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Abstract

This article explores the relationship between structure and short cycles in complex networks, based on
the fact that nodes more densely connected amongst one another are more likely to be linked through short
cycles. By identifying combinations of 3-, 4- and 5-edge-cycles, a subnetwork is obtained which contains
only those nodes and links belonging to such cycles, which can then be used to highlight the connectivity
structure of complex networks. Examples are shown using a theoretical model (Sznajd networks) and a
real-world network (NCAA football).

1 Introduction

Complex networks have attracted growing attention
because of their non-uniform connectivity patterns,
which may give rise to node degree power laws and
hubs, known to play an important role in defining sev-
eral topological properties of the networks [1, 2, 3].
More recently, the fact that many complex networks
include communities, i.e. sets of nodes which connect

more intensely amongst one another than with the
rest of the network, has become the focus of increas-
ing attention (e.g. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]). In-
deed, because of statistical fluctuations, even random
networks [14, 15] can be found to exhibit communi-
ties [16, 17]. Although we still lack a clear-cut defini-
tion of a community, the problem of identifying com-
munities in complex networks continues to motivate
interest from researchers because of the importance
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that those structures have for better understanding
the general organization of such complex structures
(e.g. [18]).

Another important feature of complex networks are
the cycles of different lengths which underlie the con-
nectivity of the several models of networks [19]. Ac-
tually, the statistical distribution of cycles has been
acknowledged as particularly important for defining
not only the topology of the respective networks, but
also the dynamics of systems running on such frame-
works(e.g. [20]). The latter is a direct consequence of
the fact that cycles, through feedback, form the scaf-
folding of memory in dynamical systems. Generally,
the density of cycles tends to increase as more edges
are incorporated into a network, with longer cycles
being observed earlier than shorter ones (e.g. [21]).
Therefore, the density of cycles of different lengths
can be used as an indicator of the connectivity be-
tween any subset of nodes. In other words, the
larger the number of shortest cycles among a sub-
set of nodes, the more connected such nodes are to
one another. Longer cycles tend to grow, “coiled up”,
alongside these shorter cycles, however, blurring the
distinction between nodes based solely on short-cycle
participation. We present methods to overcome this.

The article starts by presenting the cycle finding
algorithm and its application as the core of a struc-
ture characterization algorithm and proceeds by il-
lustrating the application of such a methodology to a
theoretical complex network model (i.e. Sznajd net-
works [22]) and a real-world football network. Al-
though we did not directly approach the problem of
community finding, the reported methods and resuls
provide the basis for possible algorithms for that fi-
nality.

2 Describing Short Cycles

For a graph G = {V, E}, n = |V |, m = |E|, we are in-
terested in finding cycles of length 3,4, or 5 containing
some starting vertex v ∈ V . To describe these cycles
we begin by decomposing G into shells Si about v.
We define shell Si to be the set of all vertices (and
edges between those vertices) at a distance i from the
starting vertex v. Since we are only interested in cy-

cles of length ≤ 5, we need only to keep shells S1 and
S2.

For every edge eij in S1 about v, there exists a
3-cycle (triangle) v–i–j–v. Similarly, for every path
of length 2 or 3 in S1, there exists a 4- or 5-cycle,
respectively. Another 4-cycle and two more 5-cycles
exist involving both S1 and S2. Thus, one can find
cycles of specific length simply by counting the num-
bers of edges or paths within and between the first
two shells. One can also describe all possible cycles
using these shell decompositions, see Appendix A.

3 Cycles and Structure

For a graph G, a cycle C is a subset of the set of edges
E containing a continuous path, where the first and
last node of the path are the same [23]. Permutations
of cycles may be ignored since we will be working
exclusively with sets of edges. Throughout this work,
we limit ourselves to short cycles, typically those of
length l, 3 ≤ l < 6. These shorter cycles may provide
the advantage of faster calculation times.

Structure can be studied by comparing the edges
covered by these cycles with the original graph. Let

Cl(i) ≡ the set of edges traversed by all (1)

l-cycles starting from vertex i

Starting from all vertices and limiting ourselves to
only short j-cycles 1,

C ≡
⋃

i∈V

⋃

j

Cj(i). (2)

Then, for a graph G, we construct a graph H

where,

H = {V, E \ C} (3)

is the graph G containing only edges that do not par-
ticipate in j-cycles. Separate structures in G will ap-
pear as disconnected components in H . We interpret

1Indeed, here we specify short cycles as those of length 3,
4, or 5 but this is not a set rule and, in certain circumstances,
it may prove advantageous to consider 4- or 5-cycles, or even
just 5-cycles.
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vertices with degree zero in H as communities of size
one.

In specifying H , the question of what to choose
for j has been left open. For example, choosing just
j = {3} will correspond to deleting all edges from
G that participate in 3-cycles, generally not a useful
result. One may consider j to be a tunable param-
eter, used to get a desired result when applied to a
specific network. One issue that can occur is that
longer cycles often overlap shorter cycles. In terms
of communities, most inter-community edges contain
few (if any) short cycles, but intra-community edges
tend to contain both long and short cycles, since a
long cycle can “coil” inside the community. If one
were to just delete all 5-cycles in a graph, it is very
possible to end up deleting all edges. There is quite
a bit of leeway in how we choose j and build H , and
we can use this to our advantage. For example, pick
two cycle lengths s and t, s < t and compute Cs and
Ct. Then, build another set of edges, Ct\s

Ct\s ≡ Ct \ Cs, (4)

containing the set of edges that participate in t-cycles
but not s-cycles. The graph H = {V, Ct\s} will con-
tain edges that tend to be between communities and
not within, for an appropriate choice of t and s. One
can think of this as a “backbone” of the network, and
deleting these edges may be a useful pre-processing
step for applying other community-detection algo-
rithms, including betweenness [4, 10].

4 Application Examples

We present example applications of the methods pre-
sented in Section 3 to two networks: a network of
NCAA Division I-A football games held during the
2005 regular season 2 and a Sznajd network [24]. In
addition, we discuss how these methods can break
down and ways to overcome that.

2Data taken from published schedule at http://www.ncaa.

org

4.1 Football Network

In NCAA football, teams are grouped into confer-

ences based on location. To save on transporta-
tion time and cost, more games are played between
teams in the same conference than in different con-
ferences. Thus, a graph of the game schedule, where
nodes are teams and edges connect teams that have
played against each other, naturally exhibits commu-
nity structure based on these conferences [25]. Figure
1a displays the original network, call it G. As a first
pass, let’s use j = {3} and generate G3 = {V, C},
pictured in Figure 1b using the same layout as 1a.
This deletes all edges that do not participate in 3-
cycles. Most deleted edges are between conferences,
though some edges remain. This will not split the
network into seperate components based on the com-
munities but it may be useful as a preprocessing step
for betweenness or another community detection al-
gorithm.

In addition, let us build Ct\s, as per Equation 4.
For this network, we have chosen t = 5, s = 3. Figure
1c shows G5\3 = {V, Ct\s}, again using the same lay-
out as 1a. For improved clarity, Figure 1d shows G5\3
with a layout emphasizing that all edges are between
conferences. We propose that edges in C5\3 com-
prise the majority of this network’s inter-community
structure. To test this, one can compare the distri-
butions of edge betweenness for these backbone and
non-backbone edges, as shown in Figure 2a. Back-
bone edges tend to carry much higher betweenness
values than the more common non-backbone edges.

4.2 Sznajd Network

One particularly interesting category of complex net-
works are the so-called geographical models (e.g. [27,
28]), whose nodes have well-defined positions in an
embedding metric space S. Typically, the connec-
tivity in such networks is affected by the adjacency
and/or the distance between pairs of nodes, with
nodes that are closer to one another having higher
probability of being connected. As an immediate
consequence of such an organizing principle, com-
munities in traditional geographical populations are
closely related to the presence of spatial clusters of
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Figure 1: (color online) The NCAA Div I-A 2005 regular season with all edges (a), with 3-cycles only (b),
and with just C5\3 edges (c). (d) is the same graph as (c) but with a layout emphasizing that no edges within
conferences remain (degree zero nodes omitted). As per [26], the conferences are: A = Atlantic Coast, B =
Big 12, C = Conference USA, E = Big East, I = Independent, M = Mid-American, P = Pacific Ten, S =
Southeastern, T = Western Athletic, U = Sun Belt, W = Mountain West, X = Big Ten.
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(a) (b)

Figure 2: (color online) Histogram of edge betweenness for non-backbone edges (red) and backbone edges
(blue) for the NCAA 2005 football network (a) and the Sznajd network shown in Figure 3 (b). For the football
network, the mean (unnormalized) betweenness is 42.8 for non-backbone edges and 132.9 for backbone edges.
Note that backbone and non-backbone histograms use the same bins; the front-most bins have been narrowed
for clarity. The Sznajd non-backbone bins have also been scaled down by a factor of 25 for clarity.

nodes, i.e. groups of nodes that are closer to one an-
other than with the rest of the network. Introduced
recently, the family of geographical networks known
as Sznajd networks [22] allow rich community struc-
ture as a consequence of running the Sznajd opinion
formation dynamics [24] among the network edges in-
stead of considering the states associated with each
network node. Starting with a traditional geographi-
cal network (called the underlying network Γ), where
the connections are defined with probability propor-
tional to the distances between pairs of nodes, a per-
centage of edges of Γ are removed, yielding the initial
condition for the Sznajd dynamics. Then, edges from
Γ are chosen randomly and used to influence the re-
spective surrounding connectivity. For instance, if
the chosen edge (i, j) is “on” (i.e. it does correspond
to a link in the current growth stage), the edges in
Γ which are connected to nodes i and j are estab-
lished with probability p. An analogous procedure
is considered with respect to edges that are absent.
In order to avoid convergence to the trivial ground
states where all edges are set on or off, the dynamics
also consider as feedback the total number of estab-

lished edges.

Figure 3a shows a Sznajd Network. Edges that
do not participate in 3-cycles are indicated. As can
be seen, many of these edges fall “outside” the more
dense regions of the network. This is a good first pass,
and may be used to initialize another algorithm, sim-
ilar to our football result, but it will not give detailed
information on the hierarchical community structure.

Figure 3b shows the same network as 3a, but with
the edges of C5\3 highlighted. One can imagine re-
moving both the C3 and C5\3 edges to further en-
hance the separation.

5 Concluding Remarks

The identification and characterization of the connec-
tivity patterns in complex networks stands out as one
of the most important approaches for understanding
their structure and possible formation and evolution.
At the same time, the distribution of cycles of various
lengths in a complex network has important implica-
tions for the connectivity, resilience and dynamics of
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(a) (b)

Figure 3: A Sznajd network. Edges that do not participate in 3-cycles are dashed (a). Edges in C5\3 are
bold (b). Note that nodes of degree zero have been omitted for clarity.
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the respectively studied networks. The current work
brought together these two important trends, in the
sense of applying short cycle detection as the means
to help the identification of structured community in
complex networks. The suggested methodology has
been applied with promising results with respect to
a theoretical network model, more specifically a Sz-
najd geometrical networks, as well as to a real-world
network (NCAA).

The relationship between the cycles and communi-
ties in the football network has been further investi-
gated in terms of the betweeness centrality measure-
ment, confirming that the obtained backbone edges
tend to exhibit higher betweeness values.

Acknowledgments: L. da F. Costa thanks
FAPESP (05/00587-5) and CNPq (308231/03-1) for
financial support.

A Cycles and Shell Decomposi-

tions

In general, for a cycle of length L ≥ 3, the number of
possible cycles N(L) must rapidly grow with L. Since
it requires two edges to visit a shell, any L-cycle can
visit at most J shells, where

J =

{

L
2 , L even,
L−1

2 , L odd.
(5)

If the farthest shell the cycle visits is Sj (with
j < J), there are at most L − 2j remaining edges
that must be distributed between and within the
S1, S2, ..., Sj shells. The number of ways to distribute

L − 2j edges over j shells is (L−2j+j−1)!
(L−2j)!(j−1)! . Yet it is

possible for a cycle to “zig-zag” between shells, us-
ing more than the 2j necessary edges between shells.
Therefore, the total number of possible ways to dis-
tribute an L-cycle is at least

Nl(L) = 1+

J
∑

j=2

J−j
∑

i=0

(

i + j − 2

i

)(

L − 2i − j − 1

L − 2(i + j)

)

, (6)

with the outer sum accounting for all the possible
shells the cycle can visit, the inner sum for all the
optional pairs of edges that can lie between shells
and the +1 for the one possible cycle that visits the
first shell only. Here i is the number of pairs of edges
between shells beyond the j necessary to visit the j

shells.
Furthermore, splitting the inner sum in Nl into

cases where extra edges are distributed (i > 0) and
are not (i = 0):

Nl(L) = 1 +

J
∑

j=2

[(

L − j − 1

L − 2j

)

+

J−j
∑

i=1

(

i + j − 2

i

)(

L − 2i − j − 1

L − 2(i + j)

)

]

(7)

=
1√
5

(

1 +
√

5

2

)L−1

+

J
∑

j=2

J−j
∑

i=1

(−1)L+i

(

1 − j

i

)( −j

L − 2(i + j)

)

. (8)

This gives a “lower” lower bound of 1√
5

(

1+
√

5
2

)L−1

,

which is equivalent to neglecting to count those cycles
with extraneous edges between shells.

Equation (8) fails to take into account permuta-
tions of the ordering of edges between and within
adjacent shells. A simple upper “bound” is possi-
ble, however, as there are certainly no more than L!
possible permutations over the whole network:

Nu(L) = 1+

J
∑

j=2

J−j
∑

i=0

(

i + j − 2

i

)(

L − 2i − j − 1

L − 2(i + j)

)

L!, (9)

with

1√
5

(

1 +
√

5

2

)L−1

≤ Nl(L) ≤ N(L) ≤ Nu(L).

(10)
The number of possible cycles grows at least expo-

nentially with length. If one were to assume that each
particular case has an equal probability of occurring

7



in a given network, which is not generally justified,
then the number of cycles present also grows expo-
nentially, as expected.
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