
CLARKSON UNIVERSITY

A Computational Approach to Measuring Homeomorphic Defect

A thesis

by

Scott M. LaLonde

Department of Mathematics and Computer Science

Submitted in partial fullfillment of the requirements

for the degree of

Master of Science

Mathematics

Date

Accepted by the Graduate School

Date Dean

CLARKSON UNIVERSITY

The undersigned have examined the dissertation entitled A Computational Ap-

proach to Measuring Homeomorphic Defect presented by Scott M. LaLonde

a candidate of the degree of Master of Science and hereby certify that it is worthy

of acceptance.

Examining Committee

Erik Bollt (Advisor) Date

Joseph Skufca (Advisor) Date

Takashi Nishikawa Date

A Computational Approach to Measuring Homeomorphic Defect

Copyright c© 2009

by

Scott M. LaLonde

Abstract

A Computational Approach to Measuring Homeomorphic Defect

by

Scott M. LaLonde

Master of Science in Mathematics

Clarkson University

An important concept in the field of dynamical systems is the notion of conjugacy. Two

dynamical systems are said to be conjugate if their dynamics are topologically equivalent.

In other words, there is a homeomorphism between the underlying spaces which preserves

the dynamics of the two systems. In this thesis we will be discussing an extension of this

idea called mostly conjugacy.

In the context of mostly conjugacy, we deal with functions called commuters. These

relate two dynamical systems that are not necessarily conjugate. We can determine the

amount by which two dynamical systems fail to be conjugate by studying certain properties

of their associated commuter. As commuters are not generally homeomorphisms, we will

do so by studying a quantity called the homeomorphic defect. The work presented here is

devoted largely to developing computational techniques for measuring this defect. In par-

ticular, we will construct an algorithm for approximating the Lebesgue measure of subsets

of Rn which will rely heavily on the concept of Monte Carlo integration.

Once we have constructed the algorithm, we will present results from its deployment on

various benchmark sets. We will analyze these results and use them to present arguments

for the validity of the algorithm. Finally, we will discuss open questions and possible future

work that can be done to achieve the goal of measuring homeomorphic defect to a reasonable

degree of accuracy.

1

Contents

Contents ii

List of Figures iii

List of Figures iv

List of Tables v

List of Tables v

Acknowledgements vi

1 Background 1

1.1 Introduction . 1

1.2 Conjugacy . 1

1.3 Mostly Conjugacy . 4

1.4 Measure of Mostly Conjugate . 7

1.5 Outline . 9

2 Measurement of Onto Defect 10

2.1 Preliminaries . 10

2.2 Introduction to Monte Carlo Integration . 11

2.3 Monte Carlo Measure . 18

2.4 Approximation of Characteristic Function 20

2.5 Summary . 23

3 Analysis of Numerical Results 24

3.1 Benchmark Examples . 24

i

3.2 Determination of Fattening Radius . 30

3.3 Discussion of Behavior . 46

3.4 Sequences of Commuters . 49

4 Conclusions 52

4.1 Discussion of Results . 52

4.2 Future Work . 53

Bibliography 57

A Code 58

ii

List of Figures

1.1 The tent map and the logistic map. 3

1.2 The conjugacy relating the tent map and the logistic map. 3

1.3 Graph of commuter between two non-conjugate symmetric tent maps. . . . 6

2.1 Region of integration for Example 2.6. 18

3.1 The benchmark set E1 = [0, 1/2]. The filled blue line represents the set, and
the green dots denote the endpoints (or boundary) of the Monte Carlo interval. 25

3.2 The benchmark sets E2 and E3. 26

3.3 The benchmark sets E4 and E5. 27

3.4 E6 and E7, the middle-third Cantor set and the middle-third Cantor dust. . 28

3.5 E8, the Smith-Volterra-Cantor set. 28

3.6 The commuter fE9 evaluated at 1,000 points on [0, 1] alongside its range. . 29

3.7 The commuter fE10 evaluated at 1,000 points on [0, 1] alongside its range. . 30

3.8 Graphs of computed Monte Carlo measure versus fattening radius for the set
E1. 32

3.9 Graphs of computed Monte Carlo measure versus fattening radius for the set
E2. 33

3.10 Graphs of computed Monte Carlo measure versus fattening radius for the set
E3. 35

3.11 Graphs of computed Monte Carlo measure versus fattening radius for the set
E4. 36

3.12 Graphs of computed Monte Carlo measure versus fattening radius for the set
E5. 37

3.13 Graphs of computed Monte Carlo measure versus fattening radius for the set
E6. 39

3.14 Graphs of computed Monte Carlo measure versus fattening radius for the set
E7. 40

iii

3.15 Graphs of computed Monte Carlo measure versus fattening radius for the set
E8. 41

3.16 Graphs of computed Monte Carlo measure versus fattening radius for the set
E9. 43

3.17 Graphs of computed Monte Carlo measure versus fattening radius for the set
E10. 44

3.18 Alternate graphs of computed Monte Carlo measure versus fattening radius
for the set E10. 45

3.19 Depiction of fattened set Ẽ for different values of r. 47

3.20 Depiction of fattened set Ẽ for different values of r (continued). 48

3.21 Plots of computed measure versus fattening radius and height for a sequence
of commuters. 51

iv

List of Tables

3.1 List of benchmark examples for numerical testing. Included is the name of
the set, its definition, and its Lebesgue measure, if known. 31

v

Acknowledgements

I would like to thank my advisor, Dr. Erik Bollt, and Dr. Joseph Skufca for their guidance

throughout the course of my work on this topic. I would not be writing this were it not for

their wisdom and their ability to always push me in the right direction.

I am also grateful to the rest of the faculty of the Division of Mathematics and Computer

Science at Clarkson University for giving me much of the knowledge necessary to complete

this work. Throughout both my undergraduate and graduate careers, they have given me

a strong background in both pure and applied mathematics that has been critical to my

achievements thus far.

I would also like to thank the committee members, Erik Bollt, Joe Skufca, and Takashi

Nishikawa for investing their time in reading and commenting on this thesis.

Finally, it should be noted that this work was supported by the National Science Foun-

dation through Grant No. DMS-0708083. Without this funding, this work would not have

been possible.

vi

Chapter 1

Background

1.1 Introduction

In this introductory chapter we will be discussing relevant background material for the

study of conjugate dynamical systems. We will first discuss the concept of conjugacy and its

overall importance to the field. We will then generalize this notion, leading to the definition

of mostly conjugacy. Finally, we will discuss appropriate notation and assumptions for

computing the measure of mostly conjugacy. This in turn will motivate the remainder of

the work in the following two chapters. The majority of the material regarding conjugacy

can be found in Alligood, Sauer, and Yorke [2], while further discussion of mostly conjugacy

and related topics is located in Bollt and Skufca [12, 13].

1.2 Conjugacy

A well-known concept in the field of dynamical systems is the notion of conjugacy.

Intuitively, we could say that conjugate dynamical systems are equivalent in a certain sense.

More specifically, conjugacy defines an equivalence relation on the set of all dynamical

systems. If two dynamical systems are conjugate, then they generate precisely the same

dynamics. This somewhat vague description can be formalized by the following definition.

Definition 1.1. Let X and Y be topological spaces, and let g1 : X → X and g2 : Y → Y .

The dynamical systems g1 and g2 are conjugate if there exists a homeomorphism h : X → Y

1

such that

g1(x) = (h−1 ◦ g2 ◦ h)(x) (1.1)

for all x ∈ X.

Since h is a homeomorphism, it is a continuous bijection with a continuous inverse. It

follows that h serves as a change of coordinates between g1 and g2. Also, to formally restate

an idea that was mentioned earlier, we can say that the dynamics generated by g1 and g2

are equivalent in a topological sense.

The importance of conjugacy lies in the fact that if g1 and g2 are conjugate, they generate

the same dynamics. Because of this, we can study the dynamics of g1 by either analyzing g1

directly or by instead working with g2. This is particularly useful if one dynamical system

is much easier to handle computationally than the other. For example, if g1 is particularly

complicated, but g2 is not, we can choose to study g1 by instead evaluating g2.

The following example illustrates a well-known example of a pair of conjugate dynamical

systems, the full-shift tent map and the logistic map. The analysis here is based on a similar

explanation found in [2].

Example 1.2. Let g1 be the symmetric tent map of height 1,

g1(x) =


2x if 0 ≤ x ≤ 1/2

2(1− x) if 1/2 < x ≤ 1

and let g2 be the logistic map with parameter 4,

g2(x) = 4x(1− x).

Figure 1.2 shows the graphs of these two functions. We can see that both functions map the

interval [0, 1] to [0, 1]. These dynamical systems are related by the conjugacy h : [0, 1] →

[0, 1] defined by

h(x) =
1− cos(πx)

2
.

This function is shown in Figure 1.2.

We can easily verify that h is a homeomorphism. It is clearly continuous, and

h′(x) =
π

2
sin(πx),

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
Figure 1.1. The tent map g1 (left) and the logistic map g2 (right).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 1.2. The conjugacy h(x).

3

which is strictly positive on (0, 1). Thus h is increasing on [0, 1], hence it is one-to-one.

Also, h(0) = 0 and h(1) = 1, so by continuity (specifically, the intermediate value theorem)

h maps [0, 1] onto itself. Finally, the inverse of h is given by

h−1(x) =
1
π

cos−1(1− 2x),

which is continuous, as h is continuous and one-to-one on [0, 1]. Thus h is a homeomorphism.

We will omit the verification that h satisfies the equation g1 = h−1 ◦ g2 ◦ h, as such a

calculation can be found in [2]. However, we will mention that the procedure can be made

simpler by rewriting the equation in the form h ◦ g1 = g2 ◦ h and verifying that the two

sides are equal. The idea of writing the equation this way will quickly prove useful and it

is of paramount importance to the work introduced in the next section.

1.3 Mostly Conjugacy

In Example 1.2 we mentioned that (1.1) can be written in the equivalent form

(h ◦ g1)(x) = (g2 ◦ h)(x) (1.2)

in order to verify the conjugacy of the tent map and the logistic map. Let us note that

verification that h satisfies this expression does not require knowledge of h−1; in fact, if we

simply consider (1.2), by itself, there is no indication that h even has a well-defined inverse.

Naturally, this leads us to ask whether it may be possible to relax certain conditions in

the definition of conjugacy in an effort to study the relationship between two arbitrary

dynamical systems. It is in this context that the idea of mostly conjugacy naturally arises.

We would like to know if we can, in general, find a function f which satisfies the equation

(f ◦ g1)(x) = (g2 ◦ f)(x). (1.3)

This expression is referred to as the commuting relationship. With regard to the function f ,

the following piece of terminology will prove useful throughout the remainder of this thesis.

Definition 1.3. Let X and Y be topological spaces, and let g1 : X → X and g2 : Y → Y .

If f : X → Y satisfies the commuting relationship (1.3), then we say f is a commuter

relating the dynamical systems g1 and g2.

4

Note that unlike in Definition 1.1, we impose no restrictions on the properties of the function

f . In particular, f may not necessarily be a homeomorphism. We simply define commuters

for arbitrary pairs of dynamical systems, regardless of whether the systems are conjugate

or not.

There are two important questions which arise naturally regarding commuters. The first

of these regards the existence and computability of commuters. That is, do commuters ac-

tually exist in general, and, if so, is it possible to construct them on a computer? Generally,

the answer to each part of this question is yes. We present the following simple example,

which shows how to construct the commuter for two non-conjugate tent maps. Commuters

of this nature will appear repeatedly throughout the remainder of this work.

Example 1.4. Let g2 denote the standard tent map that was mentioned in Example 1.2,

and let g1 be the symmetric tent map of height 3/4,

g1(x) =


3
2x if 0 ≤ x ≤ 1

2

3
2(1− x) if 1

2 < x ≤ 1.

We would like to find a function f which satisfies the commuting relationship for these two

maps.

First, consider the case when x ∈ [0, 1/2]. The left side of (1.3) becomes

f(g1(x)) = f

(
3
2
x

)
.

To determine the right side, we must evaluate g2(f(x)). This in turn depends on where f(x)

falls for x ∈ [0, 1/2]. It is not entirely apparent whether f(x) ∈ [0, 1/2] or f(x) ∈ (1/2, 1],

thus it is not clear which branch of g2 should be used. This dilemma can be solved in

the following way. We will require that the commuter f maps monotone segments of g1 to

monotone segments of g2. That is, if g1 is monotone increasing (respectively, decreasing) on

the interval [a, b], then g2 is also monotone increasing (respectively, decreasing) on f ([a, b]).

Thus we know that if x ∈ [0, 1/2], f(x) ∈ [0, 1/2], so

g2(f(x)) = 2f(x).

Setting this equal to the previous result and solving for f(x) gives

f(x) =
1
2
f

(
3
2
x

)
.

5

If x ∈ (1/2, 1], we have

f(g1(x)) = f

(
3
2

(1− x)
)

and

g2(f(x)) = 2(1− f(x)),

so

f(x) = 1− 1
2
f

(
3
2

(1− x)
)
.

Thus the commuter f can be expressed as

f(x) =


1
2f
(

3
2x
)

if 0 ≤ x ≤ 1
2

1− 1
2f
(

3
2(1− x)

)
if 1

2 < x ≤ 1.

Note that this is a functional equation - it is defined implicitly in terms of f . While we

do not have a closed-form expression for f , we can in practice use an iterative process for

computing an approximation to the function. This process is described in more detail in

[13] and [12]. Figure 1.4 shows a graph of f generated in this way.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.3. Graph of commuter f , evaluated at 1000 evenly spaced points on [0, 1].

6

In general, the derivation of a commuter is not as simple as the one we have just seen.

However, there is an iterative procedure outlined in [13] which allows for the computational

construction of a commuter in a more general setting. This procedure has been shown to be

effective in most practical applications. Throughout this thesis, however, we will primarily

be dealing with commuters that can be constructed in the manner of Example 1.4.

Now that we have addressed the existence of commuter functions, there is a second,

equally important question which logically follows. In the event that g1 and g2 are not

conjugate, can we somehow quantify the amount by which f fails to be a conjugacy? Also,

even if we can theoretically define the distance from conjugacy, how can we go about

measuring such a thing in practice? We will begin to address this issue in the following

section, where background material relating to this problem will be introduced. The rest

of this thesis will be devoted to developing computational techniques for measuring certain

properties of f , which should in turn lead to techniques for determining how far f is from

being a conjugacy.

1.4 Measure of Mostly Conjugate

Given a function f which satisfies the commuting relationship (1.3), we would like to

determine how close f is to being a conjugacy. This in turn will tell us how close the

dynamical systems g1 and g2 are to being conjugate. Let us note that g1 and g2 are

conjugate if and only if f is a homeomorphism. Thus it would seem reasonable to measure

the distance from conjugacy by measuring how close f is to being a homeomorphism. We

will do so by calculating a quantity called the homeomorphic defect of f .

The homeomorphic defect of f , which we will denote by λ(f), was introduced in [13].

Recall that f must satisfy four distinct properties in order to be a homeomorphism, namely

it must be continuous, one-to-one, onto, and its inverse must also be continuous. As a

result, it seems natural that λ(f) should consist of four corresponding components. These

are:

• λO(f), the amount by which f fails to be onto;

• λ1−1(f), the amount by which f fails to be one-to-one;

• λC(f), the amount by which f fails to be continuous;

• λC−1(f), the amount by which f−1 fails to be continuous.

7

We will explore the actual definitions of these defect measures as we progress. Let us note

that each defect is nonnegative, and each vanishes if f satisfies the particular property (the

converse, however, is not necessarily true). For example, λO(f) ≥ 0, with equality if f is

onto. The homeomorphic defect is a linear combination of the individual defects,

λ(f) = α1λO(f) + α2λ1−1(f) + α3λC(f) + α4λC−1(f), (1.4)

where we require that 0 ≤ αi ≤ 1 for each i and
∑
αi = 1. The ambiguity in the definition

of the weights αi is intentional, as it allows the measure to be properly tuned in order to

suit a particular application.

The rest of this thesis will be devoted to developing computational techniques for cal-

culating the four defect measures described above. In particular, we will be focusing on the

onto defect λO, since it has the simplest and most intuitive definition. Additionally, the

bulk of the work that will be done to allow the onto defect to be measured will be neces-

sary in order to measure the other components of the homeomorphic defect. In order to

properly discuss this work and the associated mathematical theory, we must first introduce

some notation that will be used heavily in the following chapter.

1.4.1 Notation and Assumptions

Thus far, we have been working under the assumption that the sets X and Y are

simply arbitrary topological spaces. However, we will be defining the components of the

homeomorphic defect using concepts from measure theory. As a result, we will need to

assume that X and Y , or at least certain subsets of them, are endowed with a somewhat

richer structure.

Let D1 ⊂ X and D2 ⊂ Y . These sets are the subsets of X and Y which are important

to the modeler; that is, D1 and D2 are chosen based on their significance to a particular

application. For example, D1 and D2 might be taken to be the forward invariant sets under

g1 and g2, respectively. In most practical applications, and in all examples detailed in this

thesis, we will assume that D1, D2 ⊂ Rn with the relative topology inherited from the

standard topology on Rn.

Given D1 and D2, we also require that there are appropriate measures defined on these

sets. That is, we assume that (D1,Σ1, µ1) and (D2,Σ2, µ2) are measure spaces. Further-

more, we assume that µ1 and µ2 are both finite and nonatomic1 measures. It should also
1By nonatomic, we mean that µ1 and µ2 do not concentrate measure on finite or countable sets.

8

be noted that µ1 and µ2 are not necessarily the standard Lebesgue measure on Rn. For

example, the set D1 in which we are interested may be a Cantor-like set with Lebesgue

measure zero. It would be advantageous if we could choose µ1 such that µ1(D1) > 0, as

this would allow us to meaningfully compare the sizes of subsets of D1 to the size of the

whole set. In this regard, the choice of µ1 and µ2 will also depend heavily on the particular

problem to which these techniques are being applied.

Finally, there is one last piece of notation that we will introduce for future reference.

In the interest of brevity and ease of notation, for a set A ⊂ X we define

µ̄2 (f [A]) = µ2 (f [A ∩D1] ∩D2) . (1.5)

Intuitively, this is a “restriction” of µ2 to D1 and D2. More precisely, µ̄2 measures the set

of points in f [A] ∩D2 which have preimages lying in D1. Similarly, for B ⊂ Y we define

µ̄1

(
f−1[B]

)
= µ1

(
f−1[B ∩D2] ∩D1

)
.

Both definitions will allow for more concise representations of the defect measures in the

future.

1.5 Outline

We will conclude this introductory chapter with a brief summary of the remainder of

this thesis. Now that we have discussed the relevant background material, Chapter 2 will

be devoted to developing techniques for measuring the onto defect of a commuter f . This

will require a brief introduction to Monte Carlo integration, which will be used to construct

an algorithm for measuring subsets of Rn computationally. In Chapter 3, we will present

results that have come from testing the algorithm on a collection of benchmark sets. We

will provide a discussion of these results, as well as a heuristic analysis of the observed

phenomena. Finally, Chapter 4 will provide a concluding discussion, as well as an outline

of possible future work.

9

Chapter 2

Measurement of Onto Defect

2.1 Preliminaries

This chapter will be devoted to developing computational techniques for accurately

measuring subsets of Rn. This is done with the hope that it will ultimately lead to a

method for calculating the onto defect of a specified commuter f . That is, we hope to

compute a measure of, in some sense, how far f is from being a surjection. This is clearly

a subjective measure, depending heavily on the subsets of the domain and target that we

wish to consider. For example, a function clearly maps its domain onto its range, but we

may be interested in a larger (or perhaps smaller) subset of the target. In this regard, we

must be careful to specify the particular sets that are important to us.

Retaining the notation we introduced in Chapter 1, we will denote the sets of interest

as D1 and D2. If f : D1 → D2, a natural way to determine the onto defect would be to

measure the fraction of D2 which is not covered by the image of D1 under f . This notion

is formalized by the following definition, which is introduced by Bollt and Skufca [13].

Definition 2.1. Let X and Y be topological spaces, and suppose (D1,Σ1, µ1) and

(D2,Σ2, µ2) are measure spaces, with D1 ⊂ X and D2 ⊂ Y . Let f : D1 → D2. We de-

fine the onto defect of f to be

λO(f) = 1− µ̄2(f [D1])
µ2(D2)

, (2.1)

where µ̄2 is defined by (1.5).

10

Observe that this is simply a theoretical definition; for it to be of practical use, we must

determine a technique for implementing it computationally.

If we are to have any hope of evaluating (2.1) on a computer, we must be able to reliably

approximate the µ2-measures of f [D1] and D2. This will likely be a daunting task, since

in most interesting cases these sets exhibit structures which are highly complicated. The

situation appears more hopeful if we interpret the µ2-measure of a set as an integral over

that set. For example, given the set D2 we can express µ2(D2) as

µ2(D2) =
∫
D2

1 dµ2.

However, problems still remain. Were these sets in any way simple, we could apply classical

numerical quadrature techniques to evaluate the associated integrals. Unfortunately, we

do not have this luxury. In addition, the need to accommodate abstract measures further

complicates the situation.

There is one numerical integration technique which may allow us to circumvent some

of these issues. We can use a probabilistic scheme known as Monte Carlo integration

to evaluate the integrals. This method allows for evaluation of integrals over arbitrary

measurable sets in Rn. It eliminates any need for explicit definitions of such sets, as it only

requires the evaluation of their characteristic functions (or some suitable approximations to

these functions). Also, if we make certain assumptions about the underlying problem, we

can integrate with respect to measures other than the usual Lebesgue measure.

The bulk of this chapter will be spent developing methods for applying Monte Carlo

integration to the problem of measuring the onto defect of a commuter f . We will first

give a brief discussion of the method itself, including relevant background information and

theoretical results. We will then consider specific issues that must be dealt with in order

to make Monte Carlo integration a viable option for our problem. Computational consid-

erations will then be discussed, including the statement of an algorithm that implements

the theoretical ideas presented in the chapter. This will eventually lead to a discussion in

Chapter 3 of numerical results coming from actual implementations of the algorithm.

2.2 Introduction to Monte Carlo Integration

The methods we will discuss later in this chapter depend heavily on knowledge of Monte

Carlo integration, so we will begin by offering a brief introduction to the topic. We will

11

explore its use for computing integrals in a general setting in Rn. This is not meant to be an

authoritative account of the method but simply a summarized adaptation of relevant results

mentioned in Hammersley and Hanscomb [5] and Weinzierl [15]. The reader should consult

those texts, or similar ones, for a more detailed discussion of the Monte Carlo method.

As mentioned earlier, Monte Carlo integration uses probabilistic methods to estimate

the integral of a function over an arbitrary measurable subset of Rn. This is accomplished

in part by changing the region of integration to a simpler set, such as an interval. The

function is evaluated at a discrete set of points selected from the interval, and these values

are used to compute an approximation to the integral. This is a very rough explanation of

the method; a more detailed and rigorous analysis follows.

2.2.1 Construction

Let E be a Lebesgue-measurable subset of Rn with finite measure and let f ∈ L(E),

where L(E) denotes the set of all real-valued, Lebesgue-integrable functions on E. Suppose

we wish to compute ∫
E
f(x) dx, (2.2)

where this is naturally understood to be a Lebesgue integral. Since E is an arbitrary

measurable set, it may be difficult to develop a general procedure for approximating this

integral numerically. It would be quite advantageous if we could somehow change the region

of integration to a more elementary set. In this regard, the following result will prove useful.

Proposition 2.2. Let I ⊂ Rn be an interval containing E, and let χE denote the charac-

teristic function of E. Then ∫
E
f(x) dx =

∫
I
f(x)χE(x) dx. (2.3)

Proof. By definition, χE(x) = 1 for all x ∈ E, so we may rewrite the integral in Eq. (2.2)

as ∫
E
f(x)χE(x) dx

without changing its value. Now, since E and I \ E are disjoint, we have∫
I
f(x)χE(x) dx =

∫
E
f(x)χE(x) dx+

∫
I\E

f(x)χE(x) dx.

12

But χE(x) = 0 for all x ∈ I \ E, so the second integral vanishes, leaving∫
I
f(x)χE(x) dx =

∫
E
f(x)χE(x) dx.

We have already shown that the right side is equivalent to
∫
E f(x) dx, so the proof is

complete.

The result of Proposition 2.2 allows us to treat (2.2) as an integral over an interval I ⊇ E.

That is, we now hope to approximate the quantity

θ =
∫
I
f(x)χE(x) dx. (2.4)

The fact that we are now working on an interval in Rn is very useful computationally,

since we can easily generate random numbers from a uniform distribution on I. This is

of the utmost importance, since random sampling is critical to further development of this

method.

We are now prepared to construct a numerical approximation to θ via probabilistic

methods. Let {X1, X2, . . . , XN} be an independent and identically distributed random

sample taken from a uniform distribution on I. If we apply the function f · χE to each

of these random variables, we obtain a new set of independent and identically distributed

random variables,

{f(X1)χE(X1), f(X2)χE(X2), . . . , f(XN)χE(XN)} . (2.5)

The expected value of each of these random variables can be found by integrating over the

entire sample space with respect to the uniform probability measure on I. This gives

E =
1
|I|

∫
I
f(x)χE(x) dx. (2.6)

Observe that the integral in (2.6) is precisely θ, which we are trying to approximate. Con-

sequently, θ = E|I|. Since |I| is easily computed, a statistical estimate of the expectation E
will automatically provide an approximation to θ.

An appropriate estimator of E will be given by the sample mean of (2.5), which is

ĒN =
1
N

N∑
i=1

f(Xi)χE(Xi).

By the law of large numbers (Theorem 4.8.4 of DeGroot and Schervish [3]),

ĒN
p−→ E ,

13

where
p−→ denotes convergence in probability. Equivalently, given any ε > 0,

lim
N→∞

Pr(|ĒN − E| < ε) = 1.

Thus if we define an approximation to θ by

θ̄N =
|I|
N

N∑
i=1

f(Xi)χE(Xi), (2.7)

we can expect that, for sufficiently large N , there is a high probability that θ̄N will be

arbitrarily close to the true value of θ. This idea will be formalized in the next section.

The expression in (2.7) is precisely the formula that will be used in practice to estimate the

value of an integral of the form (2.2).

2.2.2 Error Analysis

In Section 2.2.1 we stated that the approximation θ̄N to θ will converge in probability

to the true value of the integral as N →∞. We are now prepared to show this rigorously.

To do so, we will need the following well-known inequality, taken from [3].

Theorem 2.3 (Tchebyshev Inequality). Let X be a random variable for which Var(X)

exists. Then for every number t > 0,

Pr(|X − E[X]| ≥ t) ≤ Var(X)
t2

.

Note that this gives a probabilistic bound for the difference between a random variable and

its expected value. In particular, the Tchebyshev inequality allows us to make the following

statement regarding the difference between a sample mean and the true expectation of the

associated random variables.

Lemma. Let X1, X2, . . . , XN be a random sample of size N taken from a distribution with

mean µ and variance σ2, and let X̄N denote the sample mean. Then for every number

t > 0,

Pr(
∣∣X̄N − µ

∣∣ ≥ t) ≤ σ2

Nt2
.

Proof. By definition,

X̄N =
1
N

(X1 +X2 + · · ·+XN) .

14

This has expectation

E[X̄N] =
1
N

(E[X1] + E[X2] + · · ·+ E[XN])

=
1
N

(Nµ) = µ

and variance

Var[X̄N] = Var
(

1
N

(X1 +X2 + · · ·+XN)
)

=
1
N2

(Var(X1) + Var(X2) + · · ·+ Var(XN))

=
1
N2

(
Nσ2

)
=
σ2

N
,

where we have used the fact that X1, X2, . . . , XN are independent. Now, applying Tcheby-

shev’s inequality, we have

Pr(
∣∣X̄N − µ

∣∣ ≥ t) = Pr(
∣∣X̄N − E[X̄N]

∣∣ ≥ t)
≤ Var(X̄N)

t2

=
σ2

Nt2

for all t > 0.

Given this result, we can now prove the following claim regarding the convergence of the

Monte Carlo integration algorithm. The proof will also give us an estimate of the associated

error.

Theorem 2.4. The approximation θ̄N converges in probability to the integral θ as N →∞.

Proof. The proof is a straightforward application of the preceding lemma. Let ε, η > 0 be

given, and choose N0 sufficiently large such that σ/
√
N0η < ε. Then clearly

Pr
(
|θ̄N − θ| ≥ ε

)
≤ Pr

(
|θ̄N − θ| ≥ σ/

√
N0η

)
≤ Pr

(
|θ̄N − θ| ≥ σ/

√
Nη
)

for any N ≥ N0. Now set t = σ/
√
N0η. Then by the Lemma,

Pr
(∣∣θ̄N − θ∣∣ ≥ t) ≤ σ2

N

N0η

σ2
≤ σ2

N

Nη

σ2
= η.

15

Combining this and the previous result, we have

Pr
(
|θ̄N − θ| ≥ ε

)
≤ η

for N ≥ N0. This is equivalent to saying that, for all ε > 0,

lim
N→∞

Pr
(
|θ̄N − θ| ≥ ε

)
= 0.

We have thus shown that θ̄ converges to θ in probability as N →∞.

From the proof of Theorem 2.4 we can deduce that the error |θ̄N − θ| is O(1/
√
N).

In other words, the error decreases like 1/
√
N as N → ∞. This should seem like a very

slow rate of convergence. However, there is one particular advantage: this error estimate

is independent of the dimension of the underlying space. This essentially means that we

can obtain similar levels of accuracy with the same number of points, regardless of the

dimension of the space.

We should note that the proofs of these two results are not necessarily critical to the

content of this thesis. However, it is likely that the ideas used in these proofs can be applied

in the future to the error analysis of the algorithm that will be presented here. It is for this

reason that they have been included.

2.2.3 Implementation

While we have discussed the theoretical underpinnings of Monte Carlo integration, we

have not given a concrete explanation of how one might implement the procedure on a

computer. Such an algorithm could be easily deduced from the formulas that were derived

in Section 2.2.1, but it would be worthwhile to give a step-by-step summary of a practical

implementation. The following algorithm does this.

Algorithm 2.5. Let E ⊂ Rn with finite Lebesgue measure, and let f ∈ L(E). The integral

of f over E can be estimated numerically using the following procedure:

1. Select an appropriate interval I which contains the set E.

2. Randomly select N points from a uniform distribution on I.

16

3. Evaluate the characteristic function χE at each of the random points to determine

which ones lie in E.

4. Evaluate f at each point found in step 3.

5. Sum the function values found in step 4 and multiply by |I|/N .

The value computed in the final step is an approximation to the integral.

We will conclude this section with a brief example which illustrates a straightforward ap-

plication of Monte Carlo integration. This example may be familiar to some, as it computes

an approximation to π using the procedure outlined in Algorithm 2.5.

Example 2.6. Consider the set

E =
{

(x, y) ∈ R2 : x, y ≥ 0 and x2 + y2 ≤ 1
}
.

This is simply the portion of the unit disc which lies in the first quadrant. The true area of

E is known to be π
4 . We can approximate this area using Monte Carlo integration and use

the result to estimate the value of π.

The area A of E can be found by integrating the constant function f(x) = 1 over the

set E:

A =
∫
E

1 dx.

We will implement Algorithm 2.5 in MATLAB to estimate this integral numerically. An

obvious choice for the interval I ⊃ E is the unit square, I = [0, 1] × [0, 1]. Given I, we

randomly select N = 10, 000 points from a uniform distribution on I. Figure 2.6 shows

these points in relation to the sets E and I.

From these N points we select those which lie in the set E. That is, we evaluate the

characteristic function of E, which is

χE(x, y) =


1 x, y ≥ 0 and x2 + y2 ≤ 1

0 otherwise

17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 2.1. Region of integration for Example 2.6. The red lines denote the boundary of
the interval I, and the set E is bounded between the x- and y-axes and the blue curve. The
green dots represent the N points randomly sampled on I.

and disregard any points for which χE(x, y) = 0. The results from MATLAB indicate that

7891 of the points lie in E. Since we are integrating a constant function, the integrand

simply evaluates to 1 at each of these points. Therefore, per step 5 of Algorithm 2.5, an

approximation to the area A is given by

Ā =
|I|
N

7891∑
i=1

1 =
7891
10000

= 0.7891.

From this, we have

π ≈ (4)(0.7891) = 3.1564.

While this is not a terrific approximation, it is reasonably close to the known value of π.

2.3 Monte Carlo Measure

In Example 2.6 we illustrated a method for obtaining an approximation to π. In doing

so, we used Monte Carlo integration to estimate the area of a set in R2. However, the notion

18

of “area” (or, more generally, “volume” or “hypervolume”) is precisely Lebesgue measure.

That is, given a Lebesgue-measurable set E ⊂ Rn, we clearly have

|E| =
∫
E

1 dx.

As we alluded to in Section 2.1, this concept generalizes to arbitrary measures. Given a

measure µ defined on Rn, the µ-measure of E is

µ(E) =
∫
E

1 dµ. (2.8)

This fact will allow us to utilize other measures for computing the onto defect.

Unfortunately, there is a slight problem. The machinery that we developed in Section

2.2 for implementing Monte Carlo integration depended heavily on the fact that we were

integrating with respect to Lebesgue measure. The integral in (2.8) clearly does not fit this

description, for it is an integral with respect to the measure µ. Thus it would seem that

we are have pigeonholed ourselves into working exclusively with Lebesgue measure. This

is not quite the case. We can employ other measures, provided that we place a certain

restriction on them. This restriction will be based on the following definition, which is a

slightly modified version of those found in Kolmogorov [8] and Wheeden and Zygmund [16].

Definition 2.7. Let (S,Σ, µ) be a measure space, and let φ be an additive set function

defined on Σ. Then φ is said to be absolutely continuous with respect to µ if φ(E) = 0

for every µ-measurable E for which µ(E) = 0.

Since any measure is itself an additive set function, we can apply this definition to the

measures µ1 and µ2. The primary assumption that we will make regarding µ1 and µ2 is that

they are absolutely continuous with respect to Lebesgue measure. Definition 2.7 itself is not

particularly helpful in terms of understanding the importance of this assumption. However,

the condition of absolute continuity allows us to invoke the following classical result from

analysis, which will prove to be critical. The statement given here is based on those found

in Rudin [11] and Wheeden and Zygmund [16].

Theorem 2.8 (Radon-Nikodym). Let (S,Σ, µ) be a measure space, where µ is a σ-finite

measure, and let φ be an additive set function defined on the σ-algebra Σ. If φ is absolutely

continuous with respect to µ, then there exists a unique f ∈ L(S; dµ) such that

φ(E) =
∫
E
f dµ

for every measurable E ⊂ S.

19

The beauty of this theorem is that it allows us to still interpret the measure of a set as

a Lebesgue integral. That is, if a measure µ is absolutely continuous with respect to the

Lebesgue measure on Rn, then there exists a unique Lebesgue-integrable function ρ such

that

µ(E) =
∫
E
ρ(x) dx (2.9)

for all µ-measurable E ⊂ Rn. Thus we have converted (2.8) into an integral which is

amenable to the Monte Carlo methods outlined in Section 2.2. Hence we can apply (2.7)

to (2.9), which gives the approximation

µ̃(E) =
|I|
N

N∑
i=1

ρ(Xi)χE(Xi). (2.10)

This equation expresses a Monte Carlo approximation to the µ-measure of E. It is still not

quite ready to be implemented, however, as there are a few computational issues that must

be addressed first.

2.4 Approximation of Characteristic Function

As mentioned previously, a major advantage of using Monte Carlo integration is that

it only requires knowledge of the characteristic function of the given set. However, this

can often prove to be problematic. In practice, very little is known about the sets D2 and

f [D1]. This lack of knowledge often encompasses the characteristic functions as well. In

this regard, it would seem that the techniques we have been developing will still prove to

be difficult to implement computationally.

While we may not be able to write down an expression in closed form for these sets or

their characteristic functions, we do have one computational weapon in our arsenal. We

can, in general, generate random samples of points in the sets. Given such data, we can,

in some sense, define an approximation to the characteristic function. This approximation

can then be used to implement Monte Carlo integration.

Suppose we wish to measure the set E ⊂ Rn, from which we generate the sequence

of random points E0 = {x1, x2, . . . , xN}. This random sample is a finite set, thus it has

Lebesgue measure zero. Consequently, its characteristic function χE0 vanishes almost ev-

erywhere in I, so a Monte Carlo algorithm that replaces χE with χE0 in (2.10) would almost

surely return a value of µ̃(E) = 0. This is fine if E is itself a set of measure zero, but one

would hope that the algorithm would work for any measurable set E. Therefore, we cannot

20

simply substitute χE0 for χE ; we must use E0 to construct an appropriate surrogate to χE .

We will develop this approximate characteristic function by “fattening” the set E0 by some

specified amount and using the characteristic function of the resulting, larger set. This

technique is inspired by a concept called natural measure, which is introduced in [2].

2.4.1 Natural Measure

Alligood, Sauer, and Yorke [2] introduce a technique for measuring sets which they term

“rain gauge” measure. More specifically, they measure a set S using the rain gauge measure

associated with a map f . Given an initial iterate x0, the measure of S is defined as the

fraction of the iterates of the orbit of x0 under f which lie in S. Formally, this fraction is

defined as

F (x0, S) = lim
n→∞

card
({
f i(x0) ∈ S : 1 ≤ i ≤ n

})
n

. (2.11)

In order to avoid confusion with the notation that we have been using for Lebesgue measure,

we have adopted the notation card(·) to denote the cardinality of a given set, as used by

Halmos [4]. This concept should look somewhat similar to the previously discussed methods

for measurement of a set by Monte Carlo integration. In fact, Lebesgue measure can be

thought of as an example of rain gauge measure where the map f is replaced by a uniform

random number generator, as the authors mention.

This informal notion of rain gauge measure is not sufficient, however, and problems

arise quickly. In particular, the authors consider the case when S is a chaotic attractor

associated with the map f . Suppose we take an initial iterate x0 which lies in the basin of

attraction of S, but not in S itself. Then fn(x0) approaches S as n→∞, but fn(x0) /∈ S
for any finite n. This would imply that

F (x0, S) = lim
n→∞

0
n

= 0.

In reality, however, the limit in (2.11) should approach 1, since there is some finite N for

which n ≥ N implies that fn(x0) is arbitrarily close to S. We can reconcile this issue by

considering a neighborhood of S rather than S itself. That is, given r > 0, we denote the

neighborhood of radius r around S as

N(r, S) = {x : dist(x, S) ≤ r}

and study the fraction F (x0, N(r, S)). The natural measure generated by the map f , or

f -measure, is then defined to be

µf (S) = lim
r→0

F (x0, N(r, S)),

21

where we require that S be closed and almost all x0 give the same result. Thus we have

solved the problem of measuring S by enlarging it slightly and measuring the resulting set

instead.

2.4.2 Fattening E0

Now that we have discussed the concept of natural measure, we can return to the

original problem of measuring E using the random sample E0. While the issues that were

mentioned regarding natural measure are quite different from those that we face, there are

some fundamental similarities. These similarities will provide inspiration and motivation

for techniques that will hopefully resolve our problem.

In constructing natural measure, we dealt with a case in which iterates of an orbit did

not fall in a set, but instead came arbitrarily close to it. A similar phenomenon occurs if we

attempt to deploy Monte Carlo integration on the set E0. The probability of a randomly

chosen point landing in E0 is 0, but it is likely that such points will fall reasonably close to

the points in E0. Thus it would seem that we could remedy the situation by “fattening”

E0 like we did with the attractor S.

As the authors of [2] do with the attractor S, we will enlarge E0 by a single, fixed

amount. That is, we will place an open ball of radius r around each point in E0. However,

we will make one slight modification to the fattening procedure in this case. Rather than

taking the limit as r → 0, we will simply choose an appropriate radius r and fatten the set

by that amount. A procedure for selecting this radius will be discussed in more detail in

Chapter 3.

The resulting fattened set can be written as

Er =
N⋃
i=1

Br(xi) (2.12)

The characteristic function of this set is given by

χEr(x) =

0 if ||x− xm|| ≥ r

1 if ||x− xm|| < r,
(2.13)

where m is chosen such that

||x− xm|| = min {||x− x1|| , ||x− x2|| , . . . , ||x− xN ||} .

22

The above expression simply states that xm is the nearest neighbor of x in E0. This

definition may seem somewhat awkward at first, but it will allow for very easy and efficient

evaluation of the function χEr in MATLAB, as we will see later.

Given the fattened set Er, we can use its characteristic function χEr in place of χE in

(2.10), which yields the formula

µ̃(E) =
1
N

N∑
i=1

ρ(Xi)χEr(Xi). (2.14)

This expression gives us a way of approximating the measure of a given set E using only

a random sample from E. It is precisely this formula that we will use in practice when we

attempt to compute measures.

2.5 Summary

Let us conclude this chapter by reviewing what we have accomplished so far and offering

a preview of the following chapter. Thus far we have introduced the concept of Monte Carlo

integration and discussed its applicability to our problem. We have also determined the

assumptions that need to be made in order to make our problem suitable for Monte Carlo

integration. In particular, we are now working under the assumption that the measure with

which we would like to work is absolutely continuous with respect to Lebesgue measure.

This work has culminated in a precise formula, shown in (2.14), which will allow us to

approximate the measures of given subsets of Rn. In Chapter 3 we will use this formula

in practice as we deploy the algorithm on a collection of carefully chosen benchmark sets.

This will hopefully give us insight into the problem of selecting the fattening radius r, while

it will also allow us to gauge the efficacy of the algorithm.

23

Chapter 3

Analysis of Numerical Results

In this chapter, we will explore results obtained from deploying the algorithm of Chapter

2 on a variety of sets. We will attempt to determine the appropriate choice of the fattening

radius r by studying the behavior of the calculated measure as r is varied. By analyzing these

results for sets whose Lebesgue measure is known, we will hopefully be able to determine

techniques with which to extract useful information from practical implementations of the

algorithm.

3.1 Benchmark Examples

We will begin by describing several benchmark sets which we will use to gauge the utility

of this algorithm. The numerical results that are presented later in the chapter will all come

from implementations of the algorithm for these specific sets. For this discussion, we will

group the sets into several different categories based on the complexity of their structures.

The first eight sets will be primarily categorized based on their levels of connectedness.

3.1.1 Connected Sets

The first category will contain the simplest sets that we wish to study. Specifically, it

will consist of connected subsets of Rn. These will be either intervals or, for n > 1, less

trivial connected subsets of Rn.

The first two sets that we will consider are precisely intervals themselves. The first one

24

is taken to be

E1 = [0, 1/2],

which we will consider as a subset of the unit interval [0, 1]. By this we mean that we

will choose the Monte Carlo integration interval to be I = [0, 1]. The second set is the

two-dimensional analogue of E1, defined as

E2 = [0, 1/2]× [0, 1/2].

As with E1, we will consider E2 as a subset of the unit interval in R2, [0, 1]× [0, 1]. In both

cases we have intentionally chosen the Monte Carlo interval I to be artificially large. This

will allow us to study the behavior of the algorithm when the radius r grows unnecessarily

large.

For our third example, we would like to consider a connected set which is not an interval.

A simple example would be the unit disc in R2, so we will take

E3 =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1
}
.

Unlike the previous two examples, we will choose the Monte Carlo interval to be the smallest

interval containing E3, which is [−1, 1]× [−1, 1].

The three examples just mentioned are depicted in Figures 3.1 and 3.2. Here we have

! !"# !"$!"% !"& '
!!"#

!!"'

!

!"'

!"#

Figure 3.1. The benchmark set E1 = [0, 1/2]. The filled blue line represents the set, and
the green dots denote the endpoints (or boundary) of the Monte Carlo interval.

denoted the set of interest by with a filled blue region, and the boundary of the Monte Carlo

interval is outlined in green. In all future examples, we will maintain this convention.

25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) E2 = [0, 1/2]× [0, 1/2]

!! !"#$ " "#$!

!!

!"#%

!"#&

!"#'

!"#(

"

"#(

"#'

"#&

"#%

!

(b) E3, the unit disc in R2.

Figure 3.2. The sets E2 and E3. The filled region (blue) represents the set, and the outline
(green) shows the boundary of the Monte Carlo interval.

3.1.2 Mildly Disconnected Sets

Rather than simply studying intervals or otherwise connected sets, we would also like

to consider sets which exhibit some level of disconnectedness. Specifically, we will first

look at sets that consist of a small number of nontrivial connected components. As a

one-dimensional example we will consider

E4 = [0, 1/3] ∪ [2/3, 1].

This set is a union of two disjoint intervals, hence it has two connected components. As

with E3, we will choose the Monte Carlo interval to be the smallest interval containing E4,

which is [0, 1]. Similarly, we will consider the two-dimensional analogue

E5 = ([0, 1/3] ∪ [2/3, 1])× ([0, 1/3] ∪ [2/3, 1]) ,

embedded in the Monte Carlo interval [0, 1]× [0, 1]. We see that this set is a union of four

disjoint two-dimensional intervals, thus it has four components. This can be observed in

Figure 3.3, which shows the sets E4 and E5.

26

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

(a) E4 = [0, 1/3] ∪ [2/3, 1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) E5 = E4 × E4

Figure 3.3. The sets E4 and E5.

3.1.3 Highly Disconnected Sets

Extending the idea of the examples in the previous section, we would like to consider

examples of sets which are highly disconnected. These are sets which contain a large number

of components, and thus have a large number of “holes” at many different scales. Important

examples of such sets are Cantor sets, which are actually totally disconnected1. We will be

primarily studying sets of this form.

We will denote the next of our benchmark examples E6, and let E6 = C, which is the

standard middle-third Cantor set. This set is quite well known, and detailed constructions

of it can be found in Rudin [10] and Wheeden and Zygmund [16]. We will also consider the

two-dimensional version,

E7 = C × C,

the so-called “Cantor dust.” For both cases we will take the Monte Carlo interval to be the

unit interval in the appropriate space. These two Cantor sets can be seen in Figure 3.4.

It is well-known that both E6 and E7 have Lebesgue measure zero, so these will provide

useful tools for determining the accuracy of the algorithm when applied to measure-zero

sets. However, it would also be helpful to test the algorithm on a set which has the same

fundamental structure as the Cantor set, but with positive Lebesgue measure. Such sets
1A set is totally disconnected if its only connected subsets are one-point sets.

27

! !"# !"$!"% !"& '
!!"#

!!"'

!

!"'

!"#

(a) E6 = C (b) E7 = C × C

Figure 3.4. E6 and E7, the middle-third Cantor set and the middle-third Cantor dust.

exist, and we will take the canonical example to be our next benchmark set. We will let E8

be the standard “fat” Cantor set, sometimes referred to as the Smith-Volterra-Cantor set

(and oftentimes abbreviated as SVC). This set is homeomorphic to the middle-third Cantor

set and thus exhibits many of the strange topological properties of C. In particular, it is

totally disconnected and nowhere dense in [0, 1]. However, unlike the Cantor set, the SVC

has positive Lebesgue measure. Specifically, it has measure 1/2. We omit the details of its

construction, but a general description for a set of this type can be found in Royden [9] or

Wheeden and Zygmund [16]. An illustration of the SVC can be seen in Figure 3.5.

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

Figure 3.5. E8, the Smith-Volterra-Cantor set.

28

3.1.4 Commuters

The ultimate goal of this work is to measure the homeomorphic defect of a commuter

function. With this in mind, it would be quite helpful to test the algorithm on a collection

of such functions. In particular, we will attempt to measure the ranges of such functions.

We will consider two particular classes of commuters: those between two symmetric tent

maps of different heights, and those between a symmetric tent map and a skew tent map.

In the first case, we will take g2 to be the standard tent map of height one, described in

Section 1.2, and g1 will be a symmetric tent map of height 0.9. This commuter, which we

will denote by fE9 , is shown in Figure 3.6 alongside its range, which is depicted as a subset

of [0, 1]. The maps g1 and g2 are not conjugate in this case, so fE9 should exhibit some

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) fE9

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

(b) E9 = fE9 ([0, 1])

Figure 3.6. The commuter fE9 , evaluated at 1,000 points on [0, 1] (left), and its range
fE9 ([0, 1]) ⊆ [0, 1] (right).

amount of homeomorphic defect. In particular, there are visible gaps in the range which

signal that the function has a positive onto defect.

In the second case, we will again take g2 to be the standard tent map. However, we will

now make g1 a skew tent map of height one whose peak occurs at the point x = 1/4. Figure

3.7 shows the resulting commuter, fE10 , and its range as a subset of the unit interval. For

future reference, let us mention that in this case, g1 and g2 are actually conjugate. As a

result, fE10 is in fact a homeomorphism.

29

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) fE10

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

(b) E10 = fE10 ([0, 1])

Figure 3.7. The commuter fE10 , evaluated at 1,000 points on [0, 1] (left), and its range
fE10 ([0, 1]) ⊆ [0, 1] (right).

3.1.5 Summary of Examples

Before we begin presenting numerical results for these examples, we will briefly sum-

marize by giving a list of the benchmark examples and certain important details. Table

3.1.5 gives the name of each example, a brief description, and the Lebesgue measure of each

set (if it is known). This table is designed to give the reader a compact description of the

collection of benchmark sets, along with some of the more critical properties of the sets.

3.2 Determination of Fattening Radius

We are now prepared to investigate the behavior of the Monte Carlo measure as the

fattening radius is varied. This will hopefully allow us to determine criteria for selecting an

appropriate radius for a given application. Throughout this section we will be considering

graphs which depict the computed measure as a function of the fattening radius for each of

the benchmark sets. We will restrict ourselves to the simple case of computing the Lebesgue

measure of each set. Let us start by considering the first category of benchmark sets, the

connected sets E1, E2, and E3.

30

Set Description Measure

E1 [0, 1/2] 1/2

E2 [0, 1/2]× [0, 1/2] 1/4

E3 {(x, y) : x2 + y2 ≤ 1} π

E4 [0, 1/3] ∪ [2/3, 1] 2/3

E5 E4 × E4 4/9

E6 Cantor set (C) 0

E7 Cantor dust (C × C) 0

E8 Smith-Volterra-Cantor set (SVC) 1/2

E9 fE9 ([0, 1]) unknown

E10 fE10 ([0, 1]) 1

Table 3.1. List of benchmark examples for numerical testing. Included is the name of the
set, its definition, and its Lebesgue measure, if known.

3.2.1 Results: Connected Sets

First, we will consider the set E1. Figure 3.8 shows a series of graphs at different resolu-

tions for this set. In Figure 3.8(a), we have allowed r to vary between 0 and 1. Observe that

the graph undergoes two sharp transitions. The first occurs when the computed measure

is approximately 1/2, which we know to be the true measure of the set. We will refer to

this event as the first saturation, as it is the point at which the fattened set has covered,

or saturated, E1. The second transition appears when the measure reaches 1, which is the

full measure of the Monte Carlo interval [0, 1]. This is the point at which the Monte Carlo

interval becomes saturated, so as with the first case we will refer to it as the second satura-

tion. The computed measure remains constant after the second saturation. This behavior

is to be expected, as the fattened set has already covered the entire Monte Carlo interval,

so all randomly selected points will fall within the fattened region.

We would like to investigate the behavior of the computed measure prior to the second

saturation, which occurs when r ≈ 1/2. Figure 3.8(b) shows this, with 0 ≤ r ≤ 1/2.

Observe that the measure appears to grow linearly as a function of r between the first and

second saturations. However, it is still not clear how the measure behaves prior to the first

saturation, which occurs when r is extremely small. In Figure 3.8(c) we see a closer view

of this region. We have still not completely honed in on the first saturation, but we have a

slightly clearer view of it. It appears that the transition is not exactly sharp at this small

31

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius
Co

m
pu

te
d

m
ea

su
re

(b) 0 ≤ r ≤ 0.5

0 0.2 0.4 0.6 0.8 1
x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.001

0 0.2 0.4 0.6 0.8 1
x 10−4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.0001

Figure 3.8. Graphs of computed Monte Carlo measure versus fattening radius for the set
E1. Each was created using a sample of 10,000 points randomly selected from E1, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

32

scale, but is somewhat more gradual. However, given that this transition corresponds to a

change in r of approximately 10−4, the change is quite abrupt at a macroscopic scale. A

closer view of the transition can be seen in Figure 3.8(d).

We will now consider a similar set of graphs for the two-dimensional analogue E2. These

are shown in Figure 3.9. In Figure 3.9(a) we see that, once again, two sharp transitions

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(b) 0 ≤ r ≤ 0.5

0 2 4 6 8
x 10−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Radius

C
om

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.0075

0 1 2 3 4 5 6
x 10−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.006

Figure 3.9. Graphs of computed Monte Carlo measure versus fattening radius for the set
E2. Each was created using a sample of 10,000 points randomly selected from E1, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

are exhibited. The first occurs when the computed measure is approximately 1/4, which is

the true measure of E2. Thus this transition corresponds to the first saturation. However,

33

the second transition does not quite coincide with the second saturation. Note that the

transition occurs when µ ≈ 0.95, while the full measure of the Monte Carlo interval is

1. Additionally, after the transition µ approaches 1 gradually, which is again unlike the

behavior seen with E1. Needless to say, this behavior is quite strange, but it can be explained

relatively easily. We will address this issue in Section 3.3.

If we consider the graph prior to the second transition, the behavior looks much more

similar to that which we have already seen with E1. Figure 3.9(b) shows this region, with

0 ≤ r ≤ 1/2. Observe that µ grows smoothly with r after the first saturation, albeit not in

a linear fashion. This likely represents a correlation between the growth and the dimension

of the underlying space. Also, Figures 3.9(c)-(d) show a closer view of the first saturation.

Once again, we see that the sharp transition is actually a smooth one occurring over a very

small range of r values.

Finally, a collection of graphs for E3 is shown in Figure 3.10. The behavior seen here

should be somewhat similar to that seen for E1 and E2. In particular, there is a sharp

transition corresponding to the first saturation at µ ≈ π, which is the known measure of

E3. However, there is no second transition, as µ simply grows gradually to 4 after the

first saturation. This is actually remarkably similar to the behavior seen after the second

transition in Figure 3.9(a) for E2. A closer look at the growth in this regime is seen in

Figure 3.10(b). Additionally, Figures 3.10(c)-(d) show a better view of the behavior of µ in

the vicinity of the first saturation. As with the previous two cases, the sharp transition is

actually a smooth change taking place over a very small change in r.

3.2.2 Results: Mildly Disconnected Sets

We will now turn to the mildly disconnected sets E4 and E5. First, Figure 3.11 shows a

series of measure-radius graphs for E4. Notice that all four plots look remarkably similar,

at least qualitatively, to those shown for the previous one-dimensional set E1. In Figure

3.11(a), we see that there are two sharp transitions, the first at µ ≈ 2/3 and the second

at µ ≈ 1. These correspond to the first and second saturations, respectively. Figure

3.11(b) demonstrates the linear growth of µ between the first and second saturations, as

was observed with E1. Figures 3.11(c)-(d) show closer views of the first saturation, which

again manifests itself as a smooth transition at a very small scale.

Just as E4 demonstrated similar behavior to E1, the behavior of E5 bears a striking

resemblance to that of the first two-dimensional example, E2. Figure 3.12 shows this.

34

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

Radius

Co
m

pu
te

d
m

ea
su

re

(b) 0 ≤ r ≤ 0.4

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

3

3.5

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.03

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5

Radius

Co
m

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.02

Figure 3.10. Graphs of computed Monte Carlo measure versus fattening radius for the set
E3. Each was created using a sample of 10,000 points randomly selected from E1, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius
Co

m
pu

te
d

m
ea

su
re

(b) 0 ≤ r ≤ 1/6

0 0.2 0.4 0.6 0.8 1
x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.001

0 1 2 3
x 10−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.0003

Figure 3.11. Graphs of computed Monte Carlo measure versus fattening radius for the set
E4. Each was created using a sample of 10,000 points randomly selected from E4, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

36

Figure 3.12(a) looks quite similar to Figure 3.9(a), again showing two sharp transitions.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(b) 0 ≤ r ≤ 1/6

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.01

0 2 4 6 8
x 10−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.008

Figure 3.12. Graphs of computed Monte Carlo measure versus fattening radius for the set
E5. Each was created using a sample of 10,000 points randomly selected from E5, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

The first occurs near µ = 4/9 and coincides with the first saturation. The second occurs

just prior to the second saturation, with µ growing gradually toward 1 after the transition.

Figure 3.12(b) shows the smooth, yet nonlinear, growth of µ between the first and second

transitions. A close view of the first saturation is shown in Figures 3.12(c)-(d), which look

nearly identical to Figures 3.9(c)-(d), albeit on a different scale.

Thus far, it appears that there is a recurring theme with each of the sets we have tested.

37

While the behavior of µ as a function of r has certainly varied greatly, in each case we have

seen a sharp transition corresponding to the first saturation. That is, the growth of the

computed measure µ as a function of r changes fundamentally when µ is near the true

measure of the set. This observation is very promising, and it would be quite advantageous

if this behavior is replicated in the remaining examples.

3.2.3 Results: Highly Disconnected Sets

We are now ready to test the algorithm on a class of much more complex sets. These

sets will be represented by a collection of highly disconnected sets, namely the totally

disconnected Cantor sets E6, E7, and E8.

Figure 3.13 shows the measure-radius plots for E6, the standard middle-third Cantor

set. It should be apparent that these graphs demonstrate behavior that is quite different

from anything seen in the previous examples. The one visible similarity is the linear growth

of µ between transitions, which is reminiscent of the one-dimensional examples E1 and E4.

However, there are several sharp transitions that appear, as opposed to the two that were

seen previously. Moreover, these transitions appear at all scales, as we can see in Figures

3.13(b)-(d). In fact, it appears that they occur at r = 1/6, r = 1/18, r = 1/54, and, in

general, at r = 1/(2 · 3n) for n ∈ Z+. We will discuss the reason for this phenomenon in

Section 3.3.

In Figure 3.14, we see that E7, the Cantor dust, exhibits behavior similar to that of

E6. Once again, there are sharp transitions at all scales, and they appear to be occurring

at the same values of r as in the previous case. The lone similarities to the earlier cases are

the smooth nonlinear growth of µ between transitions and the behavior of µ after the final

transition. Both are similar to the respective behaviors of E2 and E5.

Now we turn to E8, the Smith-Volterra-Cantor set. A series of measure-radius graphs

for this set are shown in Figure 3.15. Observe that Figures 3.15(a)-(b) look similar to the

corresponding figures for the middle-third Cantor set. There are multiple sharp transitions,

with linear growth between them. Figures 3.15(c)-(d) still exhibit multiple transitions, but

the behavior for very small values of r looks different from that seen in Figures 3.13(c)-(d). It

appears that µ grows very rapidly with r when r is extremely small. Figure 3.15(e) confirms

this, showing a sharp transition when µ ≈ 1/2. Finally, Figure 3.15(f) shows the transition

to be smoother at a small scale, as we have seen in several of the previous cases. Overall, it

appears that the algorithm has managed to detect the fact that |E8| = 1/2, despite the fact

38

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius
Co

m
pu

te
d

m
ea

su
re

(b) 0 ≤ r ≤ 1/6

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 1/18

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

Co
m

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 1/54

Figure 3.13. Graphs of computed Monte Carlo measure versus fattening radius for the set
E6. Each was created using a sample of 10,000 points randomly selected from E6, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

39

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius
Co

m
pu

te
d

m
ea

su
re

(b) 0 ≤ r ≤ 1/6

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 1/18

0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Radius

Co
m

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 1/54

Figure 3.14. Graphs of computed Monte Carlo measure versus fattening radius for the set
E7. Each was created using a sample of 10,000 points randomly selected from E7, 100,000
Monte Carlo points, and 1,000 values of r, evenly spaced on the specified interval.

40

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(b) 0 ≤ r ≤ 1/8

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 1/32

0 2 4 6 8
x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 1/128

0 1 2 3 4 5 6
x 10−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(e) 0 ≤ r ≤ 1/2048

0 1 2 3 4
x 10−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(f) 0 ≤ r ≤ 3.8× 10−5

Figure 3.15. Computed measure versus radius for E8. Each was created using 214 sample
points, 100,000 Monte Carlo points, and 1,000 values of r.

41

that E8 has the same fundamental structure as the Cantor set. This observation provides

a very promising argument for the efficacy of the algorithm.

3.2.4 Results: Commuters

We will now discuss numerical results for the final class of benchmark sets, the com-

muters. First, we will consider E9, the range of a commuter between two symmetric tent

maps. A series of graphs for this set is shown in Figure 3.16. Observe that there is a

sharp transition corresponding to the second saturation. However, the growth of µ prior

to that is somewhat reminiscent of the middle-third Cantor set, albeit more smooth. This

behavior is exhibited in each of six figures, and it appears that there is no sharp transition

corresponding to the first saturation. If the algorithm behaves as it did in the previous

cases, we could conclude that E9 has Lebesgue measure zero. However, it is not entirely

apparent whether we can form such a conclusion with any level of certainty.

Graphs of measure versus radius for E10 are shown in Figure 3.17. Note that the

behavior seen in each graph is very similar to that shown in the analogous graph for E9.

There is a sharp transition corresponding to the second saturation, but the growth is largely

smooth prior to that. This is somewhat problematic, since the commuter that we are

studying is actually a conjugacy. As a result, it maps [0, 1] onto [0, 1], so the Lebesgue

measure of E10 should be 1.

Recall that in most previous cases the Monte Carlo interval strictly contained the set

we were attempting to measure. With this in mind, we can attempt to resolve the problem

by making the Monte Carlo interval slightly larger than [0, 1]. We will choose the interval

[−1/2, 3/2]. A new set of graphs for this interval is shown in Figure 3.18. Here, as before,

we see a sharp transition that coincides with the second saturation. However, we also see

some strange behavior near µ = 1. The behavior of µ changes abruptly here, albeit not

as suddenly as in previous cases. Also, it appears that the transition occurs just prior to

µ = 1. This can likely be explained by the fact that the sample of E10 has noticeable gaps

in it. If we refer back to Figure 3.7, we see that there are some places where the graph of the

function is nearly vertical, so evaluation of the function on a finite sample will inevitably

produce some gaps in the range.

This example is not nearly as convincing as the previous ones, but it still appears

somewhat promising. If we set aside the unknown cases of commuters, it seems that the

algorithm is reasonably effective overall at approximating the Lebesgue measure of a set

42

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(b) 0 ≤ r ≤ 0.04

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.018

0 1 2 3 4 5
x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.005

0 0.2 0.4 0.6 0.8 1 1.2
x 10−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radius

C
om

pu
te

d
m

ea
su

re

(e) 0 ≤ r ≤ 0.0001

0 1 2 3 4 5
x 10−5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Radius

C
om

pu
te

d
m

ea
su

re

(f) 0 ≤ r ≤ 0.00004

Figure 3.16. Computed measure versus radius for E9. Each was created using 10000 sample
points, 100,000 Monte Carlo points, and 1,000 values of r.

43

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius
Co

m
pu

te
d

m
ea

su
re

(b) 0 ≤ r ≤ 0.015

0 0.5 1 1.5 2
x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

C
om

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.002

0 1 2 3 4 5 6
x 10−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.0005

Figure 3.17. Computed measure versus radius for E10. Each was created using 10000 sample
points, 100,000 Monte Carlo points, and 1,000 values of r.

44

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Radius

Co
m

pu
te

d
m

ea
su

re

(a) 0 ≤ r ≤ 1

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Radius
Co

m
pu

te
d

m
ea

su
re

(b) 0 ≤ r ≤ 0.015

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Radius

Co
m

pu
te

d
m

ea
su

re

(c) 0 ≤ r ≤ 0.002

0 0.5 1 1.5 2
x 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Radius

C
om

pu
te

d
m

ea
su

re

(d) 0 ≤ r ≤ 0.0005

Figure 3.18. Computed measure versus radius for E10. Each was created using 10000 sample
points, 100,000 Monte Carlo points, and 1,000 values of r.

45

based on a finite sample of that set. We will expand on this discussion in Chapter 4, as well

as discuss future work for improving the algorithm.

3.3 Discussion of Behavior

Now that we have studied plots of computed measure versus fattening radius for various

benchmark sets, we will attempt to explain the behavior that we have seen. We will by

no means give a rigorous explanation for this behavior, rather we will give a reasonable

heuristic argument.

Among the examples that we have studied, there have been some fundamental similari-

ties in the growth of µ as a function of r. In all cases, µ grows somewhat rapidly at first, and

then the growth changes fundamentally. In some cases, this change is very abrupt, while

in others it is quite gradual. After the change, µ grows more slowly as it approaches the

full measure of the Monte Carlo interval. We will discuss the reasons that underlie these

specific behaviors. Throughout this section, we will refer to Figures 3.19 and 3.20, which

show a step-by-step illustration of the fattening process for the set E1. In each of these

figures we have used 1,000 sample points in order to make the images more readable, as

opposed to the 10,000 points that were used for the actual numerical simulations.

When r is extremely small, as in Figures 3.19(a)-(b), the open balls do not overlap.

This results in very rapid growth of µ as r increases. As the balls begin to overlap, the

growth slows. This stage in the fattening process is shown in Figures 3.19(c)-(d) and 3.20(a).

Once the balls have completely overlapped, the growth no longer slows, and µ appears to

be proportional to rn, where n is the dimension of the underlying space. This should be

apparent from Figures 3.20(b) and (c), where we see that the fattened set has now taken

on the approximate shape of square with a rounded corner, along with mildly distorted

edges. Given this illustration, it seems reasonable that µ should grow like r2 in this regime.

Finally, Figure 3.20(d) shows the fattened set for a large value of r, in which case almost

all of the Monte Carlo interval has been covered.

Let us now focus on the range of r values between the points where the balls initially

overlap and where they have completely overlapped. In the case of E1, this range is very

small. In fact, this transition from no overlap to complete overlap corresponds to the sharp

transition that is seen near µ = 1/2. This likely results from the fact that the sample points

generated on E1 are taken from a uniform distribution. Because of this, the variation in

46

(a) r = 10−6 (b) Zoom of r = 10−6

(c) r = 10−5 (d) Zoom of r = 10−5

Figure 3.19. Depiction of fattened set Ẽ for different values of r. Figure (a) shows the
set for r = 10−6, where the balls are all still disjoint. Figure (b) shows a closer view for
r = 10−6. Figure (c) shows the set for r = 10−5, where the balls have just begun to overlap.
Figure (d) shows a closer view for r = 10−5.

47

(a) r = 10−4 (b) r = 5× 10−4

(c) r = 0.1 (d) r = 0.5

Figure 3.20. Depiction of fattened set Ẽ for different values of r (continued). Figure (a)
shows the set for r = 10−4, where the balls have now begun to overlap considerably. In
Figure (b), r = 5×10−4, and the set being measured has been essentially covered. Note that
there is also some overflow, where the balls have expanded slightly beyond the boundary
of the set. In Figure (c), r = 0.1, and the balls have expanded well beyond the set. Note
that the covered set somewhat resembles a square with one rounded corner containing the
interval. In Figure (d), r = 0.5, and the balls have grown large enough to essentially cover
the entire unit interval.

48

the sizes of the gaps between points should be relatively small, so the gaps are all covered

quickly and at approximately the same time. This results in the sharp transition that we

previously witnessed.

We can also use these arguments to explain the strange behavior that was seen near

the second saturation for E2. Recall that Figure 3.20(c) shows the fattened set to be a

square with a rounded corner after the first saturation. The set maintains this shape as it

continues to grow. However, a point is eventually reached where the sides of this square

overlap the edges of the unit interval, while the corner of the interval still has not been

completely covered. It is at this point that the growth fundamentally changes, as evidenced

by the sharp transition just prior to the second saturation in the case of E2.

This explanation that we have just detailed can also be applied to sets for which the

transition is much more gradual, such as E6, the Cantor set. The middle-third Cantor

set has gaps at all scales, so the transition from no overlap to complete overlap is much

more gradual. In fact, there will be a transition in the growth of µ near r = 1/(2 · 3n) for

each integer n. This is precisely half the width of the intervals that are removed in the

nth step of the construction of the Cantor set. Near this value of r, the balls centered at

points bordering the gap will merge, covering the gap and slowing the growth of µ. This

phenomenon also explains the large number of transitions that appeared in the measure-

radius graph for E6, and the fact that they seemed to arise at all scales.

As previously mentioned, this section does not give a rigorous explanation of the behav-

ior seen in Section 3.2. It is simply a discussion, undertaken with the intention of improving

our understanding of the algorithm. This will hopefully aid in the further development of

the algorithm, as well as its effective use in the future.

3.4 Sequences of Commuters

We will conclude this section on numerical experimentation with one final consideration

regarding commuters. Given the unknown circumstances surrounding the deployment of

the algorithm on commuters, it would be nice to be able to find a way to put the algorithm

to good use. That is, even if it does not accurately approximate the true measures of these

sets, we may be able to use it effectively as a tool for detecting homeomorphic defect.

A necessary condition for the algorithm to be a suitable surrogate for measuring onto

defect is that it must be monotone with respect to the true onto defect. More specifically,

49

when the onto defect increases, the surrogate should increase, and when the onto defect

decreases, the surrogate should also decrease. A way to analyze such behavior would be

to study sequences of commuters. In particular, we will study commuters between a sym-

metric tent map of height ai and the standard tent map for some sequence {a1, a2, . . . , an}
which increases monotonically toward 1. It is known that the measure of the range of the

commuters should tend to 1 as this sequence approaches 1, so we would like to see if the

computed measure does the same.

Figure 3.21 shows graphs related to such an experiment. Figure 3.21(a) shows a surface

plot of the computed measure µ versus the fattening radius and the height of the map

g1. Observe that the computed measure increases with the fattening radius, as we should

expect from our previous results. Also, it appears that the measure generally increases as

the height of g1 increases. Figure 3.21(b) gives a better look at this. In this figure, we have

plotted the computed measure versus the radius for each height value. The colors of the

corresponding lines change gradually from red to green to blue as the height changes. It

appears that the computed measure does in fact increase with the height. However, there

are some visible problems, as the behavior is not perfectly monotone. This could simply

be due to the inherent randomness of the algorithm, but further investigation would be

required to confirm this. We will discuss this result and its potential importance more in

Chapter 4.

50

0

0.05

0.1

0.7

0.8

0.9

1
0

0.2

0.4

0.6

0.8

1

RadiusHeight of g1

Co
m

pu
te

d
m

ea
su

re

(a) Surface plot of computed measure versus radius and height.

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Co
m

pu
te

d
m

ea
su

re

(b) Curves showing measure versus radius for various height

values.

Figure 3.21. Plots of computed measure versus fattening radius and height corresponding
to a sequence of commuters. Here the commuters relate g1 and g2, where g1 is a symmetric
tent map of height strictly less than 1, and g2 is the symmetric tent map of height 1. In (a)
we have a surface plot of the computed measure as a function of heigh and radius. In (b),
we have multiple plots of measure versus radius. Each curve corresponds to a particular
height value, and the color changes from red to green to blue as the height increases.

51

Chapter 4

Conclusions

We will now conclude this thesis by discussing what we have learned and outlining

possible future work on this topic.

4.1 Discussion of Results

Throughout this thesis we have worked to develop an algorithm for accurately determin-

ing the Lebesgue measure of an arbitrary measurable subset of Rn. This work ultimately

led to an algorithm that is based on the technique of Monte Carlo integration, which we

discussed in detail in Chapter 2. We then tested this algorithm on a collection of benchmark

sets with the hope of gaining insight into the behavior of the algorithm. The results were

presented in Chapter 3, along with a discussion of the behavior that was observed. We are

now prepared to elaborate on this discussion and summarize the knowledge that we have

gained through these experiments.

Perhaps the most evident phenomenon that we were able to witness was the presence

of a sharp transition corresponding to the first saturation in most of the sets that were

considered. This is important because it signals that an approximation to the true measure

of the set can be determined by simply locating the transition on the graph of computed

measure versus fattening radius. We should stress the fact that this phenomenon was

not visible for all the sets that were considered; there were a select few sets for which no

sharp transition was witnessed in this regime. Included in these sets were the Cantor set

and Cantor dust. These two examples should not be particularly troubling, as they are

52

both known to have Lebesgue measure zero. Because of this, the first saturation occurs as

soon as r becomes larger than zero, so the absence of a sharp transition is not surprising.

Additionally, the algorithm appears to be effective at detecting the true measure of the

Smith-Volterra-Cantor set, which has the same topological structure as the middle-third

Cantor set. These observations together present a reasonable amount of evidence in favor

of the validity of this algorithm.

The other sets for which sharp transitions were not seen are not so easily explained. We

are specifically referring to the sets E9 and E10, which were derived from commuter func-

tions. In the case of E9, there was no sign of a sharp transition, which could either indicate

that the set has measure zero, or the algorithm is ineffective for sets of this type. For E10, a

transition of some form was witnessed near the true measure, but the observation was not

quite as convincing as with earlier examples. Given the lack of knowledge surrounding the

properties of these functions, it is hard to judge whether these observations are meaningful,

or if the algorithm needs to be altered to properly handle this class of sets. This is an issue

that should be addressed in the future, and we will discuss it more in Section 4.2.

One final issue regarding commuters is that of sequences of commuters, as discussed in

Section 3.4. In that section, we proposed that the algorithm could still be used as a suitable

surrogate in the event that it is ineffective at accurately computing measures associated

with commuters. This conjecture could be tested by studying a sequence of commuters and

determining whether the output of the algorithm behaved in a monotone fashion. Based

on the numerical results, it appears that the computed measure generally increases as the

sequence progresses. However, there were clearly some issues with regard to monotonicity.

It is likely that these problems have something to do with the probabilistic nature of the

algorithm, but it is by no means certain that this is the cause. This is clearly another issue

which should be investigated further in the future in order to determine the true nature of

the underlying behavior.

4.2 Future Work

Despite seeing many promising results from this algorithm, there are still several appar-

ent shortcomings and many unknowns surrounding its behavior. Because of this, it is clear

that there is still much work that can be done on this topic in the future. In this section,

we will list several issues that should be addressed, as well as certain tasks that should be

undertaken in future work.

53

• Perform error analysis. In particular, work should be done to determine justifi-

able error estimates for the algorithm. The error arising from Monte Carlo integration

could be easily determined by using Tchebyshev’s inequality and the related results

discussed in Section 2.2.2. However, the error associated with the construction of the

fattened set Ẽ is likely to be very nontrivial, and will subsequently require a consid-

erable amount of work to determine. Hopefully such work would lead to proofs of

certain results regarding the algorithm, such as those related to convergence. Rigor-

ous error analysis should also help to shed some light on the validity of the algorithm

when it is applied to commuters.

• Further investigate sequences of commuters. In the previous section we dis-

cussed the issues surrounding sequences of commuters that were encountered in Sec-

tion 3.4. In the future, work should be done to further investigate these issues, and

attempt to explain the monotonicity problems that were seen. This could potentially

be handled by performing additional carefully chosen numerical experiments, or the

theoretical work done regarding error analysis could provide insight.

• Test the algorithm with other absolutely continuous measures. In all of the

examples that we have considered, we have restricted ourselves to simply calculating

the Lebesgue measure of the given set. However, the algorithm is designed to work

with any measure which is absolutely continuous with respect to Lebesgue measure.

It would likely be advantageous to test the algorithm on some of these measures and

gauge the resulting behavior.

The following is a list of things that could be done in the future to improve the present

algorithm and achieve some of the eventual goals of this work.

• Write code to automatically compute measure. By this we mean that the algo-

rithm should be modified to automatically detect the sharp transition corresponding

to the first saturation. Obviously this should only be done when the algorithm is well

understood and its output is justifiably accurate.

• Extend the algorithm to accomodate arbitrary measures. The original intent

of this work was to develop a procedure for measuring subsets of Rn using arbitrary

measures. We have instead constructed an algorithm which requires that the measures

be absolutely continuous with respect to Lebesgue measure. An important goal to

work toward would be to remove this restriction and develop an improved algorithm

54

that can handle arbitrary measures. It is not clear whether this can be done by

building on the existing algorithm or if new techniques must be introduced.

• Deploy the algorithm on the other defect measures. The ultimate goal of this

work is to be able to reliably compute the homeomorphic defect of a given commuter

function. This would require the ability to measure each of the four defects that were

mentioned in Chapter 1. We mentioned the onto defect as motivation for the work we

have done, as it can be easily calculated once we have the ability to computationally

measure sets. The other defect measures are less simple, and more work would need

to be done in order utilize our algorithm on them. However, such an accomplishment

is the goal of this research, and it should be pursued in the future.

Overall, this algorithm presents much promise for future research. There is a great deal

of work that can and should be done to improve it, for which we have outlined several

particular issues to be addressed. However, a strong foundation has been laid for future

work on this topic which will hopefully lead to the ultimate goal of accurately computing

homeomorphic defect.

55

Bibliography

[1] Myron B. Allen III and Eli L. Isaacson. Numerical Analysis for Applied Science. John

Wiley & Sons, Inc., 1998.

[2] Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. Chaos: An Introduction to

Dynamical Systems. Springer, 1996.

[3] Morris H. DeGroot and Mark J. Schervish. Probability and Statistics. Addison Wesley,

third edition, 2002.

[4] Paul R. Halmos. Naive Set Theory. Springer, 1974.

[5] J.M. Hammersley and D.C. Handscomb. Monte Carlo Methods. John Wiley & Sons,

Inc., 1965.

[6] Myron Hlynka and Deborah Loach. Generating uniform random points in a regular

n-sided polygon. Technical Report WMSR 05-02, University of Windsor, Windsor,

Ontario, Canada N9B 3P4, 2005.

[7] John L. Kelley. General Topology. Springer-Verlag, 1975.

[8] A.N. Kolmogorov and S.V. Fomin. Introductory Real Analysis. Dover Publications,

1975.

[9] Halsey Royden. Real Analysis. Prentice Hall, third edition, 1988.

[10] Walter Rudin. Principles of Mathematical Analysis. McGraw Hill, 1976.

[11] Walter Rudin. Real and Complex Analysis. McGraw Hill, 1986.

[12] Joseph D. Skufca and Erik M. Bollt. Relaxing conjugacy to fit modeling in dynamical

systems. Physical Review E, 76(026220), 2007.

56

[13] Joseph D. Skufca and Erik M. Bollt. A concept of homeomorphic defect for defining

mostly conjugate dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 18(013118), 2008.

[14] William R. Wade. An Introduction to Analysis. Prentice Hall, third edition, 2003.

[15] Stefan Weinzierl. Introduction to monte carlo methods. arXiv:hep-ph/0006269v1, 2000.

[16] Richard L. Wheeden and Antoni Zygmund. Measure and Integral: An Introduction to

Real Analysis. CRC Press, 1977.

57

Appendix A

Code

This appendix contains the MATLAB code that has been used throughout the pro-

duction of this thesis. The complete code for each program is given, along with a brief

description of the program’s function. We have divided the programs into several groups

based on their purpose.

Monte Carlo Integration

The code in this section is used in the implementation of the Monte Carlo integration

algorithm.

mc int.m

This program uses Monte Carlo integration to approximate the measure of a set E ⊂ Rn.

It takes in a random sample of E, the bounds for the Monte Carlo integration interval, the

number of points to be used for the integration, the density function for the measure to be

used, and the fattening radius. The sample is fattened by the amount specified by r, and

the fattened set is measured via Monte Carlo integration.

function measure=mc_int(sample, bounds, N, density, r)

% *****************
% mc_int.m
% Author: Scott M. LaLonde

58

% Date created: 2/12/08
% Last modified: 4/10/09
% *****************
%
% MC_INT Computes the measure of a subset E of R^n using
% Monte Carlo integration. This is done using a ran-
% dom sample of E and a measure which is absolutely
% continuous with respect to Lebesgue measure.
%
% Usage: measure = mc_int(sample, bounds, N, density)
%
% Input:
%
% sample Random sample of size N from the set E. This
% should be given as an N-by-n array; that is, the
% rows of ’sample’ correspond to points in R^n.
%
% bounds Upper and lower bounds of an n-dimensional inter-
% val containing E. The lower bounds are contained
% in the first column and the corresponding upper
% bounds are contained in the second column. This
% should be an n-by-2 array.
%
% N Number of random points to be used for Monte Carlo
% integration. This should be a positive integer.
%
% density Handle for function relating the desired measure
% to the Lebesgue measure, per the Radon-Nikodym
% theorem.
%
% r Radius by which set is to be fattened. This should
% be a non-negative scalar.
%
% Output:
%
% measure Approximate measure of the set E. This returns a
% non-negative scalar.
%
% MC_INT computes an approximation to the measure of a subset E of
% R^n, where the measure is absolutely continuous with respect to
% Lebesgue measure. It takes in a random sample of points in E and
% a radius by which to fatten the sample. Monte Carlo points are
% taken from the n-dimensional interval defined by ’bounds’. The
% characteristic function of the fattened set is evaluated at
% these points by calling ’sample_ind.m’, and these values are
% then plugged into the Monte Carlo integration formula to obtain
% the approximation ’measure’.
% *****************

59

% Select Monte Carlo points in the specified interval.
x=rand(N, size(bounds, 1));
x=x*diag(bounds(:,2)-bounds(:,1))+ones(N, 1)*bounds(:,1)’;

% Evaluate characteristic function at MC points.
I=sample_ind(x, sample, r);

% Compute measure.
measure=sum(density(x(I > 0)));
measure=prod(bounds(:,2)-bounds(:,1))/N*measure;

sample ind.m

This program constructs the characteristic function for a fattened set, given a sample

and a fattening radius. The characteristic function is then evaluated at a specified number

of points.

function I=sample_ind(x, sample, r)

% *****************
% sample_ind.m
% Author: Scott M. LaLonde
% Created 2/12/09
% Modified 4/10/09
% *****************
%
% SAMPLE_IND Computes the indicator function of a finite set
% that has been fattened by a specified radius.
% Evaluates the function at a given set of points.
%
% Usage: I=sample_ind(x, sample, r)
%
% Input:
%
% x Set of N points at which the function is to be
% evaluated. This should be input as N-by-n array;
% that is, rows of ’x’ correspond to points in R^n.
%
% sample Sample of points of size M. This should be input
% as an M-by-n array.
%
% r Radius by which ’sample’ is to be fattened. Should
% be input as a non-negative scalar.
%

60

% Output:
%
% I Values of indicator function at points in ’x’.
% Each value will be either 1 or 0, depending on
% whether the corresponding point is in the fattened
% set or not. Output as an N-by-1 vector.
%
% SAMPLE_IND computes the values of the characteristic function of
% a fattened set at a specified set of points. For each point in
% ’x’, the nearest neighbor to that point in ’sample’ is deter-
% mined. These distances are then checked against the radius ’r’;
% if the distance is less than ’r’, the function evaluates to 1,
% and otherwise the value is zero.
% *****************

% Compute nearest neighbors in ’sample’ for points of ’x’, along
% with corresponding distances.
[neighbors, dists]=annquery(sample’, x’, 1);
dists=dists’;

% Compare distances to radius ’r’ to determine function value.
I=zeros(size(x));
I(dists <= r)=ones(length(find(dists <= r)), 1);

lebesgue.m

This code defines the density function for the Lebesgue measure, per the Radon-

Nikodym theorem. It may appear trivial, as it is simply the constant function 1. However,

by constructing the code in this way we have allowed for the easy deployment of other

absolutely continuous measures.

function m=lebesgue(x)

% *****************
% legesgue.m
% Author: Scott M. LaLonde
% Date created: 9/23/08
% Last modified: 4/10/09
% *****************
%
% LEBESGUE Evaluate the density function for Lebesgue measure
% at a given set of points.
%
% Usage: m=lebesgue(x)
%

61

% Input:
%
% x Vector of N points in R^n at which the function is
% to be evaluated. This should be an N-by-n array;
% that is, rows of ’x’ correspond to points in R^n.
%
% Output
%
% m Values of the function at the points in ’x’. This
% will be an N-by-1 array.
%
% LEBESGUE evaluates the density function relating the Lebesgue
% measure to itself (per the Radon-Nikodym theorem) at a given
% set of points. This density function is identically one, so the
% output is simply a vector of ones of the same length as ’x’.
% *****************

m=ones(size(x,1),1);

Commuter Generation

This section contains code for generating the commuter functions that we have encoun-

tered. In particular, fE9 and fE10 were constructed with this code.

tent commuter.m

This program is used for constructing a commuter between two symmetric tent maps,

such as fE9 . It is designed to evaluate the commuter at a specified set of points.

function f=tent_commuter(X)

% *****************
% tent_commuter.m
% Author: Scott M. LaLonde
% Date created: 10/6/08
% Last modified: 4/14/09
% *****************
%
% TENT_COMMUTER Evaluates the commuter between two specified
% symmetric tent maps on a collection of points
% from the interval [0,1].
%
% Usage: f=tent_commuter(x)

62

%
% Input:
% x Vector of N data points from the interval
% [0,1]. This should be input as an N-by-1
% array.
%
% Output:
% f Function values associated with points in x.
% This is output as an N-by-1 array.
%
% TENT_COMMUTER evaluates the commuter function between two symm-
% etric tent maps at a given set of points. The heights of the two
% maps should be speficied as global variables called ’H1’ and
% ’H2’. The functional equation for the commuter is used to iter-
% atively approximate the values of the function at the points in
% ’x’.
% *****************

% Set parameters for two tent maps. These can be changed to
% compute commuter function between two arbitrary symmetric tent
% maps.
global H1 H2;
a=1/2;

% Use input data to generate data set on [0,1] of approximately
% the same density as X.
xlower=min(X)*rand(floor(min(X)*length(X)/(max(X)-min(X))),1);
xupper=(1-max(X))*rand(floor((1-max(X))*length(X)/(max(X)

-min(X))),1)+max(X);
x=cat(1, X, xlower, xupper);

% Calculate nearest neighbors in x for functions of x that will
% be input to h.
x1=2*H1*x(x<=1/2);
x2=2*H1*(1-x(x>1/2));

% Calculate sequence of f’s, which will converge to commuter
% function.
f=x;
f1=zeros(length(x),1);
for i=1:100

pp=interp1(x, f, ’linear’, ’pp’);
f1(x<=1/2)=a/H2*ppval(pp, x1);
f1(x>1/2)=1-(1-a)/H2*ppval(pp, x2);
f=f1;

end

% Output only those function values corresponding to the points

63

% in the original data set.
f=f(1:length(X));

skew commuter.m

This program is used to construct a commuter between a symmetric tent map and a

skew tent map, such as fE10 . The commuter is also evaluated at a specified number of

points.

function f=skew_commuter(X)

% *****************
% skew_commuter.m
% Author: Scott M. LaLonde
% Date created: 10/6/08
% Last modified: 4/14/09
%
% SKEW_COMMUTER Evaluates the commuter between a skew tent map
% of height 1 and the symmetric tent map of
% height 1 on a collection of points from the
% interval [0,1].
%
% Usage: f=skew_commuter(x)
%
% Input:
% x Vector of N data points from the interval
% [0,1]. This should be input as an N-by-1
% array.
%
% Output:
% f Function values associated with points in x.
% This is output as an N-by-1 array.
%
% TENT_COMMUTER evaluates the commuter function between a skew
% tent map and a symmetric tent map (both of height one) at a
% given set of points. The point at which the peak of the skew
% tent map occurs should be specified as a global variable called
% ’A’. The functional equation for the commuter is used to iter-
% atively approximate the values of the function at the points in
% ’x’.
% *****************

% Set parameter for skew tent map.
global A;
H1=1; H2=1;

64

% Use input data to generate data set on [0,1] of approximately
% the same density as X.
xlower=min(X)*rand(floor(min(X)*length(X)/(max(X)-min(X))),1);
xupper=(1-max(X))*rand(floor((1-max(X))*length(X)/(max(X)

-min(X))),1)+max(X);
x=cat(1, X, xlower, xupper);

% Calculate nearest neighbors in x for functions of x that will
% be input to h.
x1=2*H1*x(x<=1/2);
x2=2*H1*(1-x(x>1/2));

% Calculate sequence of f’s, which will converge to commuter
% function.
f=x;
f1=zeros(length(x),1);
for i=1:100

pp=interp1(x, f, ’linear’, ’pp’);
f1(x<=1/2)=A/H2*ppval(pp, x1);
f1(x>1/2)=1-(1-A)/H2*ppval(pp, x2);
f=f1;

end

% Output only those function values corresponding to the points
% in the original data set.
f=f(1:length(X));

Set Generation

The code in this section is used to generate some of the more interesting benchmark

sets, particularly the Cantor sets.

cantorsample.m

This program generates a random sample of a specified size from the middle-third Cantor

set.

function c=cantorsample(n)

% *****************
% cantorsample.m
% Author: Scott M. LaLonde

65

% Date created: 8/1/08
% Last modified: 4/14/09
% *****************
%
% CANTORSAMPLE Generate a random sample of size n, uniformly
% distributed on the Cantor set.
%
% Usage: c=cantorsample(n)
%
% Input
%
% n Desired size of random sample. This should be a
% positive scalar.
%
% Output
%
% c Random sample of points in Cantor set. This will
% be an n-by-1 vector.
%
% CANTORSAMPLE generates a random sample of size n taken from a
% uniform distribution on the middle-third Cantor set.
% *****************

c=sum(2*floor(rand(n,10)*2).*(ones(n,1)*((1/3).^(1:10))),2);

SVC endpoints.m

This program generates the endpoints of a finite approximation of the Smith-Volterra-

Cantor set. By finite approximation, we mean the set given by taking only a finite intersec-

tion of sets in the construction of the SVC. Such a set will consist of a union of very small

intervals, and this code generates the endpoints of those intervals. The output can then be

used to select random points in the SVC.

function pts=SVC_endpoints(n)

% *****************
% SVC_endpoints.m
% Author: Scott M. LaLonde
% Date created: 3/27/09
% Last modified: 4/14/09
% *****************
%
% SVC_ENDPOINTS Generate endpoints of the intervals present in
% the nth step of the construction of the Smith-
% Volterra-Cantor set.

66

%
% Usage: pts=SVC_endpoints(n)
%
% Input
%
% n Step at which to terminate construction of
% SVC.
%
% Output
%
% pts Endpoints left at nth step of construction of
% the SVC.
%
% SVC_ENDPOINTS generates the endpoints of the nth step of the
% Smith-Volterra-Cantor set ("fat" Cantor set). The SVC is cons-
% tructed by removing intervals of certain size at a countable
% number of steps, and then intersecting the resulting sets. This
% program essentially approximates the set by taking only a finite
% intersection and returning the endpoints.
% *****************

% Initialize vector to hold endpoints.
pts=zeros(2^n, 2);
pts(1,1)=0; pts(1,2)=1;

% Generate endpoints by computing the midpoint of each interval,
% then adding and subtracting half the current gap. Sort and
% repeat.
for i=1:n

gap=1/2^(2*i);
pts=sort(pts);
mid=(pts(:,1)+pts(:,2))/2;
mid=flipud(mid);
new=[mid+gap/2 mid-gap/2];
new(2^(i-1)+1:2^n, :)=zeros(2^n-2^(i-1), 2);
pts=pts+new;

end

pts=sort(pts);

Plot Generation

These programs were used to generate some of the more complex plots seen in this

thesis, particularly those shown in Chapter 3.

67

fat rad sequence.m

This program is designed to generate plots of computed measure versus fattening radius

for a specified set and sequence of radii. The plots of this type found in Section 3.2 were

generated using this code.

function measure=fat_rad_sequence(sample, bounds, N, density, r)

% *****************
% fat_rad_sequence.m
% Author: Scott M. LaLonde
% Date created: 3/24/09
% Last modified: 4/10/09
% *****************
%
% FAT_RAD_SEQUENCE Compute approximate measure of a subset E of
% R^n via Monte Carlo integration. This is by
% fattening a random sample of E using various
% radii. The resulting data is also plotted.
%
% Usage: measure=fat_rad_sequence(sample, bounds, N,
% density, r)
%
% Input:
%
% sample Random sample of size N from the set E. This
% should be given as an N-by-n array; that is,
% the rows of ’sample’ correspond to points in
% R^n.
%
% bounds Upper and lower bounds of an n-dimensional
% interval containing E. The lower bounds are
% contained in the first column and the corre-
% sponding upper bounds are contained in the
% second column. This should be an n-by-2 array.
%
% N Number of random points to be used for Monte
% Carlo integration. This should be a positive
% integer.
%
% density Handle for function relating the desired
% measure to the Lebesgue measure, per the
% Radon-Nikodym theorem.
%
% r Vector of radii by which the set is to be
% fattened. This should be an M-by-1 array of
% non-negative scalars, where M is the desired

68

% number of radii.
%
% Output:
%
% measure Values of computed measure corresponding to
% the fattening radii. This is output as an
% M-by-1 array of non-negative scalars.
%
% FAT_RAD_SEQUENCE computes the approximate measure of a subset of
% R^n based on a random sample of the set. It calls ’mc_int.m’ for
% each radius in the array ’r’. Refer to the documentation for
% that file for more details. The computed measures are then plot-
% ted agains the fattening radii.
% *****************

% Run mc_int.m for each value of r.
measure=zeros(length(r), 1);
for i=1:length(r)

measure(i)=mc_int(sample, bounds, N, density, r(i));
end

% Plot results.
plot(r, measure, ’.’);
xlabel(’Radius’, ’fontsize’, 12);
ylabel(’Computed measure’, ’fontsize’, 12);
set(gca, ’fontsize’, 12);
set(gca, ’plotboxaspectratio’, [1 1 1]);

commuter sequence.m

This program generates a surface plot of computed measure versus fattening radius and

height for a sequence of commuters. In this case the commuters relate the maps g1 and g2,

where g2 is the full shift tent map and g1 is a shorter symmetric tent map. The plots seen

in Section 3.4 were generated in this manner.

function measure=commuter_sequence(r, param)

% *****************
% commuter_sequence.m
% Author: Scott M. LaLonde
% Date created: 4/7/09
% Last modified: 4/10/09
% *****************
%
% COMMUTER_SEQUENCE Generates a surface plot computed measure as

69

% a function of radius and a parameter for a
% sequence of parameterized commuters.
%
% Usage: measure=commuter_sequence(r, param)
%
% Input
%
% r Vector of N radii to be used. This should be
% an N-by-1 array of non-negative scalars.
%
% param Vector of M parameters for the sequence of
% commuters. This should be an M-by-1 array of
% positive scalars.
%
% Output:
%
% measure Array of computed measure values corresp-
% onding to the elements of ’r’ and ’param’.
% This is output as an N-by-M array of non-
% negative scalars.
%
% COMMUTER_SEQUENCE generates a sequence of commuter functions
% between tent maps. In each case, the second map is taken to be
% the standard tent map, and the first is a shorter symmetric tent
% map. Because of this, ’param’ is simply a vector of heights to
% be used for the first map. For each parameter value,
% ’fat_rad_sequence.m’ is used to calculate the computed measure
% for all radii. This data is then used to generate a surface plot.
% *****************

% Define global variables for use with ’tent_commuter.m’.
global H1 H2;
H2=1;

x=rand(1000, 1);
bounds=[0 1];
N=10000;
measure=zeros(length(r), length(param));

% For each parameter value, construct corresponding commuter and
% generate
% measure values for all radii.
for i=1:length(param)

H1=param(i);
sample=tent_commuter(x);
measure(:, i)=fat_rad_sequence(sample, bounds, N,

@lebesgue, r);
end

70

% Create surface plot.
surf(r, param, measure);
xlabel(’Radius’, ’fontsize’, 12);
ylabel(’Height of g_1’, ’fontsize’, 12);
zlabel(’Computed measure’, ’fontsize’, 12);
set(gca, ’fontsize’, 12);

ball plot.m

This code is used to generate an image of a fattened set for a given fattening radius

r. In particular, a sample is taken from the set [0, 1/2] × [0, 1/2], and a ball of radius r is

placed around each point in the sample. An image of the resulting set is then produced.

function x=ball_plot(r)

% *****************
% ball_plot.m
% Author: Scott M. LaLonde
% Date created: 3/16/09
% Last modified: 4/14/09
% *****************
%
% BALL_PLOT Generates pictures of a fattened set for a given
% fattening radius.
%
% Usage: x=ball_plot(r)
%
% Input
%
% r Fattening radius. This should be a non-negative
% scalar.
%
% Output
%
% x Random sample that has been used for the fattening
% process. This is a 1000-by-2 array.
%
% BALL_PLOT generates an image of a set which has been fattened by
% some radius ’r’. In particular, points are taken from the
% interval [0, 1/2] x [0, 1/2], and a ball of radius r is placed
% around each point. This is then plotted, along with the boundary
% of the interval outlined in blue.
% *****************

71

% Generate sample of points from interval.
x=rand(1000, 2)/2;
hold on;

% Place a red ball of radius ’r’ around each point in ’x’.
t=0:0.01:2*pi;
for i=1:1000

h=patch(sqrt(r)*cos(t)+x(i,1), sqrt(r)*sin(t)+x(i,2), ’r’);
set(h, ’edgealpha’, 0);

end
plot(x(:,1), x(:,2), ’.g’, ’markersize’, 4)

% Plot interval.
plot([0 1/2], [0 0]);
plot([0 1/2], [1/2 1/2]);
plot([0 0], [0 1/2]);
plot([1/2 1/2], [0 1/2]);

xlim([0 1]); ylim([0 1]);
set(gca, ’plotboxaspectratio’, [1 1 1]);

72

	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Acknowledgements
	Background
	Introduction
	Conjugacy
	Mostly Conjugacy
	Measure of Mostly Conjugate
	Outline

	Measurement of Onto Defect
	Preliminaries
	Introduction to Monte Carlo Integration
	Monte Carlo Measure
	Approximation of Characteristic Function
	Summary

	Analysis of Numerical Results
	Benchmark Examples
	Determination of Fattening Radius
	Discussion of Behavior
	Sequences of Commuters

	Conclusions
	Discussion of Results
	Future Work

	Bibliography
	Code

