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We extend an advanced variation of a machine learning algorithm, next-generation reservoir Computing (NGRC), to
forecast the dynamics of the Ikeda map of a chaotic laser. The machine learning model is created by observing time-
series data generated by the Ikeda map, and the trained model is used to forecast the behavior without any input from
the map. The Ikeda map is a particularly challenging problem to learn because of the complicated map functions. We
overcome the challenge by a novel improvement of the NGRC concept by emphasizing simpler polynomial models
localized to well-designed regions of phase space and then blending these models between regions, a method that we
call locality blended next-generation reservoir computing (LB-NGRC). This approach allows for better performance
with relatively smaller data sets, and gives a new level of interpretability. We achieve forecasting horizons exceeding
five Lyapunov times, and we demonstrate that the ‘climate’ of the model is learned over long times.

There is great interest in learning dynamical system mod-
els using only observed time series data. Machine learn-
ing is an emerging tool for this purpose, but it often pro-
vides a ‘black box’ solution that is hard to interpret. Next-
generation reservoir computing provides a more inter-
pretable solution because it is based on a linear superpo-
sition of nonlinear functions, where the linear weights are
learned during model training. It also has the advantage of
requiring smaller training datasets, and reduces the com-
puter time required to perform training. However, it can
struggle with systems with complicated functions describ-
ing the dynamics. Here, we show a major improvement,
called locality blended next-generation reservoir comput-
ing (LB-NGRC), which can be extended by having it focus
its attention on smaller regions of phase space, greatly im-
proving its performance on a challenging problem.

I. INTRODUCTION

A current topic of dynamical systems research is using
model-free, data-driven methods to learn the underlying sys-
tem. For chaotic dynamical systems, this involves nonlinear
system identification using, for example, machine learning
(ML) algorithms such as deep learning.1 The goal of the ML
model is to forecast the future dynamics of the system or to
predict variables that are inaccessible during model deploy-
ment.

One example of an ML model that excels in predicting
chaotic dynamics is known as reservoir computing, which is
an artificial neural network comprising a core ‘reservoir’ of
time-dependent nonlinear neurons connected in a recurrent
topology.2,3 Reservoir computing has been successfully ap-
plied to a variety of nonlinear dynamical systems and pro-
duces state-of-the-art results4 but with vastly smaller train-

ing datasets and smaller compute times. Its performance is
comparable to that obtained with deep learning algorithms, as
demonstrated by head-to-head comparisons.5,6 Also, reservoir
computing can be mapped onto physical systems for efficient
analog realizations.7

Next-generation reservoir computing (NGRC) simplifies
the reservoir computing algorithm even further by separat-
ing aspects of the model into different compartments,8 as de-
scribed below. Here, time-delayed copies of the time series
data generated by the dynamical system are passed through
nonlinear functions, which are weighted by the model param-
eters and summed. The NGRC algorithm has been success-
fully applied to various problems with greatly reduced train-
ing dataset requirements and compute times while providing
state-of-the-art model accuracies.

In the original NGRC report, the nonlinear functions of the
model are low-order monomials, motivated by the polyno-
mial form of the equations describing the dynamical systems.
Suppose the modeler has no information about the underly-
ing dynamical system, or it is known that polynomial func-
tions do not describe it. In that case, they can be replaced by
generic sigmoidal-shaped functions in a single-layer feedfor-
ward neural network with internal trainable weights9 or with
randomly assigned internal parameters in an extreme learning
machine.10 However, these approaches lose the interpretabil-
ity of monomial-based features of the NRGC.

The primary purpose of this paper is to use an algorithm
that retains the interpretability of monomial-based nonlinear
functions in NGRC while modeling dynamical systems that
are inherently not described by polynomials. We advance a
method known as piecewise-polynomial regression trees11 for
this problem and select modern tools to simplify the task, par-
ticularly regarding the critical stage of developing a relevant
partition.

Figure 1 shows a dynamical system whose underlying func-
tions have a swirling characteristic, which would be difficult
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to describe by a low-order polynomial. The key insight is
adding an attention mechanism to the model using a hierar-
chical tree structure to cluster the data. Here, a low-order
monomial-based NGRC is used to describe the dynamics in
a local neighborhood of phase space, as illustrated by the
red circles in Fig. 1, and models for all regions are smoothly
blended. We refer to this model as locality blended NGRC,
or LB-NGRC for short.

Our approach brings together multiple concepts and tools
from the statistics and ML communities but has not been used
in combination as put forward here to the best of our knowl-
edge. We demonstrate our approach using data generated by
a low-dimensional chaos model known to be hard12 to model
using other ML tools: the two-dimensional Ikeda map13 de-
scribing the behavior of a chaotic laser. We only consider the
forecasting problem, that is, predicting the system state one
step in the future, given its current state.

Because we are describing a new approach, we do not ex-
haustively apply the method to a wide range of dynamical sys-
tems. Rather, we attempt to keep the description as simple as
possible to encourage others to adapt this approach to their
favorite problem. In the next section, we give background on
NGRC and then introduce the attention mechanism in Sec. III.
We present our results in Sec. IV and follow with discussions
in the last section.

II. BACKGROUND

In ML approaches, the algorithm is typically presented with
discretely sampled time series data. The data are divided into
a part used for ‘training’ the algorithm, that is, performing
the system identification, and a ‘testing’ part, which is used to
validate the generalizability of the model by using it to pre-
dict data not seen during training. A wide variety of ML algo-
rithms excel at learning dynamical systems from time-series
data, such as low-dimensional chaos described by maps or dif-
ferential equations or complex spatial-temporal behavior de-
scribed by partial differential equations.

Deep learning1 and its variations provide state-of-the-art
nonlinear system identification but often require large train-
ing datasets and long compute times on advanced hardware
such as graphical processor units. One reason for the long
compute times is that the deep learning model parameters are
embedded within nonlinear functions, which require compu-
tationally difficult nonlinear optimization.

An alternative to deep learning is to use ML models that are
linear in the parameters to be learned.14 Here, the ML model is
a linear superposition of nonlinear functions of the input data.
We stress that this does not require that the dynamical system
is of this form; we only require the existence of a linear-in-
the-parameters (LP) model that is a good approximation of
the dynamical system. Finding the parameters only requires
linear optimization methods, such as regularized least squares
regression. As with deep learning models, it has been proven
that LP models are universal function approximators when the
models are large, so either approach can be applied to our
problem.

We consider a dynamical system measured at equal discrete
time steps and described by a mapping

xn+1 = Φ(xn,xn−1, . . .) (1)

where xn is the state of the system at time step n and Φ is the
dynamical system flow. The goal of NGRC is to learn an LP
model of Φ.

To this end, we define an LP model given by

xn+1 = O(xn,xn−1, . . .)W ≃ Φ(xn,xn−1, . . .), (2)

where O is a so-called feature vector that contains nonlinear
functions of the input data, and the elements of the matrix W
must be ‘learned’ or ‘trained’ based on data generated by the
dynamical system. As an aside, Eq. 2 is written in a form
typically used by the wider ML community to take advantage
of existing toolsets. The reservoir computing community of-
ten writes it as WO , which works equally well. This change
in convention requires rearranging Eq. 9 below so our results
may appear different than the expression found in other reser-
voir computing papers.

We focus on the Ikeda map13 given by

xn+1 = Fx(xn,yn) = 1+u(xn cosθn − yn sinθn), (3)
yn+1 = Fy(xn,yn) = 1+u(xn sinθn + yn cosθn), (4)

θn = 0.4− 6
1+ x2

n + y2
n
, (5)

with u = 0.9. Figure 1 shows iterations of the map super-
imposed on a contour plot of the functions Fx(xn,yn) and
Fy(xn,yn). The range of xn and yn is large enough so that the
transcendental expressions in Eqs. 3 and 4 saturation-like term
in Eq. 5 are not well approximated by a Taylor series expan-
sion; that is, as a function of monomials. The difficulty in
using an ML model to forecast the Ikeda dynamics has been
pointed out previously.

We use knowledge of the Ikeda map to simplify the NGRC
model: we assume that the feature vector only has nonlinear
functionals of the current state of the system xn = [xn,yn] (a
(1× 2) row vector) and no data from past states. Then the
x-component (y-component) of OW is an LP approximation
of Fx(xn,yn) (Fy(xn,yn)). That is, the ML algorithm learns a
nonlinear function using only time series data generated by
the mapping.

Motivated by the original paper on NGRC, the feature vec-
tor contains monomials up to order N as

On = [c,xn,yn,x2
n,xnyn,y2

n, . . . ,x
N
n , . . . ,y

N
n ], (6)

where c is a constant. The problem with a monomial-based
model is that the number of features grows exponentially
with N. On the other hand, our advice is to try a low-order
monomial-based model first because it is simple to evaluate
and works well for a large number of problems.

Previous work15 finds an acceptable monomial-based
model for the Ikeda map for u = 0.7 and N = 5. Here, the
dimension of O is (1× 21) and W has dimension (21× 2).
As shown below, the 5th-order monomial model is not accu-
rate for the larger value of u used here.
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FIG. 1. The Ikeda attractor covered with balls. Contour plots of the map functions superimposed with 4,000 points of the Ikeda attractor
and the balls identified by the ball tree clustering algorithm for a scale of 0 (top row) and 5 (bottom row).

Finding the LP model requires two steps. The first step, or
the training phase, assumes that we have access to the dataset
one step in the future. This is known as supervised learning.
The second step is the testing or deployment phase, where
only an initial value of xi is known and the model is used to
predict the states into the future by feedback of the output of
the model to the input. This is known as a generative model.

In the training phase, we form a sequence of feature
vectors16 using M+1 consecutive observations of xn and ver-
tically stack them in a matrix

O = O1 ⊕O2 ⊕ . . .⊕OM (7)

of dimension (M×N f eat), where ⊕ indicates vertical concate-
nation. Similarly, we form the ‘true’ values we are learning,
which is given by

Y = x2 ⊕x3 ⊕ . . .xM+1 (8)

for the one-step ahead forecasting problem we consider here.
The learned weights are found using regularized least

square regression (ridge regression)17 through the relation

W = (OT O+αI)−1OT Y, (9)

where T is the transpose, I is the identity matrix, and α is the
regularization parameter. The procedure goes over to standard

least squares regression when α = 0. Non-zero values of α re-
duce errors in the numerical computation of the matrix inverse
when the condition number of OT O is large (often the case in
our application), and it also penalizes large components of W.

III. LB-NGRC IS NGRC WITH ATTENTION

The key concept of LB-NGRC is to add an attention mech-
anism to the LP model. Here, we translate the coordinates
to

x̃b = x−xb (10)

and fit a polynomial model to the data in a small neighbor-
hood of xb with corresponding feature vectors On,b and model
parameters Wb.

The individual models are blended to give an overall LP
model given by

Φ(xn)≃
∑

B
b=1 On,bWb RBFb(x̃b,σb)

∑
B
b=1 RBFb(x̃b,σb)

, (11)

where RBFb(x̃b,σb) is a radial basis function centered on xb
and a scalar parameter σb that sets the spatial scale of the func-
tion. There are many choices for the radial basis function; we
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find that a Gaussian function

RBFb(x̃b,σb) = exp
(
−x̃2

b/(2σ
2
b )
)

(12)

works well for modeling the Ikeda map.

One important aspect of our approach is that the individual
monomial-based models On,bWb are smooth and defined over
the entire phase space.11 Joining the models requires select-
ing an RBF that focuses attention on the local neighborhood
of phase space. Typically, the spatial scale of the radial basis
function, set by σb is set to the typical spacing between neigh-
borhood centers. Importantly, we do not explicitly match lo-
cal models at the boundaries of the neighborhoods as is often
done for interpolation methods; the radial basis functions do
this automatically. A detailed analysis of the quality of fit is
given in the Appendix A.

So far, we have not addressed how to partition phase space
into neighborhoods. There is a wide variety of methods avail-
able from the ML community known as clustering algorithms
that can partition the space. These are typically unsupervised
methods that break up the space using only the data. Here, we
use the ball tree method, which uses a branching tree method
to subdivide the data.

The ball tree method places a hypersphere (a ball) about
clusters of neighboring data points. On the coarsest scale (top
row, Fig. 1), it puts a single ball around the entire data set,
where the center of the ball xb is the average of the data along
each axis and the ball radius rb is just large enough to en-
compass the data. At the next scale, it divides the data in
half and covers it with two balls, known as the children. It
selects the ball centers by maximizing the distance (using a
user-defined metric) between the ball centers while minimiz-
ing the ball radii. The balls overlap, but each point is associ-
ated with a single ball. This procedure is applied recursively
until the finest (leaf) level set by the user is attained or the data
runs out, whichever happens first. For scale level s, there are
2s balls, with an average of M/2s points per ball. The bottom
row of Fig. 1 shows the balls for s = 5.

Once the ball tree is formed, it can be used to identify the
neighbors of a new point using a fast search algorithm. Impor-
tantly, the ball-tree method is efficient for high-dimensional
data, so our method can be used for complex problems resid-
ing in a high-dimension phase space. Also, the hypersphere
geometry is well matched to radial basis functions.

The cost of LB-NGRC is an increase in the model meta-
parameters that must be optimized. For the standard NGRC
model, the metaparamters include the number of training data
points M, the maximum polynomial degree N, and the ridge
regression regularization parameter α . Because we are work-
ing with a known mapping, the maximum delay-time and skip
parameters for the standard NGRC are not needed here. The
LB-NGRC model adds four additional metaparameters: the
ball tree scale s, the choice of the radial basis function, the
radius of the radial basis function relative to the ball radius
σb/rb, and the metric used for measuring distance.

IV. RESULTS

We apply LB-NGRC to the Ikeda map for 50,000 iterations
with an initial condition on the attractor. The first 10,000
points are used for training, and the remainder is used for test-
ing. During testing, we break the testing data into 10 equal-
size segments (4,000 points each), and we restart testing at the
beginning of each to determine the variance in the testing er-
ror. We find that it is important to test over such long intervals
to ensure that the LB-NGRC model reproduces the ‘climate’
of the attractor (model overfitting can lead to a collapse or
divergence of the dynamics).

The first step is to use a ball tree clustering algorithm18 that
goes to a maximum scale of s = 6 (26 = 64 balls). We use
the default Minkowski metric, which is the Euclidean distance
for the two-dimensional problem considered here). Figure 1
shows the ball coverage for s = 5. We fit a low-order polyno-
mial model16,17 to the data in each ball and determine the nor-
malized root-mean-square error (NRMSE) using the training
data without blending the models. Here, the error is normal-
ized to the standard deviation of the Ikeda attractor using an
L2 norm. The training NRMSE assesses the quality of the fit
of the model to the data. The regularization parameter is opti-
mized using a grid search to best reproduce the Ikeda attractor,
as discussed below.

Figure 2 shows how the fit changes with the ball scale for
locally quadratic and cubic polynomials. Note that the aver-
age number of points in each ball decreases by a factor of two
for each increase in scale because we are using a fixed number
of training points. Each blue symbol is the error for an individ-
ual ball, and the mean of the fits is also indicated. The error
and standard deviations of the fits decrease smoothly as the
scale increases, where the cubic term has a somewhat lower
error. If we turn off regularization (α = 0) so that the fitting
is least squares regression, the errors at the highest scale are
smaller, but this comes at the cost of greater testing error.

To assess the generalizability of the models, we test them
at 10 different starting points on data it has not seen during
training. Because the system is chaotic, small errors will nec-
essarily grow on a time scale of the Lyapunov time, which
is the inverse of the positive Lyapunov exponents quantify-
ing the rate of exponential divergence of the iterates in phase
space. Here, the Lyapunov time is 1.99,19 corresponding to
about two iterations of the map. It is common practice to test
over a single Lyapunov time, but our models are so accurate
that we test over 5 Lyapunov times. Over this interval, we find
the NRMSE between the actual and predicted iterates. Each
testing segment corresponds to ∼2,000 Lyapunov times, so
the segments are uncorrelated.

Figure 3 shows the testing error as a function of the size of
the radial basis function σ relative to the ball radius rb. We
include the case s = 0, which is the standard NGRC model
and does not depend on the radial basis function radius. We
skip the smaller scales because the error tends to be large; we
only begin to display the data for s ≥ 4.

For reference, Giona et al. find that a 5th-order polyno-
mial model (standard NGRC, s = 0) accurately predicts the
Ikeda attractor for a smaller bifurcation parameter u than we
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FIG. 2. Training error. Error as a function of the ball tree scale for
a locally a) quadratic model with α = 1× 10−4 and b) cubic model
with α = 1×10−5. The black × indicates the mean of the errors for
each ball.

use here. For our value of u, we find that the testing NRMSE
∼ 0.5, which is comparable to random guessing.

We see that the finer balls (larger s) favor tighter attention
(narrower radial basis functions) as the s increases. However,
the NRMSE is not overly sensitive to this ratio. For locally
quadratic (cubic) models, we take σb/rb = 0.3 (0.2) in the
analysis below. It is also evident that the error approximately
saturates and does not decrease substantially for smaller σb.
The location of the breaking point depends on the ridge re-
gression parameter, which requires some interactive optimiza-
tion of the metaparameters.

A similar behavior occurs for the NRMSE as a function of
the scale for fixed σb. The error approximately saturates at
a modest scale. Again, the saturation scale value depends on
the regression parameter. Below, we take s = 5, which trades
off the accuracy of the LB-NGRC model and the number of
model parameters.

We use LB-NGRC models to forecast the Ikeda map start-
ing from the first testing segment, as shown in Fig. 4. We see
that both the locally quadratic and cubic models have a fore-
casting horizon of about 5 Lyapunov times, beyond which the
error begins because the system is chaotic. We conclude that
the LB-NGRC model has a good short-term forecasting abil-
ity. A forecasting horizon of 5 Lyapunov times is comparable
to other good ML models.

To assess the long-term prediction ability of LB-NGRC (the
‘climate’), Fig. 5 shows the actual and predicted attractors for
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FIG. 3. Test error. Mean testing NRMSE with different scales as
a function of the radius of the radial basis function for 10 testing
segments. The error bars represent the error of the mean and are
only shown for the finest scale for clarity. The error bars are similar
for the other scales. Regularization: locally a) quadratic model with
α = 1×10−4 and b) cubic model with α = 1×10−5.

the locally quadratic and cubic models. On a coarse scale, the
attractors look similar with the basic structures reproduced.
However, for the locally quadratic model, there are some sub-
tle differences in areas of the attractor that are slightly filled.
These issues are largely resolved for the locally cubic model.

V. DISCUSSION

Our results demonstrate that low-order polynomial fits to
data localized in phase space and smoothly blended allow for
accurate forecasting of dynamical systems. The local data sets
are created by clustering the data using a hierarchal ball tree
method, which is an unspervised method that does not require
fine-tuning for our example problem. For each cluster, we fit a
low-order polynomial model to the data and blend the models
for each region using radial basis functions.

This general approach has already been established in the
statistics community some time ago by, for example, Chaud-
huri et al..11 We identify that the ball-tree method is a good
approach for clustering the data, which is well matched to our
further improved model based on of radial basis functions for
a convex combination model blending, and there is analysis
of this in Appendix A. Therein we describe some advantages
of LB-NGRC beyond the ability to handle systems where the
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model with α = 1×10−5.

global model would be to complicated such at the Ikeda map.
Specifically, the error of a local regression model tends to im-
prove depending on the domain size, the degree of the fit, and
also considering the regularity of the fitting function in the lo-
cal domain. This allows leveraging of locality scale and par-
tition, local model complexity, and spatial data density asso-
ciated with data-set size with this new and efficient methodol-
ogy. In the future, we will explore using other clustering meth-
ods, including early stopping of the local branching based on
the quality-of-fit for each parent ball,11 or random forests to
create an ensemble model.20

Another method to simplify the models is to perform fea-
ture selection for each local model - that is, identify the mono-
mials in each ball that contribute the most to predicting the
data variance. For example, forward regression orthogonal
least squares is a highly successful approach for model re-
duction. It is a greedy bottom-up algorithm that works effi-
ciently and has higher numerical stability compared to other
methods.21

We mention that LB-NGRC has some similarity to other
methods, such Gaussian-process models and support vector
machines, but those only fit a constant-weighted Gaussian
function. Using local polynomials reduces the depth of the
tree (i.e., reduces s) to obtain the desired model accuracy. We
also only evaluate the radial basis function at the ball centers,
whereas the other methods place a center at every training data
point, which increases the computational cost of evaluating
the model during deployment.

In the future, we will apply LB-NGRC to modeling ordi-
nary differential equations, which will likely require using
data from past steps.8 Our approach can also be used for

modeling time-delay or spatial-temporal dynamical systems,
where the scalability of the ball tree method will likely be im-
portant.
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Appendix A: Quality of Fit of the LB-NGRC Model

Here, we present an analysis for the quality of fit of the lo-
cally blended model given in Eq. (11), which is at the heart
of this paper. First, we present the idea in terms of two sep-
arate local models that we call m1(x) and m2(x) to a single

http://doi.org/[doi]
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(∼4,000 iterates) for the a) true attractor, locally b) quadratic, and
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scalar function f (x), drawn for clarity in terms of the simplest
setting of a one-dimensional domain and range. See Fig. 6.

As imagined, m1(x) (m2(x)) is a local model generated to
produce a high-quality fit in the region on the left (right) side
of the point x. Each model could be, for example, a Taylor
series or some other kind of power series of basis functions
designed to be expressive in each local region. However, x is
somewhere in between where neither model is designed to be
at its best. In this middle region, either model is pretty good,
but a blend between the two models may be the best choice.

FIG. 6. A key feature of blended locality models Eqs.(A1), (A5)
is that high-quality local models can be of relatively low order, but
they degrade as the distance grows from their centers. The blending
concept allows for a gradual “‘hand-off" of the local functions to
transition smoothly between zones of best performance.

By blend, we mean a convex combination.
For simplicity, we assign a weight of 1/2 to each local

model. Let the model fit for x in the middle be given by

f̂ (x) =
1
2

m1(x)+
1
2

m2(x). (A1)

The fit error is then

err(x) := | f (x)− f̂ (x)| (A2)

= |1
2

f (x)− 1
2

m1(x)+
1
2

f (x)− 1
2

m2(x)|

≤ |1
2

f (x)− 1
2

m1(x)|+ |1
2

f (x)− 1
2

m2(x)|

=
1
2

err1(x)+
1
2

err2(x). (A3)

That is, the error is half of the error of the fit from using either
one or the other model.

In a more general setting of a convex combination of B-
local models mb(x), b = 1,2, ..,B, derived from a sum of
weights sb(x) so that

s(x) =
B

∑
i=b

sb(x), (A4)

then a blended function is defined by a convex combination
given by

f̂ (x) =
s1(x)
s(x)

m1(x)+ ...+
sB(x)
s(x)

mB(x). (A5)

The error can be bounded by derivation analogous to the sim-
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pler case of Eq. (A2) and is found to be

err(x) ≤ | s1(x)
s(x)

|| f (x)−m1(x)|+ ...+ | sB(x)
s(x)

|| f (x)−mB(x)|

=
B

∑
i=b

| sb(x)
s(x)

|| f (x)−mb(x)|

≤ 1
S

B

∑
i=b

|sb(x)| f (x)−mb(x)|, where S ≥ |s(x)|

≤ R M, (A6)

in terms of a bounding value S. Let, R = 1/S and

M = max
b∈{1,2,..,B}

sup
x∈Bb

| f (x)−mb(x)|, (A7)

for Bb a bounded domain over which mb(x) is defined. Here,
the domain is generally one of the balls of the ball tree con-
struction. The quantities R and M are bounded and have a
naturally controlled size by relying on the concept inherent to
the ball tree partitioning method.

In each ball Bb, when the ball is relatively small, the
idea is that a low-degree local NGRC model mb(x) works
progressively better even for low-degree models as long as
the data set size within a ball stays approximately the same.
This is the same concept as a Taylor-series expansion of an
analytic function, where the quality of fit depends on dis-
tance from the center and the degree of the series. Simi-
larly, a standard analysis? for a Lagrange polynomial Pr(x)
of degree r fit through r + 1 points in a extent of data
{(x1, f (x1),(x2, f (x2), ...,(xr+1, f (xr+1)} for {x1,x2, ...,xr} ∈
B, there is point c ∈ B such that

|Pr(x)− f (x)|=

∣∣∣∣∣ f (r+1)(c)Πr
i=1(x− xi)

(r+1)!

∣∣∣∣∣≤K
|x− xb|r

(r+1)!
. (A8)

Here, xb is a central point in B, and let K =
maxx∈B | f (r+1)(x)|/(r + 1)! is a standard statement on er-
ror bounding by interpolating polynomials in one dimension;
comparable statements in terms of derivatives exist for the
multivariate scenario even though it is more complicated to
write. With Mb := supx∈Bb

| f (x)− mb(x)|, then practically
Mb ∼ K|x− xb|r/(r+1)! from Eq. (A8).

The point of the above discussion is that M is well con-
trolled for each ball domain Bb, at least if the balls decrease
in diameter less than one, and the regularity of the derivatives
bounding K do not outpace the decreasing of |x−x∗|r/(r+1)!
with increasing r. This bound becomes progressively better
with small balls, resulting from large data sets that result in
high data density even in small balls, which, inn turn, allow
for lower-degree polynomial fits. This is the strength of local
models. Likewise and similarly, the error of a local regression
model tends to improve depending on the domain size, the de-
gree of the fit, and also considering the regularity of the fitting
function in the local domain.

Specifically, in Eqs. (11)-(12), each weight function is de-
fined as a radial basis function

sb(x) = RBFb(x̃b,σb), (A9)

which will be in the analysis below. It is easy to see that
Eq. (A5) represents a convex sum for each x, since

s1(x)
s(x)

+ ...+
sB(x)
s(x)

= 1, (A10)

and considering Eq. (A4). What is notable is that using ra-
dial basis functions, with standard deviations σb that are gen-
erally a fraction p > 1 of the ball radius size, it effectively
(almost) results an averaging across those models developed
in the balls nearest to a point x where the bended model f̂ (x)
is to be evaluated. In fact, it is straightforwardly obvious that
since exponentials decay so fast, that a set distance from a
ball center can be chosen so that the RBF, σb(x), will be suf-
ficiently small that the blended sum model, Eq. (A5). In fact,
this brings up an efficiency opportunity to simply skip those
mb(x) locality models in the summation of f̂ (x) correspond-
ing to the less nearby balls (most of them) whenever σb(x)< δ

for some small threshold δ > 0. However, the quality of the
approximation by such a reduced blended model using fewer
terms by only the nearby terms, k = 1, ...,Kδ , Kδ < B will be
better if we recalibrate the sum of s(x) in Eq. (A4) to include
only the those terms corresponding to the nearby balls.
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