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Abstract

Phytoplankton form the basis of the food chain in the Earth’s oceans and are ul-

timately responsible for providing nourishment for marine life further up the food

chain [1]. Seasonal environmental heterogeneities such as nutrient replenishment,

predation, and temperature induce recurring algal blooms, often called spring blooms

[2–4]. Certain bloom events, especially harmful algal blooms, elicit widespread reper-

cussions on regional communities such as human sickness, shellfish poisoning, and fish

kills [5]. Models for near-shore algal blooms would be extremely valuable for fore-

casting during such events and might help inform short-term management decisions.

Algal blooms are visible in their entirety through remote sensors mounted on ocean-

observing satellites. Such data is capable of informing model-fitting techniques for

short-term ecological forecasts. The primary task of this work is to develop new tech-

niques for model fitting and forecasting from observed data within the framework of

synchronization. We assume vertical concentrations to be homogeneous and examine

two-dimensional systems of PDEs with spatially dependent parameters. Several new

developments in parameter and model fitting are demonstrated, including spatially

dependent parameters in reaction-diffusion-advection systems. Obstacles including

sparsity in data and cloud cover are addressed. The new techniques are proven by

demonstrating a Lyapunov functional [6] or by estimating conditional Lyapunov ex-

ponents [7] when required.
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Chapter 1

Introduction

Phytoplankton form the basis of the trophic web in the Earth’s oceans, providing

nourishment for marine life further up the food chain [1]. Phytoplankton generate

roughly half of the Earth’s oxygen through photosynthesis [15] and also absorb half

of the Earth’s carbon dioxide. As such, phytoplankton are efficient scrubbers of the

Earth’s atmosphere, contributing significantly to the Earth’s carbon cycle [15, 16].

Due to the growing consumption of fossil fuels, the carbon cycle has been altered with

large amounts of carbon pumped into the atmosphere [17]. Phytoplankton absorb

carbon through photosynthesis, eventually die, and subsequently sink to the bottom

of the ocean, in a sense cycling the Earth’s carbon [16,18–20]. Therefore the modeling

of phytoplankton is a progressively important problem, especially considering the

mounting interest in the Earth’s climate.

Seasonal environmental heterogeneities such as nutrient replenishment, predation,

and temperature induce recurring algal blooms, often called spring blooms [2–4, 21].

More localized bloom events are commonly observed in estuaries and coastal re-

gions [22]. Certain bloom events, especially harmful algal blooms, elicit widespread

repercussions on regional communities such as human sickness, shellfish poisoning,

and fish kills [5]. These harmful algal blooms are detrimental to regional ecology and
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economies through fishing losses and tourism depletion [5].

Sources contributing to phytoplankton growth include nutrients, sunlight, and re-

gions of upwelling or wind mixing that transport nutrients to the surface [8]. The pro-

cesses by which these events occur are not well understood, in part due to the many

complexities involved [2]. Models for near-shore algal blooms would be extremely

valuable for forecasting during bloom events and might help inform short-term man-

agement decisions.

Phytoplankton are grazed upon by zooplankton, animals that can be either herbi-

vores or predators [23]. Zooplankton are incredibly efficient grazers, and are primarily

responsible for controlling seasonal spring phytoplankton blooms [3, 24]. Since zoo-

plankton are such efficient grazers, they are an important consideration in modeling

algal ecology and are very frequently included in even basic models [2–4,15,25–37].

Plankton are often studied either empirically or theoretically. We aim to blend

the two approaches by fitting established theoretical models to observed data for

ecology on the mesoscale. However, modeling an oceanic ecosystem over the mesoscale

requires ample empirical data over a widespread geographic region; a study on the

mesoscale is an ambitious endeavour. We focus on a passive technique to gather

empirical data over the scale at which we aim to fit models and provide forecasts.

Remote sensing provides a relatively new and powerful tool in observing algal

blooms in real-time over the mesoscale. Therein, certain geophysical quantities of

interest such as wave speed, algae, or ocean salinity are observed through instru-

ments including RADAR, LIDAR, or multispectral instruments [8]. Specifically, algal

blooms may be studied using satellite-mounted ocean-observing multispectral instru-

ments toward building models to represent observed ecology and short-term forecasts.

Hyperspectral instruments mounted on satellites are capable of capturing an entire

algal bloom, thereby permitting the observation and analysis of the comprehensive

biological system [23]. We work with three particularly useful instruments for ob-
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serving ocean ecology and explain their characteristics in some detail. We describe

the satellites on which they are mounted, some of the detrimental phenomena, in-

cluding sun glint and atmospheric scattering, and a basic ocean color algorithm to

infer phytoplankton density. We aim to fit models informed by data, as opposed to

first principles, requiring that our models must match observed data regardless of

underlying physics.

Model fitting in ODEs and PDEs has developed into a vast field in applied math-

ematics and control engineering. For models representing important physical pro-

cesses, accurate estimates of appropriate model parameters help facilitate short-term

forecasting. However, to forecast a system one requires not only accurate parame-

ter estimates, but also full knowledge of the initial state of the system. There are

widely varying and powerful methods for parameter estimation of spatio-temporal sys-

tems including, but certainly not limited to, Kalman filter methods [38–40], multiple

shooting methods [41,42], and adjoint methods [43]. Parameter estimation based on

synchronization has drawn substantial interest [44–54]. Applications include commu-

nications and cryptography [46], electronics and circuit dynamics [45,55], and cardiac

cell dynamics [51] to name just a few.

The mathematical study of synchronization between chaotic systems emerged with

the seminal work of Pecora and Carroll [56]. They discovered the counter-intuitive

phenomena of synchronization between two chaotic dynamical systems. In fact, due

to inherent exponential divergence of nearby initial conditions, one would expect that

model states of two chaotic systems with nearby initial states would rapidly diverge.

In practice, noise persists both in transmitted data and in measurement error. There-

fore a receiver accepting a noisy chaotic signal from a transmitter should experience

exponential divergence. However, Pecora and Carroll demonstrated [57] that, with a

specific coupling between two chaotic systems, they will inevitably synchronize.

Synchronization was observed between one-dimensional systems of PDEs in [55]
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and two-dimensional systems in [52], where the authors considered the Grey-Scott and

Barkley reaction-diffusion systems respectively. In these works, the authors observed

synchronization of an infinite-dimensional system by coupling the drive and response

systems at only a finite number of grid points. The authors observe single-species

assimilation as they drive the PDE system to identical synchronization while coupling

with only one species [52].

Parameter estimation techniques were then developed by exploiting the tendency

of chaotic systems to synchronize. Synchronization acts as a regularizing force in the

parameter fitting process [52]. Given two systems, a drive and response, parameters of

the drive system may be identified by minimizing the misfit between response model

prediction and drive model observations. Since perfect parameters will yield a perfect

fit, one need only search through Rn to correctly estimate parameters.

Autosynchronization is a special variation of synchronization methods rooted in

an approach to force a response model to adapt to observed data by developing

additional equations for the parameters that depend on the model error [44, 49]. If

coupled properly, the drive and response parameters will synchronize while the two

systems themselves synchronize, thus the term “autosynchronization" [44]. Further

work [52] examines parameter estimation for PDE systems using optimization over the

synchronization error surface. However, none of these address autosynchronization in

the PDE setting.

In this work, we build upon the results in [44], including parameter estimation

through autosynchronization. We extend the method of autosynchronization between

chaotic ODEs to spatiotemporally chaotic PDEs. We first demonstrate the ability

of the PDEs to synchronize, then demonstrate synchronization by sampling only one

species. Next, we demonstrate autosynchronization such that scalar model parame-

ters are estimated. Furthermore, we demonstrate autosynchronization for spatially

dependent parameters. Optimization techniques require complex tools when estimat-
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ing spatially-dependent model parameters, requiring a minimization over a function

space. Autosynchronization provides a simple framework with which to estimate pa-

rameters over a function space. We show that autosynchronization is observed by

sampling only one species. Finally, we demonstrate autosynchronization for spatially

dependent parameters over a reaction-diffusion-advection system including spatially

dependent parameters.

These methods are performed on benchmark models to demonstrate their efficacy.

However, for a guarantee to properly function in practice, some analysis is required

in determining exactly under what conditions synchronization or autosynchronization

will be observed. There are classically two approaches to analyzing this phenomena,

the Lypaunov direct method [6] and the estimation of conditional Lyapunov expo-

nents [7]. Using these tools, we analyze the synchronization between the benchmark

systems and prove conditions under which synchronization and parameter estimation

are observed.

An outline of this work is as follows. In Chapter 2 we study the remote sens-

ing instruments we aim to use for observing ocean ecology, including algal blooms.

We discuss their properties in detail, including particular characteristics of each in-

strument. We detail data processing techniques to filter noise-inducing atmospheric

effects, ending with the ocean color algorithms for inferring plankton densities from

multispectral data.

In Chapter 3 we introduce the benchmark model to be used in the twin ex-

periments performed in later chapters to demonstrate synchronization. The bench-

mark model is a system of partial differential equations representing phytoplankton-

zooplankton ecology which, after spiral-producing transients, results in spatiotempo-

ral chaos [15]. We describe the numerical techniques used to simulate the reaction-

diffusion system. We next introduce a reaction-diffusion-advection system based on

the former reaction-diffusion system and describe the numerical techniques used to
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simulate the new system.

Chapter 4 is a demonstration of the reaction-diffusion system to synchronize. We

discuss a first demonstration of autosynchronization, including spatially dependent

parameter estimation. These results are repeated assuming sampling of one species to

include model state estimation. Lastly, the problem of incomplete observation data

is addressed including sampling by local averaging, temporal subsampling, and cloud

coverage over the observed domain.

We study the dynamics in phase space in Chapter 5 with an analysis by the

Lyapunov direct method [6] when available. Here, we describe the Lyapunov direct

method for systems of ODEs and demonstrate how the method is extended from

stability analysis on one dynamical system to analyze synchronization between two

dynamical systems. We next extend the method from systems of ODEs to PDEs,

gaining knowledge of the basin of attraction of the synchronization manifolds for the

different systems shown in Chapter 4.

Later in Chapter 3, we discuss Lyapunov exponents, their geometric interpreta-

tion, and their numerical calculation. We define conditional Lyapunov exponents

(CLEs) and estimate CLEs on the ODE analogs of the PDEs with which we observed

synchronization and parameter estimation. The estimation of CLEs provides an anal-

ysis of the stability of the synchronization manifold whence we are unable to use the

Lyapunov direct method. Finally, we extend the CLEs from the aforementioned ODE

systems to the system representing the numerical approximation to the PDEs used

in Chapter 4.

In Chapter 6, we extend synchronization between the reaction-diffusion systems

studied in Chapter 4 to reaction-diffusion-advection systems with advection governed

by a flow field resulting in rigorous mixing over the domain [58–62]. That is, we study

a benchmark problem including complex mixing to mimic expected behavior over

turbulent coastal regions. Finally, we demonstrate synchronization and parameter
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estimation by sampling one species.

In Chapter 7 we merge synchronization with a relatively new development in trans-

port analysis in time-dependent dynamical systems [63], wherein coherent sets for a

dynamical system are uncovered. As noted, an algal bloom may be observed in its

entirety by multispectral satellite data. By viewing the system on the mesoscale, we

fit models and also analyze the underlying dynamics governing density transport near

coastal regions. The underlying dynamics, typically including ocean currents which

transport plankton [15], might partition a domain into mostly coherent regions, or

regions between which there is not much mixing [63]. Synchronization and autosyn-

chronization are shown to be more efficient when performed over mostly-coherent sets

as opposed to the entire domain.

Finally, we discuss future work including expectations for exploiting these tech-

niques toward modeling ocean ecology with hypersectral satellite data given by the

instruments discussed in Chapter 2. Some concluding remarks follow.
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Chapter 2

Remote Sensing

Remote sensing provides an extremely effective means of modeling mesoscale dy-

namics. Data obtained by remote sensing allow for prediction, assimilation, and

forecasting of oceanic dynamics and weather. Remote sensing is defined as the use

of electromagnetic radiation to learn information about the ocean, land, and at-

mosphere without having physical contact with the object or phenomenon under

investigation [8]. In contrast to direct, or in-situ, measurements, remote sensing mea-

sures large regions and the quantity under investigation is inferred from reflected or

emitted radiation. Examples of remote sensing include but are not limited to radar,

lidar, particle image velocimetry (PIV), and hyperspectral satellite imagery. Remote

sensors infer a broad array of geophysical quantities of interest. Our work will in-

clude remote sensing of geophysical quantities from hyperspectral imagers mounted

on earth-observing satellites.

Hyperspectral imagers measure the characteristics of light coming from the surface

of the Earth. Such imagers can view the ocean in three electromagnetic wavelength

bands, the visible, infrared, and microwave [8]. Both visible and infrared can be

obscured by cloud cover, but microwave wavelengths can be viewed through clouds.

There are two types of microwave observations, active and passive. Hyperspectral
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imagers fall under the passive category as they observe only reflected solar radiation

or naturally emitted radiation [8]. Active measurements are made by instruments

such as Radar, in which directed pulsed beams are emitted and inferences are made

based on reflected backscatter. We begin by describing how orbiting multispectral im-

agers collect information, starting with what multispectral imagers actually observe,

electromagnetic radiation. We then describe how electromagnetic radiation inter-

acts with the Earth’s atmosphere, followed by how radiance incident on the ocean

is reflected, transmitted, and absorbed. Next, we discuss important definitions and

characteristics of multispectral satellites, followed by how data is captured and is

subsequent processed. Finally, we discuss the imagers we will be using in this work

toward ocean modeling and their features along with the algorithms used to infer

data. This provides a somewhat rigorous background as to how these sensors are able

to infer information about plankton density in the ocean from space.

2.1 Electromagnetic Spectrum

Electromagnetic radiation is a form of energy propagation characterized by either

wavelength or frequency. The electromagnetic spectrum is divided into several sec-

tions based on either frequency or wavelength. One end of the spectrum contains

the high frequency range, with what are called X-rays. Next, with a slightly lower

frequency, is ultraviolet radiation. What follows is the visible spectrum in which the

colors visible to the human eye are found. Next, the infrared wavelengths are found.

Finally, the longest wavelengths discussed consist of microwaves and radio waves.

Table 2.1 describes these regions along with respective abbreviations for future ref-

erence. The sun is the source of the bulk of observed electromagnetic radiation with

respect to satellite remote sensors.

Any object emits thermal radiation based on certain properties such as its tem-
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Table 2.1: Regions of the electromagnetic spectrum with abbreviations, adapted from
Martin, 2004 [8].

Name Abbreviation Wavelength band
Ultraviolet UV 10-400 nm
Ultraviolet-B UV-B 280-320 nm
Visible V 400-700 nm
Near Infrared NIR 0.7-3.5 µ m
Visible/Near Infrared VNIR 0.4-3.5 µ m
Thermal Infrared TIR 3.5-20 µ m
Visible/Infrared VIR 0.4-20 µ m

perature. To properly understand the relationship between absorbance and emission,

some definitions and laws are required from thermodynamics. First, we define some

useful terms as found in [64].

Definition 2.1.1. Radiation is the energy emitted by matter in the form of electro-

magnetic waves as a result of the changes in the electronic configurations of the atoms

or molecules.

Definition 2.1.2. The emission efficiency, denoted ε, describes the efficiency of an

object to emit thermal radiation. The emission efficiency takes values 0 ≤ ε ≤ 1, with

0 denoting no emission and 1 denoting the highest possible emission.

Definition 2.1.3. The absorption efficiency, denoted a, describes the efficiency of an

object to absorb radiation. The value of a is found by dividing the absorbed radiation

by the incident radiation. The absorption efficiency takes values 0 ≤ a ≤ 1, with 0

denoting complete reflection and 1 denoting complete absorption.

In 1859, Gustav Kirchhoff discovered a relationship between emission efficiency

and absorption efficiency.

Theorem 2.1.4. Kirchhoff’s law of radiation states that the emissivity and the ab-

sorptivity of an object are equal at the same temperature and wavelength. That is

a = ε.
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Theoretically, a body could have the property of maximum absorption, in which

case Kirchhoff’s law implies it would also have maximum emission. Such an idealized

object is called a blackbody. The radiation emitted by a blackbody also has a special

name, called blackbody radiation.

Next, we describe how the temperature of an object depends on the the amount

of radiation emitted by a body with the Stephan-Boltzmann law.

Theorem 2.1.5. The Stefan-Boltzmann law states that the radiation emitted by an

object is expressed as

Q̇emit = εσAT 4
S , (2.1)

where A is the surface area under consideration and σ = 5.67× 108 W/m2 ·K4 is the

Stephan-Boltzmann constant.

Therefore, thermal radiation intensity increases exponentially with respect to an

increase in temperature. Next, we explore how changes in temperature are related to

changes in emission by Planck’s equation.

Theorem 2.1.6. (Martin, 2004 p.58) Planck’s equation states that the spectral radi-

ance emitted from a blackbody at a given wavelength is described by

Q̇λ = 2hc2

λ5 exp[(hc/kλT )− 1] , (2.2)

where λ is the emission wavelength, h = 6.625×10−34 J is Planck’s constant, c is the

speed of light, and k = 1.38× 10−23 J K−1 is the Boltzmann constant.

This equation is useful for remote sensing because spectral emission properties of

bodies can be calculated from their spectral efficiency. Finally, an equation describing

the maximum wavelength of an emission spectrum in terms of the temperature is given

by Wein’s Displacement law.
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Theorem 2.1.7. (Martin, 2004 p.58) Wein’s displacement law states that the wave-

length of maximum radiance in Planck’s equation is proportional to 1/T,

λmax = C

T
, (2.3)

where C = 0.3 cm K.

Thus, warm bodies emit maximum radiation at shorter wavelengths than colder

bodies.

2.2 Atmospheric Influences on Radiation

The Earth’s atmosphere greatly influences radiation as it passes from the sun or is

emitted or reflected from the Earth. The atmosphere reflects, scatters, and absorbs

passing radiation. This interference means that there exist but a few windows in the

electromagnetic spectrum appropriate for Earth observation [8].

With respect to remote sensing, there are several atmospheric phenomena that

contribute to interference. The first is water, which can occur in the form of vapor,

rain, snow, or ice crystals in clouds. Another is atmospheric aerosols, which are made

up of small particles from the Earth such as dust or urban pollution. The ozone is

a part of the atmosphere that absorbs certain intervals of the electromagnetic spec-

trum, particularly ultraviolet rays. Among the sources of atmospheric interference,

clouds are the worst, as they completely block passive sensing of the Earth and are

masked in an image. Finally, free electrons generated in the Earth’s ionosphere are

a component of the atmosphere that affect passing radiation [8]. All of these sources

of interference contribute to diffuse scattering of radiation in the atmosphere, called

atmospheric scattering. Atmospheric scattering can be described as either Rayleigh

or Mie scattering.
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Definition 2.2.1. (Martin, 2004 p.84) Rayleigh scattering refers to molecular scat-

tering, or scattering from particles that are small relative to the wavelength of incident

radiation.

Definition 2.2.2. (Martin, 2004 p.86) Mie scattering refers to aerosol scattering, or

scattering from particles that are larger than or of comparable size to the wavelength of

incident radiation. These particles include water droplets, aerosols, and ice crystals.

The atmosphere also emits radiation itself in certain spectral bands by two pro-

cesses known as Lorenz and Doppler broadening [8]. Lorenz broadening occurs due

to molecular collisions within a gas such as the atmosphere and Doppler broadening

is an artifact of the Doppler shift that occurs due to the motion of molecules within

a gas.

As noted, atmospheric interference varies with wavelength. In particular, trans-

mittance is highest in the visible spectrum. In higher wavelengths, including those at

which the Earth emits radiation, we find narrow bands of transmittance. Wavelengths

smaller than ultraviolet are almost completely absorbed and are mostly useless for

remote sensing.

2.3 Reflectance, Absorbance, and Transmission

Once through the atmosphere, radiation interacts with the surface of the Earth or, for

ocean observing, the boundary between the ocean and the atmosphere. Electromag-

netic radiation interacts with a body in three ways. It can be reflected, absorbed, or

transmitted depending on the properties of the body. Different bodies have different

surface and material properties, allowing to distinguish between them based on their

interaction with radiation.

We will discuss these three interactions and their impacts on remote sensing,

beginning with reflection. Things that affect the how an object reflects radiation
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are the angle of incidence of radiation upon the object and surface topography of

the object. There are two different types of reflectance. If the surface is flat, the

reflection of incident radiance is mirror-like and the angle if reflection equals the

angle of incidence. This type of reflectance is called specular. The second type of

reflectance is called Diffuse. Diffuse reflectance occurs on rough surfaces in which case

incident radiance is reflected uniformly in all directions. The two types of reflections

are contrasted in Figure 2.1.

Figure 2.1: Two types of reflectance based on roughness properties of reflecting sur-
face.

Figure 2.1 does not tell the entire story. As a flat surface increases in roughness,

specular reflection will begin to directionally diffuse in the direction opposite of in-

cidence. That is, the reflected radiation will be anisotropic in a biased direction at

first, but will become isotropic as the surface continues to roughen.

Furthermore, surface reflection depends on the particular wavelength of incident

radiation, which can be described by the Rayleigh roughness criterion [8].

Definition 2.3.1. Suppose radiation with wavelength λ interacts with a surface at

incidence angle θ, then the scattering is specular if

σn cos(θ)
λ

<
1
8 , (2.4)

where σn denotes the root mean square surface height.
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The Rayleigh roughness criterion, which gives bounds for specular scattering, says

that as the wavelength of incident radiation increases, the surface roughness becomes

decreasingly important.

Since we are interested in the remote sensing of ocean ecology, we now discuss

the reflectance properties of seawater. For pure seawater, the scattering coefficient

exponentially decreases with increasing wavelength [8].

Radiation incident upon the surface of the ocean is in fact both reflected and

transmitted through the surface. Radiation transmitted through a surface is said to

be refracted.

Figure 2.2: Reflection and refraction at material boundary between two different
materials. Angle of incident radiation is θi, angle of reflected radiation is θr, and
angle of transmitted or refracted radiation is θt.

Figure 2.2 shows radiation incident on a boundary being both reflected with re-

fracted at different angles. Here, θi is the angle of incident radiation, thetar is the

angle of reflected radiation, and θt is the angle of transmitted, or refracted, radiation.

Snell’s law described how these angles are related given radiation incident upon the

boundary between two different materials.

Theorem 2.3.2. (Halliday et al, p.819) Suppose the angle of incident radiation is
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denoted θi and the angle of reflected radiation is denoted θr, as shown in Figure 2.2.

The law of reflection states that the angle of incidence and angle of reflection are

equal and opposite for specular reflection, that is θi = −θr.

Theorem 2.3.3. (Halliday et al, p.819) Suppose the angle of incident radiation is

denoted θi and the angle of transmitted radiation is denoted θt, as shown in Figure

2.2. Snell’s law states that the radiation is refracted by an angle θt as

n2 sin(θt) = n1 sin(θi), (2.5)

where n1 is the index of refraction for material 1 and n2 is the index of refraction for

material 2.

The relationship between the magnitudes of reflected and refracted radiances can

be described by the Fresnel equations. To describe the Fresnel equations, first we

define the radiance reflectance.

Definition 2.3.4. (Martin, 2004 p.109) Suppose the angle of incident radiation is

denoted θi and the angle of reflected radiation is denoted θr. The radiance reflectance

r(λ, θr), is defined as

r(λ, θr) = Lr(λ, θr)
Li(λ, θi)

, (2.6)

where L(λ, θi) is the radiance of incident radiation at a given wavelength and L(λ, θr)

is the radiance of reflected radiation.

Now the transmitted radiance r(θi) can be written as (Martin, 2004)

r(θi) = 1
2

(sin(θi − θt)
sin(θi + θt)

)2

+
(

tan(θi − θt)
tan(θi + θt)

)2
 , (2.7)

where θi = −θr by Snell’s law. Here θi is the angle of incident radiation, θr is the

angle of reflectance, and θt is the angle of transmittance as shown in Figure 2.1.
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However, the atmosphere-ocean boundary is not an idealized mirror-like interface.

The wavy ocean surface causes diffuse reflectance, or a scattering of solar radiance,

called sun glint. Sun glint is an important issue as it is observed by a sensor and can

overwhelm the radiance both reflected and emitted by the ocean surface and therefore

must be filtered, or masked [8]. Finally, another type of reflection to be considered is

the reflection from foam caused by breaking waves. This type of reflection is assumed

to be diffuse in nature and deserves consideration in remote sensing algorithms [8].

The ocean has a particularly high absorbency at many wavelengths. Absorption

and emission are confined to the top 1 − 100µm in the infrared and to the top 1 −

3 mm in the microwave [8]. Thus, in these regions of the spectrum, we are only

concerned with scattering and reflection. However, the same is not true of the visible

wavelengths, in which both direct and diffuse reflections occur [8]. Absorption in pure

seawater as a function of wavelength has a minimum in the region between 300-600

nm [8]. As a result absorption has a strong maximum when seen as a function of water

depth in the region between 320-570 nm, wherein absorption is greater than 10 m [8].

This is the basis for Raman’s argument that the color of the ocean is determined by

scattering within the water column, since the 320-570 nm range is heavily blue-green

biased.

Water-leaving radiance occurs whence radiation is transmitted into the water col-

umn and subsequently scattered, being partially transmitted back across the bound-

ary between the atmosphere and ocean. This is sometimes referred to as backscat-

tering. Water-leaving radiance is a product of diffuse reflections and is extremely

important to consider in remote sensing over the visible wavelengths [8].
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2.4 Satellite Characteristics

We now discuss some characteristic differences between satellite-borne multispectral

imagers and define relevant terms. Particularly, we will discuss different satellite

orbits and imaging techniques. The orbit of a satellite can be broken into two parts,

the motion of the satellite relative to the Earth’s center of mass and the orbit of the

satellite relative to the rotating Earth. First, it is necessary to define some terms.

Definition 2.4.1. A satellite’s position along its orbit is called the satellite ephemeris.

The ephemeris can be projected onto the surface of the Earth and that time-

dependent location is called the satellite’s ground track.

Definition 2.4.2. A satellite’s ground track is the intersection of the Earth’s surface

with the line between the satellite and the Earth’s center of mass.

Information about the satellite’s ground track is often of greater interest than it’s

particular position in orbit. We take as an illustrative example, the orbit of many

satellites launched at Cape Canaveral, FL including the Hubble Space Telescope [9].

Cape Canaveral is located at roughly 28.5◦ North and the resulting orbit has an angle

of inclination of 28.5◦ from the equator as shown in Figure 2.3.

If the Earth were not rotating, this sort of orbit would produce a ground track

resembling a giant circle that would be represented by a sine wave on a Mercator

projection of the Earth. A trajectory of the Hubble Space Telescope for the non-

rotating Earth is shown in Figure 2.4, where the same regions on Earth would be

repeatedly viewed by the orbiting satellite.

However, reality dictates that the Earth is rotating along with the orbital move-

ment of a satellite. If the rotation of the Earth is different from the orbital period

of the satellite, the sine plot will be shifted steadily over the Mercator projection.

For example, the Hubble Space Telescope takes just 96 minutes to orbit the Earth
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Figure 2.3: Illustration of the orbit of the Hubble Space Telescope with respect to
the equator, launched from Cape Canaveral, FL [9].

Figure 2.4: Example trajectory of Hubble Space Telescope for non-rotating Earth
resulting in a single repeated trajectory [9].

compared with the 1440 minutes it takes the Earth to rotate [9]. Therefore, the path

of the satellite resembles a family of sine waves when viewed on a Mercator projection
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of the Earth as shown in Figure 2.5.

Figure 2.5: Realistic trajectory of Hubble Space Telescope for rotating Earth resulting
in a steady shift west of the orbit track [9].

There are three common types of satellite orbits used in remote sensing called

geosynchronous, sun-synchronous, and near equatorial low inclination [8]. Each type

of orbit presents advantages over the others and no particular type is preferred for

all forms of Earth observation. Thus the choice of orbit often depends on the desired

utilization of a particular remote sensor.

Geosynchronous orbits are located at roughly an altitude of 36,000 kilometers

above the surface of the Earth. Geosynchronous orbits are by far the largest in

circumference of the three mentioned. A satellite requires 24 hours to make a full

orbit around the Earth at roughly 36,000 kilometers. Geostationary orbits are a

subset of geosynchronous orbits, wherein the satellite’s orbit lies in the equatorial

plane such that the satellite remains at a fixed location over the Earth’s surface. The

more general geosynchronous orbits allow a tilt in the orbit relative to the equator

so that its ground path may look like a figure eight centered about the equator [8].

An obvious disadvantage with geosynchronous orbits is that the satellite must pass
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through the Earth’s shadow. Another disadvantage with such satellites is the spa-

tial resolution can be quite low due to its relative distance from the Earth’s surface.

Geosynchronous satellites are limited to a spatial resolution of about 1 square kilome-

ter. Geosynchronous satellites are often used for weather observation, communication,

and near-equatorial observations of sea surface temperature [8].

Sun-synchronous orbits are much closer to the Earth’s surface at altitudes ranging

from 300 to 1,400 kilometers. Therein lies an advantage over geosynchronous satel-

lites; spatial resolutions range from medium to high. The sun-synchronous period

is roughly 90 minutes which results in 16 orbits per day [8]. With each subsequent

orbit, the satellite is able to view a different section of the Earth in a narrow band,

which is not again visited for a few days. Thus, the geosynchronous satellites have

a vast temporal advantage when interested in a fixed geographic location [10]. The

orbit plane of a sun-synchronous satellite remains at a fixed angle to the line between

the sun and the Earth. Thus, the sun-synchronous orbit plane slowly drifts such that

it rotates once per year [8]. Sun-synchronous satellites make daily observations of

chlorophyll or sea surface temperature at the same time of day every day. This is due

to the fact that the satellite will always cross the equator at the same local time of

day. Therefore, the effect of the diurnal cycle is removed from the phenomena under

investigation allowing for easy comparison. Another advantage for ocean observa-

tions is the fact that these satellites can be forced to cross an area of interest at a

favorable time of day. For example, cloudiness increases over the ocean throughout

the day and the orbit of a sun-synchronous satellite can be chosen to minimize the

cloudiness during observation [8]. Therefore, these orbits are most commonly found

in ocean-observing satellites. Three ways of describing sun-synchronous orbits are

“early morning", “mid-morning", and “early afternoon". Finally, a disadvantage to

sun-synchronous satellites is their inability to cover the poles, with what is called the

“hole at the pole" [8].
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Finally, the near equatorial low inclination orbit has the lowest altitude at 350

kilometers. The orbit covers roughly half of the Earth and is capable of hourly tempo-

ral observations of a given geographic location, an improvement over sun-synchronous

orbits. This type of orbit is used for tropical monitoring of rainfall and sea surface

height [8]. An illustration of these different orbital paths is shown in Figure 2.6 as

found in [10]

Figure 2.6: Two different types of orbits shown with respective altitudes [10].

2.5 Imaging

The second property of satellite imagery to consider is the particular imaging tech-

nique used. Different techniques include cross-track or wiskbroom, alongtrack or push-

broom, and a hybrid technique called a hybrid wiskbroom [8].

We now discuss some important terminology with respect to satellite imaging.

Definition 2.5.1. The zenith is the direction pointing directly overhead of a geo-

graphic location.

Definition 2.5.2. The nadir is the direction pointing directly below a geographic

location. The nadir points in the same direction as gravitational pull.
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Definition 2.5.3. The scan point is the location on Earth observed by an instrument.

Definition 2.5.4. The view angle or scan angle, denoted θv is the angle between the

nadir line and the instrument look direction.

Definition 2.5.5. The angle between the look direction and the local normal to the

scan point is the zenith incidence, also called the look angle.

Definition 2.5.6. The angle between the line from the Earth’s surface to the sun and

the local normal to the Earth’s surface is called the solar zenith angle, denoted θv.

Definition 2.5.7. the surface area of Earth that the instrument observes is called the

instrument field-of-view or the instantaneous field-of-view.

If the instrument is looking directly downward toward the Earth, also called nadir

view, the field-of-view is a circle. However, if the satellite is looking at off-nadir angles,

the field-of-view is an ellipse [8]. The angles described above are shown in Figure 2.7

Definition 2.5.8. As sun-synchronous satellites orbit the Earth, they view a region

over the satellite’s nadir path, the width of which is called the swath width.

The swath width is determined by the sensor’s full angular field-of-view.

We now describe three scanning techniques used by sensors that are looking in

the visible and infrared regions of the electromagnetic spectrum. The first type of

scanning technique we discuss is the cross-track or wiskbroom technique. The cross-

track technique uses a rotating mirror to sweep across the scene in a “sideways" motion

relative to the sensor’s nadir path. The term “wiskbroom" provides the mental picture

of the back-and-forth sweeping motion when using a broom. This technique is shown

in Figure 2.8. A calibration source is held at a constant radiance such that after each

surface scan, the sensors are calibrated. An advantage of the cross-track technique

is that a calibration is made after every revolution or oscillation of the mirror [8].
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Figure 2.7: Angles defined to describe satellite view angle and the solar angle with
respect to the Earth, figure adapted from [8]. Here θs is the solar zenith angle, θ
is the instrument look angle, and θv is the instrument scan angle, all relative to the
local normals to the Earth.

An example of an instrument that uses cross-track scanning is the Sea-viewing Wide

Field-of-View Sensor (SeaWiFS).

The second technique is called along-track or pushbroom scanning. The mental

picture for this method is that of cleaning a floor with a wide pushbroom using

forward sweeps. For this technique, the sensor contains a stationary line of sensors

arranged to observe the surface in the cross track direction as the sensor orbits, thus

the scan is in the direction of the sensor’s nadir path. The along-track method has one

advantage over the cross-track method in that the time interval for which the sensor

is focused on a particular geographic location is greater. This allows for a higher

spatial resolution than is available to sensors using the cross-track technique [8].

A disadvantage of the along-track technique is that multiple sensors can lose their

relative calibrations, causing the instrument to be less accurate than a well-calibrated

cross-track instrument. Furthermore, the wider the swath, the more cumbersome the
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line of sensor arrays becomes on the instrument [8]. The Medium Resolution Imaging

Spectrometer (MERIS) on the ENVISAT satellite uses the along-track technique.

This method is shown in Figure 2.8with thick arrows pointing in the satellite ground

track direction.

Figure 2.8: Comparison of cross-track and along-track scanning methods. Figures
taken from [11].

The third technique commonly used in remote sensing is called the hybrid cross-

track scanner. Users require wide-swath high resolution images, so a hybrid technique

combining both methods was developed. The hybrid technique lines sensors up in

the nadir-direction, orthogonal to the direction of the sensors in the along-track ar-

rangement. This gives an oblong instantaneous field-of-view in the instrument’s nadir

direction. This arrangement is then oscillated as in the cross-scan method such that

the sensors move orthogonally to the nadir-track. The hybrid technique provides

a higher resolution image due to the longer time interval over which a particular
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geographic location is observed. Furthermore, the sensors are calibrated after each

rotation, thus combining the benefits from both techniques. The hybrid cross-track

scanning method is currently used by the Moderate Resolution Imaging Spectrora-

diometer (MODIS) on the NASA-owned TERRA and AQUA satellites.

Figure 2.9: The hybrid cross-track scanning method. Figure taken from Figure 1.12
of [8].

2.6 Data Processing

As data are collected from remote sensors, they are fed through a series of steps,

called processing levels. There are four levels of processing in which data may be

found. These processing levels are defined as follows:

Definition 2.6.1. Level 0 data are completely raw as collected by the sensor.

Level 0 data are usually not distributed to the public. Most users have no need

for Level 0 data.
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Definition 2.6.2. Level 1A data are presented at full resolution in files that contain

time references, calibration values, and geo-referencing values. This data have been

corrected for variations within the sensor, sometimes called radiometric correction.

Definition 2.6.3. Level 1B data contain image swaths that have been corrected for

errors in the geometry of the product.

Level 1B data corrections include, for example, correction for oblique viewing

angles and non-uniform pixel sizes. These files are in a more user-friendly format.

Definition 2.6.4. Level 2 data are processed to yield geophysical data products, in-

cluding sea surface temperature, chlorophyll, or colored dissolved organic matter in a

swath format. Level 2 data have been mapped to a standard map projection at which

point the data is called “geo-referenced".

Here the image is registered to a base map by aligning several ground control point

from both the image and the map. At this point the image geometry will match the

geometry of the base map. There is a considerable amount of processing done between

Level 1 and Level 2 data products.

Definition 2.6.5. Level 3 data are gridded to the base map in both time and space.

Level 3 data often consists of multiple day averages of, for example, sea surface tem-

perature.

Most data is distributed in either Level 1 or Level 2 format and Level 2 or Level 3

data are most often used for analysis of geophysical quantities of interest. As noted,

Level 0 data is very difficult to obtain, and is cumbersome for most remote sensing

data users. If obtained in Level 1 format, data can be processed by the user for

specific products or geophysical quantities of interest using software packages. It

may then be mapped to a uniform grid, or geo-referenced for comparison over time

with subsequent images or for Level 3 processing. The Level 2 product we require
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is chlorophyll concentration, which provides inferences for plankton densities in the

ocean, as will be discussed.

2.7 Hyperspectral Imagers

We collect data from three remote sensors mounted on earth-observing satellites. The

first instrument we use is the European Space Agency’s Medium Resolution Imaging

Spectrometer (MERIS). This instrument is mounted on the Envisat satellite. The

spatial resolution is often 1200 meters, but can be as fine as 300 meters on the

coast [65]. The instrument orbits the Earth such that it observes the entire planet once

every three days. MERIS collects data in 15 spectral bands, selectable across a range

from 390 nm to 1040 nm [65]. Data taken from MERIS is unavailable to the public so

we receive processed data with much gratitude from Dr. Nick Tufillaro at the College

of Earth, Ocean, and Atmospheric Sciences (COAS) at Oregon State University. Two

images from MERIS of the Oregon coast, including the Columbia River mouth, are

shown in Figure 2.10. On the left is a quasi-true color image reconstructed from

data received by MERIS on December 12, 2009. To the right is the processed image;

it has been mapped to a uniform grid such that subsequent images can be directly

compared and their respective domains contain matching coordinates. Furthermore,

chlorophyll has been inferred from the spectral bands in the original dataset and is

shown with higher densities corresponding to dark red and purple. During this time

period there was a high level of bloom activity off the coast of Oregon and the bloom

is even visible as a slight discoloration of the water in the quasi-true color image.

The second instrument we use is the NASA-owned Moderate Resolution Imaging

Spectroradiometer (MODIS), mounted on both AQUA and TERRA satellites. The

instrument was launched in 1999 on board NASA’s Terra satellite and was deemed

useful enough to be subsequently launched on board NASA’s Aqua satellite in 2002.
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Figure 2.10: Quasi-true color image of the Oregon Coast on the left with processed
level 3 image on the right. Relatively high levels of chlorophyll are indicated by dark
red and purple. Image was taken by MERIS on December 12, 2009.

These satellites orbit the Earth such that they observe the entire planet once every 24-

48 hours. Data are acquired in 36 spectral bands, of which eight are relevant for ocean

observing. The spatial resolution over the bands useful for oceanic remote sensing

is 1000 meters. Bandwidths are fixed and vary between 10 and 15 nanometers [66].

The data taken by this sensor is archived at [67] in many different forms for use in a

wide variety of research. In Figure 2.11, two images are shown in the same order as in

Figure 2.10. The quasi-true color image shows a bloom mixed with sediment run-off

from the Louisiana delta region, with the bloom activity and sediment clearly visible

as a discoloration of the coastal water. On the right the image has been processed

for chlorophyll, indicating higher levels of phytoplankton near shore. This image was

taken by MODIS on November 10, 2009 and was obtained using [67].
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Figure 2.11: Quasi-true color image of the Gulf coast on the left with processed level
3 image on the right. Relatively high levels of chlorophyll are indicated by green and
yellow. Image was taken by MODIS on November 10, 2009.

Finally, our goal is to use data from the Hyperspectral Imager for the Coastal

Ocean (HICO), mounted on the Japanese Experiment Module Exposed Facility (JEM-

EF) on the International Space Station. HICO is revolutionary in that it is the first

orbiting spectrometer specifically designed to sample the coastal ocean [14]. The data

from HICO provides an unprecedented level of detail with which to study the Earth’s

oceans. Launched in 2009, the instrument was originally sponsored by the Office of

Naval Research and is currently supported by NASA’s International Space Station

program [14]. HICO collects data from 380 to 960 nm with 128 bands in 5.7 nm

bandwidths. Thus, the bandwidth discretization far outperforms the former sensors.

Furthermore, HICO samples the coastal ocean at 90 meters, producing about 2000

images yearly from around the world. HICO samples the Earth spatially at ten times

that of the former sensors. HICO data are archived at Oregon State University’s

COAS, which acts as the primary repository of the data to the public. Figure 2.12

compares a MERIS image of the Oregon coast with a HICO image. The MERIS

image is the same as shown in Figure 2.10 and the HICO image shows the Columbia

River mouth in extraordinary detail.
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Figure 2.12: Quasi-true color image of the Oregon coast from MERIS on the left
compared with HICO on the right. The comparison shows the ability to reconstruct
better quasi-true color images and shows off the spatial resolution of HICO relative
to previous instruments.

Images of the three sensors are shown in Figure 2.13, wherein the top two images

show the satellites on which the sensors are mounted and the bottom image shows

the HICO instrument.

2.8 Filtering Radiation to Detect Ocean Ecology

Certain algal blooms are so dense that they visibly change the color of seawater. In

this sense, algal blooms can be seen in the visible spectrum, a phenomena earning

many algal blooms the name red tides. Other sources of ocean color include colored

dissolved organic matter (CDOM), also called yellow matter, and suspended particu-

late matter [8]. CDOM is produced near-shore by run-off and in the open ocean as a

consequence of organisms grazing on phytoplankton. CDOM particles absorb mostly

in the blue range, thus causing a yellow-brown coloring of the water, hence the term

“yellow matter".

Due to the variety of sources of ocean color, the ocean is divided into either case

1 or case 2 waters.
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Figure 2.13: Top Left: ENVISAT satellite on which MERIS is housed. Top Right:
Aqua Satellite on which MODIS is housed. BOTTOM: HICO Instrument, currently
mounted on the International Space Station.

Definition 2.8.1. Case 1 waters refer to open ocean waters in which phytoplankton

are the main cause of ocean color.

Definition 2.8.2. Case 2 waters refer to waters in which suspended sediments and

CDOM dominate ocean color. Near-shore waters commonly fall under the case 2

classification.

As noted, case 2 waters are commonly found near-shore due to land run-off, river

mouths, or suspended sediments in shallow water. Our work is primarily focused on

modeling in case 2 waters since they directly concern coastal economies and ecologies

through fishing, tourism, and shipping.

We are interested in phytoplankton inferences from satellite imagery, so we now
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discuss how phytoplankton absorb radiation, or the spectral signature of phytoplank-

ton. An important feature of phytoplankton is the chlorophyll pigment contained

within the algae. Thus, to study phytoplankton in the ocean, we analyze the spectral

signature of chlorophyll, particularly chlorophyll-a, denoted Chl-a. Chlorophyll-a has

classically two absorption peaks, a blue peak near 440 nm and a red peak near 665

nm. The blue peak is significantly larger than the red peak. The absorption as a

function of wavelength for Chl-a is shown in Figure 2.14, the absorption is at a mini-

mum in the 550-650 nm range, explaining the associated green coloring characteristic

of chlorophyll-dense waters.

Figure 2.14: The absorption properties of phytoplankton using the absorptive and
reflective properties of Chlorophyll-a. Both absorption peaks are clearly visible as
is the interval of higher reflection accounting for the characteristic greenish color of
chlorophyll. Figure taken from [12]

Various organisms in the water column are responsible for scattering. As described

in Martin(2004), the smallest living organisms present are viruses. Viruses have

diameters of 10-100 nm and are small enough that they are responsible for Rayleigh

scattering. Bacteria have a diameter of 0.1-1 µm and are responsible for absorption

33



of radiation in the blue wavelengths. Phytoplankton range from 2-200 µm, which are

mostly Mie scatters because of their larger size. Finally, zooplankton are the largest

organisms considered here with a size of 100 µm to 20 mm. Inorganic material, such

as CDOM or sediments, can range in sizes from 1 µm to roughly 10 µm. Certainly,

larger organisms exist in the ocean but occur infrequently enough such that they do

not affect scattering or absorption on the scale of satellite observation.

From here on, for the sake of example, we will consider and explore the algorithms

used in MODIS. The algorithm used for remote sensing on MODIS begins with de-

termining whether a pixel in the image is cloud-free. Band 1 is at 660 nm and band

2 is at 870 nm and the ratio of the two bands determines whether or not clouds are

present in combination with a threshold test for the amount of reflectance in band 2.

For detection of high cirrus clouds, MODIS uses two bands, band 26 and band 18.

These wavelengths are 1.375 µm and 936 nm respectively.

The sensors receive radiation from several sources that need to separated and

filtered in the algorithm. The total radiance LT (λ) received by the sensor is broken

down as

LT (λ) = tD(λ)LW (λ) + tD(λ)LF (λ) + t(λ)LG(λ) + LR(λ) + LA(λ) + LRA(λ), (2.8)

where tD(λ) is the diffuse transmittance, LF (λ) is the radiance reflected by foam,

LG(λ) is sun glint, LR(λ) is atmospheric Rayleigh scattering, LA(λ) is aerosol atmo-

spheric scattering, and LRA(λ) is mixes Rayleigh-aerosol scattering. Following the

presentation in Martin, we now describe how these terms are calculated.

For wavelenths in the range of 500-700 nm, the ozone is assumed to be strictly

absorbing and thus does not contribute to scattering. The Total Ozone Mapping

Spectrometer is used to find the spatiotemporal distribution of ozone.

As already discussed, sun glint is a function of sun angle and wind speed. There-
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fore, a sun glint mask is applied to MODIS data using numerical weather models

from NOAA at a temporal resolution of 3-6 hours. Since gusts of wind occur at much

smaller time scales, a further examination of the NIR radiances is used to mask pixels

if radiances exceed a threshold value.

Reflection from foam depends much less on the solar angle and more on wind

speed. Recall that reflection from foam is more diffuse than specular, therefore the

angle of the sun does not affect reflected radiation as much as amount of foam present

due to higher wind speeds. Therefore, LF (λ) is often nearly constant across large

regions of an image. In processing, if LF (λ) is too large, then the image is not used.

However, often times the contribution to LT (λ) from LF (λ) is quite small.

The largest contributor to LT (λ) is often Rayleigh radiance. This term is esti-

mated largely using numerical weather models since the surface pressure and wave

information are required.

The aerosol scattering term, LA(λ), is estimated using the NIR bands, which allow

aerosol inferences and their wavelength dependence. Basically, since seawater absorp-

tion is much larger for wavelengths greater than 700 nm than in the visible range, the

NIR reflectance from below the surface and water-leaving radiances are negligible.

Therefore, LW (λ) = 0 for 765 nm and 865 nm bands. First LG(λ), LR(λ), LF (λ), and

ozone absorption are removed from all bands. For the two bands mentioned in which

LW (λ) = 0, this gives both LA(765) and LA(865). These observations are compared

with several different numerically calculated values for benchmarking. If these values

agree, then the aerosol radiances are extrapolated to the visible range.

Once LW (λ) are removed from all bands, the final step in the process is to remove

the diffuse transmittance LW (λ). This term is either calculated using the assumption

of diffuse distribution of radiance at the surface or from a numerical approximation

based on an aerosol model.

After dealing with the scattering from the atmosphere and the ocean-atmosphere
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interface, we consider the reflectance properties of chlorophyll-laden seawater. For

wavelengths less than 500 nm, the reflectance decreases as chlorophyll concentration

increases. For wavelengths greater than 500 nm the reverse occurs and reflectance

increases with increasing chlorophyll concentration. This behavior results in a pivot

point at a wavelength of about 500 nm, where the reflectance remains the same

regardless of chlorophyll concentration [68]. Therefore, the spectral signature for

different concentrations of phytoplankton behaves in this somewhat inverse manner.

Sometimes a body tends to emit radiance of a higher wavelength when subject to

radiation of a given wavelength.

Definition 2.8.3. Fluorescence is the emission of light by a body that has absorbed

some form of electromagnetic radiation.

Importantly, chlorophyll-containing phytoplankton tend to fluoresce at a well-

known 683 nm peak. Figure 2.15 shows both the aforementioned absorption peak

and the fluorescence peak for chlorophyll-a. This fluorescence peak exists for all

chlorophyll densities but increases in intensity with increasing concentration [8].

The measurement of fluoresce provides another means to estimate chlorophyll-a

by remote sensing and is an important consideration in ocean color algorithms. Such

an algorithm requires three bands at 667, 678, and 748 nm at a 10 nm bandwidth [8].

The product given by this measurement is called the fluorescence line height (FLH).

Also, while absorption measurements may be skewed by CDOM, fluorescence is not as

CDOM does not fluoresce. MODIS, MERIS, and HICO all have a spectral resolution

sufficient to observe this product. The fluorescence properties of chlorophyll allow for

two algorithms to determine chlorophyll concentration from satellite imagery. The

first makes use of the blue-green absorptive properties of phytoplankton and the

second observes the fluoresce line height to infer plankton densities. Both will now

be discussed in detail.
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Figure 2.15: Composite of absorption peak and fluorescence peak for chlorophyll
taken from [13]

2.9 Ocean Color Algorithms

We now discuss two algorithms used by MODIS for monitoring chlorophyll densities

by multispectral satellite data. These are divided into the 400-550 nm wavelengths

and the 683 nm region for monitoring absorption and fluorescence respectively. There

are yet two types of algorithms for data in the 400-550 nm interval. There is what

is called an empirical algorithm, in which satellite inferences of LW (λ) are matched

with in-situ measurements of chlorophyll-a. The empirical algorithm presented here

is suitable for only case-1 waters.

Also there is an semianalytic algorithm for chlorophyll detection in which models

of the relationship of the reflectance observed by the satellite to the backscatter/ab-

sorption ratio are combined with in-situ models. This allows for seasonal variation,

changes in geography, and changes in sea surface temperature [8]. This algorithm has

the advantage of use in case-1 and case-2 waters as chlorophyll can be extracted from

CDOM.
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We begin with the empirical algorithm used for MODIS data. The remote sensing

reflectance Rrs(λ) is given by

R(λ) = T 2R(λ)
n2Q

= GT 2bbT (λ)
n2QaT (λ) , (2.9)

where R(λ) is the subsurface reflectance. Recall that R(555) does not depend on

chlorophyll concentration, at least approximately. Therefore, the reflectances are

given as ratios with respect to their intensity at 555 nm

Rrs(λ)
Rrs(555) ≡

[LW (λ)]NFS(555)
[LW (555)]NFS(λ) = R(λ)

R(555) = bbT (λ)aT (555)
bbT (555)aT (λ) , (2.10)

as given in [8]. The MODIS empirical algorithm, called OC3M is

RL = log10

(
max

[
Rrs-ratio

(443
551 ,

488
551

)])
, (2.11)

log10(Ca) = 0.283− 2.753RL + 0.659R2
L + 0.649R3

L − 1.403R4
L, (2.12)

where Ca is concentration of chlorophyll-a and max[Rrs-ratio
(

443
551 ,

488
551

)
] is an opera-

tion that chooses the maximum band ratio [8].

Next we consider the semianalytic algorithm. This algorithm is written with

contributions from empirical formulas for absorptions and backscatter dependence on

sediments, CDOM, and chlorophyll along with theoretical models similar to Equations

eq. (2.9) and eq. (2.10). This algorithms uses

Rrs(λ)
Rrs(555) = bbT (555)[aW (λ) + aφ(λ) + aCDOM(λ)]

bbw(λ) + bbp(λ) , (2.13)

where aW is absorption from pure water, aφ is absorption from phytoplankton, aCDOM

is absorption from CDOM, bbw is backscatter from seawater, and bbp is backscatter
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from particulates [8].

Given these algorithms, it is even possible to distinguish between certain different

species of phytoplankton. Species that may be singled out by satellite imagery include

coccolithophores, Karenia brevis, and phycoerythrin-containing species [8]. Karenia

brevis are a toxic red-tide-inducing species in which we are particularly interested in

modeling.

Atmospheric influences and other noise-inducing phenomena are important to un-

derstand when sensing the electromagnetic spectrum. Different satellites have several

discriminating characteristics including how they record images and process data. We

have access to data from three hyperspectral imagers that inform algorithms to detect

ocean ecology. Much of the work to be done in this thesis is intended to develop new

methods toward modeling with this data, and it is important that we understand the

characteristics inherent in the data with which we aim to build models. The remain-

der of this thesis will examine many of the new techniques toward model fitting with

an ideal benchmark dataset, progressively representative of what might be observed

by remote sensing; many limiting features of remote sensing data will be subsequently

included in the benchmark dataset.
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Chapter 3

Numerical Techniques

3.1 Model Dataset

Satellite data of plankton blooms often reveal complex mesoscale structures such

as ocean gyres and eddies [8, 15]. As a synthetic dataset, a spatiotemporal model

for plankton ecology should have the capability to render such mesoscale struc-

tures. Our benchmark model, from Medvinksi, et al, [15] describes a two-component

predator-prey model for phytoplankton and zooplankton ecology, over a rectangular

two-dimensional region.

Given perturbed initial conditions, the model exhibits spiral patterns on a spatial

scale comparable to that which is observed in nature by satellite data [15]. By ob-

serving snapshots from the numerical solution of this model, we emulate a satellite

image dataset. We further complicate the synthetic dataset by including spatially

varying parameters. This is a valid consideration when modeling mesoscale ocean

ecology [15]. Consider the system of two PDEs as given in [15],

∂P

∂t
= 4P + P (1− P )− PZ

P + h
, (3.1)

∂Z

∂t
= 4Z + k

PZ

P + h
−mZ,
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on a compact connected two-dimensional domain, Ω, with zero-flux boundary condi-

tions. Zero-flux, or Neumann, boundary conditions enforce that

∂P

∂n
(x, y) = 0, (3.2)

∂Z

∂n
(x, y) = 0, ∀x, y ∈ Ω,

where n is the normal to the boundary ∂Ω.

In terms of the biology of the model, the system represents a dimensionless

reaction-diffusion model for phytoplankton-zooplankton predator prey dynamics in a

horizontal layer where vertical distributions of plankton are considered uniform. For

simulations shown here, we choose Ω to be a rectangle of size 900 × 300. Although

shown in dimensionless form, the model is derived from principles in which phyto-

plankton concentrations obey a logistic growth and are grazed upon by zooplankton,

following a Holling-type II functional response. First classified by Holling, [69], the

Holling-type II functional response assumes a decelerating growth rate such that the

predator, or consumer, is limited by its ability to efficiently process food. Zooplankton

grow at a rate proportional to phytoplankton mortality and are subject to a natural

mortality rate.

In dimensionless form, the growth and death rates for phytoplankton are absorbed

in the parameters k and m. For a range of parameter values, e.g., k = 2, h = 0.4,

and m = 0.6, this system gives rise to transient spiral pattern behavior on its way

to spatiotemporal chaos [15]. For homogeneous initial plankton distributions, the

system remains in a homogeneous state for all time so we apply the perturbed initial

conditions found in [15],

P (x, y, 0) = P∗ − (2× 10−7)(x = 0.1y − 225)(x− 0.1y − 675),

Z(x, y, 0) = Z∗ − (3× 10−5)(x− 450)− (1.2× 10−4)(y − 150),
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where,

P∗ = rh

1− r ,

Z∗ = (1− u∗)(h+ u∗),

r = m

k
.

The numerical solution of this system defines our benchmark dataset for the en-

tirety of the work here. The initial conditions for the drive system for every simulation

performed herein will be the above.

The system Eq (3.1) is modified as found in [15] by allowing the parameters to

be nonnegative C0(Ω) functions. Generally, we may allow Ω ⊂ R2 to be a compact

domain such as a rectangle for simplicity or a realistic domain representing a coastal

region obtained from a satellite.

An example domain is shown in Figure 3.1, where a high concentration of phy-

toplankton is shown by a greenish coloring of the water. This is a quasi-true color

image taken from the HICO (Hyperspectral Imager for the Coastal Ocean) instrument

mounted on the International Space Station. It is the first such imaging spectrometer

specifically designed to sample the coastal ocean [14]. Shown is the Columbia River

mouth bordering Oregon and Washington, taken on July 8, 2010. The domain is large

enough to capture mesoscale and small scale patterns, which may result from com-

plex intra-species and fluid dynamics. We note that Neumann boundary conditions

are very difficult to compute properly when using finite differences over a domain as

shown in Figure 3.1. Therefore, for simulation over such domains, the finite element

method should be used. However, our domain is a simple rectangle, allowing for

boundary conditions to be easily handled numerically.
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Figure 3.1: A quasi-true color satellite image from HICO instrument, [14], of the
Columbia River mouth taken on July 8, 2010. High plankton densities shown by
green coloring of the water. Spatial resolution is fine enough that a boat is clearly
visible in the upper half of the image.

We further complicate the benchmark model by adding advection as,

∂P

∂t
= ∆P −∇ · (vP ) + P (1− P )− PZ

P + h
, (3.3)

∂Z

∂t
= ∆Z −∇ · (vZ) + k

PZ

P + h
−mZ,

where v is a non-autonomous, divergence-free, spatially dependent vector field. Bound-

ary conditions remain of type zero-flux. We next discuss how this system is discretized

and solved numerically for simulation over a rectangular domain. We begin with the

reaction-diffusion equation Eq (3.1) as it is used often as a benchmark system. We

then discuss how we handle advection and subsequently simulate Eq (3.3).
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3.2 Discretization

There are several available methods for discretization and subsequent numerical simu-

lation of PDEs, including explicit, implicit, semi-implicit, first-order and second-order

methods to name a few [70,71]. We use a simple first order forward difference scheme

to estimate temporal derivatives. Spatial derivatives require a little more work, but

we find that a simple method will suffice.

For notational purposes, we will write the general form of the PDE problem we

simulate as

∂u

∂t
= ∆u− v · ∇u+ f(u), (3.4)

g(u) = 0 on ∂Ω,

u = u0 on Ω,

where u(x, y, t) can be considered a vector in order that this is a PDE system. We

disctretize the domain [Ω × tF ] spatially and temporally, resulting in grid points

(xi, tn), where xi = ih and tn = nk. Here h = dx is the space step and k = dt is the

time step. Let the numerical approximation to the solution at a grid point (xi, tn) be

denoted by Un
i ≈ u(xi, tn).

Spatial derivatives are calculated using a centered difference approximation. There-

fore, the differencing scheme we will be using for the majority of our simulations is

forward difference in time and centered difference in space. Figure 3.2 shows a stencil

for this differencing scheme. This scheme is said to be first order accurate in space

and second order accurate in time [71].

Figure 3.2 indicates the space-time discretization in one dimension. However, we

will be solving PDEs in two dimensions, and thus we require a 3-point stencil to

estimate the Laplacian in two-dimensions. This stencil is shown in Figure 3.3 where

the stencil is applied at time step n and the temporal derivative requires data at time
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Figure 3.2: Stencil for the forward difference in time and centered difference in space
in one space dimension.

step n+ 1. This stencil represents the preferred method of numerical solution for the

system Eq (3.1).

Figure 3.3: Stencil for the forward difference in time and centered difference in space
in two space dimensions.

We discretize the modified system, Eq (3.1), with explicit finite differences, using

a three-point center difference stencil for spatial derivatives and forward Euler time
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stepping. That is, we use the discretization

P n+1 − P n

dt
−
P n
i,j+1 − 2P n

i,j + P n
i,j−1

dx2 −
P n
i+1,j − 2P n

i,j + P n
i−1,j

dy2 = f1(P n
i,j), (3.5)

Zn+1 − Zn

dt
−
Zn
i,j+1 − 2Zn

i,j + Zn
i,j−1

dx2 −
Zn
i+1,j − 2Zn

i,j + Zn
i−1,j

dy2 = f2(Zn
i,j),

where

f1(P n
i,jZ

n
i,j) = P n

i,j(1− P n
i,j)− k

P n
i,jZ

n
i,j

P n
i,j + h

, (3.6)

f2(P n
i,jZ

n
i,j) = k

P n
i,jZ

n
i,j

P n
i,j + h

−mZn
i,j,

for notational simplicity. The system Eq (3.5) is solved for simulation as

P n+1
i,j = P n

i,j + dt

(
P n
i,j+1 − 2P n

i,j + P n
i,j−1

dx2 +
P n
i+1,j − 2P n

i,j + P n
i−1,j

dy2 + f1

)
, (3.7)

Zn+1
i,j = Zn

i,j + dt

(
Zn
i,j+1 − 2Zn

i,j + Zn
i,j−1

dx2 +
Zn
i+1,j − 2Zn

i,j + Zn
i−1,j

dy2 + f2

)
,

with boundary conditions

∂P

∂x
= 0, ∂P

∂y
= 0,

∂Z

∂x
= 0, ∂Z

∂y
= 0,

that are discretized using the second-order centered difference in space as

P n
i,L+1 − P n

i,L−1

dx
= 0,

P n
i,1 − P n

i,−1

dx
= 0, (3.8)

P n
M+1,j − P n

M−1,j

dy
= 0,

P n
1,j − P n

−1,j

dy
= 0,
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where 0 ≤ x ≤ L and 0 ≤ y ≤M .

In one space dimension, a discretization such as the forward time centered space

method is typically discussed within the framework of a nearly symmetric, tridiagonal

matrix solve [70]. That is, suppose we are to solve the discretization shown in Eq (3.7)

in one dimension only, and consider only the phytoplankton equation. Let r = dt
dx2 ,

and rewrite the equation as

P n+1
j = P n

j + r
(
P n
j+1 − 2P n

j + P n
j−1 + f1(P n

j )
)

(3.9)

= rP n
j+1 + P n

j (1− 2r) + rP n
j−1 + hf1(P n

j ).

This can be written as a matrix operator update for a given time n [71]

dt



f1(P n
0 )

f1(P n
1 )

f1(P n
2 )

...

f1(P n
L−1)

f1(P n
L )



+



−2r 2r 0 0 0 0

r −2 r 0 0 0

0 r −2 r 0 0

0 0 . . . . . . . . . 0

0 0 0 r −2 r

0 0 0 0 2r −2r





P n
0

P n
1

P n
2
...

P n
L−1

P n
L



=



P n+1
0

P n+1
1

P n+1
2
...

P n+1
L−1

P n+1
L



, (3.10)

where boundary conditions are included in the matrix and reaction terms are ac-

counted for in the left-most vector.

We use a different approach to solving Eq (3.9), by taking the convolution of a

matrix with a finite difference kernel. Let g(x− x̂, y − ŷ) bet the convolution kernel,

represented by the coefficients of a two-dimensional finite difference scheme such as

shown in Figure 3.3. Let f(x, y, t) be the solution of the PDE at time t. We suppose f

has compact support for simplicity and since Ω is compact. We compute the Laplacian
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by taking the convolution

[f ∗ g](x, y) =
∫

Ω
f(x̂, ŷ, t)g(x− x̂, y − ŷ)dx̂dŷ. (3.11)

For simulation over the discretized domain, we require discrete two-dimensional con-

volution. Let A(t) ∈ Rm×n be the image representing the discretized solution of a

PDE at a given time t. Let G ∈ Rp×p be the discretized convolution kernel given by

the coefficients of a finite difference scheme. For our work we let

G =


0 1 0

1 −2 1

0 1 0

 , (3.12)

so the discretized version of Eq (3.11) is

[A ∗G](m,n) =
∑
m̂∈Ω

∑
n̂∈Ω

A(m̂, n̂, t)G(m− m̂, n− n̂), (3.13)

where m̂ and n̂ range over all pixels in the image. Typically the image is extended to

handle boundary conditions. Since we are using a five-point stencil, the image must

be extended such that an extra row is added to the top and bottom of A and an

extra column is added to the left and right side of A. To handle zero-flux boundary

conditions, the values are extended symmetrically from the image boundary.

Eq (3.13) describes how the Laplacian is computed in two-dimensions for the

reaction-diffusion equations solved here. The method is essentially identical to build-

ing matrices, however, this is clearly much simpler to handle notationally and is in

fact how our numerical simulations are coded.
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3.3 Advection

Thus far we have studied the numerical approximation of systems of reaction-diffusion

equations. However, we require methods to solve models that include advection. A

general pure advection equation is written as [72]

ut +∇ · (au) = 0, (3.14)

for some velocity field a, and given initial data u(x, 0) = u0 and boundary conditions.

Since we are assuming a divergence-free velocity field, a, Eq (3.14) simplifies to

ut + a · ∇u = 0, (3.15)

To solve the advection equation, one might prefer the upwinding method [71,72].

We discretize this equation by forward differences in time, and upwinding in space [71].

For the general problem, we have two choices for an asymmetric discretization and

the explicit algorithm is written as

Un+1
j = Un

j −
ak

h
(Un

j − Un
j−1), or (3.16)

Un+1
j = Un

j −
ak

h
(Un

j+1 − Un
j ),

which are first order accurate in space. Since the time discretization is also first order

accurate, this method is first order accurate in both space and time [71].

The choice of discretization in Eq (3.16) is dictated by the sign of a. If a > 0, the

solution travels to the right while if a < 0 the solution travels to the left. Given that

we are using non-autonomous gyre-like vector fields, a is both positive and negative at

any given time over Ω. When solving advection equations we estimate derivatives with

data in the direction opposite of advection so the numerical method is stable [71].

49



In fact, symmetric approximations like those used in Section 3.2 are unstable, in

the sense of Von Neumann stability, when applied to the advection problem [71].

Therefore, we solve advection by upwinding and combine with the approximations to

the second derivative noted in Section 3.2 to solve the more comprehensive problem.

3.4 Reaction-Diffusion-Advection

We combine the methods in Sections 3.2 and 3.3 to simulate a reaction-diffusion-

advection system as a model for ocean ecology over a compact connected two-dimensional

domain. That is, we solve systems of equations of the form

∂u(x, y, t)
∂t

+∇ · (a(x, y, t)u(x, y, t)−∇Du(x, y, t)) = f(u(x, y, t)), (3.17)

where D ∈ R1 is the diffusion coefficient, a(x, y, t) ∈ C1×C1 is a spatially-dependent

non-autonomous vector field, and f(u(x, y, t)) : C2×C2 → C2×C2 is the reaction term

for the species. Further, we require initial conditions u(x, y, 0) = u0 and Neumann

boundary conditions ∂u
∂n = α. We impose the scientific prior of a divergence-free

vector field on Eq (3.17) such that it may be rewritten as

∂u
∂t

+ a · ∇u−D∆u = f(u), (3.18)

omitting the independent variables, where the diffusion term is assumed scalar. Diffu-

sion is treated using a centered difference in space and advection with the upwinding

scheme. For the time derivative, we use the forward difference method.

Our benchmark equations, now including advection, are transformed to

∂P

∂t
= D∆P − v · ∇P + f1(P,Z), (3.19)

∂Z

∂t
= D∆Z − v · ∇Z + f2(P,Z),
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where

f1 = P (1− P )− PZ

P + h
,

f2 = k
PZ

P + h
−mZ,

and v is a non-autonomous divergence-free vector field. We discretize the system

in time and space and simulate Eq (3.19) in two-dimensions. That is, we combine

forward difference in time, centered difference in space, and upwinding to build the

difference equations

P n+1 − P n

dt
+ I(P n

i,j)−
P n
i,j+1 − 2P n

i,j + P n
i,j−1

dx2 −
P n
i+1,j − 2P n

i,j + P n
i−1,j

dy2 = f1(P n
i,j),

(3.20)

where

I(P n
i,j) =



vi,j
dx

(P n
i,j − P n

j−1), if vn1i,j ≥ 0,
vi,j
dx

(P n
i,j+1 − P n

i,j), if vn1i,j < 0,
vi,j
dx

(P n
j − P n

j−1), if vn2i,j ≥ 0,
vi,j
dx

(P n
j+1 − P n

j ), if vn2i,j < 0,

(3.21)

and we are only showing the phytoplankton equation. The zooplankton equation is

discretized in the same way. The scheme quickly becomes unwieldy when simulating

in two-dimensions. Eq (3.20) is solved in the same way as Eq (3.7) and evolved

forward given initial and boundary conditions. The domain over which the equations

are solved is Ω = 300×900. The spatial and temporal step sizes are chosen as dx = 2

and dt = .1.

This is a nonlinear system enforcing that the methods for stability based on linear

PDEs are not applicable. We verified stability numerically by spatially and temporally

refining the grid and noting the qualitative similarity of solution behavior.
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The model that produces our observed data is built upon aforementioned bio-

logical and physical assumptions. The basic methods of discretization are examined,

including the method of approximating solution behavior to build an observed dataset.

Spatially-dependent model parameters and advection are included in the model, cul-

minating in the reaction-diffusion-advection system described. This system represents

the most general model for which we aim to develop our methods.
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Chapter 4

Synchronization

The phenomena of synchronization between two chaotic oscillators has been exten-

sively explored over the past few decades [7,44–54,56,57,73–75]. This study aims to

advance the utility of synchronization techniques toward observability for modeling

spatiotemporal geophysical quantities with hidden or unobserved data in both time

and space.

The chapter begins with a brief introduction into the field of synchronization,

including necessary definitions. We next demonstrate that a benchmark reaction-

diffusion model representing ocean ecology will exhibit synchronization with several

different coupling choices. We provide a first demonstration that synchronization

can be extended to autosynchronization as we are able to estimate model parameters

while concurrently estimating model states for the PDE system. Next, we extend

these results to show that synchronization and parameter estimation is demonstrated

when one system state is unobservable, a very important development for practical

use with the data described in chapter 2. Furthermore, the unobserved state is

synchronized such that the entire state of the observed system is known.

Remote sensing data provides a challenge in that data may be missing, or hid-

den, in either time, space, or even both. Such is the result of temporal sparsity
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in measurements and the spatial sparsity governed by an instrument’s ground sam-

pling distance [8]. We show that both synchronization and parameter estimation by

autosynchronization are robust to temporal and spatial subsampling. Finally, we con-

sider the formidable problem of clouds occluding regions of the domain and describe

how the method is altered to demonstrate synchronization when observing clouds.

We begin with some mathematical definitions and terms commonly used in the

field of synchronization. First we formally define synchronization for two ODE sys-

tems [7].

Definition 4.0.1. (Pecora, Carroll, Johnson, Mar, & Heagy, 521) Let u̇ = f(u,p)

and v̇ = g(u,v,p) be two systems of ordinary differential equations wherein sates of

u̇ are coupled with, or fed into, v̇. Let p ∈ Rn be a vector of parameters. The systems

u̇ and v̇ are said to synchronize identically if

‖u− v‖ → 0 as t→∞. (4.1)

Here we take the vector norm to be the standard Euclidean norm. We note the

broader idea of generalized synchronization [7] allows for the existence of a map from

one phase space to the other such that knowledge of the state of one system allows

for knowledge of the state of the other, however we are only interested in the special

case of identical synchronization.

Definition 4.0.2. (Perko, 104) An n-dimensional differentiable manifold, M, is a

connected metric space with an open covering Uα, i.e., M = ∪αUα, such that

1. for all α, Uα is homeomorphic to the open unit ball, B, in Rn, and

2. if Uα ∩ Uβ 6= ∅ and hα : Uα → B,hβ : Uβ → B are homeomorphisms, then

hα(Uα ∩ Uβ) and hβ(Uα ∩ Uβ) are subsets of Rn and the map

h = hα ◦ h−1
β : hβ(Uα ∩ Uβ)→ hα(Uα ∩ Uβ)
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is differentiable and for all x ∈ hβ(Uα∩Uβ), the Jacobian determinant Dh(x) 6=

0.

Intuitively, an n-dimensional manifold is a set that “looks" locally like Rn [6]. With

the definition of manifold, we now describe the synchronization manifold [76, 77].

Definition 4.0.3. (Josic, 3054) and (Sun, Bollt, & Nishikawa, 204) Let u̇ = f(u,p)

and v̇ = g(u,v,p) be two systems with u = [u1, u2, ..., un]T and v = [v1, v2, ..., vn]T .

The synchronization manifold is the set {((u1, u2, ..., un), (v1, v2, ..., vn))|u = Φ(v)}.

Stating the manifold in terms of identical synchronization, we alter the Definition

4.0.3 such that the synchronization manifold is the set {(u1, u2, ..., un), (v1, v2, ..., vn)|((u1, u2, ..., un) =

(v1, v2, ..., vn)} and Φ is the identity function.

Stating the synchronization problem in the ODE setting, we require a drive system

u̇ = f(u,p), (4.2)

from which we are able to sample data with parameters p ∈ Rm. Then we must state

a response system

v̇ = g(u,v,q) (4.3)

with the same model form as the drive system. By same we mean in as far as possible

by our understanding of the underlying physics. Then the goal is that when u, Eq

4.2, is coupled forward into v, Eq 4.3, then Eq 4.3 will synchronize with Eq 4.2 and

v→ u as t→∞ [44].

The coupling between the systems shown in Eq 4.2 and Eq 4.3 is called unidi-

rectional coupling, as opposed to bidirectional coupling, wherein v would be fed into

f [7].

There are two ways to unidirectionally couple two systems, via complete replace-

ment coupling and diffusive coupling. In complete replacement coupling, the model
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states from the drive system are directly fed into, and hence completely replace, the

corresponding model states from the response system [7]. The response system is

updated along with the drive system while states from the drive are fed into the

response. Diffusive coupling includes an extra term added to the response system

accounting for the error between the drive and response [7]. The diffusive term,

under appropriate conditions, forces the response system toward the drive system

based on model misfit [7]. Often, either one or the other is used in experimental

work [7, 48–50, 52, 55, 57, 73], but we have found that combining the two methods of

unidirectional coupling produces synchronization which was not observed when using

either method alone [78].

Synchronization was extended from systems of ODEs to one-dimensional systems

of PDEs in [55] and two-dimensional systems in [52], where the authors considered the

Grey-Scott and Barkely reaction-diffusion systems respectively. In these works, the

authors observed synchronization of an infinite-dimensional system by coupling the

drive and response systems at only a finite number of grid points. To state formally,

we define synchronization between two systems of PDEs in a way similar to [79].

Definition 4.0.4. Let ut(x, y, t) = f(u(x, y, t),p) and vt(x, y, t) = g(u(x, y, t),v(x, y, t),p)

be two systems of partial differential equations wherein sates of u(x, y, t) are coupled

with, or fed into, vt(x, y, t). Let p ∈ Rn be the parameter vector for the systems. The

PDE systems ut(x, y, t) and vt(x, y, t) are said to synchronize identically if

‖u(x, y, t)− v(x, y, t)‖L2 → 0 as t→∞. (4.4)

The synchronization manifold for identical synchronization between two PDEs is

extended from the ODE definition in a similar way.
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Thus, we investigate observed data from the PDE drive system

ut(x, y, t) = f(u(x, y, t),p) (4.5)

with parameters p ∈ Rn and a response system

vt(x, y, t) = g(u(x, y, t),v(x, y, t),p). (4.6)

with the goal that v(x, y, t)→ u(x, y, t) as t→∞.

4.1 Sampling Both Species

Our methods are validated on the benchmark model from Chapter 4. We restate the

model here,

∂P

∂t
= 4P + P (1− P )− PZ

P + h
, (4.7)

∂Z

∂t
= 4Z + k

PZ

P + h
−mZ,

solved on a compact connected two-dimensional domain, Ω = [300, 900], with zero-flux

boundary conditions. Model parameters chosen result in spiral patterns on spatial

scales consistent with observations from satellite data, subsequently exhibiting spiral

break-up into complex spatiotemporal behavior [15].

We are only able to observe time series data Eq 4.5 as a movie and the model

form of Eq 4.7 is known. We begin by demonstrating the capability of the systems to

synchronize. We next assume known model form and wish to estimate the parameters

used to create the observed data while the systems synchronize. The system in Eq 4.7

will be taken as the drive system and we form a response system to be synchronized

to the observations.
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4.1.1 Synchronization

We begin by stating a response model with diffusive coupling for both components

in the system,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (4.8)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P̂ + h
− m̂Ẑ + κ(Z − Ẑ),

where we assume P̂ (x, y, 0) 6= P (x, y, 0) and that Ẑ(x, y, 0) 6= Z(x, y, 0). To derive Eq

(4.8), a diffusive coupling term is added to each equation in Eq (4.7) accounting for

the error between the drive and response values with a coupling strength, κ. These

additional terms drive P̂ → P and Ẑ → Z, so that the PDEs will synchronize after

a short time. We have found that synchronization is of identical type and dependent

upon the choice of κ, as is the synchronization rate of convergence.

Importantly, for all results shown in this work, we enforce that

P̂ =


P̂ : 0 < P̂ < 2

0 : P̂ ≤ 0

2 : P̂ ≥ 2

and Ẑ =


Ẑ : 0 < Ẑ < 2

0 : Ẑ ≤ 0

2 : Ẑ ≥ 2

to avoid values outside the normal range of Eq4.7 during the simulation. We evolve

Eq 4.7 forward and count the output as observations which are then fed into Eq 4.8

With the response model stated, synchronization is observed between the two systems

as their globally-averaged relative misfit shrinks quickly.

Time-instances from a simulation are shown in Figures 4.1a-4.1f with drive model

state shown above response model state in each sub-figure. The response model initial

conditions are set to P̂ (x, y, t) = Ẑ(x, y, t) = 2. The first column row, Figures 4.1a,

4.1c, and 4.1e, shows phytoplankton and the right column, Figures 4.1b, 4.1d, and

4.1f, shows zooplankton. Both columns show states at t = 0, t = 0.4, and t = 3.6
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respectively. By t = 3.6, the model states are within an error of eP (t) < 1.0× 10−12,

from Eq (4.9), and the synchronization manifold is evidently asymptotically stable.

Our simulations are carried out in the discretized spatiotemporal domain so to

conveniently compare systems, we prefer matrix norms rather than to estimate func-

tion space norms. The globally-averaged relative synchronization errors in this work

are calculated over time by the Frobenius norm,

eP (t) = 1
|Ω|
‖P − P̂‖F
‖P‖F

, (4.9)

eZ(t) = 1
|Ω|
‖Z − Ẑ‖F
‖Z‖F

.

where 1
|Ω| denotes averaging by the Lebesgue measure [80] of the domain.

Furthermore, we choose coupling strength κ = 5 noting that coupling plays a

role in the rate at which the systems synchronize, as is often observed with diffusive

coupling [7].

In Figure 4.2, the errors in Eq (4.9) are calculated as the simulation is run and

shown on a log scale. Here verification of the synchronization between model states

is provided by the small value for both eP (t) and eZ(t) by the end of the simulation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: A comparison of model states at different times as systems are evolved
with response given by Eq 4.8. Each sub-figure shows actual model state (drive
system component) on top with response model state on bottom. The left column
shows phytoplankton at t = 0 for 4.1a, t = 0.4 for 4.1c, and t = 3.6 for 4.1e. The
times are same for zooplankton in the right column.
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Figure 4.2: Relative error between drive and response system components, with errors
calculated by Eq (4.9), plotted on a log scale. Relative error for both species has
dropped to less than 1.0× 10−12 by t = 3.6.

Since this system is shown to exhibit spatiotemporal chaos [15], this is a surprising,

but not necessarily novel result [52]. However, We now consider the problem of model

fitting for forecasting. To do so requires accurate parameter estimates as well as model

states for forward prediction. We extend a parameter estimation method [44] within

the synchronization framework.

4.1.2 Autosynchronization

To synchronize model states along with model parameters, a technique named au-

tosynchronization was introduced in [44], wherein parameters are dynamically up-

dated by drive-response disagreement. If coupled properly, the drive and response

parameters will synchronize while the system states synchronize, thus the term au-

tosynchronization [44].
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We exploit this special feature of synchronization toward parameter estimation

for PDEs. This work, [78], is a first demonstration of parameter estimation by au-

tosynchronization on a system of PDEs. We begin with a formal definition of au-

tosynchronization on PDEs.

Definition 4.1.1. Let ut(x, y, t) = f(u(x, y, t),p) and vt(x, y, t) = g(u(x, y, t),v(x, y, t), q)

be two systems of ordinary differential equations wherein sates of u(x, y, t) are cou-

pled with, or fed into, vt(x, y, t). Let p, q ∈ Rn be parameter vectors for ut and vt

respectively. The systems ut and vt are said to autosynchronize if

‖u(x, y, t)− v(x, y, t)‖L2 → 0 and ‖p− q‖ → 0 as t→∞. (4.10)

Here, we choose the Euclidean vector norm to compare the parameters and the

L2-norm to compare model states.

Stating an autosynchronization problem in the PDE setting [78], we require a

drive system

ut(x, y, t) = f(u(x, y, t),p), (4.11)

from which we are able to sample data with (unknown to us) parameters p ∈ Rn .

Then we must state a response system

vt(x, y, t) = g(u(x, y, t),v(x, y, t),q) (4.12)

with the same model form as the drive system if q = p. Again, the goal is that when

u(x, y, t) is coupled forward into Eq 4.12, then Eq 4.12 will synchronize with Eq 4.11

and u(x, y, t)→ v(x, y, t). Concurrently, parameter ODEs are given by

qt = h(u(x, y, t),v(x, y, t),q) (4.13)

so that (v,q)→ (u,p) as t→∞. The schematic diagram for this type of simulation
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Figure 4.3: Diagram for autosynchronization of two-component PDE system such as
described by Eqs (4.7) and (4.14).

is shown in Figure 4.3.

We state the response model with parameter equations,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (4.14)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P̂ + h
− m̂Ẑ + κ(Z − Ẑ),

dk̂

dt
= −s 1

|Ω|

∫
Ω

(P − P̂ )dΩ,

dm̂

dt
= −s 1

|Ω|

∫
Ω

(Z − Ẑ)dΩ,

where 1
|Ω| denotes averaging by the Lebesgue measure [80] of the domain and we
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assume

P̂ (x, y, 0) 6= P (x, y, 0),

Ẑ(x, y, 0) 6= Z(x, y, 0),

k̂(0) 6= k,

m̂(0) 6= m,

s > 0.

In Eq (4.14), the globally-averaged error between species is added to determine how

the parameters are updated in time. The ansatz system Eq (4.14) was chosen after

testing multiple forms. The goal is to estimate the model parameters k and m by

allowing k̂ and m̂ to vary in time such that they are driven to the identical synchro-

nization manifold [77]

M = {(P,Z, k,m), (P̂ , Ẑ, k̂, m̂) | P = P̂ , Z = Ẑ, k = k̂,m = m̂} (4.15)

The parameter equations are evolved simultaneously with P̂ and Ẑ with a forward-

Euler discretization and the same time step. The model form of Eq 4.14 was chosen

after testing several forms and we have found that there exist other forms for which

synchronization is possible. Once the model form was chosen, a parameter search

was performed to find s = 30 and κ = 1.25. As we vary s and κ, the synchronization

manifold may lose stability, a common situation with diffusively coupled systems [7].

Parameters may be updated as reaction-diffusion PDEs, by adding a diffusion term,

however we then must restrict parameters to be nonnegative C2(Ω) functions and

numerical stability may be adversely affected.
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To begin the simulation, response system initial conditions were arbitrarily set to

P̂ (x, y, 0) = 2, (4.16)

Ẑ(x, y, 0) = 2,

k̂(0) = 5,

m̂(0) = 5.

Eq 4.7 is evolved forward and the model output serves as observed data. Results

are shown in Figures 4.4a - 4.4f. The parameter equations force the parameters to

synchronize and parameters are estimated to eP (t) < 1.0× 10−12.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: A comparison of model states at different times as systems are evolved
with response given by Eq (4.14). Each sub-figure shows actual model state (drive
system component) on top with response model state on bottom. The left column
shows phytoplankton at t = 0 in 4.4a, t = 10 in 4.4c, and t = 118 in 4.4e. The times
are the same for zooplankton, shown in right column.
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Figure 4.5: Relative error between drive and response system components, with errors
given on a log scale. Relative error for both species drops to within nearly 1.0×10−15

by t = 118. Relative error for parameters drops to less than 1.0 × 10−12. For these
results, κ = 1.25 and s = 30.
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Figure 4.5 indicates the globally-averaged relative synchronization errors, Eq (4.9),

between species as a function of time on a log scale. The relative parameter errors are

shown beneath as a function of time on a log scale. The plots demonstrate that the

relative error between both species drops to less than 1.0× 10−15. Also, the relative

error between both parameters drops to less than 1.0× 10−12.

4.1.3 Spatially Dependent Parameters

In many systems, it is very reasonable to expect that model parameters need not

be spatially homogeneous. For example, taking our problem of interest, spatial in-

homogeneity in parameter values may be an important theoretical assumption when

constructing models for coastal algal blooms, since plankton growthrate is affected

by near-shore nutrient runoff and upwelling [15, 81, 82]. More to that point, ocean

fronts and eddies cause flow-induced long-term inhomogeneities in the ocean which

results in a formidable spatial structure for density profiles in the ocean [15]. Whether

inhomogeneities be the result of the flow dynamics or of boundary conditions from

nutrient runoff, they are an important consideration for modelling ecology over large

coastal domains. Thus it is reasonable to expect that a biophysics-based model over

the mesoscale should accept spatially dependent parameters.

Many methods have been proposed to estimate scalar parameters as mentioned in

Chapter 1. A drawback to Kalman filtering and multiple shooting methods, is that

they do not consider spatially dependent parameter values, a priority noted in [38].

Parameter estimation by filtering methods adapted for PDEs can be computationally

expensive [42]. Furthermore, we have found that some filtering methods suffer during

periods of exponential growth, such as might be expected during plankton blooms.

Optimizing the time-averaged synchronization error in some function space is far

more complicated than the finite-dimensional alternative with scalar parameters as

demonstrated in [52]; optimization methods may not be practical.
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Our work aims to extend the method of parameter estimation for spatiotemporal

PDE systems by autosynchronization, especially including autosynchronization with

spatially dependent parameters. Formally, we investigate observed data from the

PDE drive system

ut(x, y, t) = f(u(x, y, t),p(x, y)) (4.17)

with parameters p(x, y) ∈ C0(Ω), and a response system

vt(x, y, t) = g(u(x, y, t),v(x, y, t),q(x, y, t)). (4.18)

We formulate an associated system of PDEs for the parameters of Eq (4.18)

qt(x, y, t) = h(u(x, y, t),v(x, y, t)) (4.19)

with the goal that ‖u(x, y, t) − v(x, y, t)‖L2 → 0 and ‖p(x, y) − q(x, y, t)‖L2 → 0 as

t→∞.

We modify the system Eq (4.7) as found in [15] by allowing the parameters to

be non-negative C0(Ω) functions. Here Ω is the domain, which in the case of our

simulations, Ω ⊂ R2 is a compact domain such as a rectangle or even a domain

shaped as the Gulf of Mexico, in some examples here.

First, we develop synthetic datasets with spatially varying parameters to chal-

lenge our methods. Spatially dependent parameters are chosen to be in the range

given in [15] for spatially irregular behavior. Three different functional forms for the

parameters are tested for variety. First, we define a Gaussian parameter function,

k1(x, y) = ae
−
(

(x−n/2)2

2σ2 + (y−m/2)2

2σ2

)
, (4.20)

m1(x, y) = ce
−
(

(x−n/2)2

2σ2 + (y−m/2)2

2σ2

)
,
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where a = 2, c = 0.6,m = 300, n = 900, and σ = 400. Appropriate parameters are

chosen to maintain m(x, y) and k(x, y) in the target range. For example, Eq (4.20)

is displayed in Figure 4.6a and Figure 4.6b respectively. Next, we define,

k2(x, y) = a cos(bx+ d) sin(by) + s, (4.21)

m2(x, y) = c cos(bx+ d) sin(by) + t,

where a = 0.2, b = π/(m/2), c = 0.6, d = π/2, s = 0.5, and t = 1.5, to test the

quality of the autosynchronization method to resolve fine spatial structures in model

parameters. The surfaces produced by Eq (4.21) are displayed in Figure 4.6c and in

Figure 4.6d respectively.

Finally, we build a swirly parameter function in order to simulate spiral-like behav-

ior in parameter values as might be expected in turbulent near-coastal regions. Thus

time instance is taken from a simulation of the original PDE, Eq (4.7), is scaled ap-

propriately, and is treated as a parameter function. These spiral parameters, k3(x, y)

and m3(x, y), are shown in Figure 4.6e and Figure 4.6f respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The three different sets of spatially dependent parameters used in simu-
lations. Figures 4.6a and 4.6b are described by Eq (4.20), with k(x, y) on the left and
m(x, y) on the right. Below, with the same ordering, are the parameters described
by Eq (4.21). Finally, the swirly parameters are shown in Figures 4.6e and 4.6f.

We state the response model with parameter equations, now themselves PDEs, as

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (4.22)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P̂ + h
− m̂Ẑ + κ(Z − Ẑ),

∂k̂

∂t
= −s(P − P̂ ),

∂m̂

∂t
= −s(Z − Ẑ),
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where we assume,

P̂ (x, y, 0) 6= P (x, y, 0),

Ẑ(x, y, 0) 6= Z(x, y, 0),

k̂(x, y, 0) 6= k(x, y),

m̂(x, y, 0) 6= m(x, y),

s > 0.

To begin the simulation, response system initial conditions are set to the extension

of Eq (4.16)

P̂ (x, y, 0) = 2, (4.23)

Ẑ(x, y, 0) = 2,

k̂(x, y, 0) = 5,

m̂(x, y, 0) = 5.

We observe solution data at every time step relative to the response system, Eq

4.22 to drive (P̂ , Ẑ) → (P,Z) and (m̂(x, y), k̂(x, y)) → (m(x, y), k(x, y)) as t → ∞.

The parameters defined by Eq 4.20, Eq 4.21, and the spiral parameters are estimated

and compared with ground truth. We observe autosynchronization for each test set

of parameters and the spatial inhomogeneities in each test set are effectively resolved;

the Gaussian test parameters are estimated in Figure 4.8 while the species are shown

in Figure 4.7. This is a first demonstration of the utility of autosynchronization for

parameter estimation of spatially dependant parameters and thus allows for parameter

estimation over function spaces.

Figures 4.7 and 4.8 display time instances of the simulation of Eq (4.22), as the

response, and Eq (4.8), as the drive, with spatially dependent model parameters ren-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Autosynchronization of species in response system in Eq(4.22). Each
figure shows drive (top) and response (bottom) pairs. P (x, y, 0) and P̂ (x, y, 0) in
4.7a, P (x, y, 1000) and P̂ (x, y, 1000) in 4.7c, and P (x, y, 4788) and P̂ (x, y, 4788) in
4.7e. Z(x, y, 0) and Ẑ(x, y, 0) in 4.7b, Z(x, y, 1000) and Ẑ(x, y, 1000) in 4.7d, and
Z(x, y, 4788) and Ẑ(x, y, 4788) in 4.7f.

73



(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Autosynchronization of response parameters in Eq(4.22). Each figure
shows drive (top) and response (bottom) pairs. k(x, y) and k̂(x, y, 0) in 4.8a, k(x, y)
and k̂(x, y, 1000) in 4.8c, and k(x, y) and k̂(x, y, 4788) in 4.8e. m(x, y) and m̂(x, y, 0)
in 4.8b, m(x, y) and m̂(x, y, 1000) in 4.8d, and m(x, y) and m̂(x, y, 4788) in 4.8f.
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dered by Eq (4.20). Figure 4.7a shows the initial conditions, P (x, y, 0) over P̂ (x, y, 0),

Figure 4.7c represents P (x, y, 1000) over P̂ (x, y, 1000), and Figure 4.7e represents

P (x, y, 4788) compared to P̂ (x, y, 4788). Figure 4.7b shows the initial conditions,

Z(x, y, 0) over Ẑ(x, y, 0), Figure 4.7d represents Z(x, y, 1000) over Ẑ(x, y, 1000), and

Figure 4.7f represents Z(x, y, 4788) compared to Ẑ(x, y, 4788).

Likewise, Figure 4.8a shows the initial conditions, k(x, y) over k̂(x, y, 0), Figure

4.8c represents k(x, y) over k̂(x, y, 1000), and Figure 4.8e represents k(x, y) compared

to k̂(x, y, 4788). Figure 4.8b shows the initial conditions, m(x, y) over m̂(x, y, 0),

Figure 4.8d represents m(x, y) over m̂(x, y, 1000), and Figure 4.8f represents m(x, y)

compared to m̂(x, y, 4788). Further results will be presented in the same way through-

out the chapter.

The simulation is terminated once the relative error between the parameters k

and k̂ reach a threshold of ek(t) < 1.0 × 10−5. The globally averaged relative errors

are the extension of Eq (4.9),

eP (t) = 1
|Ω|
‖P − P̂‖F
‖P‖F

, (4.24)

eZ(t) = 1
|Ω|
‖Z − Ẑ‖F
‖Z‖F

,

ek(t) = 1
|Ω|
‖k − k̂‖F
‖k‖F

,

em(t) = 1
|Ω|
‖m− m̂‖F
‖m‖F

,

where 1
|Ω| denotes averaging by the Lebesgue measure [80] of the domain.

In Figure 4.9, the globally-averaged relative error, Eq (4.24), between phytoplank-

ton terms in the drive and response system is demonstrated to be driven to less than

3.0× 10−9 and the error between the zooplankton profiles is driven below 2.0× 10−8.

The globally-averaged relative error between both sets of true and estimated param-
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(a)

(b)

Figure 4.9: Globally-averaged relative synchronization error between drive and re-
sponse PDE components and parameters on a log scale and with parameters built by
Eq 4.20. These errors represent simulations shown in Figures 4.7a - 4.8f

.
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eters is driven below 1.0 × 10−5. The plots correspond to the simulation shown in

Figures 4.7 and 4.8, respectively. Interestingly, the results show a change of synchro-

nization rate midway through the simulation. For these results, we choose κ = 2.4

and s = 30.

Next, to really test the ability of the method to resolve fine structures in parame-

ters, we show simulation results with parameters rendered by Eq (4.21). In, Figures

4.10 and 4.11, the results of autosynchronization follow the same pattern of Figures

4.7 and 4.8. Reconstructed parameters are compared with their true counterparts at

three different times, t = 0, t = 1000, and t = 10660. This simulation highlights

the spatial efficacy of parameter reconstruction. Similar results were found by testing

parameters that vary spatially according to Figures 4.6e and 4.6f.

In Figure 4.12, we observe globally-averaged relative errors corresponding to the

simulations shown in Figures 4.10 and 4.11. These results, although novel, are not

practical for use in model fitting and forecasting with multi-component models in-

formed by remote sensing. Thus, we require some advancements for use in our target

application.

4.2 Synchronization by Sampling One Species

An important criticism of the stated autosynchronization method is that one requires

samples of both species to drive the response model and parameters. As mentioned,

our interest in autosynchronization for parameter estimation stems from work with

ocean models for phytoplankton-zooplankton ecology. In fact, hyperspectral satellite

imagery provides phytoplankton density inferences but provides no data for zooplank-

ton [8]. In this case, parameter estimation using the response model Eq (4.22) will

fail since we have no zooplankton observables with which to drive the response. Even

assuming correct model parameters, it is impossible to forecast the model since zoo-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Autosynchronization of species in response system Eq(4.22). Each figure
shows drive (top) and response (bottom) pairs. P (x, y, 0) and P̂ (x, y, 0) in 4.10a,
P (x, y, 1000) and P̂ (x, y, 1000) in 4.10c, and P (x, y, 10660) and P̂ (x, y, 10660) in
4.10e. Z(x, y, 0) and Ẑ(x, y, 0) in 4.10b, Z(x, y, 1000) and Ẑ(x, y, 1000) in 4.10d,
and Z(x, y, 10660) and Ẑ(x, y, 10660) in 4.10f.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Autosynchronization of response parameters in Eq (4.22). Each fig-
ure shows drive (top) and response (bottom) pairs. k(x, y) and k̂(x, y, 0) in 4.11a,
k(x, y) and k̂(x, y, 1000) in 4.11c, and k(x, y) and k̂(x, y, 10660) in 4.11e. m(x, y) and
m̂(x, y, 0) in 4.11b, m(x, y) and m̂(x, y, 1000) in 4.11d, andm(x, y) and m̂(x, y, 10660)
in 4.11f.
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(a)

(b)

Figure 4.12: Globally-averaged relative synchronization error between drive and re-
sponse PDE components and parameters on a log scale for parameters built by Eq
(4.21). The errors represent simulations shown in Figures 4.10 and 4.11.
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plankton initial conditions are not supplied. Our problem of interest requires that

we somehow estimate zooplankton initial conditions based on phytoplankton obser-

vations.

4.2.1 Synchronization

We find that, by a modification of Eq (4.22), it is possible to drive zooplankton density

to its true state by sampling phytoplankton alone. This is a first demonstration of

the possibility of simulating this system with only partial knowledge.

We first state a response model using diffusive coupling and sampling only phy-

toplankton from the drive system. We state the response model,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (4.25)

∂Ẑ

∂t
= 4Ẑ + k

P̂ Ẑ

P̂ + h
−mẐ,

where the diffusive coupling term in the second component is removed. Note that

zooplankton is not sampled anywhere in Eq (4.25). Results are shown in Figure

4.13, where simulation snapshots are shown at t = 0, t = 10, and t = 227. This

demonstrates that it is possible to observe zooplankton density based on sampling

only one species, an extremely useful result toward our target application.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: A comparison of model states at different times as systems are evolved
with response given by Eq (4.25). Each figure shows drive (top) and response (bot-
tom) pairs. P (x, y, 0) and P̂ (x, y, 0) in 4.13a, P (x, y, 10) and P̂ (x, y, 10) in 4.13c, and
P (x, y, 152) and P̂ (x, y, 152) in 4.13e. Z(x, y, 0) and Ẑ(x, y, 0) in 4.13b, Z(x, y, 10)
and Ẑ(x, y, 10) in 4.13d, and Z(x, y, 152) and Ẑ(x, y, 152) in 4.13f.
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Figure 4.14: Relative error between drive and response system components, with
errors given on a log scale. Relative error for both species has dropped to less than
1.0× 10−12 by t = 152, a longer epoch than when sampling both species.

Figure 4.14 demonstrates that globally-averaged relative error between both species

has dropped to within 1.0× 10−12 of ground truth although after a longer time epoch

than when sampling both species. The simulation of Eq (4.25) is halted after the

globally averaged relative errors reach a threshold of eP (t) < 1.0× 10−12.

We note that this coupling scheme need not be unique for observing synchro-

nization when coupling one species. An example including diffusive and complete

replacement coupling is given by,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (4.26)

∂Ẑ

∂t
= 4Ẑ + k

P̂ Ẑ

P + h
−mẐ,

where the absence of the “hat” in the second equation denotes complete replacement of
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P (x, y, t). Figure 4.15 describes the results of synchronization for the stated response

system. The simulation is halted once the relative synchronization error is less than

1.0 × 10−12, which this time occurs by t = 89. We observe that the synchronization

speed may be substantially increased not only with different coupling strengths but

with different coupling methods.

Figure 4.15: Globally-averaged relative error, Eq (4.24), between drive and response
system components, with errors shown on a log scale. Relative error between both
pairs of species has dropped to less than 1.0×10−12 by t = 89, a substantially shorter
epoch than in Figure 4.14 using Eq (4.25).

4.2.2 Autosynchronization with Spatially Dependent Param-

eters

We next study parameter estimation by autosynchronization when able to sample

only one species. As such, we do not know the initial model states, are able to only

partially sample the drive model, and wish to recover the remainder of the drive

model and spatially varying parameters, m(x, y) and k(x, y). A box diagram for this

84



Figure 4.16: Diagram for autosynchronization of two-component PDE system by
sampling only one species such as described by Eqs (4.7) and (4.27).

type of observation is shown in Figure 4.16, with respect to the problem formation

described in Eq (4.17) - Eq (4.19). Note the arrow between the second component of

the system has been dropped since it is unobservable.

Therefore, we must state a response model for which autosynchronization is ob-

served for spatially dependent parameters from which we sample only one species.

We state a response model,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (4.27)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ,

∂k̂

∂t
= s1(P − P̂ )

∂m̂

∂t
= s2(P − P̂ )P̂ ,

with s1 = 0.2, s2 = 0.6, and κ = 0.3625. The parameter equations are evolved simul-

taneously with P̂ and Ẑ using a forward Euler discretization. We combine diffusive
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and complete replacement coupling in the response PDE to observe autosynchroniza-

tion. Again, the ansatz system Eq (4.27) was chosen after testing multiple forms.

Figures 4.17 and 4.18 provide three time instances from a simulation of Eq (4.27)

demonstrating that zooplankton and parameters are well-estimated. All initial con-

ditions for the response system are the same as for the previous simulations, Eq (4.23).

The simulation is terminated, at t = 633, once the parameter k(x, y) is estimated such

that ek(t) < 1.0× 10−5.

Figure 4.18 shows reconstructed parameters compared with drive model param-

eters at three different times, t = 0, t = 100, and t = 633. This simulation demon-

strates the spatial effectiveness of parameter reconstruction and is a first demonstra-

tion of parameter estimation for spatially dependent parameters by autosynchroniza-

tion when only partially observing the drive system.

Globally-averaged relative errors corresponding to the simulations described by

Figures 4.17 and 4.18 are described in Figure 4.19, with parameters corresponding

to Eq (4.21). The globally-averaged synchronization error between model species

is less than 1.2 × 10−5 and less than 1.4 × 10−5 for both parameters. Importantly,

we note zooplankton density profiles are synchronizing over time. Therefore, we

need not sample zooplankton to observe autosynchronization and we find the true

zooplankton density profile and model parameters such that model simulations may

be initialized by observing only one species. Thus we have developed a technique

based on partial observation to estimate parameters and to initialize a full model for

short term forecasts.

We note that these results hold for uniform random initial conditions and synchro-

nization speed is again affected by choice of coupling. In Figures 4.20 and 4.21, we see

simulation results assuming swirly parameters given by Figures 4.6e and 4.6f. These

results demonstrate that autosynchronization is observed even when initializing the

response system with uniform random noise.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Autosynchronization of species where only phytoplankton are observed.
Each figure shows drive (top) and response (bottom) pairs. P (x, y, 0) and P̂ (x, y, 0)
in 4.17a, P (x, y, 100) and P̂ (x, y, 100) in 4.17c, and P (x, y, 633) and P̂ (x, y, 152) in
4.17e. Z(x, y, 0) and Ẑ(x, y, 0) in 4.17b, Z(x, y, 100) and Ẑ(x, y, 100) in 4.17d, and
Z(x, y, 633) and Ẑ(x, y, 633) in 4.17f.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Autosynchronization of spatially dependent parameters. Each figure
shows drive (top) and response (bottom) pairs. Model parameters given by k2(x, y)
and m2(x, y) and only phytoplankton are observed. k(x, y) and k̂(x, y, 0) in 4.18a,
k(x, y) and k̂(x, y, 100) in 4.18c, and k(x, y) and k̂(x, y, 152) in 4.18e. m(x, y) and
m̂(x, y, 0) in 4.18b, m(x, y) and m̂(x, y, 100) in 4.18d, and m(x, y) and m̂(x, y, 633) in
4.18f.
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(a)

(b)

Figure 4.19: Globally-averaged relative synchronization error Eq (4.24) between drive
and response PDE species and parameters on a log scale for parameters built by Eq
(4.21). The errors represent simulation in Figures 4.17 and 4.18.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Autosynchronization of species where only phytoplankton are observed.
Each figure shows drive (top) and response (bottom) pairs. P (x, y, 0) and P̂ (x, y, 0)
in 4.20a, P (x, y, 4000) and P̂ (x, y, 4000) in 4.20c, and P (x, y, 9360) and P̂ (x, y, 9360)
in 4.20e. Z(x, y, 0) and Ẑ(x, y, 0) in 4.20b, Z(x, y, 4000) and Ẑ(x, y, 4000) in 4.20d,
and Z(x, y, 9360) and Ẑ(x, y, 9360) in 4.20f.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Autosynchronization of spatially dependent parameters given by spiral
model parameter shown in Figures 4.6e and 4.6f and only phytoplankton are observed.
Each figure shows drive (top) and response (bottom) pairs. k(x, y) and k̂(x, y, 0)
in 4.21a, k(x, y) and k̂(x, y, 4000) in 4.21c, and k(x, y) and k̂(x, y, 9360) in 4.21e.
m(x, y) and m̂(x, y, 0) in 4.21b, m(x, y) and m̂(x, y, 4000) in 4.21d, and m(x, y) and
m̂(x, y, 9360) in 4.21f.
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Drive and response model species are shown in Figure 4.20 and parameters are

demonstrated in Figure 4.21, demonstrating the ability to estimate swirly parameters

befitting for the ocean on the mesoscale. Simulation snapshots are shown at t = 0,

t = 4000, and t = 9360. The simulation is terminated once the parameters k and k̂

are synchronized to within ek(t) < 1.0× 10−5

Thus, despite rather noisy initial guesses for model parameters and states, the

spiral parameters are effectively resolved. We have found that synchronization is

substantially faster when initial guesses are sufficiently smooth or even constant.

In Figure 4.22, globally averaged errors are shown to diminish over time as the

coupled systems evolve, however at the slowest rate yet. When able to sample at

every point in a desired grid, we observe autosynchronization of realistic spatially-

dependent model parameters and states.

We remark here that we observe evidence for the convergence of the drive and

response systems to the identical synchronization manifold and preceding results are

shown as a first demonstration. Convergence for some of these systems is rigorously

analyzed in Chapter 5, however for others we rely on numerical evidence for stability.

In summary, we have extended the autosynchronization method from scalar pa-

rameters on a system of partially-observable ODEs to spatially dependent model

parameters for a system of partially-observable PDEs. However, in application, one

may not be able to sufficiently sample a domain such that simulations remain nu-

merically stable. Furthermore, data might only be experimentally available in locally

averaged discrete “patches” [52], requiring further development of these methods.

4.3 On Incomplete Observation Data

Our target application for these methods is to model ocean ecology based on remote

sensing, in particular hyperspectral satellite imagery. We now consider an innate
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(a)

(b)

Figure 4.22: Globally-averaged relative synchronization error between drive and re-
sponse PDEs on a log scale in 4.22a. Globally-averaged synchronization error between
drive and response parameters on a log scale in 4.22b. Errors correspond to simu-
lation shown in Figures 4.20 and 4.21, and estimating perhaps more realistic spiral
parameters. 93



complication with fitting and assimilating a PDE model informed by experimental

data.

In real experimental situations, data is often sampled at discrete locations, pro-

viding perhaps local averages on a coarsened subset of the domain [52]. In order to

apply the methods discussed directly one might subsample the observed data by in-

terpolation to a desired refined grid. Interpolation might perform quite well, if given

the assumption of smooth solutions. Sans interpolation, our method should to be

adapted for sampling by local averaging over the observable domain. Therefore, we

now show that our techniques are robust by partially observing only one species in

locally-averaged patches throughout the domain.

4.3.1 Synchronization by Local Averaging

We sample a coarsened subset of the discretized domain and take local averages to be

the driving signal, in the same way as [52]. An example domain over which we sample

is shown in Figure 4.23, where the domain is sampled in 3 × 3 patches with a spacing

of 3 grid points between patches. That is, the systems are coupled unidirectionally,

with “sensors” representing the local sampling of observables, and “controllers” rep-

resenting local coupling in the response model [52]. Relevant parameters are the grid

spacing and size of the sensors and controllers in the domain, now in addition to the

coupling strength.

The following work is quite “ad hoc" in contrast to the preceding work that is

theoretically analyzed in Chapter 5. Although techniques included in the following

section are quite successful, further analysis is required to obtain bounds on errors or

prove convergence results.

Synchronization is robust to spatial subsampling by local averaging by changing

the response system to include only diffusive coupling, described by Eq (4.28),
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Figure 4.23: Locally-averaged patches representing controllers and sensors over which
drive system is sampled and response system is coupled, shown in black. Sensors
shown on subset of 3 × 3 grid points with a separation of 3 grid points.

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κGn ∀x, y ∈ Sn, (4.28)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ,

where the complete replacement term is removed in the zooplankton equation. Since

the drive system is only partially sampled and local averages are taken to be the drive

signal, the local driving term is,

Gn(t) = 1
(dx)(dy)

∑
x,y∈Sn

(P (x, y, t)− P̂ (x, y, t)), (4.29)

where Sn represents a rectangular “sensor" on the domain over which the model mis-

fit is locally averaged. A requirement for good results is that we remove the direct

replacement term in Eq (4.28) since local averaging forces a small misfit from ob-

served data. Thus, a complete replacement term eventually works against identical

synchronization and identical synchronization is not observed. Instead, we either

remove the term as shown above or we allow complete replacement until the re-
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sponse output stops progressing toward drive observations. That is, rather define

a temporally-varying complete replacement term which is eventually “switched off”

and then couple as shown in Eq (4.28). The combination of diffusive and complete

replacement coupling allows for faster synchronization from random initial conditions

than by Eq (4.28) alone.

Synchronization results are shown in Figure 4.24, wherein three different arrange-

ments of local averaging are tested. In all three cases, the synchronization manifold is

asymptotically stable, however the rate of convergence to the manifold acts inversely

with respect to sampling sparsity. For brevity, only globally averaged relative errors

are shown and the simulation snapshots are omitted as the images look extremely

similar to Figure 4.13.

These results agree with results demonstrated in [52], however we now study

autosynchronization. Thus, we modify the response system Eq (4.27) as

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κGn ∀x, y ∈ Sn, (4.30)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P̃ + h
− m̂Ẑ,

∂k̂

∂t
= 4k̂ + s1(P̃ − P̂ ),

∂m̂

∂t
= 4m̂+ s2(P̃ − P̂ )P̂ ,

where P̃ represents complete replacement with locally-averaged observations from

the drive system. We remark that diffusion is added to the parameter equations in

Eq (4.30) in order that data from the driven regions, Sn will diffuse into the occluded

regions. Varying sensor sizes were examined and in Figure 4.25 results are shown for

a 2 × 2 subsampling of the domain Ω, with 1 grid point between subsequent patches.

In Figure 4.26, we notice that despite locally averaged data, the response system
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(a)

(b)

Figure 4.24: Comparison of different sampling by local averaging. Relative synchro-
nization errors between systems for sampling over 3 × 3 grid points (blue) with
distance of 3 grid points between sensors, 2 × 2 grid points (red) with distance of 2
grid points between patches, and 1 × 1 grid points (black) with distance of 1 grid
point between patches. Phytoplankton synchronization errors in 4.24a, zooplankton
synchronization errors in 4.24b.
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(a) (b)

(c) (d)

Figure 4.25: Autosynchronization results shown at t = 2000. Both species and both
parameters shown compared with drive species and true parameters. Effect of adding
diffusion to parameter equations is clearly visible in estimated parameters on bottom
of Figures 4.25c and 4.25d
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(a)

(b)

Figure 4.26: Globally-averaged relative synchronization errors shown for species and
parameters. Local averaging destroys stability of the identical synchronization man-
ifold, however spatial characteristics of parameters are still observed.
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is driven toward the identical synchronization manifold. Results are clearly not as

accurate as when sampling at every grid point in the domain, nor as accurate as the

results for synchronization alone. Identical synchronization is not observed when the

locally-averaged sampling is sparse.

We note, that we sample from sufficiently refined satellite data such that inter-

polation or local averaging for simulation on a finer grid is unnecessary. That is, for

our application to remote sensing, we evolve ecology over the same grid on which the

data are observed. Nevertheless, an important consideration for universal application

of these methods is sparsity in sampling observables and local averaging of samples.

4.3.2 Temporal Subsampling

Yet another complication with satellite data is the inability to sample every timestep

with which simulations are evolved. That is, although spatiotemporal dynamics are

in motion, they are unobservable and can not be coupled into the response model.

As the drive model continues to evolve, we ask if it is possible for the response model

to synchronize with the drive when missing observations from the drive.

We state the response model Eq (4.26). However, we evolve the response model

forward and only couple whence data is sampled in time. That is, we allow the

drive and response models to oscillate independently in-between sampling, and inter-

mittently feed samples from the drive to the response system. We experiment with

several different sub-sample times to monitor how temporal sub-sampling affects syn-

chronization.

Figure 4.27 shows the relative synchronization errors for both species when sub-

sampling in time. Shown are results for sampling once every two time steps (blue),

once every four time steps (red) and once every eight time steps (black). Tempo-

ral subsampling affects the speed of synchronization inversely with sampling rate.

Regardless, by coupling only when observed, identical synchronization is still demon-
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strated. The results in Figure 4.27 are obtained with the Gaussian parameters, Eq

(4.20), and show that synchronization is robust to temporal subsampling.

Next, we study whether autosynchronization is also robust to temporal subsam-

pling. We state the response model Eq (4.27) and initialize model states by Eq (4.23).

Figure 4.28 shows errors obtained following autosynchronization simulations whence

phytoplankton are sampled either every two, four, or eight time steps. Interestingly,

the basin of attraction for the synchronization manifold seems to lose stability when

varying the temporal sampling rate. To observe identical synchronization, the cou-

pling strength κ, was changed for each simulation. Thus, for results shown in Figure

4.28, κ = 0.42 when sampling every two time steps and κ = 1 when sampling every

four time steps, and κ = 1.5 when sampling every eight time steps.

Autosynchronization is now demonstrated to be robust to both spatial and tempo-

ral subsampling. That fact allows for easier use with application to systems modelled

as PDEs but observable on discretized and temporally sub-sampled domains.

4.3.3 Clouds

Ocean-observing satellite imagery often includes significant amounts of cloud cover

[8]. Furthermore, we have found that a level 2 mapped and processed image may

be stretched such that blank pixels are added into the domain as a consequence of

projecting a sphere onto a uniform grid. The lack of data presents a challenge to data

assimilation and model filtering by synchronization methods. Suppose ω ⊂ Ω is the

set of unobservable data. We allow for ω = ω(x, y, t) so that the set of unobservables

varies with space and time like a cloud. We couple the systems only on the compliment

of ω. That is, we turn the driving signal off when the image is unobservable, allowing

the two systems to oscillate independently, and switch it on after the clouds have

passed. We do this only in the subregion ω ⊂ Ω that is unobservable in order that

data contained in the compliment of ω may continue to be driven by observables
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(a)

(b)

Figure 4.27: Globally-averaged relative synchronization errors shown for species for
different sub-sampling cases. Sampling every two time steps in blue, every four time
steps in red, and every eight time steps in black. Synchronization manifold remains
stable under this subsampling, but synchronization speed decreases with increasing
time between samples. 102



(a) (b)

(c) (d)

Figure 4.28: Globally-averaged relative autosynchronization errors shown. Sample
every two time steps shown in blue, every four time steps shown in red, and every
eight time steps shown in black. Synchronization manifold remains stable under this
subsampling, but speed decreases with increasing time between samples.
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toward the synchronization manifold.

Here, we build on our work in [78], where zooplankton densities and model pa-

rameters were estimated by observing solely the phytoplankton. Now we observe

phytoplankton and clouds.

However, if we simulate as when sampling at every time step, the synchronization

manifold is de-stabilized by incident cloud coverage. In hyperspectral image data

cloud masks over certain pixels are represented by a particular assigned integer, say

n. Therefore under Eq (4.25), a pixel will actually be evolved as,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(−P̂ ), (4.31)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

n+ h
− m̂Ẑ,

where n is some fixed integer value. Eq (4.31) is qualitatively different from the

original response model stated and only serves to drive the response model away from

the synchronization manifold. Once the cloud passes, the response model is correct

and is driven toward the synchronization manifold. With a respectable amount of

cloud coverage over Ω, the old approach simply does not work.

Rather, we allow the drive and response models to oscillate independently, or

uncoupled, while the drive model is hidden by clouds. We represent this formally,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(H[P ]− P̂ ), (4.32)

∂Ẑ

∂t
= 4Ẑ + k

P̂ Ẑ

H[P ] + h
−mẐ,

where H[P ] represents a switching function given by
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H[P ] =


P̂ , P = 0

P , P ≥ 0.

The form of response model switches off the coupling when a cloud mask is de-

tected in the image and allows the systems to oscillate independently in the corre-

sponding pixels, while being driven over pixels that are observed. Eq (4.32) is slightly

different than temporal subsampling where models were simply not coupled for a given

number of time steps. Here the models are always coupled somewhere in Ω, which is

determined by time-varying clouds.

Figure 4.29 represents a partially observed dataset from Eq (4.7), with 30 ran-

domly placed synthetic clouds evolving from left to right with circular boundary

conditions resulting in 65.8 % of Ω occluded at all times. The clouds repeatedly scroll

from left to right and parts of the image are always occluded, but every element in the

domain is eventually driven, causing the drive and response to systems to synchronize.

The response system is initialized by Eq (4.23) and we choose κ = 2.6.

Once synchronized, even hidden phytoplankton are revealed for initializing short-

term forecasts, demonstrating the utility of this result. Figure 4.30 demonstrates that

despite 65.8 % of the drive system hidden, the two PDE systems eventually evolve

toward identical synchronization. In Figures 4.29e and 4.29f nearly all evidence of

clouds is “synchronized away" from the response system and the globally averaged

error between the two has been driven to be less than 2.6 × 10−12. We remark that

the choice of coupling strength, κ, varies with the amount of data occluded.

Given a model form, we have demonstrated [78] how to sample a single species

toward parameter estimation and nonlinear data assimilation for a two-species PDE

model. Next, we show this is true regardless of clouds. That is, by stating the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.29: Synchronization of response system shown at t = 0, t = 20, and
t = 12000. Here 65.8 % of Ω is hidden at any point in time from clouds, however
identical synchronization is observed. Each figure shows drive (top) and response
(bottom) pairs. P (x, y, 0) and P̂ (x, y, 0) in 4.29a, P (x, y, 20) and P̂ (x, y, 20) in 4.29c,
and P (x, y, 12000) and P̂ (x, y, 12000) in 4.29e. Z(x, y, 0) and Ẑ(x, y, 0) in 4.29b,
Z(x, y, 20) and Ẑ(x, y, 20) in 4.29d, and Z(x, y, 12000) and Ẑ(x, y, 12000) in 4.29f.
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Figure 4.30: Globally-averaged relative synchronization errors. Errors given by sim-
ulation shown in Figure 4.29 decrease to less than 2.6 × 10−12 despite ever-present
clouds.
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response system

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(H[P ]− P̂ ), (4.33)

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

H[P ] + h
− m̂Ẑ,

∂k̂

∂t
= s1(H[P ]− P̂ )

∂m̂

∂t
= s2(H[P ]− P̂ )P̂ ,

where k(x, y), m(x, y), Z(x, y, t), and P (x, y, t)|ω are to be estimated by k̂(x, y),

m̂(x, y), Ẑ(x, y, t), and P̂ (x, y, t) by sampling only P (x, y, t)|ωC . As before, the cou-

pling is turned off completely for the pixels on which clouds are detected.

Figures 4.31 and 4.32 demonstrate a comparison between drive and response mod-

els. In the top of Figure 4.31a, we see the observed system P (x, y, t)|ωC wherein

25.5 % of the data on Ω is not observable. Figures 4.31 and 4.32 demonstrate that

phytoplankton, zooplankton, and both spatially dependent parameters k̂(x, y, t) and

m̂(x, y, t) are estimated to high precision.

Figure 4.33 describes the globally-averaged relative error between the true system

and the response system. Synchronization rate of convergence is slower than in Section

4.2.2 as a result of allowing the systems to oscillate independently while not driven

on ω. For the results in Figures 4.31 and 4.32, we choose κ = 0.625, s1 = 0.2, and

s2 = 0.6 for good autosynchronization results. Summarizing, we have demonstrated

that it is possible to fill in missing data when hidden by clouds and, as an added

bonus, estimate spatially-dependent model parameters.

Simulations are run for subsequently increasing percentages of hidden data. Fig-

ure 4.34 shows the synchronization errors for simulations after a simulation epoch

of t = 25036. Specifically, the globally-averaged relative error between drive and

response systems is plotted against the percentage of hidden data. It is clear that in-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Autosynchronization of species with 25.5 % of Ω is hidden at any point in
time from clouds, however autosynchronization is observed. Each figure shows drive
(top) and response (bottom) pairs. P (x, y, 0) and P̂ (x, y, 0) in 4.31a, P (x, y, 200)
and P̂ (x, y, 200) in 4.31c, and P (x, y, 25036) and P̂ (x, y, 25036) in 4.31e. Z(x, y, 0)
and Ẑ(x, y, 0) in 4.31b, Z(x, y, 200) and Ẑ(x, y, 200) in 4.31d, and Z(x, y, 25036) and
Ẑ(x, y, 25036) in 4.31f.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.32: Autosynchronization of parameters with 25.5 % of Ω is hidden at any
point in time from clouds, however autosynchronization is observed. Each figure shows
drive (top) and response (bottom) pairs. k(x, y) and k̂(x, y, 0) in 4.32a, k(x, y) and
k̂(x, y, 200) in 4.32c, and k(x, y) and k̂(x, y, 25036) in 4.32e. m(x, y) and m̂(x, y, 0) in
4.32b, m(x, y) and m̂(x, y, 200) in 4.32d, and m(x, y) and m̂(x, y, 25036) in 4.32f.
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(a)

(b)

Figure 4.33: Globally-averaged relative synchronization errors. Errors given by sim-
ulation shown in Figures 4.31 and 4.32 shown to drop to within 5.7 × 10−7 despite
ever-present clouds.
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creasing amounts of hidden data eventually slows down the speed of synchronization,

though as long as the clouds move, parameters and species are eventually observed.

A counter-intuitive result is that the assimilation quality actually improves by hiding

data through about 13 % before worsening as a larger percentage of data is hidden.

For these simulations, the same initial conditions are used throughout for consistency.

These results are a major development for use with real data. In fact the autosyn-

chronization method is capable of data assimilation by revealing hidden phytoplank-

ton and zooplankton densities and estimating model parameters. The technique is

fairly robust to spatial subsampling, temporal subsampling, and complex spatially-

dependent parameters. However, we know that plankton are somewhat subject to

advection by ocean currents and such model physics should be assumed for use in

specific coastal locations. Such improvements will be discussed in Chapter 6.

Moreover, this chapter is merely a demonstration of autosynchronization applied

to a remote sensing problem. Results here require analytical reinforcement, including

a discussion of the basin of attraction for the synchronization manifold and allowable

coupling strengths to observe synchronization and parameter estimation. This is the

topic of the following chapter, where we provide rigorous analysis of manifold stability.
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(a)

(b)

Figure 4.34: Synchronization error plotted against percentage data hidden after sim-
ulation for t = 12000. Species shown in Figure 4.34a and parameters in Figure 4.34b.
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Chapter 5

Analysis of Synchronization

To this point, we have demonstrated a plethora of examples of two systems exhibiting

identical synchronization, including coupling both species and coupling by sampling

only one. While exciting, these are but heuristics and for use outside of benchmark

problems a general theory is required to ensure the stability of the synchronization

manifold for a particular coupling scheme. A solid proof under certain conditions

that a coupling promotes an asymptotically stable synchronization manifold, would

assure that subsequent observations will force a response model closer to the manifold,

improving our current knowledge of the underlying dynamics.

There are classically two approaches for analyzing the stability of a synchroniza-

tion manifold for chaotic systems [55]. The first method is based on the numerical

approximation of Lyapunov exponents in the direction transverse to the synchroniza-

tion manifold [55]. These exponents are called transverse Lyapunov exponents or

conditional Lyapunov exponents (CLEs). A second method is called the Lyapunov

direct method wherein an appropriate Lyapunov function is constructed [44].

The Lyapunov direct method is a direct proof for the stability of a fixed point

and is thus used to prove the existence of fixed points for a variety of mathematical

models ranging from simple ODEs, [83], to reaction-diffusion PDEs [83, 84]. The
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method is used to prove stability of an identical synchronization manifold by a shift

in coordinates such that the origin becomes the fixed point representing the manifold

[44]. With respect to synchronization, the Lyapunov direct method has been used

in the analysis of synchronization between coupled ODEs [44, 85] and coupled PDEs

[75,86,87].

A drawback to the Lyapunov direct method is, to quote Strogatz, that “divine

inspiration is usually required" to find such a function [88]. This led to the Lyapunov

design approach, or the idea that one might work backward and design a coupling

scheme to fit a desired Lyapunov function [87].

In lieu of a demonstrated Lyapunov function, the numerical approximation of

Lyapunov exponents is a natural substitute. Conditional Lyapunov exponents have

been used to analyze stability since the seminal work on synchronization by Pecora

and Carroll [7, 50, 57, 73–75, 89]. Thus conditional Lyapunov exponents have been

used to analyze the stability of the synchronization manifold for chaotic ODEs [7,50,

57,74,90] and coupled PDEs that exhibit spatiotemporal chaos [73,75].

Both methods are commonly used for parameter estimation problems within the

synchronization framework. For example, the original method for estimating param-

eters based on synchronization, or autosynchronization, is proven robust by demon-

strating a Lyapunov function [44]. Autosynchronization is also analyzed using con-

ditional Lyapunov exponents [45]. Furthermore, a method for parameter estimation

for a PDE is designed based on a Lyapunov function in [86], wherein the parameter

is updated using a spectral decomposition. Also, parameters for a PDE system are

estimated based on a Lyapunov design [87].

We have shown that it is possible to estimate spatially dependent parameters for

a PDE system by autosynchronization using a combination of diffusive and complete

replacement coupling of observed data to force the response model and parameters to

synchronize with observables. Coupling strength drastically affects synchronization
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speed and even stability [52]. We analyze the stability of the identical synchronization

manifolds and discuss conditions for which synchronization is guaranteed for these

systems.

We begin with some useful definitions and theorems necessary to discuss stability.

We next show that the stability of a synchronization manifold can be recast into the

introduced stability theory. We show that, under certain conditions, the proof in the

ODE case extends immediately to the PDE case. Thus, we prove the synchronization

manifold for a system of PDEs is in fact stable for certain coupling schemes used

in parameter estimation by demonstrating a Lyapunov functional. We next discuss

the numerical techniques used to estimate Lyapunov exponents. Finally, we analyze

stability using conditional Lyapunov exponents for the cases in which we are unable to

find an appropriate Lyapunov functional, considering systems of ODEs and extending

to the approximation of PDEs.

5.1 Proving Stability for a Synchronization Mani-

fold

Consider a nonlinear system

ẋ = f(x), (5.1)

where we wish to study the stability of the equilibria points. The study of a

synchronization manifold may be recast as the study of the stability of a nonlinear

system. Therefore, methods in analyzing the nonlinear system above are adequate

to determine local and global stability of a synchronization manifold. We begin with

some definitions and theorems pertaining to the stability of the equilibria of Eq (5.1).

Definition 5.1.1. (Perko, 127) If f ∈ C1(E), L ∈ C1(E) and ψt is the flow of the

differential equation (5.1), then for x ∈ E the derivative of the function L(x) along
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the solution ψt(x) is

L̇(x) = d

dt
L(φt(x))|t=0 = DL(x)f(x). (5.2)

In some sense, L acts as an energy-like function for such trajectories. In fact, tra-

jectories can be shown to approach an equilibrium, thus answering stability questions,

if L and its derivative exhibit certain properties.

Definition 5.1.2. (Alligood, Sauer, & Yorke, 305) Let x0 be an equilibrium of Eq

(5.1). A function L : Rn → R is called a Lyapunov Function for x0 if for some

neighborhood E of x0 the following conditions hold:

1. L(x0) = 0, and L(x) > 0 ∀ x 6= x0 in E, and

2. L̇(x) ≤ 0 ∀ x ∈ E.

The question of whether or not the identical synchronization manifoldM is stable

may be solved using an approach due to Lyapunov.

Theorem 5.1.3. (Perko, 127) Let E be an open subset of Rn containing x0. Suppose

that f ∈ C1(E) and that f(x0) = 0. Suppose further that there exists a Lyapunov

function L ∈ C1(E). Then if L̇(x) ≤ 0 ∀ x ∈ E, x0 is stable; if L̇(x) < 0 ∀

x ∈ E v {x0}, x0 is asymptotically stable; if L̇(x) > 0 ∀ x ∈ E v {x0}, x0 is

unstable.

Here, we demonstrate a Lyapunov functional to show the synchronization man-

ifold is asymptotically stable for various response systems with respect to the drive

system. For stability of a synchronization manifold, without loss of generality, we

shift coordinates so that L(0) = 0. If a Lyapunov functional can be found for our

system, the synchronization manifold is proven stable in that domain; furthermore, if
dL
dt

(0) < 0 then the manifold is asymptotically stable. Thus transverse perturbations

will converge toward the manifold, which is requisite for our application.
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5.1.1 A Lyapunov Function for an ODE

We use a simple example to introduce the method under consideration and begin with

synchronization between drive and response systems when sampling both species.

Therefore, we consider the ODE systems corresponding to Eq (4.7) and Eq (4.8),

from Chapter 4,

dP

dt
= P (1− P )− PZ

P + h
, Drive System (5.3)

dZ

dt
= k

PZ

P + h
−mZ,

dP̂

dt
= P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), Response System

dẐ

dt
= k

P̂ Ẑ

P̂ + h
−mẐ + κ(Z − Ẑ).

This system will synchronize very quickly for large enough coupling strength κ, per-

haps no surprise for the ODE case. Simulation results are shown in Figure 5.1 where

solutions for the two systems are plotted together with solid lines representing the

drive system and dashed lines representing the response system. In Figure (b), we

see log of the absolute values of the errors between drive and response systems plot-

ted as the systems evolve. Initial conditions were taken from the drive system after

transients to be P (0) = 0.0282, Z(0) = 0.2, and Ẑ(0) = P̂ (0) = 2. Furthermore, we

let the coupling strength κ = 2.

Theorem 5.1.4. The identical synchronization manifold M = [P = P̂ , Z = Ẑ] is

globally asymptotically stable for the coupling between drive and response systems in

Eq (5.3) for κ = 2.

Proof. The identical synchronization manifold for the systems Eq (5.3) can be written

118



(a)

(b)

Figure 5.1: Solutions for drive and response systems plotted over time shown in (a).
Log of the absolute values of errors between drive and response shown over time in
(b). Coupling strength used is κ = 2.
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as M = {P = P̂ , Z = Ẑ}. However, we make the change of coordinates

e =

e1

e2

 =

P − P̂
Z − Ẑ

 (5.4)

such thatM can now be writtenM = {0, 0}. That is, we simply study the stability of

the origin, a question we may answer with a Lyapunov function in the new coordinate

system. Therefore, we suggest the Lyapunov function

L(e1, e2) = e2
1 + e2

2. (5.5)

The derivative of L with respect to time is

1
2
dL

dt
= e1

de1

dt
+ e2

de2

dt
, (5.6)

using the chain rule. And since

de1

dt
= e1(1− κ) + P̂ 2 − P 2 + P̂ Ẑ

P̂ + h
− PZ

P + h
, (5.7)

de2

dt
= k

(
PZ

P + h
− P̂ Ẑ

P̂ + h

)
− e2(m+ κ),

we have that

1
2
dL

dt
= e2

1(1− κ) + e1

(
P̂ 2 − P 2 + P̂ Ẑ

P̂ + h
− PZ

P + h

)
(5.8)

+ e2k

(
PZ

P + h
− P̂ Ẑ

P̂ + h

)
− e2

2(m+ κ),

which we would like to be strictly negative. The terms are rather messy, but we have
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the freedom to choose κ > 1 large enough such that

|(1− κ)| > e1

(
P̂ 2 − P 2 + P̂ Ẑ

P̂ + h
− PZ

P + h

)
, (5.9)

|m+ κ| > e2k

(
PZ

P + h
− P̂ Ẑ

P̂ + h

)
,

for all t > 0, which holds for our chosen κ. We can bound these terms in a worst-case

scenario. Since 0 < P < 1 and 0 < Z < 2, and since the response system is clipped

at 0 < P̂ < 2, and 0 < Ẑ < 2, we must have that |e1| < 2 and |e2| < 2. Thus if we

choose κ large enough such that

|(1− κ)| > 6 > −2
(

0− 1 + 0
0 + h

− 2
1 + h

)
, (5.10)

|m+ κ| > 8 > 4
( 2

1 + h
− 0

0 + h

)
, (5.11)

an extremely liberal bound, we are assured that dL
dt
< 0 for all t > 0. Thus, we have

demonstrated a Lyapunov function for the system Eq (5.3) and by Theorem 5.1.3,

are assured that the origin, corresponding to the identical synchronization manifold

is asymptotically stable.

Thus we have proven that for all initial conditions, and large enough coupling

strength, we will observe synchronization between the two systems.

Consider another form of coupling between the systems as

dP

dt
= P (1− P )− PZ

P + h
, Drive System (5.12)

dZ

dt
= k

PZ

P + h
−mZ,

dP̂

dt
= P̂ (1− P )− PZ

P + h
+ κ(P − P̂ ), Response System

dẐ

dt
= k

PZ

P + h
−mẐ,

121



where we are coupling much more for the sake of analytic repose.

Theorem 5.1.5. The identical synchronization manifold M = [P = P̂ , Z = Ẑ] is

globally asymptotically stable for the coupling between drive and response systems in

Eq (5.12) for κ > 1.

Proof. With this coupling and the change of coordinates, we find that

de1

dt
= e1(1− P − κ), (5.13)

de2

dt
= −e2(m+ κ),

which is much easier to handle analytically. A Lyapunov function is given again by

Eq (5.5) and thus

1
2
dL

dt
= e2

1(1− P − κ)− e2
2m, (5.14)

which is strictly negative if κ > 1. Again, under the conditions of Theorem 5.1.3, we

are guaranteed that the identical synchronization manifold is globally asymptotically

stable.

Results are shown in Figure 5.2, where drive and response systems are shown to

synchronize identically after a short time by choosing κ = 1.
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(a)

(b)

Figure 5.2: Solutions for drive and response systems plotted over time shown in (a).
Log of the absolute values of errors between drive and response shown over time in
(b). Coupling strength used is κ = 1.
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5.1.2 A Lyapunov Functional for a PDE

We next extend the Lyapunov function from the ODE case to a Lyapunov functional

for the PDE case. This provides a blueprint for proving asymptotic stability when

using a certain class of Lyapunov functions. We will require the vector form of Green’s

Identity in this extended framework.

Theorem 5.1.6. (Marsden, 575) Let Ω ⊂ R2 be a simple region and let ∂Ω be its

boundary. Let F = P i +Qj be a C1 vector field on D. Then

∫
∂Ω
f∇g · ndS =

∫
Ω

(f∇2g +∇f · ∇g) dxdy. (5.15)

Recall the domain, Ω is a simple compact subset of R2 with smooth boundary,

∂Ω. Now, consider the system Eq (5.12) extended as

∂P

∂t
= 4P + P (1− P )− PZ

P + h
, Drive System (5.16)

∂Z

∂t
= 4Z + k

PZ

P + h
−mZ,

∂P̂

∂t
= 4P̂ + P̂ (1− P )− PZ

P + h
+ κ(P − P̂ ), Response System

∂Ẑ

∂t
= 4Ẑ + k

PZ

P + h
−mẐ,

over Ω.

Theorem 5.1.7. The identical synchronization manifold M = [P = P̂ , Z = Ẑ] is

globally asymptotically stable for the coupling between drive and response reaction-

diffusion PDE systems in Eq (5.16) for κ > 1.

Proof. With the change of coordinates this system becomes

∂e1

∂t
= 4e1 + e1 − Pe1 − κe1,

∂e2

∂t
= 4e2 −me2, (5.17)
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because of the linearity of the Laplacian. The reaction part of the reaction-diffusion

system Eq (5.17) is continuously differentiable since we enforce that P > 0 for all

x, y, and t. We introduce the Lyapunov functional L̂ : C2 × C2 → R

L̂(t) =
∫

Ω
L(e1(x, y, t), e2(x, y, t)) dxdy. (5.18)

Then,

∂L̂

∂t
= ∂

∂t

∫
Ω
L(e1(x, y, t), e2(x, y, t)) dxdy,

=
∫

Ω

∂L

∂e1

∂e1

∂t
+ ∂L

∂e2

∂e2

∂t
dxdy,

=
∫

Ω
∇L ·


de1
dt

de2
dt

 dxdy,

=
∫

Ω
∇L ·


4e1 + de1

dt

4e2 + de2
dt

 dxdy,

=
∫

Ω

( 2∑
i=1

∂L

∂ei

)
4ei dxdy +

∫
Ω

∂L

∂t
dxdy,

where we invoke the Lebesgue Dominated Convergence Theorem to differentiate under

the integral, since |e1| < 2 and |e2| < 2, |L| < D = 8. Therefore D is integrable over

Ω for all t and the derivative ∂L
∂t

exists for all t > 0 and all x ∈ Ω.

We have already shown that for 1− P − κ < 0, then ∂L
∂t
< 0 for all x ∈ Ω, t > 0,
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which implies
∫
Ω L̇ < 0. From Green’s identity, we have

∫
Ω

∂L

∂ei
4ei dxdy =

∫
∂Ω

∂L

∂ei

∂ei
∂n

dxdy −
∫

Ω
∇
(
∂L

∂ei

)
· ∇ei dxdy,

=
∫

Ω

n∑
j=1

n∑
k=1

[
∂2L

∂ei∂ek

∂ei
∂xj

∂ek
∂xj

]
dxdy.

The above relies on zero-flux boundary conditions so that ∂ei/∂n = 0 ∀i, which follows

from the boundary conditions on the drive and response PDEs. If L(x) satisfies

1. L(x) =
n∑
i=1

hi(xi), (5.19)

2. h′′i (x) ≥ 0 for i = 1, 2, ...n,

then the matrix
(

∂L
∂ei∂ek

)
is positive definite ∀i, k [83]. Since both conditions hold for

our choice of L, we have shown that

∂L̂

∂t
< 0, (5.20)

and the synchronization manifoldM = {P = P̂ , Z = Ẑ} is asymptotically stable.

Since this analysis presumed all possible values of the response model, P̂ , Ẑ ∈ [0, 2]

∀ x, y ∈ Ω, and ∀ t > 0, this is actually a global result.

Thus we have proven why identical synchronization is observed for the spatially-

dependent drive-response PDE systems corresponding to Eq (5.3) and Eq (5.12).

In fact, spatially-dependent parameters given by Eq (4.20), Eq (4.21), or the spiral

parameters shown in Figure 4.6e will have little affect on the validity of this proof as

they are bounded by the scalar values k(x, y) < 2 and m(x, y) < 0.6 on a compact

domain.
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5.1.3 Autosynchronization

We have shown that it is sufficient to demonstrate a Lyapunov function, although

restricted to a certain class of functions, for a corresponding ODE system in order

to prove asymptotic stability on M . Therefore, we now demonstrate a Lyapunov

function for some autosynchronization coupling schemes and omit the PDE extension

as it simply follows from Theorem 5.1.7. Therefore, consider the autosynchronization

design below

∂P

∂t
= 4P + P (1− P )− PZ

P + h
, Drive (5.21)

∂Z

∂t
= 4Z + k

PZ

P + h
−mZ,

∂P̂

∂t
= 4P̂ + P̂ (1− P )− P̂Z

P + h
+ κ(P − P̂ ), Response

∂Ẑ

∂t
= 4Ẑ + k

PZ

P + h
− m̂Ẑ,

∂m̂

∂t
= Z(Ẑ − Z),

where only m is to be estimated and both species are sampled.

Theorem 5.1.8. The identical synchronization manifold M = [P = P̂ , Z = Ẑ,m =

m̂] is globally asymptotically stable for the coupling between drive and response reaction-

diffusion PDE systems in Eq (5.21) for κ > 1.

Proof. The corresponding ODE equations in the transformed coordinate system are

ė1 = e1 − Pe1 −
Ze1

P + h
− κe1,

ė2 = −mZ − m̂Ẑ,

ė3 = −Ze2.
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We extend the Lyapunov function for the coupling in Eq (5.21) as,

L(e1, e2, e3) = e2
1 + e2

2 + e2
3. (5.22)

Then

1
2
∂L

∂t
= e1ė1 + e2ė2 + e3ė3

= e2
1

(
1− P − Z

P + h
− κ

)
− e2(−mZ − m̂Ẑ) + Ze3e2,

where P , Z
P+h , and κ are strictly positive. Ignoring the e2

1 term, the rest of the

equation expands as

−e2(−mZ − m̂Ẑ) + Ze3e2 = −e2mZ + e2m̂Z + e2m̂Ẑ − e3ZẐ + e3Z
2,

= −mZ2 +mZẐ + m̂ZẐ − m̂Z2 −mZẐm̂ZẐ +mZ2 − m̂Z2,

= 2m̂ZẐ − m̂Ẑ2 − m̂Z2,

= −m̂(Z − Ẑ)2,

= −m̂e2
2.

So the derivative of the Lyapunov function simplifies to

1
2
∂L

∂t
= −e2

1

(
1− P − Z

P + h
− κ

)
− m̂e2

2, (5.23)

which is strictly negative for m̂ > 0 and κ > 1. We restrict parameters to be non-

negative so if (1− P − Z
P+h − κ) < 0 then ∂L

∂t
< 0 and the synchronization manifold

is asymptotically stable; we observe m̂ → m, P̂ → P , and Ẑ → Z for the ODE

system.
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Figure 5.3 shows the expected results based on the analysis above for κ = 2.6.

Initial conditions are set to P̂ = Ẑ = m̂ = 2. Both species and the parameter are

shown to synchronize identically over time.
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(a)

(b)

Figure 5.3: Solutions for drive and response systems plotted over time shown in (a).
Drive and response parameter values m and m̂ shown in (b). Coupling strength used
is κ = 2.6.
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Figure 5.4: Log of the absolute values of errors between drive and response shown
over time.

With the analysis shown in Section 5.1.2, we are able to quickly extend to the PDE

case with spatially dependent parameters and be assured of the asymptotic stability

of the synchronization manifold. Thus, the preceding analysis allows one to look for

a Lyapunov function for a corresponding ODE system, a much easier task.

We see the expected results for the PDE system in Figures 5.5 and 5.6, where we

used the same coupling strength as shown for the ODE in Figures 5.3 and 5.4. For

this simulation, initial conditions are set to P̂ (x, y, 0) = Ẑ(x, y, 0) = m̂(x, y, 0) = 2

to agree with the ODE simulation. The images represent drive-response pairs for

phytoplankton, zooplankton, and the parameter m(x, y). The first row shows initial

conditions, the second row describes results at t = 30, and the third row represents

results at t = 95, after which simulations were terminated since the parameter is

estimated to satisfaction. The parameter m(x, y) has been estimated to within a

globally-averaged relative error of 1.0e−7. Figure 5.7 shows the globally-averaged
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relative synchronization errors between phytoplankton, zooplankton, and the param-

eters on a log scale. We see phytoplankton synchronizes very rapidly with respect to

the other two pairs of components.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Autosynchronization of response system Eq (5.21) and spatially dependent
parameter m. Figure 5.5a describes P (x, y, 0) over P̂ (x, y, 0), Figure 5.5c describes
P (x, y, 30) over P̂ (x, y, 30), and Figure 5.5e describes P (x, y, 95) over P̂ (x, y, 95). Sim-
ilarly, Figure 5.5b describes Z(x, y, 0) over Ẑ(x, y, 0), Figure 5.5d describes Z(x, y, 30)
over Ẑ(x, y, 30), and Figure 5.5f describes Z(x, y, 95) over Ẑ(x, y, 95). Model param-
eters given by swirly parameters shown in Figure 4.6f. Coupling strength is set to
κ = 2.6.
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(a) (b)

(c)

Figure 5.6: Autosynchronization of response system Eq (5.21) and spatially dependent
parameter m. Figure 5.6a describes M(x, y) over M̂(x, y, 0), Figure 5.6b describes
M(x, y) over M̂(x, y, 30), and Figure 5.6c describes M(x, y) over M̂(x, y, 95). Model
parameters given by swirly parameters shown in Figure 4.6f. Coupling strength is set
to κ = 2.6.
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Figure 5.7: Globally averaged relative synchronization errors shown between drive
and response systems. Coupling strength used is κ = 2.6. Phytoplankton shown in
red, zooplankton shown in blue, parameter m shown in black.

Our choice of L obeys Eq (5.19) and we are guaranteed that the analysis extends

to the PDE case by choosing,

L̂(t) =
∫

Ω
L(e1(x, y, t), e2(x, y, t), e3(x, y, t)) dxdy, (5.24)

thus proving asymptotic stability for the synchronization manifold [P = P̂ , Z =

Ẑ,m = m̂] for the appropriate range of coupling strengths. This is a remarkable tool

with respect to rigorously proving asymptotic stability, however is very difficult to

obtain given arbitrary couplings. In fact, we have been unable to find a Lyapunov

function for many of the couplings shown in Chapter 4 where only phytoplankton

are sampled. Due to the complexity of the equations in the transformed coordinate

system whence only sampling phytoplankton, a Lyapunov function has been elusive

and therefore so has proof of stability. Thus, we next turn to empirical methods for
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many of the response systems considered in Chapter 4.

5.2 Conditional Lyapunov Exponents

Since several the of above drive-response systems have proven quite difficult to analyze

by the Lyapunov direct method, we now analyze instead using conditional Lyapunov

exponents. Conditional Lyapunov exponents are often used to analyze the stability of

a synchronization manifold [7,50,57,73–75,89]. Conditional Lyapunov exponents are

also known as transverse Laypunov exponents due to the fact that they were originally

to be computed in the directions transverse to the synchronization manifold [57].

Clearly a maximum exponent being negative would imply that perturbations die out

and the manifold is at least locally asymptotically stable.

We begin by defining some terms relevant to computing Lyapunov exponents and

derive the associated variational equations. We then briefly discuss some numerical

techniques used to estimate Lyapunov exponents. The conditional Lyapunov expo-

nents are computed for some of the coupled ODE systems from Chapter 4 and shown

to be negative for the coupling strengths used. Finally, the conditional Lyapunov

exponents are estimated for the n coupled ODEs representing the numerical approx-

imation of PDEs to analyze stability in the PDE case.

5.2.1 Lyapunov Exponents

We first build some vocabulary to define a Lyapunov exponent. Consider a dynamical

system

ẋ = f(x), (5.25)

for x ∈ Rn and f : Rn → Rn.

Definition 5.2.1. (Yorke, 69) Let f : Rn × Rn , and let x ∈ Rn . The Jacobian
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matrix of f at x, denoted Df(x), is the matrix

Df(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
... ...

∂fn
∂x1

(x) · · · ∂fn
∂xn

(x)

 (5.26)

of partial derivatives evaluated at x.

We now define the notion of a solution set of a differential equation for arbitrary

times and initial conditions.

Definition 5.2.2. (Alligood, Sauer, & Yorke, 277) Given a dynamical system, Eq

(5.25), the flow φ is the function of time and initial condition that represents the set

of solutions. That is φ(t,x0) is the value at time t of the solution with initial value

x0.

We use a more compact notation and denote the flow as φt(x0). Since the flow is

itself a function, we define a map for the flow for the differential equation.

Definition 5.2.3. (Alligood, Sauer, & Yorke, 381) The time-τ map of a flow φτ (x0)

is the mapping of the solution of a differential equation 5.25 from initial condition x0

to some x ∈ Rn after a fixed time τ .

Next we define the linearization about a solution trajectory or a flow with initial

condition φt(x0). For a fixed τ , the Jacobian of the flow Dφτ (x0) is an n× n matrix.

We derive the variational equation for the differential equation in the following way.

Write the time derivative of the time map of the flow as

d

dt
φt(x0) = f(φt(x0)),
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which follows by definition. Then differentiate with respect to x0 using the chain rule

d

dt
Dφt(x0) = Df(φt(x0)) ·Dφt(x0).

Definition 5.2.4. (Alligood, Sauer, & Yorke, 382) Given a dynamical system 5.25,

and a corresponding flow φt(x0), the variational equation of 5.25 is the linear differ-

ential equation given by

d

dt
Dφt(x0) = Df(φt(x0)) ·Dφt(x0). (5.27)

The variational equation tells one how the flow φt acts with respect to small

variations in the initial point x0. The matrix Dφt(x0), if known, describes how

the time-t flow map acts under small variations in the initial condition. The matrix

Df(φt(x0)) is the Jacobian of the right hand side of the differential equation Eq (5.25)

evaluated along a solution with initial condition x0. This highlights the importance

of defining a time-τ flow map. The variational equation is discretized in time and the

Jacobian Df(φt(x0)) acts as a matrix update. The notion of a Lyapunov exponent is

often derived first for maps [6,88], thus the time-τ flow map allows for the continuous

time generalization.

We next define the Lyapunov number and the corresponding Lyapunov expo-

nent in one dimension. Denote φτ (x0) = x1, φτ (x1) = x2, and for arbitrary n,

φτ (xn) = xn+1, so that the time-τ flow map yields an orbit of the dynamical system

{x0, x1, ...xn}.

Definition 5.2.5. (Alligood, Sauer, & Yorke,107) Let f : R → R be a smooth func-

tion. The Lyapunov number rτ (x0) of the orbit {x0, x1, ...xn} given by the time-τ

flow map is defined as

rτ (x0) = lim
n→∞

(|f ′(x1) · · · |f ′(xn)|)1/n,
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if the limit exists.

Definition 5.2.6. (Alligood, Sauer, & Yorke,107) The Lyapunov exponent µτ (x0) is

defined as

hτ (x0) = lim
n→∞

1
n

(ln |f ′(x1) + · · ·+ ln |f ′(xn)|) ,

if this limit exists. More simply we have ln(rτ (x0)) = µτ (x0).

The Lyapunov number and exponent describe the average stretching rate of two

nearby initial conditions subject to a flow. Another definition frequently used [88] for

a Lyapunov exponent is

µτ ≈ 1
n

ln δn
δ0
,

where δ0 is extremely small and δn is the separation of two nearby initial conditions,

x0 and x0 + δ0, after n iterates of the time-τ flow map. Thus, intuitively, a Lyapunov

exponent describes the average rate of separation between two nearby initial condi-

tions under the flow. A negative stretching rate implies the points are moving toward

each other while a positive stretching rate indicates they are evolving apart.

We now generalize the definitions to Rn , where we are interested in the stretching

rate of an infinitesimal hypersphere by the n-dimensional flow.

Definition 5.2.7. (Alligood, Sauer, & Yorke,195) Let f ∈ C1(x) on Rn and let

N ∈ Rn be the unit sphere. Denote the kth longest orthogonal axis of the ellipsoid

DφτN to be rτk . The Lyapunov number rτk measures the contraction or expansion in

a neighborhood of an orbit of x0 of the time-τ flow map.

The Lyapunov exponent is calculated naturally from the Lyapunov number.

Definition 5.2.8. (Alligood, Sauer, & Yorke,195) The kth Lyapunov exponent of x0

is

µτk = ln rτk . (5.28)
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The Lyapunov exponents for a system Eq (5.25) can be calculated by solving

the variational equation. The variational equation describes how an infinitesimal

hypersphere is stretched and contracted by the flow. Thus, it is necessary to simulate

the variational equation forward in time as a time-τ map. After each time-τ epoch,

find the square roots of the eigenvalues of the associated symmetric matrix DφTτDφτ

to obtain the average orthogonal stretching rates about a trajectory.

Recall, however that the Jacobian Df(φt(x0)) depends explicitly on the solution

of the differential equation Eq (5.25). Therefore, we must concurrently solve the

dynamical system Eq (5.25).

5.2.2 Numerical Estimation of Lyapunov Exponents

There are two popular methods used to produce estimates for Lyapunov exponents

[6, 88, 91]. Computationally, the estimation of Lyapunov exponents is challenging

since the linearized system may cause an infinitesimal hypersphere to quickly stretch

in certain directions and shrink in others [6]. If an ellipsoid has both shrinking and

stretching directions, for long time the ellipsoid will become quite long and thin; this

results in the Jacobian growing increasingly ill-conditioned. Good methods avoid the

scaling problem by normalizing before numbers become computationally problematic.

The first is found in [6], and requires that an orthonormal basis is found after

every time iteration to maintain that the stretching rates are calculated in orthogonal

directions. This method requires the full solution of the variational equations and

yields all Lyapunov exponents for the flow. To re-orthogonalize after every iteration,

the Gram-Schmidt orthogonalization method is used. We will not estimate Lyapunov

exponents in this way as we require only the largest Lyapunov exponent.

The method we will use, which we will describe in some detail, is based on the

power method for matrix multiplication [92], first developed in [91]. This method

rather estimates the largest Lyapunov exponent such that its negativity assures sta-
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bility. We begin with matrix properties necessary to apply the method.

A matrix times its transpose contains some nice properties.

Lemma 5.2.9. Let A ∈ Rn×n. The matrix AAT is a symmetric matrix with non-

negative real eigenvalues.

Proof. Suppose A ∈ Rn×n. Then

(AAT )T = (AT )TAT ,

= AAT .

Furthermore, suppose x is a unit eigenvector of AAT and λ is an associated eigenvalue.

Then

AATx = λx.

(5.29)

Therefore

0 ≤ ‖Ax‖2,

= xTATAx,

= xTAATx,

= xTλx,

= λ.

Finally, we prove the eigenvalues are real. Let A ∈ Rn×n and x ∈ Cn be an

eigenvector of AAT , with λ ∈ C as an associated eigenvalue. Then clearly AAT ∈ Rn

and we can write λ = α + iβ with α, β ∈ R. Denote λ∗ = α − iβ, the complex
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conjugate of λ. Then since

AATx = λx, (5.30)

we multiply both sides by (x∗)T , to obtain

(x∗)Tλx = (x∗)T (AATx),

= ((x∗)TAAT )x,

= ((AAT )Tx∗)Tx,

= (AATx∗)Tx. (5.31)

Now taking the conjugate of both sides of Eq (5.30) gives

(AATx)∗ = (λx)∗ so that

AATx∗ = λ∗x∗, (5.32)

since AAT is real. Finally, combining Eq (5.31) and Eq (5.32), we see that

(AATx∗)Tx = (λ∗x∗)Tx = (x∗)Tλx, so

(λ− λ∗)(x∗)Tx = 0. (5.33)

We know ‖x‖∞ > 0 as it is an eigenvector and at least one entry is non-zero. Further-

more, for any complex number y = α− iβ, y∗y = α2 + β2 ≥ 0 is real. Therefore, Eq

(5.33) implies that λ∗ = λ so that λ is real and so is the associated eigenvector.

We next define the useful singular value decomposition of a matrix.

Definition 5.2.10. Given a matrix A ∈ Rm×n, the singular value decomposition
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(SVD) of A is a factorization of the form

A = UΣV T , (5.34)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a diagonal

matrix with the singular values, s1, s2...sn, of A on the diagonal.

In R2, a matrix times a circle results in an ellipse. Therefore, the action on an

infinitesimal hypersphere of initial perturbations from an initial condition x0 will

uncover the average stretching about trajectories starting at that point; we measure

of the lengths of the orthogonal axes of the resulting ellipse.

Theorem 5.2.11. (Yorke, 89) Let A ∈ Rn×n and let N be the unit hypersphere in Rn

. Let the eigenvectors and eigenvalues of AAT be given by s2
1, s

2
2 · · · s2

n and u1, u2 · · ·un

respectively. Then the axes of the ellipse AN are s1u1, s2u2 · · · snun.

Therefore, we have shown that the unit hypersphere is transformed by a matrix

A into a hyperellipse with semi-axes give by the square roots of the eigenvalues of

AAT . We exploit this geometry to find the rates of separation between nearby initial

conditions in a flow.

Assuming infinitesimal perturbations allows for the linearization of a flow by the

Jacobian, an n × n matrix. This Jacobian matrix transforms an infinitesimal circle

to an ellipsoid (in two dimensions) whose semi-axes are given by the square roots of

the eigenvalues of the Jacobian multiplied by its transpose. Thus, by finding these

eigenvalues, we are able to estimate the Lyapunov numbers and associated Lyapunov

exponents for the flow. We now discuss a numerical estimation technique.

The method we use is based on the power method for matrix multiplication. The

power method is a very simple method that allows for the estimation of the largest

eigenvalue of a matrix iteratively [93].
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Definition 5.2.12. (Lay, 363) The matrix A ∈ Rn×n has a strictly dominant eigen-

value λ1 if λ1 is larger in absolute value than all other eigenvalues. The corresponding

eigenvector is called the dominant eigenvector.

So if A has strictly dominant eigenvalues, the eigenvalues may be ordered as

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|,

where the first inequality must be strict.

Theorem 5.2.13. (Golub, Van Loan, 331) Suppose A ∈ Rn×n has a strictly domi-

nant eigenvalue λ1. The power method is an iterative method for finding λ1 and the

corresponding eigenvector v1. Start with the initial guess x0, with ones in every entry

of the vector. Then build a recursive sequence as

µnxn+1 = yn = Axn, so that

xn+1 = 1
µn

yn,

where

µn = ‖yn‖∞.

Then the sequences generated will converge to the largest eigenvalue and corresponding

eigenvector

lim
n→∞

xn = v1 and lim
n→∞

µn = λ1,

and almost every initial guess x0 will work.

The method is now proven robust under the additional condition requiring that

A have n distinct eigenvalues.

Proof. Suppose A ∈ Rm×m has m distinct eigenvalues, including a strictly dominant
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eigenvalue λ1, and order them according to

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λm|.

Since A has rank m, there are m corresponding eigenvectors that form a linearly

independent basis for the m-dimensional space. Thus, we write an initial guess x0, in

terms of this basis as

x0 = c1v1 + c2v2 + · · ·+ cmvm,

where the eigenvectors are normalized such that ‖xj‖∞ = 1 for j = 1 : m and such

that c1 6= 0 . Then the first iterate of the power method yields

y0 = Ax0 = A (c1v1 + c2v2 + · · ·+ cmvm) ,

= (c1Av1 + c2Av2 + · · ·+ cmAvm) ,

= (c1λ1v1 + c2λ2v2 + · · ·+ cmλmvm) ,

= λ1

(
c1v1 + c2

λ2

λ1
v2 + · · ·+ cm

λm
λ1

vm
)
,

since we know c1 6= 0. Then

x1 = λ1

µ1

(
c1v1 + c2

λ2

λ1
v2 + · · ·+ cm

λm
λ1

vm
)
.
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Continuing recursively, the nth iterate yields

yn−1 = Axn−1,

= A
λn−1

1
µ1µ2 · · ·µn−1

c1v1 + c2

(
λ2

λ1

)n−1

v2 + · · ·+ cm

(
λm
λ1

)n−1

vm

 ,

= λn−1
1

µ1µ2 · · ·µn−1

c1Av1 + c2

(
λ2

λ1

)n−1

Av2 + · · ·+ cm

(
λm
λ1

)n−1

Avm

 ,

= λn−1
1

µ1µ2 · · ·µn−1

c1λ1v1 + c2

(
λ2

λ1

)n−1

λ2v2 + · · ·+ cm

(
λm
λ1

)n−1

λmvm

 ,
= λn1
µ1µ2 · · ·µn−1

(
c1v1 + c2

(
λ2

λ1

)n
v2 + · · ·+ cm

(
λm
λ1

)n
vm
)
,

where we rewrite as a recursion

xn = λn1
µ1µ2 · · ·µn

(
c1v1 + c2

(
λ2

λ1

)n
v2 + · · ·+ cm

(
λm
λ1

)n
vm
)
. (5.35)

We note that since it was assumed that |λ1| > λj for j = 2 : m, the sequence

lim
n→∞

cj

(
λj
λ1

)n
vj → 0 as n→∞, for j = 2 : m. (5.36)

Therefore, taking the limit of Eq (5.35) gives

lim
n→∞

xn = lim
n→∞

c1λ
n
1

µ1µ2 · · ·µn
v1. (5.37)

By assumption, we have that for all j, ‖xj‖∞ = 1 and ‖v1‖∞ = 1, so that the largest

component of the vectors in Eq (5.37) will be one. This enforces that

lim
n→∞

c1λ
n
1

µ1µ2 · · ·µn
= 1, (5.38)
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otherwise a component of v1 would be scaled incorrectly. Eq (5.38) implies that

lim
n→∞

xn = v1, (5.39)

and we have proven that the sequence of iterates {xn} converges to the eigenvector

corresponding to the largest eigenvalue v1. We note that

lim
n→∞

c1λ
n−1
1

µ1µ2 · · ·µn−1
= 1. (5.40)

Then divide Eq (5.38) by Eq (5.40), to observe that

lim
n→∞

c1λ
n
1 (µ1µ2 · · ·µn−1)

c1λ
n−1
1 (µ1µ2 · · ·µn)

= 1,

which implies

lim
n→∞

λ1

µn
= 1, so that lim

n→∞
µn = λ1,

and the sequence of iterates {cn} converges to the largest eigenvalue λ1.

Thus, we have proven that, under certain conditions, the power method will con-

verge to the dominant eigenvalue of a matrix. The rate of convergence to the dominant

eigenvalue is determined by the ratio of the second-largest eigenvalue to the dominant

eigenvalue.

Theorem 5.2.14. The rate of convergence of the power method is linear.

Proof. We have already shown in Eq (5.36) that for any j,

(
λj
λ1

)n
→ 0 as n→∞.

This rate is in proportion to
(
λj
λ1

)n
< 1. However, the slowest rate is dominated by

the coefficient
(
λ2
λ1

)n
< 1. This, then is the speed at which {xn} → v1, which is linear.
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In the same way, the rate of convergence of the sequence of coefficients {cn} → λ1 is

linear.

Therefore a drawback to the power method is that the rate of convergence can be

very slow if λ2 ≈ λ1. The algorithm for the power method is described below.

Definition 5.2.15. The power method for estimating a strictly dominant eigenvalue

[94] :

1. Start with an initial vector x0

2. For n = 0, 1, 2, · · · ,

(a) Find A xn

(b) Let µn be an entry in Axn, with largest absolute value, µn = ‖Axn‖∞.

(c) Compute xn+1 = 1
µn
Axn

3. For almost every choice of initial condition x0, the sequence {µn} approaches a

corresponding eigenvector.

Finally, we discuss how the power method is used to estimate a Lyapunov exponent

based on the variational equations Eq (5.27). In [92], the Lyapunov exponents are

found by solving Eq (5.27) and estimating

µmax(T ) ≈ 1
T

ln ‖v(T )‖2

‖v0‖2
. (5.41)

We arrive at this rate of separation by applying the power method on the Jaco-

bian in the variational equation, Df(φτ (x0))Df(φτ (x0))T for a given initial condition.

The eigenvalues of this matrix will describe the local stretching rates in orthogonal

directions that we require to estimate the largest Lyapunov exponent.
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5.2.3 Conditional Lyapunov Exponents

Now that we have studied a method for estimating the largest Lyapunov exponent,

we adapt this method to study the largest conditional Lyapunov exponent for a pair

of coupled dynamical systems. Conditional Lyapunov exponents are used by many

authors to analyze the stability of a synchronization manifold for a given coupling

[7, 50, 57,73–75,89].

There are some discrepancies in terms of the formal definition of a conditional

Lyapunov exponent. For example, in [7], they are defined to be the Lyapunov expo-

nents of the associated system with coordinated changed to be in transverse directions

to the identical synchronization manifold. However, in [50] they are defined as the

Lyapunov exponents found by evaluating the Jacobian of right hand side of a response

system Df(φr, φd), which because of coupling, is conditional upon both the drive and

response systems. Here, we will accept the former definition based on of the work

in [7].

Definition 5.2.16. Let ẋ = f(x) be a dynamical system with which ẏ = f(y,x)

is coupled. Define the transverse coordinate e = x − y so the dynamical system in

transverse space becomes ė = f(x) − f(x,y). Then the variational equations of the

system are given by

ė = Df(x,y) · e, (5.42)

and the conditional Lyapunov exponents are the Lyapunov exponents of the system

Eq (5.42).

The Lyapunov exponents for the new system depend on the coupling from the

drive system, hence the word conditional. We first show how conditional Laypunov

exponents are found when sampling phytoplankton only. We then move on to consider

the autosynchronization case used in Chapter 4.
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5.2.4 Synchronization

Once again, we will use a change of coordinates so that Lyapunov exponents are

computed with respect to perturbations in directions traverse to the synchronization

manifold. Thus, consider the drive-response system

∂P

∂t
=4P + P (1− P )− PZ

P + h
, Drive System (5.43)

∂Z

∂t
=4Z + k

PZ

P + h
−mZ,

∂P̂

∂t
=4P̂ + P̂ (1− P )− P̂ Ẑ

P + h
+ κ(P − P̂ ), Response System

∂Ẑ

∂t
=4Ẑ + k

P̂ Ẑ

P + h
−mẐ,

where P (x, y, 0) 6= P̂ (x, y, 0), Z(x, y, 0) 6= Ẑ(x, y, 0), and we do not sample zoo-

plankton. We have already seen that this method of coupling results in identical

synchronization when κ = 1.25. To estimate the conditional Lyapunov exponents for

the system Eq (5.43), we work in the transverse space

e1 = P − P̂ , (5.44)

e2 = Z − Ẑ.

The system Eq (5.43), in the new coordinates, becomes

∂e1

∂t
=P − P 2 − PZ

P + h
− P̂ + P̂P + P̂ Ẑ

P + h
− κe1,

∂e2

∂t
=k PZ

P + h
−mZ − k P̂ Ẑ

P + h
+mẐ,
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which simplifies to

∂e1

∂t
=e1 − Pe1 − κe1 + P̂ Ẑ − PZ

P + h
,

∂e2

∂t
=kPZ − P̂ Ẑ

P + h
−me2,

where we need to be a little creative to rewrite the Holling functional response term.

We complete the transformation by

P̂ Ẑ − PZ
P + h

= P̂ Ẑ − PZ
P + h

+ PẐ − PẐ
P + h

,

= PẐ − PZ
P + h

+ P̂ Ẑ − PẐ
P + h

,

= −P̂ e2

P + h
+ −Ẑe1

P + h
, (5.45)

now written with respect to the new coordinate system. Similarly, we write

k
PZ − P̂ Ẑ
P + h

= k
Ẑe1

P + h
+ k

Pe2

P + h
. (5.46)

Combining Eq (5.45) and Eq (5.46), the system is written

∂e1

∂t
=e1 − Pe1 − κe1 + 1

P + h

(
−Pe2 − Ẑe1

)
, (5.47)

∂e2

∂t
=k 1

P + h

(
Ẑe1 + Pe2

)
−me2,

where we are now interested in the stability of the origin. The coupling of e2 in the
∂e1
∂t

equations highlights the difficulty with using the Lyapunov function Eq (5.5) to

prove the stability of the identical synchronization manifold. If these terms dropped

out, we would have a much easier time of it. The Jacobian of the right hand side is
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given by

 1− P − κ− Ẑ
P+h − P

P+h

kẐ
P+h

kP
P+h −m

 . (5.48)

A simulation is run and the largest Lyapunov exponent is found to be negative with

results shown in Figure 5.8. The red dotted line provides a reference for zero and the

maximum exponent seems to be settling down at roughly µmax = −0.3839.

Figure 5.8: Plot shows convergence of estimation of maximum conditional Lyapunov
exponent over time. The value is negative and seems to be settling to near µmax =
−0.3839. Dotted red line plotted at zero for reference.

Our numerical estimate of the largest Lyapunov exponent provides strong numer-

ical evidence that the synchronization manifold is asymptotically stable. This holds

true for all initial conditions allowable in the response system such that the manifold

is evidenced to be globally asymptotically stable. Furthermore, transverse perturba-

tions will quickly shrink back toward the manifold leading to identical synchronization
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between model states.

5.2.5 Autosynchronization

We now move on to autosynchronization, considering the response system stated

in Chapter 4 which only samples phytoplankton. We will use the same change in

coordinates and apply conditional Lyapunov exponents to provide strong evidence for

the stability of the identical synchronization manifold. Recall the response system

stated for autosynchronization when sampling only phytoplankton,

∂P̂

∂t
= 4P̂ + P̂ (1− P )− P̂ Ẑ

P + h
+ κ(P − P̂ ),

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ,

∂k

∂t
= s1(P − P̂ ),

∂m

∂t
= s2(P − P̂ )P̂ ,

with the same drive system as above. We again make the change of coordinates

e1 = P − P̂ , (5.49)

e2 = Z − Ẑ,

e3 = k − k̂,

e4 = m− m̂,
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and evolve the equations in the transverse space. We make the substitutions shown

in Eq (5.45) and Eq (5.46) such that the transformed equations become

∂e1

∂t
=e1 − Pe1 − κe1 + 1

P + h

(
−Pe2 − Ẑe1

)
, (5.50)

∂e2

∂t
= 1
P + h

(
−k̂P̂ e2 + k̂Ze1 + PZe3

)
− Ze4 − m̂e2,

∂e3

∂t
=− s1e1,

∂e4

∂t
=− s2e1P̂ ,

The Jacobian for Eq (5.50) is



1− P − κ− Ẑ
P+h − P

P+h 0 0
k̂Z
P+h

k̂P̂
P+h − m̂

PZ
P+h −Z

−s1 0 0 0

−s2P̂ 0 0 0


. (5.51)

A simulation is run and the largest Lyapunov exponent is found to be negative

with results shown in Figure 5.9. The red dotted line shows zero for reference and

the maximum exponent seems to be settling down at roughly µmax = −0.0012.
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Figure 5.9: Plot shows convergence of estimation of maximum conditional Lyapunov
exponent over time. The value is negative and seems to be settling to near µmax =
−0.0012. Dotted red line plotted at zero for reference.

Therefore, we obtain strong numerical evidence that the synchronization manifold

is asymptotically stable. Again, we note that transverse perturbations will quickly

shrink back toward the manifold leading to identical synchronization between both

model parameters and states.

5.2.6 Conditional Lyapunov Exponents PDE Extension

Until now, we have only shown the stability of the synchronization manifold by con-

ditional Lyapunov exponents for the ODEs with which we were unable to find a

Lyapunov function and subsequently extend to the corresponding PDE. Here, we ex-

tend the system of ODEs to be a system of coupled ODEs representing the centered

difference discretizations in space, approximating the corresponding reaction-diffusion

PDE. Empirical evidence based on shrinking the discretizations toward zero provides
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a heuristic argument for the stability of the identical synchronization manifold for the

associated PDE when sampling only one species.

The method we use to analyze the discretized PDE is based on the method of lines.

Here, we choose the centered differences in space discretization for the Laplacian.

Then we choose the number of mesh points to study and find the conditional Lyapunov

exponents. We explain in some detail the discretization produced from the coupled

system

∂P

∂t
=4P + P (1− P )− PZ

P + h
, Drive System (5.52)

∂Z

∂t
=4Z + k

PZ

P + h
−mZ,

∂P̂

∂t
=4P̂ + P̂ (1− P )− P̂ Ẑ

P + h
+ κ(P − P̂ ), Response System

∂Ẑ

∂t
=4Ẑ + k

P̂ Ẑ

P + h
−mẐ,

where the spatial domain is given by Ω = [0, 300].

In one dimension, if we choose a mesh with m nodes in space, then we have 4m

model equations and 2m equations in the transverse space. The Jacobian will be in

R2m×2m. The forward-time centered-space discretization of Eq (5.52) gives the system

P n+1
j − P n

j

dt
=
P n
j−1 − 2P n

j + P n
j+1

dx2 + P n
j (1− P n

j )−
P n
j Z

n
j

P n
j + h

, (5.53)

Zn+1
j − Zn

j

dt
=
Zn
j−1 − 2Zn

j + Zn
j+1

dx2 + k
P n
j Z

n
j

P n
j + h

−mZn
j ,

P̂ n+1
j − P̂ n

j

dt
=
P̂ n
j−1 − 2P̂ n

j + P̂ n
j+1

dx2 + P̂ n
j (1− P n

j )−
P̂ n
j Ẑ

n
j

P n
j + h

+ κ(P n
j − P̂ n

j ),

Ẑn+1
j − Ẑn

j

dt
=
Ẑn
j−1 − 2Ẑn

j + Ẑn
j+1

dx2 + k
P̂ n
j Ẑ

n
j

P n
j + h

−mẐn
j ,
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where j = 2 : (L/dx) − 1, L is the length of Ω, and n is the time step. The system

of equations (5.53) is valid for the interior points of the mesh and the boundary

equations are settled by assuming zero flux at the boundaries.

Therefore, we write the resulting system of equations form nodes in one dimension.

The 4m equations describing the “left” boundary conditions, interior points, and
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“right” boundary conditions are given by the following algorithm.

P n+1
1 − P n

1
dt

=P
n
2 − P n

1
dx2 + P n

1 (1− P n
1 )− P n

1 Z
n
1

P n
1 + h

Zn+1
1 − Zn

1
dt

=Z
n
2 − Zn

1
dx2 + k

P n
1 Z

n
1

P n
1 + h

−mZn
1

P̂ n+1
1 − P̂ n

1
dt

= P̂
n
2 − P̂ n

1
dx2 + P̂ n

1 (1− P n
1 )− P̂ n

1 Ẑ
n
1

P n
1 + h

+ κ(P n
1 − P̂ n

1 )

Ẑn+1
1 − Ẑn

1
dt

=Ẑ
n
2 − Ẑn

1
dx2 + k

P̂ n
1 Ẑ

n
1

P n
1 + h

−mẐn
1

for j = 2 : L− 1

P n+1
j − P n

j

dt
=
P n
j−1 − 2P n

j + P n
j+1

dx2 + P n
j (1− P n

j )−
P n
j Z

n
j

P n
j + h

Zn+1
j − Zn

j

dt
=
Zn
j−1 − 2Zn

j + Zn
j+1

dx2 + k
P n
j Z

n
j

P n
j + h

−mZn
j

P̂ n+1
j − P̂ n

j

dt
=
P̂ n
j−1 − 2P̂ n

j + P̂ n
j+1

dx2 + P̂ n
j (1− P n

j )−
P̂ n
j Ẑ

n
j

P n
j + h

+ κ(P n
j − P̂ n

j )

Ẑn+1
j − Ẑn

j

dt
=
Ẑn
j−1 − 2Ẑn

j + Ẑn
j+1

dx2 + k
P̂ n
j Ẑ

n
j

P n
j + h

−mẐn
j

end

P n+1
L − P n

L

dt
=P

n
L−1 − P n

L

dx2 + P n
L (1− P n

L )− P n
LZ

n
L

P n
L + h

Zn+1
L − Zn

L

dt
=Z

n
L−1 − Zn

L

dx2 + k
P n
LZ

n
L

P n
L + h

−mZn
L

P̂ n+1
L − P̂ n

L

dt
= P̂

n
L−1 − P̂ n

L

dx2 + P̂ n
L (1− P n

L )− P̂ n
L Ẑ

n
L

P n
L + h

+ κ(P n
L − P̂ n

L )

Ẑn+1
L − Ẑn

L

dt
=Ẑ

n
L−1 − Ẑn

L

dx2 + k
P̂ n
L Ẑ

n
L

P n
L + h

−mẐn
L

These equations are solved in tandem with the Jacobian of the right hand side as part

of the variational equations. For consistency we may consider rather evolving the 2m
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coupled ODEs associated with the transverse space, however build in the same way.

Recall the equations Eq (5.52) in transverse space become

∂e1

∂t
=4e1 − Pe1 − κe1 + 1

P + h

(
−Pe2 − Ẑe1

)
,

∂e2

∂t
=4e2 −

k

P + h

(
Ẑe1 + Pe2

)
−me2,

and the corresponding forward-time centered-space discretization provides the system

en+1
1j − e

n
1j

dt
=
en1j−1

− 2en1j + en1j+1

dx2 − P n
j e

n
1j − κe

n
1j + 1

P n
j + h

(
−P n

j e
n
2j − Ẑ

n
j e

n
1j

)
,

en+1
2j − e

n
2j

dt
=
en2j−1

− 2en2j + en2j+1

dx2 − k

P n
j + h

(
Ẑn

2je
n
1j + P n

j e
n
2j

)
−men2j ,

where j = 1 : (L/dx), L is the length of Ω, and n is the time step. We take the

Jacobian of the right hand side of the above system of ODEs. For a mesh with m

grid points, the Jacobian will have size 2m × 2m. The Jacobian will have a block-

diagonal structure. To see this, we form three matrices
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A =

− 1
dx2 + 1− P n

1 − κ−
Ẑn1

Pn1 +h − Pn1
Pn1 +h

k
Ẑn1

Pn1 +h − 1
dx2 + k

Pn1
Pn1 +h −m

 ,

J =

−
2
dx2 + 1− P n

j − κ−
Ẑnj

Pnj +h − Pnj
Pnj +h

k
Ẑnj

Pnj +h − 2
dx2 + k

Pnj
Pnj +h −m

 ,

B =

1− P n
L − κ−

ẐnL
PnL+h − PnL

PnL+h

k
ẐnL

PnL+h − 1
dx2 + k

PnL
PnL+h −m

 ,

D =

 1
dx2 0

0 1
dx2

 ,

so the full Jacobian of the coupled system is given by



[A] [D] 0 · · · 0

[D] [J ] [D] · · · 0
... . . . ...

0 · · · [D] [J ] [D]

0 · · · 0 [D] [B]


. (5.54)

Once built, we obtain the system of equations necessary to numerically solve the

variational equations and subsequently estimate the dominant conditional Lyapunov

exponent. The system of equation is fed into the algorithm described in [92] and the

estimated Lyapunov exponent is shown in Figure 5.10 for three different choices of

mesh sizes, or equivalently, different choices of m. The number of grid points are

refined from m = 150 to m = 300, and then to m = 600. For all three we note that

the largest Lyapunov exponent is estimated as negative, the requirement for stability
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of the identical synchronization manifold. For m = 150 we estimate µ = −0.005, for

m = 300 we estimate µ = −0.0057, while for m = 600 we estimate µ = −0.0063.

Figure 5.10: Plot shows convergence of estimation of maximum conditional Lyapunov
exponent over time. The plots shown are for subsequently refined grids, including
m = 150, m = 300, and m = 600 nodes over the fixed domain. Dotted red line
plotted at zero for reference.

In summary, we have described two methods of analyzing the stability of a synchro-

nization manifold, the Lyapunov direct method and through conditional Lyapunov

exponents. We have demonstrated a Lyapunov function for some ODE representa-

tions of the equations used in Chapter 4 and then shown how to generalize those

Lyapunov functions to Lyapunov functionals in the PDE setting. Therefore, we have

proven the stability under certain coupling strengths of the identical synchronization

manifold for certain couplings between the reaction-diffusion PDEs in Chapter 4.

We next described in detail conditional Lyapunov exponents and also the numer-

ical techniques often used to estimate them. Conditional Lyapunov exponents were

used to study the stability of the identical synchronization manifold for couplings
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for which a Lyapunov function is not currently known. Since conditional Lyapunov

exponents are primarily derived for ODEs, we studied the PDE by studying the be-

havior of the conditional Lyapunov exponents for increasingly smaller discretizations

in space such that the coupled ODEs approximate the PDE. We show that the con-

ditional Lyapunov exponent remains negative as the space discretization is refined, a

strong argument for the stability of the identical synchronization manifold.

162



Chapter 6

Synchronization on

Reaction-Diffusion-Advection

PDEs

Thus far we have studied a reaction-diffusion system for ocean ecology. Although

this system is capable of representing complex spatiotemporal dynamics with spiral

patterns on a spatial scale consistent with satellite observations [15], a reasonable cri-

tique is that we have not yet considered advective systems. Plankton are by definition

largely subject to advection by ocean currents [15]. Therefore, a natural question to

consider is whether the methods proposed in chapter 4 extend to reaction-diffusion-

advection systems for ocean ecology. The effect of ocean turbulence on ecological

communities is an area of active research [15, 28, 95–99] and deserve consideration

when modeling ecology on the mesoscale. Synchronization methods have not been

studied on reaction-diffusion-advection models and this work is a first exploration of

the topic.

The chapter is organized as follows: First, we define a model for advection that

promotes mixing, consistent with what might be expected in coastal dynamics. Since
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we might be observing river mouths and deltas our benchmark model should re-

produce the sort of mixing behavior inherent in those regions. Once the model for

advection is defined and discussed, we describe the new benchmark reaction-diffusion-

advection system for phytoplankton-zooplankton ecology. We show that our synchro-

nization methods can be adapted to this new situation as a first demonstration of

synchronization for such systems. Finally, we consider autosynchronization for pa-

rameter estimation and demonstrate that even spatially dependent model parameters

are well-estimated when observing only phytoplankton.

6.1 Double Gyre

We begin by discussing the double gyre [58–62], a popular benchmark vector field

among those studying mixing, which will be used for the advection terms in our bench-

mark system. The non-autonomous double gyre is derived by taking the Hamiltonian

gradient of the stream function given by

Ψ(x, y, t) = A sin(πf(x, t))sin(πy), (6.1)

f(x, t) = (ε sin(ωt))x2 + (1− 2ε sin(ωt))x.

That is, the double gyre is a Hamiltonian system; such systems enforce that energy

is conserved on level curves. We now define the Hamiltonian gradient, as opposed to

the classical gradient.

Definition 6.1.1. (Perko, 166) [100] Given a smooth, real valued system Ψ(x, y) :

R2 → R, the Hamiltonian gradient, denoted ∇H is defined as

ẋ = ∂Ψ
∂y

, (6.2)

ẏ = −∂Ψ
∂x

.
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Since the double gyre is derived from a stream function, the flow is necessarily

divergence free. That is, a flow field v, derived from a stream function will satisfy

∇ · v = 0 (6.3)

where ∇ represents the classical gradient. Then, using Eq (6.1), the flow components

for the double gyre are given by

ẋ = −Aπ sin(πf(x, t)) cos (πy) , (6.4)

ẏ = Aπ cos(πf(x, t)) sin (πy) df
dx
,

f(x, t) = (ε sin(ωt))x2 + (1− 2ε sin(ωt))x

where ε = 1 and ω = 1 and the domain is M = [0, 2] × [0, 1]. Eq (6.4) is a

non-autonomous vector field representing a periodic perturbation from two counter-

rotating gyres of which two snapshots are shown in Figure 6.1. For our simulations,

we stretch the domain, as shown in Figure 6.1, to be Ω = [0, 900]× [0, 300].

(a) (b)

Figure 6.1: Flow field governed by Hamiltonian stream function Eq (6.1), with flow
components given by Eq (6.4). Two images of non-autonomous flow shown at slightly
different times.
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The non-autonomous double gyre has the property that while one gyre expands,

the other contracts in a back and forth motion, resulting in mixing within the domain

[58–62]. The non-autonomous double gyre is a good benchmark for our techniques

in providing non-autonomous vector fields representing ocean currents. The mixing

properties of the double gyre are apparent in Figure 6.2 with two snapshots from

a simulation of tracers. The first image, Figure (a), shows the initial conditions,

with blue and red tracers placed initially on the right and left half of the domain

respectively. The tracers are evolved according to Eq (6.4) and are shown to mix

throughout Ω. A thorough study of these mixing properties of this system are found

in many sources [58–62].

(a) (b)

Figure 6.2: Simulation of tracers over the double gyre vector field. Initially, blue
tracers on the right and red on the left, shown in (a). After a short epoch, mixing
between two halves shown in (b).

With this advection model Eq (6.4) , we build a reaction-diffusion-advection sys-

tem of equations based on Eq (4.7) to simulate more realistic behavior.
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The new system of equations is given by

∂P

∂t
= 4P + v · ∇P + P (1− P )− PZ

P + h
, (6.5)

∂Z

∂t
= 4Z + v · ∇Z + k

PZ

P + h
−mZ,

where k = 2, m = 0.6, and v is given by Eq (6.4). Figure 6.3 shows two images from a

simulation of Eq (6.5) at t = 80 and t = 100, shown in Figures (a) and (b) respectively.

The solution is qualitatively different than the original reaction-diffusion system, and

the effects from advection are clearly visible. We now study whether synchronization

is possible between two reaction-diffusion-advection systems.

(a) (b)

Figure 6.3: Simulation of Eq (6.5) shown at times t = 80 and t = 100. Phytoplankton
shown on top, zooplankton on bottom.

6.2 Synchronization

We first study whether it is possible to observe synchronization between two reaction-

diffusion-advection systems. Therefore, given the drive system Eq (6.5), we state the
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response system

∂P̂

∂t
= 4P̂ + v · ∇P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (6.6)

∂Ẑ

∂t
= 4Ẑ + v · ∇Ẑ + k

P̂ Ẑ

P + h
−mẐ,

where v is given by Eq (6.4), and Eq (6.5) is coupled into Eq (6.6) by sampling only

phytoplankton. The drive and response equations are coupled as before, where we

use a combination of diffusive and complete replacement coupling. Initial conditions

for the response system are P̂ (x, y, 0) = 2 and Ẑ(x, y, 0) = 2.

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Three snapshots of simulation of Eq (6.5) - (6.6) shown at t = 0, t = 30,
and t = 171. Phytoplankton shown on top row with drive shown above response.
Zooplankton on bottom row with drive above response.
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Figure 6.5: Globally-averaged relative synchronization error between drive and re-
sponse systems. Error between systems is taken with respect to Frobenius norm, i.e.,
eP (t) = ‖P − P̂‖F/(‖P‖FΩ). Phytoplankton vs time shown in blue, zooplankton vs
time shown in red.

Figure 6.4 shows three snapshots from a simulation of the coupled drive-response

systems Eq (6.5) and Eq (6.6). Figures (a) and (d) show phytoplankton and zoo-

plankton initial conditions, respectively. Figures (b) and (e) show phytoplankton and

zooplankton at t = 30. The images appear to coincide somewhat, however there

appears to be a density mismatch between drive and response. Particularly, the den-

sity is incorrect for the zooplankton response system, apparent in Figure (e). By

t = 171, both systems have synchronized to within 2.0× 10−9 and we observe a first

demonstration of synchronization between two reaction-diffusion-advection systems

by sampling only one species.

The globally-averaged relative synchronization errors are calculated over time with
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the Frobenius norm,

eP (t) = 1
Ω
‖P − P̂‖F
‖P‖F

, (6.7)

eZ(t) = 1
Ω
‖Z − Ẑ‖F
‖Z‖F

.

The log of error versus time is plotted in Figure 6.5 and it is clear that the sys-

tems are synchronizing. This result alone is already great news for prediction when

model parameters are estimated using in-situ measurements as one would be able to

observe zooplankton and subsequently assimilate data in order to make forward pre-

dictions while allowing for advection due to ocean currents. However, we next study

autosynchronization and the ability to estimate model parameters for these systems.

6.3 Autosynchronization

Given that we are aiming to adapt synchronization methods to data assimilation

and parameter estimation for advective ecological models on the coastal ocean, we

now use the non-autonomous benchmark system to explore autosynchronization. In

order to be useful for application of remote sensing, we require access to reasonably

accurate ocean current models describing advection during observation and begin by

observing both species. We will further extend the system Eq (6.5) to have spatially

dependent parameters. In this chapter, we will only show simulations with the spiral

parameters as shown in Figures 4.6e and 4.6f, although similar results are obtained

with the other parameters.

Stating a parameter estimation problem in the two-dimensional PDE setting

within the framework of autosynchronization, we require a drive system

ut(x, y, t) = f(u(x, y, t),p(x, y)), (6.8)
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Figure 6.6: Diagram for autosynchronization of two-component PDE system.

from which we are able to sample data with (unknown to us) parameters p ∈ C0(Ω×

Ω). Then we must state a response system

vt(x, y, t) = g(u(x, y, t),v(x, y, t),q(x, y, t)) (6.9)

with the same model form as the drive system if q = p. Again, the goal is that when

u(x, y, t) is coupled forward into Eq 4.12, then Eq 4.12 will synchronize with Eq 4.11

and u(x, y, t)→ v(x, y, t). Concurrently, parameter ODEs are given by

qt = h(u(x, y, t),v(x, y, t),q(x, y, t)) (6.10)

so that (v,q)→ (u,p) as t→∞. A box diagram for this type of simulation is shown

in Figure 6.6.
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Under such assumptions, we state the response system

∂P̂

∂t
= 4P̂ + v · ∇P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (6.11)

∂Ẑ

∂t
= 4Ẑ + v · ∇Ẑ + k̂

P̂ Ẑ

P̂ + h
− m̂Ẑ + κ(Z − Ẑ),

∂k̂

∂t
= −s(P − P̂ ),

∂m̂

∂t
= −s(Z − Ẑ),

where

P̂ (x, y, 0) 6= P (x, y, 0),

Ẑ(x, y, 0) 6= Z(x, y, 0),

k̂(x, y, 0) 6= k(x, y),

m̂(x, y, 0) 6= m(x, y),

and v is given by Eq (6.4). For good synchronization results, we choose s1 = s2 = 30,

and κ = 1.25. Initial conditions for the response model are given by the constant

functions

P̂ (x, y, 0) = 2,

Ẑ(x, y, 0) = 2,

k̂(x, y, 0) = 5,

m̂(x, y, 0) = 5.

Figure 6.7 presents results from a simulation using the stated response model,

verifying that autosynchronization is observed between the two systems, even for

spatially-dependent parameters. Results are at times t = 0, t = 200, and t = 4, 319.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.7: Three time instances of simulation shown at t = 0, t = 200, and
t = 4, 319. (a) P (x, y, 0) over P̂ (x, y, 0). (b) P (x, y, 200) over P̂ (x, y, 200). (c) Highly
synchronized state P (x, y, 4, 319) over P̂ (x, y, 4, 319). (d) Z(x, y, 0) over Ẑ(x, y, 0).
(e) Z(x, y, 200) over Ẑ(x, y, 200). (f) Highly synchronized state Z(x, y, 4, 319) over
Ẑ(x, y, 4, 319) (g) k(x, y, 0) over k̂(x, y, 0). (h) k(x, y, 200) over k̂(x, y, 200). (i) Es-
timated state k(x, y, 4, 319) over k̂(x, y, 4, 319). (j) m(x, y, 0) over m̂(x, y, 0). (k)
m(x, y, 200) over m̂(x, y, 200). (l) Estimated state m(x, y, 4, 319) over m̂(x, y, 4, 319).
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(a) (b)

Figure 6.8: Globally-averaged relative synchronization errors vs time for species and
parameters shown on a log scale. The systems are evolved until a parameter error
threshold is reached at ek(t) < 1.0 × 10−5, which occurs by t = 4, 319. Errors are
calculated, including for parameters, by Eq (6.7)

Figure 6.8 shows the globally averaged relative synchronization errors between

drive and response models. While convergent, these results are apparently relatively

slow. However, we note that autosynchronization speed can be significantly increased

by coupling in the advection terms as,

∂P̂

∂t
= 4P̂ + v · ∇P + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (6.12)

∂Ẑ

∂t
= 4Ẑ + v · ∇Z + k̂

P̂ Ẑ

P̂ + h
− m̂Ẑ + κ(Z − Ẑ),

∂k̂

∂t
= −s(P − P̂ ),

∂m̂

∂t
= −s(Z − Ẑ),

where the absence of “hats” in the advection terms denotes complete replacement

from the drive system. This additional coupling results in a much faster autosynchro-

nization speed, shown in Figure 6.9. Here, the same initial conditions, parameters,

and coupling strengths were used for uniformity between simulations. Thus we have
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shown that autosynchronization is robust to spatially dependent parameters when

sampling both species, so we next explore whether autosynchronization is successful

when sampling only one species.

(a) (b)

Figure 6.9: Globally-averaged relative synchronization errors vs time for species and
parameters shown on a log scale.The sytstems are evolved until the same parameter
error threshold is reached, ek(t) < 1.0×10−5, which now occurs by t = 1, 441, a much
faster rate of synchronization than shown in Figure 6.8.

6.4 Sampling One Species

We previously alluded to the fact that we require accurate knowledge of the advection

governing species evolution in order to produce good results. We further require that

these methods work by sampling only one species.

A box diagram describing this sort of coupling is shown in Figure 6.10 where the

arrows between the second component of the system are dropped in opposition to

Figure 6.6 to annotate that the second component is unknown.
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Figure 6.10: Diagram for autosynchronization of two-component PDE system by
sampling only one species.

We state a new response model that requires sampling only phytoplankton as,

∂P̂

∂t
= 4P̂ + v · ∇P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (6.13)

∂Ẑ

∂t
= 4Ẑ + v · ∇Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ,

∂k̂

∂t
= −s1(P − P̂ ),

∂m̂

∂t
= −s2(P − P̂ )P̂ ,

where s1 = 0.2, s2 = 0.6, and κ = 1.45. In Figure 6.11 we see the results of

a simulation of the reaction-diffusion-advection system Eq (6.13) at three different

times. The spatially dependent model parameters are, the spiral model parameters

and advection is given by Eq (6.4). The final column in Figure 6.11 demonstrates the

ability of autosynchronization to resolve both model parameters and states. These

results are shown at three times, t = 0, t = 200, and t = 2, 821.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.11: Three time instances of simulation shown at t = 0, t = 200, and
t = 2, 821.(a) P (x, y, 0) over P̂ (x, y, 0). (b) P (x, y, 200) over P̂ (x, y, 200). (c) Highly
synchronized state P (x, y, 2, 821) over P̂ (x, y, 2, 821). (d) Z(x, y, 0) over Ẑ(x, y, 0).
(e) Z(x, y, 200) over Ẑ(x, y, 200). (f) Highly synchronized state Z(x, y, 2, 821) over
Ẑ(x, y, 2, 821) (g) k(x, y, 0) over k̂(x, y, 0). (h) k(x, y, 200) over k̂(x, y, 200). (i) Es-
timated state k(x, y, 2, 821) over k̂(x, y, 2, 821). (j) m(x, y, 0) over m̂(x, y, 0). (k)
m(x, y, 200) over m̂(x, y, 200). (l) Estimated state m(x, y, 2, 821) over m̂(x, y, 2, 821).
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(a) (b)

Figure 6.12: Globally-averaged relative synchronization errors vs time for species and
parameters shown on a log scale. Parameter errors are shown to converge to within
the synchronization threshold used in Figures 6.8 and 6.5, ek(t) < 1.0 × 10−5, by
t = 2, 821. In contrast to Figure 6.8 we are sampling only one species.

Figure 6.12 shows the globally averaged relative synchronization errors between

species and parameters on a log scale. Once again, we note that autosynchronization

may be significantly temporally improved by complete replacement in the advection

term,

∂P̂

∂t
= 4P̂ + v · ∇P + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), (6.14)

∂Ẑ

∂t
= 4Ẑ + v · ∇Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ,

∂k̂

∂t
= −s1(P − P̂ ),

∂m̂

∂t
= −s2(P − P̂ )P̂ ,

where s1 = 0.2, s2 = 0.6, and κ = 1.45. Here, only phytoplankton was replaced in

the advection term since we are unable to observe zooplankton.
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(a) (b)

Figure 6.13: Globally-averaged relative synchronization errors vs time for species and
parameters shown on a log scale. Parameter errors are shown to converge to within
1.0× 10−5 by t = 1, 326.

Figure 6.13 shows the globally averaged relative synchronization errors for species

and parameters over time. The synchronization error between the parameters k(x, y)

and k̂(x, y, t) converges to within the same values as previous results shown in Figures

6.8 and 6.9, wherein both species were sampled, in a shorter time epoch. We note

that it is likely that autosynchronization speeds may be increased when sampling

both species if a more thorough parameter search is performed.

The non-autonomous double gyre is introduced to be a challenging advection

component in the reaction-diffusion-advection model built from the reaction-diffusion

model examined in Chapter 4. Synchronization is shown to be robust to the modified

systems when sampling one species. This chapter is a first demonstration of autosyn-

chronization for spatially-dependent parameters by sampling one species between two

systems of reaction-diffusion-advection equations. In fact, by showing autosynchro-

nization is robust to sampling only one species, spatially dependent parameters, and

time-dependent advection, these methods may feasibly be applied to real satellite

imagery data representing ocean ecology as advected by non-autonomous currents.
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Chapter 7

Synchronization on Coherent Sets

In this chapter we build upon the results in Chapter 6 by turning to a method

to increase the rate of convergence in certain regions of the domain of a reaction-

diffusion-advection system. Our goal is to improve synchronization, over a given time

epoch, on large regions of the domain for model forecasts and predictions. We note in

Chapter 6 that advection has significantly slowed the convergence rate when compared

to the non-advective systems in Chapter 4. Therefore, we now merge synchronization

with the burgeoning field of coherent sets to realize the benefits of synchronization

over only appropriately-chosen subsets of the domain. Coherent sets are sets that are

in some sense minimally dispersive over a finite time epoch. The main motivation

is to choose subsets over the domain that are most “alike" to be those over which

parameters are fit; coherent sets serve this purpose.

In this chapter we re-introduce the reaction-diffusion-advection system with which

we will be working. We next describe the necessary background for extracting what

are called coherent sets from a time-dependent dynamical system such as the double

gyre. We next perform simulations to observe synchronization over only the coherent

subsets of the domain. Results obtained are compared to those obtained in Chapter

6 and a discussion follows.
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7.1 Model Equations

Here, for convenience, we re-state the model equations to be studied. We simulate

the reaction-diffusion-advection system of equations,

∂P

∂t
= 4P + v · ∇P + P (1− P )− PZ

P + h
, Drive (7.1)

∂Z

∂t
= 4Z + v · ∇Z + k

PZ

P + h
−mZ,

∂P̂

∂t
= 4P̂ + v · ∇P + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), Response

∂Ẑ

∂t
= 4Ẑ + v · ∇Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ,

∂k̂

∂t
= −s1(P − P̂ ),

∂m̂

∂t
= −s2(P − P̂ )P̂ ,

where s1 = 0.2, s2 = 0.6, and κ = 1.45. The advection is governed by the non-

autonomous double gyre,

ẋ = −Aπ sin(πf(x, t)) cos
(
π
y

300

)
, (7.2)

ẏ = Aπ cos(πf(x, t)) sin
(
π
y

300

)
df

dx
,

f(x, t) = (ε sin(ωt))
(
x

450

)2
+ (1− 2ε sin(ωt)) x

450 ,
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where ε = 0.25, A = 5, ω = 2π/50, and the domain is Ω = 300 × 900. We enforce

initial conditions,

P (x, y, 0) 6= P̂ (x, y, 0),

Z(x, y, 0) 6= Ẑ(x, y, 0),

k(x, y, 0) 6= k̂(x, y, 0),

m(x, y, 0) 6= m̂(x, y, 0),

and desire that P̂ → P, Ẑ → Z, k̂ → k, and m̂→ m. In this chapter, we only sample

one species, P (x, y, t). We first demonstrate the approach on the synchronization

problem by assuming k̂ = k and m̂ = m. Next, we demonstrate the approach on the

full parameter and state estimation problem.

7.2 Coherent Pairs

We choose the double gyre as a benchmark component of the reaction-diffusion-

advection equations to simulate offshore chaotic transport. Transport in fluid systems

is a complex problem and an area of active research [58–62]. Recently, a probabilistic

approach based on transfer operators has been developed to study transport in chaotic

dynamical systems [63]. In Chapter 6, we present a first demonstration of autosyn-

chronization between reaction-diffusion-advection systems, and here we improve upon

those results. Information about the underlying dynamics allows for more efficient

observation of the entire system through synchronization and autosynchronization.

We exploit a probabilistic method for determining maximally coherent or mini-

mally dispersive sets over finite-time epochs, first demonstrated in [63]. Let M ⊂ Rd

be a compact smooth manifold. Let f(x, t), with x ∈ M and t ∈ R, be a non-

autonomous vector field. We require that f is smooth enough such that there exists
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a flow map Φ(x, t, τ) : M × R× R→ M describing the final location of a point x at

a time t subject to the flow for time τ .

Definition 7.2.1. (Froyland, Santitissakeekorn, & Monahan, 2) Two sets At and

At+τ are called a (ρ, t, τ)-coherent pair if

ρµ(At, At+τ ) = µ(At ∩ Φ(At+τ , t+ τ ;−τ))
µ(At)

≥ ρ0, (7.3)

and µ(At) = µ(At+τ ), where µ is a reference probability measure at time t. Further-

more, the sets must be resistant to small noise perturbations.

To clarify resistance to small noise perturbations, coherent sets are time-evolving

almost-invariant sets, or sets that mostly hold together. There may be strong mixing

within coherent sets but weak mixing between them. The reference probability µ

describes the mass distribution of the quantity under scrutiny over the time interval

[t, t+ τ ].

Two coherent sets are shown in Figure 7.1 for the time-dependent double gyre,

Eq (7.2). The coherent sets were uncovered by seeding the domain with initial points

and flowing the initial points for t = 50. That is the separate regions are minimally

dispersive such that the blue subset exhibits very little mixing with the red subset

over the time epoch.

183



Figure 7.1: Figure represents an extraction of two coherent pairs extracted from the
non-autonomous double gyre Eq (7.2) over a simulation time of t = 50.

The two sets shown in Figure 7.1 serve as the sets over which we couple the

systems Eq (7.1). This partition of the domain was provided with thanks from Tian

Ma. The sets are evolved in time according to Eq (7.2) in order to keep track of

the coherent pairs. We exploit this knowledge of the underlying dynamics toward

improving synchronization by observing synchronization over only coherent regions.

7.3 Model as Ordinary Differential Equation

We first note that, since there is little mixing between the two sets, an ODE model

over the coherent set might be an appropriate simplification. Here, the biomass

is averaged over each coherent pair during observation. The total biomass of both

species is averaged over the coherent sets, providing a measure of the average biomass.

The average biomass is fed into the ODE drive-response system corresponding to Eq

(7.1),
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dP

dt
= P (1− P )− PZ

P + h
, Drive (7.4)

dZ

dt
= k

PZ

P + h
−mZ,

dP̂

dt
= P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), Response

dẐ

dt
= k

P̂ Ẑ

P + h
−mẐ

where κ = 5. To clarify, Figure 7.2 describes a schematic diagram for the coupling in

these systems, where |Ω| denotes the Lebesgue measure [80], of Ω.

Figure 7.2: The coupling between drive and response systems wherein the drive PDE
is simplified to and ODE and drives response ODE system. Here ψ is the averaging
filter.

Intuitively, we expect an ODE representation of the system to synchronize reason-

ably well over a given time epoch if there is little mixing out of the region over which

the system is represented as an ODE. Simulation results are described in Figure 7.3,
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where two approaches are compared. First, we assume the observed system can be

represented as an ODE over the entire domain and feed the average phytoplankton

biomass into the system Eq (7.4).

The synchronization error is plotted in red and is shown to oscillate some dis-

tance from the identical manifold, likely due to the oversimplification of the observed

dynamics. Next, we average the biomass over each region separately and inform a

different ODE with same model form over individual coherent sets. The synchroniza-

tion error between ODE from observed data over the coherent set is plotted in blue.

We note that the synchronization error is most often smaller when coupled over only

coherent regions. As a preliminary demonstration of the efficacy of synchronization

over coherent sets, we observe an improvement over our previous work.

Figure 7.3: The coupling between drive and response systems wherein drive PDE is
averaged to ODE and drives response ODE system. Here ψ from Figure 7.2 is the
averaging filter.
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7.4 Synchronization Over Coherent Sets

We now study the synchronization problem, where we synchronize over only coherent

sets and compare results to synchronization over the entire domain at once. As noted,

we now assume k̂ = k and m̂ = m, such that we are testing synchronization first.

Results are shown in Figure 7.4, where globally-averaged synchronization errors are

compared. In Figure , the synchronization error is plotted over only the coherent

sets in red. The error plotted in blue represents previous synchronization results

obtained in Chapter 6. Thus, synchronization is more efficient when performed over

the coherent sets as opposed to the entire domain as in Chapter 6.
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(a)

(b)

Figure 7.4: Comparison of methods from Chapter 6 with synchronization over coher-
ent sets. Figure 7.4a compares the previous method, shown in blue, with the coherent
sets method, shown in red, for phytoplankton. Figure 7.4b shows the same results
for zooplankton. 188



7.5 Autosynchronization Over Coherent Sets

We next study the parameter estimation problem, where we autosynchronize over

only coherent sets and compare results to those obtained in Chapter 7. Here, we

simulate the full drive-response system Eq (7.1), where parameters and model states

are to be estimated. Initial conditions for the drive system are arbitrarily,

P̂ (x, y, 0) = 2,

Ẑ(x, y, 0) = 2,

k̂(x, y, 0) = 3,

m̂(x, y, 0) = 3,

and the parameters, k(x, y) andm(x, y), are given by the Gaussian equations Eq(4.20).

Results are shown in Figure 7.5, where globally-averaged parameter errors are

compared. In Figure 7.5, the synchronization error is plotted over only the coherent

sets in red. The error plotted in blue represents previous synchronization results

obtained in Chapter 6. Autosynchronization is more efficient when performed over

the coherent sets as opposed to the entire domain as in Chapter 6.

The results in Figure 7.5, although preliminary, are very promising with respect

to estimation over regions that might include chaotic mixing. Thus, we have demon-

strated a potential method to improve the rate of convergence for model state and pa-

rameter estimation for reaction-diffusion-advection systems by exploiting the knowl-

edge of coherent sets in the advective dynamics.
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(a)

(b)

Figure 7.5: Comparison of methods from Chapter 6 with synchronization over coher-
ent sets. Figure 7.4a compares the previous method, shown in blue, with the coherent
sets method, shown in red, for phytoplankton. Figure 7.4b shows the same results
for zooplankton. 190



We have briefly introduced the idea of merging synchronization techniques with

the emergence of coherent pairs in a non-autonomous dynamical system. This is

made possible by the physical assumption of advection in our ecological models and

the seminal work [63] to uncover coherent pairs in a dynamical system over a finite

time epoch. We have briefly demonstrated that the rates of convergence of both syn-

chronization and autosynchronization are improved by coupling over coherent pairs.

This is an exciting development toward improving our methods for fitting parameters

and estimating model states for oceanic ecology informed by remote sensing data.
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Chapter 8

Concluding Remarks and Future

Work

In this thesis, we have explored and developed the theory of autosynchronization for

a system of PDEs. We emphasize here the improvements upon past synchronization

methods in that we treat autosynchronization as a means of parameter estimation of

parameters that exist in a function space. We assume prior knowledge of the model

form of the observed system, but have no prior knowledge of the parameters. By sam-

pling at every time step, we observe identical synchronization between the response

and drive systems, akin to preceding work [52]. As a first attempt, we provide a model

form for adaptive parameters in the response system such that we observe identical

synchronization between response model parameters and drive model parameters, or

autosynchronization. Our techniques are implemented on a benchmark model and

estimates converge to true parameters. Thus, autosynchronization is observed for

PDEs with scalar parameters.

Next, we considered the same system of PDEs wherein the parameters were spa-

tially dependent. We provided a scheme with which we observe autosychronization of

spatially dependent parameters. We next confirm our results against several different
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functional forms for model parameters.

We markedly improved upon these results once more with an autosynchronization

scheme that requires sampling of only one species (phytoplankton). We note that in

order to evolve a system of PDEs for forecasting, we require initial conditions for both

species; this is a complication when working with remote sensing data with which we

only observe one of the species in the full system. This concern was addressed by

providing a response system to observe autosynchronization and estimate the full

state of zooplankton using only phytoplankton data. These methods are plausible for

use in remote sensing problems.

A drawback of this technique with application to hyperspectral satellite data is

that data may be noisy; this is where filtering techniques have a built-in advan-

tage. Data may also be occluded because of cloud cover, or spatial limitations on

sampling over the domain. Cloudy data are first studied with results indicating au-

tosynchronization despite clouds when systems are allowed to oscillate uncoupled

while occluded. Samples are taken to be local averages representing a subset of the

domain. By driving only on coarse subset of the original domain, we show that au-

tosynchronization is robust to spatial subsampling as long as subsampling is not too

coarse. However, we have not had the same success for autosynchronization with large

amounts of simply connected occluded data. Since there is little hope to synchronize

PDEs without large quantities of data relative to the domain, we require techniques

to “fill in" missing data.

Another complication with applying these techniques to satellite imagery is tem-

poral data resolution. There may be several days between successive images and

autosynchronization requires ample data observations. The need for frequent observ-

ables is perhaps the main drawback to this method. However, autosynchronization

may be advantageous for parameter estimation or model state estimation in situa-

tions where spatiotemporal data are abundant, and especially where parameters are
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expected to vary spatially. Temporal sparsity in observables is shown to slow the rate

of synchronization and parameter estimation, but does not destroy stability of the

synchronization manifold.

We have proven the global stability of the synchronization manifold for a range of

coupling strengths and shown that these methods will result in parameter and state

estimation when observables are governed by physics that are accurately represented

by the assumed model form. Proofs are found for several of the systems, but are

not yet discovered for the coupled systems resulting in autosynchronization when

sampling one species. In the absence of the Lyapunov direct method, we have analyzed

the stability for the synchronization manifold by conditional Lyapunov exponents.

Conditional Lyapunov exponents were initially estimated for the system of ODEs,

and were then estimated on the representative coupled ODEs approximating the

coupled PDEs.

We have demonstrated autosynchronization under the additional assumption of

reaction-diffusion-advection PDEs by studying a complex flow field that is character-

istic of the type of mixing typical in coastal ocean currents. The same results are

next demonstrated by sampling one species.

Finally, we have merged the fields of synchronization and coherent pairs in order

to improve synchronization over spatiotemporal phenomena. It was demonstrated

that the ODE representation, or average biomass, of the species over a coherent

subset of the domain will synchronize more efficiently than the ODE representation of

ecology over the entire domain. We have observed more efficient synchronization when

coupling over only coherent pairs as opposed to coupling over the entire domain as in

Chapter 6. Finally, we compared the autosynchronization results from Chapter 6 with

autosynchronization over only coherent pairs and found the latter to be more efficient

over the same time epoch. These results are encouraging for use in application,

particularly our target application of remote sensing toward ocean forecasting. Given
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ocean currents and forecasts, and coupled with this sort of analysis of the ocean

current dynamics, more accurate model estimates are expected over coherent regions.

This work is a first demonstration of many different phenomena with respect to

synchronization and there remains abundant future work in the field. Future work

is aimed at studying how much data can be occluded from the observable set before

autosynchronization completely fails. Clearly, results obtained are not as accurate

when the locally-averaged sampling is sparse. We note, however, that our satellite

data is sufficiently fine such that interpolation or local averaging for simulation on a

finer grid is unnecessary. That is, for our application to remote sensing, we evolve

ecology over the same grid on which the data are observed.

Additional future study includes synchronization over finite datasets. Naively, one

might run the drive-response simulation until samples are depleted, at which time the

models are no longer coupled. We aim to build methods to observe the most efficient

synchronization possible over a finite epoch.

Furthermore, proofs on synchronization using the Lyapunov direct method are

needed to study the synchronization manifold for the coupling in Chapter 6. We aim

to extend the Lyapunov functions for reaction-diffusion systems to reaction-diffusion-

advection systems. For the cases in which Lyapunov functions are ambitious, our

goal is to study stability using conditional Lyapunov exponents.

There is much work to be done in the merging of coherent pairs and synchroniza-

tion, and even model forecasting. For example, more than two coherent pairs can

be uncovered such that the domain might be sub-divided several times into more-

coherent pairs [101]. This might result in even more accurate synchronization over

hierarchical coherent regions. Furthermore, we aim to study whether a reaction-

diffusion system will perform well enough over smaller coherent regions such that we

need not include advection in the synchronization between systems.

Finally, we aim to apply these methods to observe the most accurate forecasts
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possible with a finite set of sampled data. At this point the techniques are ready

for use on real observed data, particularly coastal algal blooms. The main goal of

this work is to build tools for forecasts based on observed satellite data and available

ocean currents. We aim to forecast geophysical quantities of interest such as algal

bloom events. Knowing that plankton are subject to the ocean currents [15], we are

confident that biomass in one coherent region will not mix with biomass in another

coherent region. Thus, we aim to use coherent regions analysis as a method to improve

synchronization and also as a method of forward prediction.

Perhaps the most exciting future work is to model fit and forecast over regions for

which we have no data for ocean currents. We assume reaction-diffusion-advection

dynamics over the domain, but ocean currents would be inferred from time-adjacent

images using a technique called optical flow [102]. Techniques for inferring vector

fields from time-adjacent images based on physical assumptions more appropriate for

fluid flow have recently been developed [103], resulting in accurate reconstruction of

ocean-like phenomena such as gyres and eddys. Subsequently, our full methods would

be appropriate for use in any region observable by satellite-mounted remote sensing

instruments. With vector fields in hand, coherent regions might be uncovered and

models and parameters might be estimated, producing previously unavailable model

forecasts.

Here, we observe over every point in the grid as would be available from satellite

data, however it has been shown that synchronization is possible by sub-sampling

the grid [52]. Further, we will be interested to allow k and m to vary spatially as

functions, k(x, y) and m(x, y) as they also account for phytoplankton dynamics.

Our interest in this PDE model stems from our work in remote sensing, to build

a better understanding of our ocean’s ecology. Particularly, we aim to predict short-

term behavior of coastal algal blooms. Such a system may in principle be modeled

by estimating parameters directly from observed data in the field. This additional
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data could then be used to validate model predictions informed by remote sensing

data. However, hyperspectral satellite imagery provides the observed data to which

we would synchronize a response model in hopes of autosynchronization providing

good parameter estimates for forecasting. Since phytoplankton are largely affected

by spatial inhomogeneities in the ocean such as nitrogen runoff, regions of hypoxia, or

upwelling, to name a few parameter inhomogeneity-inducing effects, we wish to allow

model parameters to vary spatially. These considerations are especially important

since our models will be built over coastal domains where large changes in ocean

biology occur spatially, leading naturally to spatially dynamic parameters.
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