.

Three diverse examples of changing speed (Section 4.2.1), coordination (Section

4.2.2), and structure (Section 4.2.3) are simulated using an augmented Vicsek model

to validated our novel method of identifying manifolds. Once distinct manifolds were

revealed on the basis of metric distance, Isomap DR algorithm was used to compare

their dimensionalities. The three examples presented here offer some validation of our

method and provide useful insight into the possibility of handling alternating group

activities of multi-agent systems in a fully data-driven approach. Though the Vicsek

model simulates agent positions in time and records them in the same order between all

time steps, our method is also robust to the unavailability of such ordering information.

This is particularly important in dealing with real experimental data, where tracking

individuals and preserving their identities [69, 109, 139, 140] may be challenging.

The proposed metric is able to isolate distinct phases of collective motion in three

separate scenarios. The separation of these phases as sub-manifolds in a low-dimensional

space was confirmed by the Isomap algorithm, which measures a different dimension-

alities for each of these phases. Further, based on metric distances it was possible to

group similar activities together. This has potential application in using the proposed

metric to train specific events of interest and process long videos to highlight the same.
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6.3.1 Future work

While the artificial separation of phases was distinct in the simulated examples pre-

sented here, future work will evaluate the performance and sensitivity of this metric

to gradual changes over a sequence of time steps. We will also seek to clarify inher-

ent patterns of collective behavior across animal species [34] to characterize alternating

manifolds through the novel metric presented herein. Since aforesaid framework inputs

positions of agents, it reduces the applicability since most of collective motion data is

videos. Accordingly, we will also develop an image processing technique to extract po-

sitions of agents from video frames using level curves created over the intensity plots.

Therein, we will also utilize this method to analyze videos for classifying collective

behavior [22].

6.4 An efficient segregation of a herd of cows

In nature, synchronization is essential for cows, as it helps them to protect from preda-

tors and attain their needs such as food [16, 47, 86, 115]. However, synchronization

entails a low efficiency, as some portion of the herd has to change their behavior at

a communal time rather than at a beneficial time [28, 45, 114]. To assure efficiency,

we hypothesize that herds segregate into groups such that cows’ hunger and fatigue

are homogeneous within a group. We ensure that further segregation does not make

small groups, which are then vulnerable to predation. Thus, we have developed a novel

framework for modeling an efficient segregation of a herd of cows by optimizing a cost

function that quantifies their hunger, fatigue, and predation risk.
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The Evaluation Scheme (ES) in [128] inputs cows’ time-dependent interactions in

terms of a adjacency matrix A(t), which represents the efficient grouping revealed by

optimizing the Cost Function (CF). This adjacency matrix provides an interface be-

tween two separate frameworks ES and CF. As hunger and fatigue are two independent

perceptions of a cow, we optimized the CF in two times at each iteration and compute

the two best segregations, corresponding to hunger and fatigue, and then choose the

one giving the lower cost. The parameter L for the maximum number of groups limits

the feasible region of the optimization and thereby reduces the computational com-

plexity of the method. We assessed the cost incurred by hunger and fatigue using the

standard deviation for the simplicity. However, the standard deviation can be replaced

by any measure of dispersion.

The risk module also explains the ability to defense against predation, as a large

group size devotes more defense to agents. We can imitate situations such as lack

of defense power by assigning a high safety level (τ) even for a large safe size (ns).

In contrast, a situation having a high defense power is imitated with the opposite of

aforesaid setup of parameters.

We used Example 5.4.1 to analyze the dynamics of switching of cows between

groups and fission-fusion of groups. Our primary hypothesis, that the synchronization

encounters a high cost, was evidenced by Figures 5.6(b) and 5.6(c), as we observed a

high cost during time steps 3, 12, 16, and 29 when the herd consists of one group. This

is because the risk component gave a lower contribution to the total cost as compared

to the hunger and fatigue components. However, this can be overcome by highly

weighting the risk component in the convex combination. The example mimicked a
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real-life scenario of a herd that chose to stay together for safety rather than segregating

to compete for hunger and fatigue.

The ES can be customized by changing parameters denoting rates of hunger (ξ′i, ξ′′i )

and rates of fatigue (ζ ′i, ζ ′′i ) to simulate a different real-life herding instance as shown

by Example 5.4.2 that mimics an inter-sexual segregation of a herd. Adult male cows

generally possess larger body weights, and require more energy and rest than that of

adult female cows. We implemented this asymmetry in the model by imposing larger

values for ξ′i, ξ′′i , ζ ′i, and ζ ′′i in males than that for females. Sometimes, the hunger and

fatigue of cows are escalated by the ES such that the grouping is unstable as shown

during time steps 12–14, 16–19, and 29–30 in Figure 5.7(c). However, optimization of

the CF faithfully established the stability as shown at the time step 15 and then at

time steps 20–28. We added a uniform noise to the values of parameters ζ ′i, ζ ′′i , ξ′i, and

ξ′′i for i = 1, . . . , n to assure the generality.

The coupling parameters, σx and σy, in ES determine the strengths of the in-

teractions among the cows in groups. Consequently, imposing large values for these

parameters increasingly influence the similar dynamics of group members such as dy-

namics of state changes. We set σx = σy = .05 in Example 5.4.1 and σx = σy = .2

in Example 5.4.2 as a higher potential grouping is expected for the herd undergoes

inter-sexual segregation than regular segregation.

The CF can easily be adjusted such that it is robust for herding scenarios in different

environments. A safe environment allows small groups in a herd, in contrast to a unsafe

environment requires large groups to defend against attacks. The CF imitates a safe

environment if the safety size ns is large and the safety level τ is small, or an unsafe
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environment otherwise. One can control the influence from cost components, hunger,

fatigue, and risk, on the CF by tuning the convex parameters γ1 and γ2 so that the

method utilizes different grouping scenarios. One can even analyze the influence of

one or more cost components over the others for the segregation by changing these

parameters.

6.4.1 Future work

We primarily determine the grouping only by optimizing of the CF at each time step,

thereby sometimes ES simulates hunger and fatigue those may lead to escalate the

cost and encounter instability. We believe the optimization alone does not always

preserve the stability of the segregation, thus in the future, introducing a learning

process into the model that keeps track on perfect grouping during past time steps will

be considered. This method requires the user to determine the maximum allowance

of groups (L) which is basically a arbitrary value . Choosing an appropriate value

for this parameter is either obvious, as in Example in 5.4.2 where we used two, or

hypothetical, as in Example 5.4.1 where we used three. Thus, we will improve the

method such that it will reveal the best L providing the least cost for segregation by

introducing a secondary optimization approach. In the future, we will also study the

model performance under situations of having a strong defense power as well as lack

of defense power by tuning parameters, safety level and safe size.
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