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Intralayer Synchronization in Evolving Multiplex Hypernetworks: Analytical
Approach\ast 
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Abstract. In this paper, we study intralayer synchronization of multiplex networks where nodes in each layer
interact through diverse types of coupling functions associated with different time-varying network
topologies, referred to as multiplex hypernetworks. Here, the intralayer connections are evolving
with respect to time, and the interlayer connections are stagnant. In this context, an interesting
and important problem is to analyze the stability of the intralayer synchronization in such temporal
networks. We prove that if the dynamical multiplex hypernetwork for the time-average topology
possesses intralayer synchronization, then each layer of the time-varying multiplex hypernetwork will
also be synchronized for sufficiently fast switching. Then through master stability function formalism,
we analytically derive necessary and sufficient stability conditions of intralayer synchronous states
for such temporal architecture in terms of a time-average network. In this regard, we are able to
decouple the transverse error component of the intralayer synchronization states for some special
cases. Also, we extend our study for nonlinear intralayer coupling functions as well as multilayer
hypernetwork architectures. Finally, the theoretical findings are verified numerically by taking the
network of paradigmatic chaotic R\"ossler oscillators.
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tion approach
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1. Introduction. In recent years, the research on complex networks has become an im-
mensely active area with the emergence of scientific application over numerous disciplines
[11, 3]. Single complex network architecture can capture the diverse class of subnetworks
in which each subnetwork effects the other networks, and such network structures are called
multilayer networks. The intralayer coupling mechanism for each layer may differ from the
other layers and also from layer-layer interactions. When each layer has the same number of
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nodes and interlayer connections have one-one correspondence, that is, connecting only the
replica nodes of each layer, then the network structure is called a multiplex network. Re-
cently, such networks [10, 29] have become a rapidly growing research topic, since it elegantly
furnishes a representation of many realistic systems, such as social networks [54], mobility net-
works [14], neural networks [2], subway networks [16], air transportation networks [15], etc.,
that are appropriately described by this multiplex framework. At the same time, multiplex
networks are also supported to describe the several spontaneous processes, such as spreading
of epidemics [47, 21, 13, 46], diffusion processes [20], percolation [12, 8], evolutionary game
dynamics [55], etc. Various type of interactions can be systematically organized into a differ-
ent class of network structures. When a set of nodes interacts with the other classes of nodes
within the same network through various types of interactions, such network architecture is
called hypernetworks [50]. Such structural network formation gives us a framework to analyze
the various complex phenomena, which include transportation networks [30], power grids and
computer communication networks [12], social interaction networks [31], neuronal networks
[4, 27], and coordinated motion of schools of fish [33, 1].

The study of synchronization in large-scale complex networks has become an extremely
active area across numerous theoretical and applied scientific fields. Different types of syn-
chronization phenomena [44, 42], such as interlayer synchronization [48], intralayer synchro-
nization [17] in multiplex networks, and cluster synchronization [9] in multilayer networks, are
studied. To analyze the stability of the synchronization state in static multilayer networks, a
general method has recently been proposed in [5]. A few studies [50, 43, 26] have been per-
formed on the hypernetwork (i.e., networks with multiple kinds of couplings between nodes of
the same type) in the monolayer situation. Instead, the case of networks formed by nodes of
different types (where all the nodes of the same type form a ``group"") has been studied in [51].
In both of the mentioned cases of different couplings types and different nodes types, a dimen-
sionality reduction was obtained, which led to a master stability function (MSF) solution of
the stability problem, similar to the original approach in [36]. With the help of this approach,
Sorrentino [50] analytically and numerically investigated the stability of the global synchro-
nization state in a static monolayer hypernetwork consisting of different types of network
Laplacians. In the case of [26], the dimensionality reduction was obtained by using simultane-
ous block diagonalization of matrices. By this dimensional reduction, necessary and sufficient
conditions for the stability of the synchronous solution can be easily obtained. However, all
of these synchronization phenomena were usually studied in completely time-static networks,
which means the underlying interaction topology is time-invariant. The time-varying features
are ubiquitous in many natural and real-life networks [56, 32, 34, 49, 45], where the links
between the nodes are created, destroyed, or rewired over various time-scales [25].

Reference [52] provides a new fast switching stability criterion, which gives sufficient con-
ditions for a temporal network to behave in unison and thus contributes a new insight about
the stability analysis of a time-varying network. Let there be a new description of connectivity,
the time-average graph Laplacian; then its spectral property employed with master stability
formalism accurately predicts synchronization. The connection graph stability method [6, 7]
also analyzes the stability of synchronization for time-varying networks. This method is rooted
explicitly in graph theory, based on the total length of all paths through edges on the net-
work connection graph. In our previous studies [42, 43], we have assumed that for sufficiently
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fast switching, the time-varying system exhibits a stable synchronous solution whenever it
is stable in the corresponding time-average system. In those previous works, the analytical
studies were restricted to only the simple scalar diffusive types of interaction functions, but
the coexistence of the different types of coupling functions was not discussed.

The stability of synchronization was analyzed stochastically for a group of dynamic agents
that communicate via a moving neighborhood network [41] by introducing the concept of a
``long-time expected communication network."" It was shown that if the long-time expected net-
work supports synchronization, the stochastic network will also synchronize when the agents
communicate sufficiently fast within the network. Porfiri, Stilwell, and Bollt [40] studied the
synchronization in a stochastic time-varying network, and it could be possible even if the
network is not always connected but the expected network is connected for sufficiently fast
switching. Global synchronization was also studied in coupled chaotic systems with randomly
intermittent coupling [39] using partial averaging techniques and stochastic Lyapunov stability
theory for sufficiently small switching periods. The theoretical findings of the fast switching
stability criterion are also experimentally verified in coupled Chua's circuits with master-slave
configuration [38]. If the blinking system switches fast enough, then a solution of the blinking
system closely follows the solution of the average system for a finite time interval. Afterward,
they drift apart [22]. The explicit bounds of that time interval that relate the probability, the
switching frequency, the precision, and the length of the time interval to each other can also
be found. In a follow-up paper, the asymptotical properties of general blinking systems with
identically distributed independent random switching variables were also studied [23]. The un-
expected windows of synchronization for moderate switching frequencies were noticed in [28],
in which synchronization in the switching network becomes stable even though it is unstable
in the average network for fast switching. Later, the stability of the global synchronization
for nonfast switching networks was studied in [37, 18].

Inspired by the above facts, we study the intralayer synchronization in time-varying mul-
tiplex hypernetworks. Here each link corresponding to the intralayer interaction function
is allowed to switch stochastically with respect to time with a certain rewiring frequency,
while the layer-layer connectivity is stagnant over time. Through the fast switching stabil-
ity criterion, we first prove the stability of the intralayer synchronization for time-average
multiplex hypernetworks, implying the stability of the corresponding time-varying network.
Through the master stability function theory, we derive necessary and sufficient conditions
for the intralayer synchronization state, and correspondingly we enunciate the validity of the
time-average system. Moreover, the master stability equations can be decoupled if only one
of the time-average Laplacian matrices commutes with all other matrices. We show that the
spectrum of the time-average intralayer graph Laplacian precisely predicts the stability of the
intralayer synchronization. We also extend the stability theory for intralayer synchronization
for multilayer hypernetworks and also for nonlinear intralayer coupling functions. To verify
our analytical findings, we use a paradigmatic chaotic system, namely the R\"ossler oscilla-
tor as the node dynamics in each layer, and we explore the parameter regions for intralayer
synchronization.

2. Background materials. In this section, we give some preliminaries that are essential for
this work, especially on basic graph theory on hypernetworks, the master stability function
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approach for a static network, and the notion of the fast switching stability criterion of a
time-varying system.

We denote the set \{ k, k + 1, . . . , N\} by Nk, where k,N \in \BbbN . For a square matrix A, Atr

and A\ast respectively denote the transpose and Hermitian of that matrix.
Here \otimes denotes the matrix Kronecker product. A few standard properties of the Kronecker

product for square matrices are utilized here, stated as follows [19]:
1. (A\otimes B)(C \otimes D) = (AC)\otimes (BD),
2. (A\otimes B)tr = Atr \otimes Btr,
3. (A\otimes B) - 1 = A - 1 \otimes B - 1.
Throughout our manuscript, Op\times q denotes p\times q zero matrix, and Ip is the p\times p identity

matrix.

2.1. Graph theoretical characterization. Various types of interactions can be systemat-
ically organized into classes of network structures. Mathematically, a complex network is a
pair G = (X,E), where X is the set of vertices and E denotes the set of edges connecting the
vertices, using classical graph theory.

A multilayer network is a pair M = (G ,C ), where G =
\bigl\{ 
G\beta = (X\beta , E\beta ) : \beta \in \{ 1, 2, . . . , L\} 

\bigr\} 
is a family of graphs each representing a layer and C =

\bigl\{ 
E\beta 1\beta 1 \subseteq X\beta 1 \times X\beta 2 : \beta 1, \beta 2 \in 

\{ 1, 2, . . . , L\} , \beta 1 \not = \beta 2
\bigr\} 
is the set of interconnections between nodes of nonidentical layers G\beta 1

and G\beta 2 . The elements of E\beta are intralayer connections, and elements of C are called crossed
layers, where all elements of E\beta 1\beta 2 are the interlayer connections. A multiplex network is a
special type of multilayer network, in which each layer has the same number of nodes and
interlayer connections of a given node that connect only to its counterpart nodes in the rest
of the layers. In other words, for a multiplex network | X1| = | X2| = \cdot \cdot \cdot = | XL| = N and

E\beta 1\beta 2 =
\bigl\{ \bigl( 

v
[\beta 1]
i , v

[\beta 2]
i

\bigr) 
, i \in N1 : v

[\beta 1]
i \in X\beta 1 , v

[\beta 2]
i \in X\beta 2

\bigr\} 
, | \cdot | denotes the cardinality of a set.

Consider a family of networks G [\alpha ] =
\bigl( 
X,E[\alpha ]

\bigr) 
, \alpha = 1, 2, . . . ,M , whereX is the fixed set of

nodes for each \alpha , and E[\alpha ] \subseteq X\times X is a nonempty set of edges. If E =
\bigl\{ 
E[\alpha ] : \alpha = 1, 2, . . . ,M

\bigr\} 
is the family of links, then a hypernetwork is a pair H = (X,E). Here each E[\alpha ] corresponds
to the various modes of interaction. We call each of these a tier.

Definition 2.1. A multilayer hypernetwork is an ordered pair MH = (G ,C ), where G =\bigl\{ 
G\beta = (X\beta , E\beta ) : \beta \in \{ 1, 2, . . . , L\} 

\bigr\} 
are the family of graphs, each representing a layer,

in which E\beta =
\bigl\{ 
E

[\alpha ]
\beta : \alpha \in \{ 1, 2, . . . ,M\} 

\bigr\} 
are the family of hyperlinks for each tier \alpha .

C =
\bigl\{ 
E\beta 1\beta 2 \subseteq X\beta 1 \times X\beta 2 : \beta 1, \beta 2 \in \{ 1, 2, . . . , L\} , \beta 1 \not = \beta 2

\bigr\} 
is the set of interlayer connections

between nodes of nonidentical layers G\beta 1 and G\beta 2.

A complex network G = (X,E) is described as time-varying if G = G (t) depends explicitly
on time t, i.e., both X = X(t) and E = E(t) are functions of time. This includes the case in
which the switching between the edges E(t) varies as the graph evolves, where the set of nodes,
X, is time-invariant. The time-varying networks are therefore characterized by the adjacency
matrices that undergo such abrupt changes. Such a time-varying network G (t) =

\bigl( 
X,E(t)

\bigr) 
will be described as jointly connected if the union of its frozen time networks

\bigl( 
X,\cup tE(t)

\bigr) 
con-

stitutes a connected graph. For complete synchronization to occur, the underlying temporal
network should be jointly connected.

Our underlying network is a multiplex temporal hypernetwork, where each tier E
[\alpha ]
\beta (t) of
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the network is a function of time, but the interlayer connection C is time-invariant.

Definition 2.2. The time-stamped multilayer hypernetwork MH (t) is jointly connected if

the union of its frozen-time projected network
\bigl( 
\cup L
\beta =1X\beta , \cup t\cup M

\alpha =1\cup L
\beta =1E

[\alpha ]
\beta (t)\cup C

\bigr) 
constitutes

a connected graph.

To achieve complete intralayer synchronization, it should be jointly connected. In a frozen
time, any tier

\bigl( 
X,E[\alpha ]

\bigr) 
may have one or more disconnected components, but the frozen-time

projected network should be connected.

Figure 1. Schematic of time-varying interactions in a hypernetwork with a multiplex formation at two
different time instants: (a) t1 and (b) t2. Each node is represented by a red solid circle. The green dashed
and magenta dotted lines denote the different types of interactions of the hypernetwork, while the interlayer
connections between the layer are denoted by solid black lines.

The schematic diagram (Figure 1) represents the time-varying interaction in a hyper-
network with the multiplex structure of two layers consisting of N = 8 nodes and M = 2
interaction types in each layer. Two different types of interacting tiers are shown for two
particular instances of times t = t1 and t = t2 in Figures 1(a) and 1(b), respectively. Here
the links of one tier are denoted by the green dashed lines and the other one by magenta
dotted lines, whereas the interlayer connections between the layers are represented by black
solid lines.

2.2. Review of master stability function approach. From the dynamical system's per-
spective, an important question arises on when a synchronization state of a network of coupled
oscillators is stable, regarding the coupling strength. The MSF approach [36] analyzes the
stability of the synchronization state of primarily identically coupled oscillators. Also, the
stability condition for synchronization using the MSF approach in the coupled nearly identi-
cal systems has been extended [53]. This approach assumes that all the coupled oscillators
are identical and the synchronization manifold is invariant, to guarantee the existence of a
synchronous solution. Here the coupling function for each link is same and should vanish after
achieving the synchronization, to make the specific stability diagram.



EVOLVING MULTIPLEX HYPERNETWORKS 923

Consider a network consisting of N identical oscillators, where xi is the d-dimensional
state vector of the ith node, with its autonomous evolution \.xi = F (xi). We assume that the
dynamics of the entire network can be written as

(2.1) \.xi = F (xi) - \epsilon 

N\sum 
j=1

LijBxj ,

where \epsilon is the coupling strength, B \in \BbbR d\times d determines through which variables the N oscil-
lators are coupled, and L is the network Laplacian.

When complete synchronization occurs, all the oscillators evolve synchronously with xi =
x0. Perturbation to the ith oscillator from its synchronization manifold is by \delta xi. Letting
\delta x = [\delta xtr

1 , \delta x
tr
2 , . . . , \delta x

tr
N ]tr, the variational equation of (2.1) near its synchronization manifold

x0(t) can be written as

(2.2) \delta \.x =
\bigl[ 
IN \otimes JF (x0) - \epsilon L \otimes B

\bigr] 
\delta x.

The synchronous state is said to be locally stable if for any small perturbation \delta xi each
oscillator asymptotically converges to the synchronization manifold, i.e., xi \rightarrow x0 as t \rightarrow \infty ,
which implies that \delta xi \rightarrow 0 as t \rightarrow \infty for i \in N1. In other words, the trivial equilibrium point
of (2.2) is asymptotically stable. However, (2.2) contains information regarding the parallel
component of the synchronization error vector, as well as the transverse components, while the
synchronization solution will be asymptotically stable only if the latter components are damp-
out, and conversely. Therefore, to analyze the stability of the synchronous solution, we should
concentrate on the stability of the variations \delta xi which are transverse to the synchronization
manifold. So we have to separate out the parallel component from (2.2).

The Laplacian matrix L is a real valued square matrix; furthermore, for the bidirectional
coupling, it is symmetric. As we know, every square matrix is unitarily triangularizable by
its basis of eigenvectors. So there exists a matrix P \in MN (\BbbC ) such that U = P - 1LP
is a triangular matrix, where the columns of P are the orthonormal eigenvectors of L and
P \ast P = PP \ast = IN . The principal diagonal elements \{ \gamma 1, \gamma 2, . . . , \gamma N\} of U are the eigenvalues
of L . In the context of synchronization, it is assumed that the underlying network is connected
as a minimal condition of synchronizability. Hence, exactly one eigenvalue of L is zero (say,
\gamma 1 = 0) and the other eigenvalues \gamma i \in \BbbC for all i \in N2.

Now consider the Schur transformation

(2.3) \xi (t) = (P \otimes Id)
 - 1\delta x(t).

Applying (2.2), we have

(2.4) \.\xi (t) =
\bigl[ 
IN \otimes JF (x0) - \epsilon U \otimes B)

\bigr] 
\xi (t).

For the block diagonal structure of IN \otimes JF (x0) and the block triangular form of U \otimes B, the
stability of (2.4) is equivalent to the stability of the following N uncoupled systems:

(2.5) \.\xi i(t) =
\bigl[ 
JF (x0) - \epsilon \gamma iB)

\bigr] 
\xi i(t), i \in N1.
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For i = 1, the variational equation becomes \.\xi 1(t) = JF (x0) \xi 1(t). But it is the linearized
equation of the synchronization dynamics \.x0 = F (x0). Thus it evolves along the parallel
to the synchronization solution, which we want to eliminate. For i \in N2, the variational
equation (2.5) evolves transversally to the synchronization manifold. This dimensionality
reduction allows us to easily calculate the Lyapunov exponents of the decoupled transverse
error systems for the stability of the synchronization state.

The synchronization state will be stable if all the eigenmodes are stable for the given
coupling strength. Then the maximum Lyapunov exponent \Lambda max of the transverse variational
equations reveals the stability of the synchronization state. If \Lambda max(\epsilon ) > 0 for some coupling
strength \epsilon , then the system (2.5) diverges, which indicates that the system (2.4) is asynchro-
nous. By increasing \epsilon , if \Lambda max becomes negative, then we will get stable synchronization.
Now we can associate a function \Lambda max(\epsilon ) : \BbbR \rightarrow \BbbR with transverse eigendirections (2.5) as a
function of the coupling strength \epsilon , which returns the maximum Lyapunov exponent among
all transverse directions. That is why this stability analysis was coined as the master stability
function approach [36]. Hence, by the MSF approach, the coupling strengths for which the
dynamical network evolves synchronously can be computed for a static network.

2.3. Review of the fast switching stability criterion. For a temporal network, the un-
derlying Laplacian matrix changes with respect to time. Therefore, its eigenvalues and corre-
sponding eigenvectors are functions of time. So the span of the basis of eigenvectors changes
whenever the Laplacian matrix changes. However, to eliminate the parallel error component
from the entire error dynamics, we should project the error components to a unique space.
So the Schur transformation (2.3) and the MSF cannot be applied directly in the case of a
time-varying network. To compromise with this difficulty, Stilwell, Bollt, and Roberson [52]
introduced the fast switching stability criterion for time-varying networks. To get an overview
of the stability of temporal graphs, we briefly review some of these details.

Fast switching indicates that the time-scale of the network evolution is faster than the
time-scale of the coupled oscillators. The stability analysis of this paper is based on the
fast switching stability technique. It provides new insights about the stability of dynamical
systems when the underlying network is time-varying. Before describing this technique, we
need the following preliminary lemma, which was proved in [52].

Lemma 2.3. If there exists a time-average matrix \=E of the matrix valued function E(t)
such that

1

T

\int t+T

t
E(\tau ) d\tau = \=E \forall t \in \BbbR + and for some constant T,

then for sufficiently fast switching, the system

(2.6) \.z(t) =
\bigl[ 
A(t) + E(t)

\bigr] 
z(t), z(t0) = z0, t \geq t0,

will be uniformly asymptotically stable whenever the time-average system

(2.7) \.x(t) =
\bigl[ 
A(t) + \=E

\bigr] 
x(t), x(t0) = x0, t \geq t0,

is also uniformly asymptotically stable.
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Here z0 and x0 are two independent different initial conditions from the basin of attraction
of the asymptotically stable state of systems (2.6) and (2.7), respectively. However, this
lemma works for any constant time t, but for sufficiently large time T , it depends on A(t)
and how fast E(t) is switching. The stability of the frozen time system does not guarantee
the stability of the switched system, but this lemma shows that the switched time-varying
system can be asymptotically stable if for sufficiently fast switching, the time-average system
is asymptotically stable.

Now consider a temporal network of N identical coupled oscillators

(2.8) \.xi(t) = F (xi(t)) - \epsilon 

N\sum 
j=1

Lij(t) B xj(t),

where i \in N1 and L (t) is the time-varying graph Laplacian.
For sufficiently fast switching, the time-average Laplacian matrix \=L satisfies

\=L =
1

T

\int t+T

t
L (\tau ) d\tau 

for some constant T . The matrix \=L has the same inherent zero-row sum property from the
parent Laplacian L (t). But \=L may not necessarily describe any particular network; rather
it is just the term by term time-average of the time-varying graph Laplacian L (t).

The real square matrix \=L can be unitarily triangularizable. Then we can construct a
unitary matrix P with each column representing the orthonormal eigenvectors of \=L , such
that

P - 1 \=LP = \=U =

\biggl[ 
0 \=U1

ON - 1\times 1
\=U2

\biggr] 
is the Schur transformation of \=L .

Here \=U2 \in MN - 1(\BbbC ) is an upper triangular matrix with principal diagonal elements as N  - 1
eigenvalues of \=L excluding 0. The equation of motion of the coupled system incorporating the
above average Laplacian will be obtained from (2.8) just by replacing L (t) by \=L . Considering
the Schur transformation and using the unitary matrix P , the equation of the error system
transverse to the synchronization manifold can be written as

(2.9) \.\eta (t) =
\bigl[ 
IN - 1 \otimes F (x\bfzero (t)) - \epsilon \=U2 \otimes B

\bigr] 
\eta (t).

By considering the same Schur transformation applied to (2.8), the equation of motion of
the transverse error system becomes

(2.10) \.\xi (t) =
\bigl[ 
IN - 1 \otimes F (x\bfzero (t)) - \epsilon U2(t)\otimes B

\bigr] 
\xi (t),

where P - 1L (t)P =

\biggl[ 
0 U1(t)

ON - 1\times 1 U2(t)

\biggr] 
is the Schur transformation of L (t).

Now it is easy to produce

\=U1 =
1

T

\int t+T

t
U1(\tau ) d\tau .
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Thus, by applying Lemma 2.3, we can conclude that if the time-average system has an asymp-
totically stable synchronization manifold, then the time-varying network also possesses an
asymptotically stale synchronous solution for sufficiently fast switching. This fast switching
stability criterion will be used to assess the local stability of the intralayer synchronization
state.

3. Mathematical model. We now consider a coupled multiplex dynamical network, where
different types of interactions are simultaneously present in each layer. With this network
architecture, here for the first time, we rigorously analyze the stability of the intralayer syn-
chronization state. In each layer, individual dynamical systems are coupled through more
than one distinct connection, each of which corresponds to different types of interactions.
We start by considering two layers, each composed of N nodes of d-dimensional identical
dynamical systems. In each layer, N nodes are interacting through M different tiers of con-
nections, which represent different kinds of couplings among themselves. The states of the
layers are represented by the vectors x = \{ x1,x2, . . . ,xN\} and y = \{ y1,y2, . . . ,yN\} with
xi,yi \in \BbbR d. Then the mathematical form of the general time-varying multiplex hypernetwork
can be represented as

(3.1)

\.xi = F1(xi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

L
[1,\alpha ]
ij (t)G[1]

\alpha (xj) + \lambda H1(xi,yi),

\.yi = F2(yi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

L
[2,\alpha ]
ij (t)G[2]

\alpha (yj) + \lambda H2(yi,xi),

where i \in N1. Here F1,2 : \BbbR d \rightarrow \BbbR d andH1,2 : \BbbR d\times \BbbR d \rightarrow \BbbR d are the continuously differentiable
functions which respectively represent the autonomous evolution of the uncoupled oscillator
and the output vectorial function between the layers. The individual dynamics within the
same layer are identical but are different for nodes in different layers. Here Hl(x,y) is dif-

ferent from Hl(y,x) for l = 1, 2. G
[l]
\alpha : \BbbR d \rightarrow \BbbR d is the vector field of the output vectorial

function within the layers for tier \alpha in layer-l. It is clear that the intralayer coupling functions
corresponding to tier \alpha differ for the two different layers. \epsilon \alpha is the intralayer coupling strength
for tier \alpha , which determines how the information is distributed between nodes through dif-
ferent coupling configurations. The parameter \lambda , interlayer coupling strength, controls the
interaction between the two layers.

The time-varying intralayer network configuration corresponding to the graph
\bigl( 
Xl, E

[\alpha ]
l (t)

\bigr) 
is encoded by the N \times N adjacency matrix A [l,\alpha ](t) which describes the interconnections be-

tween individual oscillators for tier \alpha in the lth layer. Here A
[l,\alpha ]
ij (t) = 1 if (vi, vj) \in E

[\alpha ]
l (t),

i.e., the ith node and the jth node of the layer-l are connected in tier \alpha at time t and zero other-
wise. L [l,\alpha ](t) is the corresponding zero-row sum graph Laplacian, obtained from the adjacent

matrices A [l,\alpha ](t). The diagonal element L
[l,\alpha ]
ii (t) is the sum of the nondiagonal elements in

the ith row of A [l,\alpha ](t), and the off-diagonal elements are the negatives of the corresponding

elements in A [l,\alpha ](t), i.e., L
[l,\alpha ]
ij (t) =  - A

[l,\alpha ]
ij (t) if i \not = j and L

[l,\alpha ]
ii (t) =

\sum N
j=1 A

[l,\alpha ]
ij (t).

Now the intralayer links of the network
\bigl( 
Xl, E

[\alpha ]
l (t)

\bigr) 
vary over time by rewiring the entire

network stochastically and independently, with a rewiring frequency f . Particularly, at any
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time t and integration time step dt, we rewire each tier in the two layers independently, by
constructing a new network with probability fdt. Large f indicates very fast switching of
links, implying that the networks change rapidly, whereas small f implies that the two layers
are almost static, as the links have a very low probability of change. Each of these successively
created networks will be structurally equivalent due to the choice of fixed parameter values
throughout the procedure. We are assuming that the intralayer network topologies corre-
sponding to tier \alpha for both of the two layers are exactly identical. However, at a particular
time instant, their adjacency matrices will not generally be equal due to the time-varying
connectivity nature of the edges for each tier. On the other side, the interlayer connections
are complete multiplex structured and static over time. We assert this as a sufficiently gener-
alized model as a multiplex hypernetwork, which allows enough connectionism for intralayer
synchronization, and also admit a complete rigorous analysis.

In this paper, our principal contribution is to show, for temporal (sufficiently fast) in-
tralayer network topologies, that each layer can synchronize if in the time-average network,
each layer possesses stable complete synchronization.

4. Main results. In complete intralayer synchronization, each individual layer converges
on the same time evolution, which occurs when individual oscillator in each layer of a multiplex
networks is appropriately coupled. At the intralayer synchronization state, let layer-1 evolve
synchronously with xi = x0 and layer-2 with yi = y0 for all i \in N1. The dynamics of the
synchronization solution

\bigl( 
x0(t),y0(t)

\bigr) 
can be written as

(4.1)
\.x0 = F1(x0) + \lambda H1(x0,y0),
\.y0 = F2(y0) + \lambda H2(y0,x0).

Definition 4.1. The multiplex network (3.1) is said to achieve the complete intralayer syn-
chronization state if the two solutions x0(t),y0(t) \in \BbbR d satisfy the equation of motion (4.1)
such that for all i \in N1,

\| xi(t) - x0(t)\| \rightarrow 0 and \| yi(t) - y0(t)\| \rightarrow 0 as t \rightarrow \infty .

Consequently, the intralayer synchronization manifold can be defined as

\scrS =
\bigl\{ 
(x0(t),y0(t)) \subset \BbbR 2d : xi(t) = x0(t), yi(t) = y0(t), i = 1, 2, . . . , N and t \in \BbbR +

\bigr\} 
.

Its evolution equation is dominated by (4.1). The intralayer synchronization can be observed
physically if this manifold is stable with respect to the perturbations in the transverse sub-
space. Now we delve into the stability of \scrS for the temporal multiplex hypernetwork (3.1).

Perturb the ith node in layer-1 from its synchronization manifold x0 with an amount
\delta xi(t) and the ith node in the layer-2 with an amount \delta yi(t). So the current state of the ith
node in each layer is xi(t) = x0(t)+ \delta xi(t), yi(t) = y0(t)+ \delta yi(t) for i \in N1. Linearizing each
oscillator of (3.1) about the synchronous trajectory (x0,y0), the dynamics of the error system
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in vectorial form yield

(4.2)

\delta \.x = IN \otimes JF1(x0)\delta x - 
M\sum 
\alpha =1

\epsilon \alpha L [1,\alpha ](t)\otimes JG[1]
\alpha (x0)\delta x

+\lambda 
\Bigl[ 
IN \otimes JH1(x0,y0)\delta x+ IN \otimes DH1(x0,y0)\delta y

\Bigr] 
,

\delta \.y = IN \otimes JF2(y0)\delta y  - 
M\sum 
\alpha =1

\epsilon \alpha L [2,\alpha ](t)\otimes JG[2]
\alpha (y0)\delta y

+\lambda 
\Bigl[ 
IN \otimes JH2(y0,x0)\delta y + IN \otimes DH2(y0,x0)\delta x

\Bigr] 
,

where \delta x(t) =
\bigl[ 
\delta x1(t)

tr, \delta x2(t)
tr, . . . , \delta xN (t)tr

\bigr] tr
and \delta y(t) =

\bigl[ 
\delta y1(t)

tr, \delta y2(t)
tr, . . . , \delta yN (t)tr

\bigr] tr
.

Here J and D are the Jacobian operators with respect to the first and second variables, re-
spectively, i.e., JH(x0,y0) =

\partial H(\bfx ,\bfy )
\partial \bfx | (\bfx ,\bfy )=(\bfx 0,\bfy 0) and DH(x0,y0) =

\partial H(\bfx ,\bfy )
\partial \bfy | (\bfx ,\bfy )=(\bfx 0,\bfy 0).

Now consider that each time-varying intralayer network topology possesses a static time-
average network for sufficiently fast rewiring. Since the network topologies of tier \alpha in both of
the layers are the same, their time-averaged Laplacian matrices will match. Then there exists
a constant T such that

1

T

\int t+T

t
L [l,\alpha ](\tau ) d\tau = \=L [\alpha ] for l = 1, 2 and \alpha = 1, 2, . . . ,M.

These time-average Laplacian matrices are the indicator of the intralayer synchronization
state. All of them are zero-row sum real square matrices. Their spectrum will be used
to analyze the stability of the error system (4.2). By assuming these average matrices are

connected, exactly one eigenvalue \gamma 
[\alpha ]
1 is zero, and the other eigenvalues \gamma 

[\alpha ]
i \in \BbbC , i \in N2.

Also, \=L [\alpha ] can be unitarily triangularized by V [\alpha ], where V [\alpha ] is a unitary matrix. Its ith

column is the eigenvector of \=L [\alpha ] corresponding to the eigenvalue \gamma 
[\alpha ]
i , and all columns form

orthogonal bases of \BbbC N . Without loss of any generality, consider the first column of V [\alpha ]

to be
\bigl( 

1\surd 
N
, 1\surd 

N
, . . . , 1\surd 

N

\bigr) tr
corresponding to the eigenvalue zero. Then there exists an upper

triangular matrix \=U [\alpha ] over the field \BbbC such that \=U [\alpha ] = V [\alpha ] - 1 \=L [\alpha ]V [\alpha ] with its principal
diagonal elements being the eigenvalues of \=L [\alpha ].

Theorem 4.2. The time-varying hypernetwork with multiplex formation whose dynamics
are described by (3.1) possesses intralayer synchronization whenever the corresponding time-
average static multiplex hypernetwork

(4.3)

\.wi = F1(wi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

\=L
[\alpha ]
ij G[1]

\alpha (wj) + \lambda H1(wi, zi),

\.zi = F2(zi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

\=L
[\alpha ]
ij G[2]

\alpha (zj) + \lambda H2(zi,wi)

has an asymptotically stable intralayer synchronization manifold.



EVOLVING MULTIPLEX HYPERNETWORKS 929

Proof. We first derive the equation of motion of the error system transverse to the in-
tralayer synchronization manifold, for both the time-varying and the time-average systems
(3.1) and (4.3), respectively.

Taking the time-average intralayer networks, (4.3) is the dynamics of the time-average
multiplex hypernetwork, where wi (zi) is the state variable of the ith node in layer-1 (layer-
2). This time-average system seems to be a notion of average information propagation in a
network. Now it is clear that the equation of motion of the intralayer synchronization manifold
for the time-varying and time-averaged networks is the same. So, without loss of generality, we
can assume that when intralayer synchronization occurs, layer-1 evolves synchronously with
wi = x0 and layer-2 with zi = y0 for all i \in N1. If \delta w(t) =

\bigl[ 
\delta w1(t)

tr, \delta w2(t)
tr, . . . , \delta wN (t)tr

\bigr] tr
and \delta z(t) =

\bigl[ 
\delta z1(t)

tr, \delta z2(t)
tr, . . . , \delta zN (t)tr

\bigr] tr
are the corresponding perturbations for both of

the layers, then the vectorial forms of the error dynamics for intralayer synchronization states
of the time-averaged system (4.3) are as follows:

(4.4)

\delta \.w(t) = IN \otimes JF1(x0)\delta w  - 
M\sum 
\alpha =1

\epsilon \alpha \=L [\alpha ] \otimes JG[1]
\alpha (x0)\delta w

+\lambda 
\Bigl[ 
IN \otimes JH1(x0,y0)\delta w + IN \otimes DH1(x0,y0)\delta z

\Bigr] 
,

\delta \.z(t) = IN \otimes JF2(y0)\delta z - 
M\sum 
\alpha =1

\epsilon \alpha \=L [\alpha ] \otimes JG[2]
\alpha (y0)\delta z

+\lambda 
\Bigl[ 
IN \otimes JH2(y0,x0)\delta z+ IN \otimes DH2(y0,x0)\delta w

\Bigr] 
.

The linearized set of (4.4) can be decomposed into two components: one evolves along
the synchronization manifold, and the other transverses to it. If the latter components are
asymptotically stable, then the set of oscillators (4.3) will exhibit the stable intralayer syn-
chronization state [35]. To find the transverse error system, we spectrally decompose \delta w(t)
and \delta z(t) of the above equation and project it onto the basis of eigenvector V [1] corresponding
to the first tier. However, the choice of the matrix of eigenvectors is arbitrary, since all of
them form M equivalent bases of \BbbC N .

Under this Schur transformation onto the space spanned by the basis of eigenvectors

of \=L [1], let \delta w(t) and \delta z(t) transform to \eta (\bfw )(t) =
\bigl[ 
\eta 
(\bfw )
1

tr
(t), \eta 

(\bfw )
2

tr
(t), . . . , \eta 

(\bfw )
N

tr
(t)

\bigr] tr
and

\eta (\bfz )(t) =
\bigl[ 
\eta 
(\bfz )
1

tr
(t), \eta 

(\bfz )
2

tr
(t), . . . , \eta 

(\bfz )
N

tr
(t)

\bigr] tr
, respectively, where \eta (\bfw ) =

\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta w and

\eta (\bfz ) =
\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta z. Using this Schur transformation, the linearized equation (4.4) corre-

sponding to the time-average network becomes

(4.5)

\.\eta (\bfw )(t) = IN \otimes JF1(x0)\eta 
(\bfw )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1 \=L [\alpha ]V [1]

\Bigr) 
\otimes JG[1]

\alpha (x0)\eta 
(\bfw )

+\lambda 
\Bigl[ 
IN \otimes JH1(x0,y0)\eta 

(\bfw ) + IN \otimes DH1(x0,y0)\eta 
(\bfz )

\Bigr] 
,

\.\eta (\bfz )(t) = IN \otimes JF2(y0)\eta 
(\bfz )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1 \=L [\alpha ]V [1]

\Bigr) 
\otimes JG[2]

\alpha (y0)\eta 
(\bfz )

+\lambda 
\Bigl[ 
IN \otimes JH2(y0,x0)\eta 

(\bfz ) + IN \otimes DH2(y0,x0)\eta 
(\bfw )

\Bigr] 
.



930 S. RAKSHIT, B. K. BERA, E. M. BOLLT, AND D. GHOSH

Since \=L [\alpha ] is unitarily triangularizable and V [\alpha ] - 1 \=L [\alpha ]V [\alpha ] = \=U [\alpha ], therefore we have

(4.6) V [1] - 1 \=L [\alpha ]V [1] = V [1] - 1
V [\alpha ] \=U [\alpha ] V [\alpha ] - 1

V [1].

Consider

V [\alpha ] =

\left[      
1\surd 
N

v
[\alpha ]
12 v

[\alpha ]
13 . . . v

[\alpha ]
1N

1\surd 
N

v
[\alpha ]
22 v

[\alpha ]
23 . . . v

[\alpha ]
2N

. . . . . . . . . . . . . . . . . . . . . . . . . .
1\surd 
N

v
[\alpha ]
N2 v

[\alpha ]
N3 . . . v

[\alpha ]
NN

\right]      .

Now V [\alpha ] is the unitary matrix of orthogonal eigenvectors of \=L [\alpha ], so V [\alpha ] - 1
= V [\alpha ]\ast . Hence,

we can write

V [1] - 1
V [\alpha ] =

\left[     
1 0 0 . . . 0

0 v
[1,\alpha ]
22 v

[1,\alpha ]
23 . . . v

[1,\alpha ]
2N

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 v
[1,\alpha ]
N2 v

[1,\alpha ]
N3 . . . v

[1,\alpha ]
NN

\right]     and V [\alpha ] - 1
V [1] =

\left[     
1 0 0 . . . 0

0 v
[\alpha ,1]
22 v

[\alpha ,1]
23 . . . v

[\alpha ,1]
2N

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 v
[\alpha ,1]
N2 v

[\alpha ,1]
N3 . . . v

[\alpha ,1]
NN

\right]     .

Making the above substitutions in (4.6), we get

(4.7) V [1] - 1 \=L [\alpha ]V [1] =

\left[  0 \=U
[\alpha ]
1

ON - 1\times 1
\=U
[\alpha ]
2

\right]  ,

where \=U
[\alpha ]
2 \in \BbbC N - 1\times N - 1 and \=U

[\alpha ]
1 \in \BbbC 1\times N - 1.

The transform variables \eta (\bfw )(t) and \eta (\bfz )(t) yield the decomposition \eta (\bfw ) =
\bigl[ 
\eta 
(\bfw )
P , \eta 

(\bfw )
T

\bigr] 
and \eta (\bfz ) =

\bigl[ 
\eta 
(\bfz )
P , \eta 

(\bfz )
T

\bigr] 
, where \eta 

(\bfw )
P , \eta 

(\bfz )
P \in \BbbC d and \eta 

(\bfw )
T , \eta 

(\bfz )
T \in \BbbC d(N - 1). Making these decom-

positions in (4.5) and with the help of (4.7), we get

\.\eta 
(\bfw )
P = JF1(x0)\eta 

(\bfw )
P  - 

M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
1 \otimes JG[1]

\alpha (x0)\eta 
(\bfw )
T + \lambda 

\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
P +DH1(x0,y0)\eta 

(\bfz )
P

\Bigr] 
,

(4.8a)

\.\eta 
(\bfw )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfw )
T  - 

M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
2 \otimes JG[1]

\alpha (x0)\eta 
(\bfw )
T

(4.8b)

+ \lambda 
\Bigl[ 
IN - 1 \otimes JH1(x0,y0)\eta 

(\bfw )
T + IN - 1 \otimes DH1(x0,y0)\eta 

(\bfz )
T

\Bigr] 
,

\.\eta 
(\bfz )
P = JF2(y0)\eta 

(\bfz )
P  - 

M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
1 \otimes JG[2]

\alpha (y0)\eta 
(\bfz )
T + \lambda 

\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
P +DH2(y0,x0)\eta 

(\bfw )
P

\Bigr] 
,

(4.8c)

\.\eta 
(\bfz )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfz )
T  - 

M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
2 \otimes JG[2]

\alpha (y0)\eta 
(\bfz )
T

(4.8d)

+ \lambda 
\Bigl[ 
IN - 1 \otimes JH2(y0,x0)\eta 

(\bfz )
T + IN - 1 \otimes DH2(y0,x0)\eta 

(\bfw )
T

\Bigr] 
.
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Note that (4.8b, d) are independent of (4.8a, c). So the former subequations are the derive

subsystems, while the latter two are the response subsystems. Here \eta 
(\bfw )
P and \eta 

(\bfz )
P correspond

to the projected perturbations within the synchronous manifold, and \eta 
(\bfw )
T and \eta 

(\bfz )
T are the

perturbations transverse to that manifold. Thus, the synchronization stability governed by
(4.8b, d) do not depend on the parallel component. However, when transverse components
become stabilized, (4.8a, c) become the linearized equations for the equation of motion of
the synchronous solution (4.1). So, for the stable synchronous state, (4.8a, c) asymptotically
behave as the linearized equation for the synchronized dynamics. So it evolves parallel to the
synchronize manifold, and those are not topical in determining the stability of the concern
solution, whereas (4.8b, d) are the transverse error dynamics.

Considering \zeta a(t) =
\bigl[ 
\eta 
(\bfw )tr

T \eta 
(\bfz )tr

T

\bigr] tr \in \BbbC 2(N - 1)d, the dynamics of the transverse error
system (4.8b, d) can be rewritten in terms of \zeta a(t) as

(4.9) \.\zeta a(t) =

\Biggl[ 
A(t) - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
\=E
[\alpha ]
1 \otimes JG[1]

\alpha (x0) + \=E
[\alpha ]
2 \otimes JG[2]

\alpha (y0)
\Bigr) \Biggr] 

\zeta a(t),

where

A(t) =

\Biggl[ 
IN - 1 \otimes JF1(x0) + \lambda IN - 1 \otimes JH1(x0,y0) \lambda IN - 1 \otimes DH1(x0,y0)

\lambda IN - 1 \otimes DH2(y0,x0) IN - 1 \otimes JF2(y0) + \lambda IN - 1 \otimes JH2(y0,x0)

\Biggr] 
,

\=E
[\alpha ]
1 =

\Biggl[ 
\=U
[\alpha ]
2 ON - 1\times N - 1

ON - 1\times N - 1 ON - 1\times N - 1

\Biggr] 
and \=E

[\alpha ]
2 =

\Biggl[ 
ON - 1\times N - 1 ON - 1\times N - 1

ON - 1\times N - 1
\=U
[\alpha ]
2

\Biggr] 
.

We now envisage the same change of variables applied to the error dynamics (4.2) corre-
sponding to the temporal network. Here L [l,\alpha ](t) is the instantaneous Laplacian matrix of
tier \alpha in layer-l. So, at each time instant, they are zero-row sum real square matrices. If\bigl\{ 
0 = \gamma 

[l,\alpha ]
1 (t), \gamma 

[l,\alpha ]
2 (t), . . . , \gamma 

[l,\alpha ]
N (t)

\bigr\} 
is the set of instantaneous eigenvalues and V [l,\alpha ](t) is the

corresponding unitary matrix of orthogonal eigenvectors, then there exists a complex upper

triangular matrix U [l,\alpha ](t), such that L [l,\alpha ](t) = V [l,\alpha ](t) U [l,\alpha ](t) V [l,\alpha ](t)
 - 1

. This immedi-
ately implies

(4.10) V [1] - 1
L [l,\alpha ](t)V [1] = V [1] - 1

V [l,\alpha ](t) U [l,\alpha ](t) V [l,\alpha ](t) - 1V [1].

At each time instant, the columns of V [l,\alpha ](t) form an equivalent orthogonal basis of \BbbC N . So
if

V [l,\alpha ](t) =

\left[        

1\surd 
N

v
[l,\alpha ]
12 (t) v

[l,\alpha ]
13 (t) . . . v

[l,\alpha ]
1N (t)

1\surd 
N

v
[l,\alpha ]
22 (t) v

[l,\alpha ]
23 (t) . . . v

[l,\alpha ]
2N (t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1\surd 
N

v
[l,\alpha ]
N2 (t) v

[l,\alpha ]
N3 (t) . . . v

[l,\alpha ]
NN (t)

\right]        , then
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V [1] - 1
V [l,\alpha ](t) =

\left[      
1 0 0 . . . 0

0 v
[l,\alpha ]
22 (t) v

[l,\alpha ]
23 (t) . . . v

[l,\alpha ]
2N (t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 v
[l,\alpha ]
N2 (t) v

[l,\alpha ]
N3 (t) . . . v

[l,\alpha ]
NN (t)

\right]      

and V [l,\alpha ](t)
 - 1

V [1] =

\left[      
1 0 0 . . . 0

0 v
[l,\alpha ]
22 (t) v

[l,\alpha ]
23 (t) . . . v

[l,\alpha ]
2N (t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 v
[l,\alpha ]
N2 (t) v

[l,\alpha ]
N3 (t) . . . v

[l,\alpha ]
NN (t)

\right]      .

Using the above expressions, (4.10) yields

(4.11) V [1] - 1
L [l,\alpha ](t)V [1] =

\left[  0 U
[l,\alpha ]
1 (t)

ON - 1\times 1 U
[l,\alpha ]
2 (t)

\right]  ,

where U
[l,\alpha ]
2 (t) is a complex matrix of order N  - 1 and U

[l,\alpha ]
1 (t) \in \BbbC 1\times N - 1.

Now the change of variables \eta (\bfx ) =
\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta x and \eta (\bfy ) =

\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta y yields the

linearized equation (4.2) corresponding to the time-average network as

(4.12)

\.\eta (\bfx )(t) = IN \otimes JF1(x0)\eta 
(\bfx )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1

L [1,\alpha ](t)V [1]
\Bigr) 
\otimes JG[1]

\alpha (x0)\eta 
(\bfx )

+\lambda 
\Bigl[ 
IN \otimes JH1(x0,y0)\eta 

(\bfx ) + IN \otimes DH1(x0,y0)\eta 
(\bfy )

\Bigr] 
,

\.\eta (\bfy )(t) = IN \otimes JF2(y0)\eta 
(\bfy )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1

L [2,\alpha ](t)V [1]
\Bigr) 
\otimes JG[2]

\alpha (y0)\eta 
(\bfy )

+\lambda 
\Bigl[ 
IN \otimes JH2(y0,x0)\eta 

(\bfy ) + IN \otimes DH2(y0,x0)\eta 
(\bfx )

\Bigr] 
.

To analyze the dynamics of the error system transverse to the intralayer synchronization

manifold, decompose the state variable as \eta (\bfx )(t) =
\bigl[ 
\eta 
(\bfx )
P , \eta 

(\bfx )
T

\bigr] 
and \eta (\bfy )(t) =

\bigl[ 
\eta 
(\bfy )
P , \eta 

(\bfy )
T

\bigr] 
,

where \eta 
(\bfx )
P , \eta 

(\bfy )
P \in \BbbC d and \eta 

(\bfx )
T , \eta 

(\bfy )
T \in \BbbC d(N - 1). Then we get the dynamics of the transverse

system as

(4.13)

\.\eta 
(\bfx )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfx )
T  - 

M\sum 
\alpha =1

\epsilon \alpha U
[1,\alpha ]
2 (t)\otimes JG[1]

\alpha (x0)\eta 
(\bfx )
T

+\lambda 
\Bigl[ 
IN - 1 \otimes JH1(x0,y0)\eta 

(\bfx )
T + IN - 1 \otimes DH1(x0,y0)\eta 

(\bfy )
T

\Bigr] 
,

\.\eta 
(\bfy )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfy )
T  - 

M\sum 
\alpha =1

\epsilon \alpha U
[2,\alpha ]
2 (t)\otimes JG[2]

\alpha (y0)\eta 
(\bfy )
T

+\lambda 
\Bigl[ 
IN - 1 \otimes JH2(y0,x0)\eta 

(\bfy )
T + IN - 1 \otimes DH2(y0,x0)\eta 

(\bfx )
T

\Bigr] 
.
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Considering \zeta d(t) =
\bigl[ 
\eta 
(\bfx )tr

T \eta 
(\bfy )tr

T

\bigr] tr \in \BbbC 2(N - 1)d, the dynamics of the transverse error
system equation (4.13) can be rewritten in terms of \zeta d(t) as

(4.14) \.\zeta d(t) =

\Biggl[ 
A(t) - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
E

[\alpha ]
1 (t)\otimes JG[1]

\alpha (x0) + E
[\alpha ]
2 (t)\otimes JG[2]

\alpha (y0)
\Bigr) \Biggr] 

\zeta d(t),

where A(t) =

\Biggl[ 
IN - 1 \otimes 

\bigl( 
JF1(x0) + \lambda JH1(x0,y0)

\bigr) 
\lambda IN - 1 \otimes DH1(x0,y0)

\lambda IN - 1 \otimes DH1(y0,x0) IN - 1 \otimes 
\bigl( 
JF1(y0) + \lambda JH1(y0,x0)

\bigr) \Biggr] 

and E
[\alpha ]
1 (t) =

\Biggl[ 
U

[1,\alpha ]
2 (t) ON - 1\times N - 1

ON - 1\times N - 1 ON - 1\times N - 1

\Biggr] 
, E

[\alpha ]
2 (t) =

\Biggl[ 
ON - 1\times N - 1 ON - 1\times N - 1

ON - 1\times N - 1 U
[2,\alpha ]
2 (t)

\Biggr] 
.

Now \=L [\alpha ] = 1
T

\int t+T
t L [l,\alpha ](\tau ) d\tau yields

V [1] - 1 \=L [\alpha ]V [1] =
1

T

\int t+T

t
V [1] - 1

L [l,\alpha ](\tau )V [1] d\tau .

Using (4.7) and (4.11), the above equation becomes

(4.15)

\left[  0 \=U
[\alpha ]
1

ON - 1\times 1
\=U
[\alpha ]
2

\right]  =
1

T

\int t+T

t

\left[  0 U
[l,\alpha ]
1 (\tau )

ON - 1\times 1 U
[l,\alpha ]
2 (\tau )

\right]  d\tau .

From the above expression, we can write \=U
[\alpha ]
2 = 1

T

\int t+T
t U

[l,\alpha ]
2 (\tau ) d\tau , which implies that\int t+T

t E
[\alpha ]
m (\tau ) d\tau = \=E

[\alpha ]
m for m = 1, 2.

Thus, by Lemma 2.3, we conclude that systems (4.2) and (4.4) stabilize together. Hence,
the time-varying network (3.1) possesses intralayer synchronization whenever the correspond-
ing time-average static network (4.3) has an asymptotically stable intralayer synchronization
manifold.

Here the time constant T is assumed to be sufficiently large, which depends on the in-
dividual node dynamics F1(x) and F2(y) of both of the layers, intralayer coupling functions

G
[1]
\alpha (x) and G

[2]
\alpha (y), interlayer coupling functions H1,2(x,y), and how fast the intralayer tiers

in both of the layers are switching.

4.1. Local stability of the intralayer synchronization. Theorem 4.2 tells us that the
stability of the intralayer synchronization for both the time-varying and the time-average
systems is equivalent. In this subsection, our main emphasis is to identify the necessary
and sufficient conditions for the intralayer synchronization state. For this, we reduce the
linear stability problem in the form of the MSF approach. We can investigate the stability
of our original system (3.1) in terms of the time-average system (4.3). Equation (4.9) is
the transverse error dynamics of the intralayer synchronous state for the averaged system.
The alternative form of the error dynamics is (4.8b, d), where all the terms are block diagonal

except \=U [\alpha ]\otimes JG
[l]
\alpha (y0). However, this is generally a very high dimensional 2d(N - 1) equation,

and the calculation of all Lyapunov exponents is very expensive.
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Due to the upper triangular form of V [1] - 1 \=L [1]V [1], \=U
[1]
2 is also an upper triangular complex

matrix. Then the transverse error dynamics 4.8(b, d) become

(4.16)

\.\eta 
(\bfw )
Ti

= JF1(x0)\eta 
(\bfw )
Ti

 - \epsilon 1

N - 1\sum 
j=i

\=U
[1]
ij JG

[1]
1 (x0)\eta 

(\bfw )
Tj

 - 
M\sum 
\alpha =2

\epsilon \alpha 

N - 1\sum 
j=1

\=U
[\alpha ]
ij JG[1]

\alpha (x0)\eta 
(\bfw )
Tj

+\lambda 
\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
Ti

+DH1(x0,y0)\eta 
(\bfz )
Ti

\Bigr] 
and

\.\eta 
(\bfz )
Ti

= JF2(y0)\eta 
(z)
Ti

 - \epsilon 1

N - 1\sum 
j=i

\=U
[1]
ij JG

[2]
1 (y0)\eta 

(\bfz )
Tj

 - 
M\sum 
\alpha =2

\epsilon \alpha 

N - 1\sum 
j=1

\=U
[\alpha ]
ij JG[2]

\alpha (y0)\eta 
(\bfz )
Tj

+\lambda 
\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
Ti

+DH2(y0,x0)\eta 
(\bfw )
Ti

\Bigr] 
.

This is therefore our required transverse master stability equation (MSE) of the intralayer
synchronization manifold. In general, this transverse error system (4.16) cannot be further
reduced to a low-dimensional form. Unfortunately, we are unable to reduce these 2d(N  - 1)-
dimensional transverse error dynamics for the general case. If the matrices \=U [\alpha ] were diagonal,
then it could be decoupled to N  - 1 independent components, but in general, there is no
guarantee of this property. Such reduction is possible only if the static time-average Laplacian
matrix commutes with all other time-average Laplacians. For this case, we will now try to
reduce the \BbbC 2(N - 1)d-dimensional transverse error dynamics to the low-dimensional system.
The next corollary presents this analysis in detail.

Corollary 4.3. If all the time-average Laplacians \=L [\alpha ] are symmetric, and among them one
commutes with all the other time-average Laplacians, then the dynamics of the projected error
system can be decoupled as
(4.17)

\.\eta 
(\bfw )
Ti

= JF1(x0)\eta 
(\bfw )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i JG[1]

\alpha (x0)\eta 
(\bfw )
Ti

+ \lambda 
\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
Ti

+DH1(x0,y0)\eta 
(\bfz )
Ti

\Bigr] 
and

\.\eta 
(\bfz )
Ti

= JF2(y0)\eta 
(\bfz )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i JG[2]

\alpha (y0)\eta 
(\bfz )
Ti

+ \lambda 
\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
Ti

+DH2(y0,x0)\eta 
(\bfw )
Ti

\Bigr] 
,

where i \in N2.

Proof of Corollary 4.3. See Appendix A.

By this dimensionality reduction, the entire 2d(N - 1)-dimensional transverse error system
is reduced to 2d-dimensional N  - 1 linear systems.

Corollary 4.4. Let the number of tiers in each layer of the multiplex hypernetwork be two,
i.e., M = 2. Among these two tiers, the eigenvalues of the Laplacian matrix of one tier are
0 with algebraic multiplicity 1 and \=a with algebraic multiplicity N  - 1. Then the transverse
error dynamics can be decoupled as N  - 1 numbers of 2d-dimensional systems.

Proof of Corollary 4.4. See Appendix A.
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An interesting point about the above corollary is that we can obtain the low-dimensional
reduction of the transverse error system, where the two matrices \=L [1] and \=L [2] do not neces-
sarily commute.

Remark 4.5. Consider the case where all of the off-diagonal elements of the time-average
Laplacian matrix \=L [1] are equal to  - p (say), and diagonal elements are such that it is zero-row
sum, i.e., (N  - 1)p. Then the eigenvalues of \=L [1] are 0 with algebraic multiplicity 1 and Np
with algebraic multiplicity N  - 1, and furthermore the matrix is diagonalizable. This type of
time-average Laplacian matrix occurs if the network architecture of the tier-1 is Erd\"os--R\'enyi
(ER) random with edge joining probability p.

According to Corollary 4.4, for this type of Laplacian matrix, other ones can be chosen
arbitrarily to decouple the transverse error systems.

Remark 4.6. Again consider the case of a weighted network where the weight from node
j to node i is only a function of the source node j, but not of the destination node i, in other

words, \=A
[1]
ij = \=aj for all i, j \in N1. Its Laplacian matrix is therefore

(4.18)

\=L
[1]
ij =  - \=aj for i \not = j,

=

N\sum 
k=1

\=ak  - \=aj for i = j.

\=L [1] has the property that it has one eigenvalue 0 with associated eigenvector [1, 1, . . . , 1]tr and
the remainingN - 1 eigenvalues are all equal to

\sum N
k=1 \=ak. Moreover, \=L [1] can be diagonalizable

by its basis of eigenvectors. Again we note that for this type of time-average Laplacian matrix,
other Laplacian matrices can be chosen arbitrarily. Still we can obtain the block diagonal
transverse error system.

More precisely, for the synchronous state (4.1) to be stable, it is sufficient to check the
stability of the 2d-dimensional N - 1 decoupled transverse error dynamics (4.17), instead of the
2d(N - 1)-dimensional coupled transverse error system. Hence, the intralayer synchronization
manifold will be locally asymptotically stable if the maximum Lyapunov exponent of the
system (4.17) becomes negative. So, sufficiently, we need only to calculate the Lyapunov
exponents only for these 2d-dimensional N  - 1 uncoupled systems.

Now we can associate an MSF with (4.17) as \Lambda max(\epsilon 1, \epsilon 2, . . . , \epsilon M ) from \BbbR M to \BbbR , which
returns the maximum Lyapunov exponent of (4.17) as a function of the interaction strengths
of each tier. Then, given any temporal multiplex hypernetwork, the intralayer synchronization
solution will be stable if \Lambda max(\epsilon 1, \epsilon 2, . . . , \epsilon M ) < 0. Through the maximum Lyapunov exponent
of the MSE, we can predict the diversity of the special mode of stability of the intralayer
synchronization manifold.

5. Stability of intralayer synchronization with multilayer hypernetwork architecture.
Now we extend our results on intralayer synchronization in multilayer hypernetwork architec-
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ture. The evolution equation of the generic ith node
\bigl( 
i \in N1

\bigr) 
can be delineated as

(5.1)

\.xi = F1(xi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

L
[1,\alpha ]
ij (t)G[1]

\alpha (xj) + \lambda 

N\sum 
j=1

B
[1]
ij H1(xi,yj),

\.yi = F2(yi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

L
[2,\alpha ]
ij (t)G[2]

\alpha (yj) + \lambda 
N\sum 
j=1

B
[2]
ij H2(yi,xj).

Here B[l] is the interlayer adjacency matrix of layer-l (l = 1, 2). B
[l]
ij = 1 if the ith node

in layer-l is connected to the jth node in the other layer, and zero otherwise. The interlayer

degree of the ith node is denoted by e
[l]
i , which is defined as e

[l]
i =

\sum N
j=1 B

[l]
ij . Actually, e

[l]
i

gives how many interlayer edges are associated with the ith node in layer-l.
For this type of network architecture, intralayer synchronization may not be achieved by

only tuning the coupling strengths (intra- or interlayer). A suitable network architecture is
required for the existence of this type of solution. First, we derive the invariance condition,
and then we will look for its stability condition.

Lemma 5.1. For the dynamical multilayer hypernetwork (5.1), the intralayer synchroniza-
tion state is an invariant solution if the interlayer degree of all the nodes is equal for each
layer.

Proof of Lemma 5.1. See Appendix A.

Remark 5.2. For the invariance of the intralayer synchronization state, the interlayer de-
gree of each node in each individual layer should be equal, while they may be different for two
nodes from different layers, i.e., may be e[1] \not = e[2].

Remark 5.3. Due to the fact
\sum N

j=1 B
[l]
ij = e[l], B[l] becomes a constant row-sum matrix

for l = 1, 2. Therefore, e[l] is an eigenvalue of B[l] with associate normalized eigenvector\Bigl[ 
1\surd 
N
, 1\surd 

N
, . . . , 1\surd 

N

\Bigr] tr
.

With the above invariance condition, the intralayer synchronization manifold dominates
the equation of motion as

(5.2)
\.x0 = F1(x0) + \lambda e[1]H1(x0,y0),

\.y0 = F2(y0) + \lambda e[2]H2(y0,x0).

Considering small perturbations (\delta xi(t), \delta yi(t)), the linearized equation in vectorial form can
be written as

(5.3)

\delta \.x = IN \otimes JF1(x0)\delta x - 
M\sum 
\alpha =1

\epsilon \alpha L [1,\alpha ](t)\otimes JG[1]
\alpha (x0)\delta x

+\lambda 
\Bigl[ 
e[1]IN \otimes JH1(x0,y0)\delta x+ B[1] \otimes DH1(x0,y0)\delta y

\Bigr] 
,

\delta \.y = IN \otimes JF2(y0)\delta y  - 
M\sum 
\alpha =1

\epsilon \alpha L [2,\alpha ](t)\otimes JG[2]
\alpha (y0)\delta y

+\lambda 
\Bigl[ 
e[2]IN \otimes JH2(y0,x0)\delta y + B[2] \otimes DH2(y0,x0)\delta x

\Bigr] 
.
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Due to the change of variables using Schur transformations \eta (\bfx ) =
\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta x and

\eta (\bfy ) =
\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta y, the dynamics of the error systems in terms of the change of variables

yield

(5.4)

\.\eta (\bfx ) = IN \otimes JF1(x0)\eta 
(\bfx )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1

L [1,\alpha ](t)V [1]
\Bigr) 
\otimes JG[1]

\alpha (x0)\eta 
(\bfx )

+\lambda 
\Bigl[ 
e[1]IN \otimes JH1(x0,y0)\eta 

(\bfx ) +
\Bigl( 
V [1] - 1

B[1]V [1]
\Bigr) 
\otimes DH1(x0,y0)\eta 

(\bfy )
\Bigr] 
,

\.\eta (\bfy ) = IN \otimes JF2(y0)\eta 
(\bfy )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1

L [2,\alpha ](t)V [1]
\Bigr) 
\otimes JG[2]

\alpha (y0)\eta 
(\bfy )

+\lambda 
\Bigl[ 
e[2]IN \otimes JH2(y0,x0)\eta 

(\bfy ) +
\Bigl( 
V [1] - 1

B[2]V [1]
\Bigr) 
\otimes DH2(y0,x0)\eta 

(\bfx )
\Bigr] 
.

Here B[l] is a real square matrix; therefore, it is unitarily triangularizable. Then there exist a
unitary matrix V[l] of orthogonal eigenvectors of B[l] and an upper triangular matrix U[l] such

that U[l] = V  - 1
[l] B[l]V[l]. Then V [1] - 1

B[l]V [1] = V [1] - 1
V[l]U[l]V

 - 1
[l] V [1], which yields

V [1] - 1
B[l]V [1] =

\Biggl[ 
e[l] O1\times N - 1

ON - 1\times 1 U
[l]
3

\Biggr] 
.

Now decomposing the projected error components into parallel and transverse directions of
the synchronization manifold, we get the respective dynamics as

\.\eta 
(\bfx )
P = JF1(x0)\eta 

(\bfx )
P  - 

M\sum 
\alpha =1

\epsilon \alpha U
[1,\alpha ]
1 (t)\otimes JG[1]

\alpha (x0)\eta 
(\bfx )
T + \lambda e[1]

\Bigl[ 
JH1(x0,y0)\eta 

(\bfx )
P +DH1(x0,y0)\eta 

(\bfy )
P

\Bigr] 
,

(5.5a)

\.\eta 
(\bfx )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfx )
T  - 

M\sum 
\alpha =1

\epsilon \alpha U
[1,\alpha ]
2 (t)\otimes JG[1]

\alpha (x0)\eta 
(\bfx )
T

(5.5b)

+ \lambda 
\Bigl[ 
e[1]IN - 1 \otimes JH1(x0,y0)\eta 

(\bfx )
T + U

[1]
3 \otimes DH1(x0,y0)\eta 

(\bfy )
T

\Bigr] 
,

\.\eta 
(\bfy )
P = JF2(y0)\eta 

(\bfy )
P  - 

M\sum 
\alpha =1

\epsilon \alpha U
[2,\alpha ]
1 (t)\otimes JG[2]

\alpha (y0)\eta 
(\bfy )
T + \lambda e[2]

\Bigl[ 
JH2(y0,x0)\eta 

(\bfy )
P +DH2(y0,x0)\eta 

(\bfx )
P

\Bigr] 
,

(5.5c)

\.\eta 
(\bfy )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfy )
T  - 

M\sum 
\alpha =1

\epsilon \alpha U
[2,\alpha ]
2 (t)\otimes JG[2]

\alpha (y0)\eta 
(\bfy )
T

(5.5d)

+ \lambda 
\Bigl[ 
e[2]IN - 1 \otimes JH2(y0,x0)\eta 

(\bfy )
T + U

[2]
3 \otimes DH2(y0,x0)\eta 

(\bfx )
T

\Bigr] 
.

Remark 5.4. Equations (5.5a, c) evolve parallel to the intralayer synchronization mani-
fold, while (5.5b, d) are transverse to it. Interestingly, (5.5b, d) are independent of (5.5a, c),
but (5.5a, c) depend on (5.5b, d). The stability of the transverse error components does not
depend on the parallel components. So the parallel components do not play any role for
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determining the stability of the synchronization solutions. However, when all the transverse

error components \eta 
(\bfx )
T , \eta 

(\bfy )
T die out, (5.5a, c) will become linearized equations of the intralayer

synchronization manifold (5.2).

In terms of \zeta d(t) =
\bigl[ 
\eta 
(\bfx )tr

T \eta 
(\bfy )tr

T

\bigr] tr
, the dynamics of the transverse error systems can be

written as

(5.6) \.\zeta d(t) =

\Biggl[ 
A(t) - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
E

[\alpha ]
1 (t)\otimes JG[1]

\alpha (x0) + E
[\alpha ]
2 (t)\otimes JG[2]

\alpha (y0)
\Bigr) \Biggr] 

\zeta d(t),

where

A(t) =

\left[  IN - 1 \otimes 
\Bigl\{ 
JF1(x0) + \lambda e[1]JH1(x0,y0)

\Bigr\} 
\lambda U

[1]
3 \otimes DH1(x0,y0)

\lambda U
[2]
3 \otimes DH2(y0,x0) IN - 1 \otimes 

\Bigl\{ 
JF2(y0) + \lambda e[2]JH2(y0,x0)

\Bigr\} 
\right]  

and E
[\alpha ]
1 (t) =

\Biggl[ 
U

[1,\alpha ]
2 (t) ON - 1\times N - 1

ON - 1\times N - 1 ON - 1\times N - 1

\Biggr] 
, E

[\alpha ]
2 (t) =

\Biggl[ 
ON - 1\times N - 1 ON - 1\times N - 1

ON - 1\times N - 1 U
[2,\alpha ]
2 (t)

\Biggr] 
.

Incorporating the time-average intralayer Laplacian matrices, the dynamics of the time-
average multilayer hypernetwork can be written as

(5.7)

\.wi = F1(wi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

\=L
[\alpha ]
ij G[1]

\alpha (wj) + \lambda 

N\sum 
j=1

B
[1]
ij H1(wi, zj),

\.zi = F2(zi) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

\=L
[\alpha ]
ij G[2]

\alpha (zj) + \lambda 
N\sum 
j=1

B
[2]
ij H2(zi,wi).

For this time-average multilayer hypernetwork, the system (5.2) is also the dynamics of the
intralayer synchronization manifold. Considering \delta w(t) and \delta z(t) as the perturbation compo-
nents, the error dynamics for the time-average system read as

(5.8)

\delta \.w = IN \otimes JF1(x0)\delta w  - 
M\sum 
\alpha =1

\epsilon \alpha \=L [\alpha ] \otimes JG[1]
\alpha (x0)\delta w

+\lambda 
\Bigl[ 
e[1]IN \otimes JH1(x0,y0)\delta w + B[1] \otimes DH1(x0,y0)\delta z

\Bigr] 
,

\delta \.z = IN \otimes JF2(y0)\delta z - 
M\sum 
\alpha =1

\epsilon \alpha \=L [\alpha ] \otimes JG[2]
\alpha (y0)\delta z

+\lambda 
\Bigl[ 
e[2]IN \otimes JH2(y0,x0)\delta z+ B[2] \otimes DH2(y0,x0)\delta w

\Bigr] 
.

By considering the Schur transformation on these perturbed variables, we have the trans-
formed variables as \eta (\bfw ) =

\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta w and \eta (\bfz ) =

\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta z. Then the dynamics
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of the projected system become

(5.9)

\.\eta (\bfw ) = IN \otimes JF1(x0)\eta 
(\bfw )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1 \=L [\alpha ]V [1]

\Bigr) 
\otimes JG[1]

\alpha (x0)\eta 
(\bfw )

+\lambda 
\Bigl[ 
e[1]IN \otimes JH1(x0,y0)\eta 

(\bfw ) +
\Bigl( 
V [1] - 1

B[1]V [1]
\Bigr) 
\otimes DH1(x0,y0)\eta 

(\bfz )
\Bigr] 
,

\.\eta (\bfz ) = IN \otimes JF2(y0)\eta 
(\bfz )  - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
V [1] - 1 \=L [\alpha ]V [1]

\Bigr) 
\otimes JG[2]

\alpha (y0)\eta 
(\bfz )

+\lambda 
\Bigl[ 
e[2]IN \otimes JH2(y0,x0)\eta 

(\bfz ) +
\Bigl( 
V [1] - 1

B[2]V [1]
\Bigr) 
\otimes DH2(y0,x0)\eta 

(\bfw )
\Bigr] 
.

Splitting the projected error component into parallel and transverse directions, we get the
dynamics of the transverse components as

(5.10)

\.\eta 
(\bfw )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfw )
T  - 

M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
2 \otimes JG[1]

\alpha (x0)\eta 
(\bfw )
T

+\lambda 
\Bigl[ 
e[1]IN - 1 \otimes JH1(x0,y0)\eta 

(\bfw )
T + U

[1]
3 \otimes DH1(x0,y0)\eta 

(\bfz )
T

\Bigr] 
,

\.\eta 
(\bfz )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfz )
T  - 

M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
2 \otimes JG[2]

\alpha (y0)\eta 
(\bfz )
T

+\lambda 
\Bigl[ 
e[2]IN - 1 \otimes JH2(y0,x0)\eta 

(\bfz )
T + U

[2]
3 \otimes DH2(y0,x0)\eta 

(\bfw )
T

\Bigr] 
.

In terms of \zeta a(t) =
\bigl[ 
\eta 
(\bfw )tr

T \eta 
(\bfz )tr

T

\bigr] tr
, the dynamics of the transverse error components of

the time-average system can be written as

(5.11) \.\zeta a(t) =

\Biggl[ 
A(t) - 

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
\=E
[\alpha ]
1 \otimes JG[1]

\alpha (x0) + \=E
[\alpha ]
2 (t)\otimes JG[2]

\alpha (y0)
\Bigr) \Biggr] 

\zeta a(t),

where

A(t) =

\left[  IN - 1 \otimes 
\Bigl\{ 
JF1(x0) + \lambda e[1]JH1(x0,y0)

\Bigr\} 
\lambda U

[1]
3 \otimes DH1(x0,y0)

\lambda U
[2]
3 \otimes DH2(y0,x0) IN - 1 \otimes 

\Bigl\{ 
JF2(y0) + \lambda e[2]JH2(y0,x0)

\Bigr\} 
\right]  

and \=E
[\alpha ]
1 =

\Biggl[ 
\=U
[\alpha ]
2 ON - 1\times N - 1

ON - 1\times N - 1 ON - 1\times N - 1

\Biggr] 
, \=E

[\alpha ]
2 =

\Biggl[ 
ON - 1\times N - 1 ON - 1\times N - 1

ON - 1\times N - 1
\=U
[\alpha ]
2

\Biggr] 
.

Due to the fact that
\int t+T
t E

[\alpha ]
m (\tau ) d\tau = \=E

[\alpha ]
m for m = 1, 2, we can reach the conclusion that

the asymptotic stability of the traverse error system (5.11) implies the traverse error system
(5.6). Therefore, the asymptotic stability of the intralayer synchronization solution (x0,y0)
for the time-average system (5.7) implies the asymptotic stability of the intralayer synchro-
nization solution (x0,y0) for the time-varying system (5.1) for sufficiently fast switching. The
equivalence of the stability of the intralayer synchronization manifold for time-varying and
time-average systems is thus obtained.
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Now we are interested in finding the necessary and sufficient conditions for the intralayer
synchronization state. Transverse error dynamics (5.10) of the time-average system is our

MSE. All of its terms are block diagonal except \=U
[\alpha ]
2 \otimes JG

[l]
\alpha (x0), U

[1]
3 \otimes DH1(x0,y0), and

U
[2]
3 \otimes DH2(y0,x0). In component form, it can be written as

(5.12)

\.\eta 
(\bfw )
Ti

= JF1(x0)\eta 
(\bfw )
Ti

 - \epsilon 1

N - 1\sum 
j=i

\=U
[1]
ij JG

[1]
1 (x0)\eta 

(\bfw )
Tj

 - 
M\sum 
\alpha =2

\epsilon \alpha 

N - 1\sum 
j=1

\=U
[\alpha ]
ij JG[1]

\alpha (x0)\eta 
(\bfw )
Tj

+\lambda 

\Biggl[ 
e[1]JH1(x0,y0)\eta 

(\bfw )
Ti

+
N - 1\sum 
j=1

U3
[1]
ij DH1(x0,y0)\eta 

(\bfz )
Tj

\Biggr] 
,

\.\eta 
(\bfz )
Ti

= JF2(y0)\eta 
(z)
Ti

 - \epsilon 1

N - 1\sum 
j=i

\=U
[1]
ij JG

[2]
1 (y0)\eta 

(\bfz )
Tj

 - 
M\sum 
\alpha =2

\epsilon \alpha 

N - 1\sum 
j=1

\=U
[\alpha ]
ij JG[2]

\alpha (y0)\eta 
(\bfz )
Tj

+\lambda 
\Bigl[ 
e[2]JH2(y0,x0)\eta 

(\bfz )
Ti

+
N - 1\sum 
j=1

U3
[2]
ij DH2(y0,x0)\eta 

(\bfw )
Tj

\Bigr] 
,

which are 2d(N  - 1)-dimensional coupled systems.

Now if \=L [1] commutes with all other intralayer Laplacian matrices \=L [\alpha ] (\alpha = 2, 3, . . . ,M)

as well as interlayer adjacency matrices B[l] (l = 1, 2), then all of these matrices have a
common basis of eigenvectors. Thus, they can be diagonalizable by the basis of eigenvectors

V [1]. This yields \=U
[\alpha ]
2 = diag\{ \gamma [\alpha ]2 , \gamma 

[\alpha ]
3 , . . . , \gamma 

[\alpha ]
\mathrm{N} \} and U

[l]
3 = diag\{ \Gamma [\mathrm{l}]

2 ,\Gamma 
[\mathrm{l}]
3 , . . . ,\Gamma 

[\mathrm{l}]
\mathrm{N}\} . For this

special case, the block diagonal transverse equations become
(5.13)

\.\eta 
(\bfw )
Ti

= JF1(x0)\eta 
(\bfw )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i JG[1]

\alpha (x0)\eta 
(\bfw )
Ti

+ \lambda 
\Bigl[ 
e[1]JH1(x0,y0)\eta 

(\bfw )
Ti

+ \Gamma 
[1]
i DH1(x0,y0)\eta 

(\bfz )
Ti

\Bigr] 
,

\.\eta 
(\bfz )
Ti

= JF2(y0)\eta 
(\bfz )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i JG[2]

\alpha (y0)\eta 
(\bfz )
Ti

+ \lambda 
\Bigl[ 
e[2]JH2(y0,x0)\eta 

(\bfz )
Ti

+ \Gamma 
[2]
i DH2(y0,x0)\eta 

(\bfw )
Ti

\Bigr] 
,

where i \in N2 and these are the much reduced low-dimensional equations.

Corollary 5.5. Consider, for a multilayer network with one tier (i.e.,M = 1), that the
eigenvalues of the intralayer Laplacian matrix are 0 with algebraic multiplicity 1 and \=a with
algebraic multiplicity N  - 1. Also, assume that the interlayer adjacency matrices are equal
and symmetric. Then the transverse error dynamics can be decoupled as 2d-dimensional N - 1
systems.

Proof of Corollary 5.5. See Appendix A.

Therefore, we can obtain such dimensionality reduction of the transverse error system
for a multilayer network with one tier. Here intralayer Laplacian matrix does not necessarily
commute with the interlayer adjacency matrix. Moreover, the interlayer adjacency matrix can
be arbitrarily chosen for such decoupling. Such kind of dimensionality reduction for monolayer
hypernetwork was done in [50].

Remark 5.6. Unlike for the dimensionality reduction in the multiplex network, to choose
interlayer connections arbitrarily, only one tier in the intralayer network can be present. By
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adding one extra tier, we again have to make the restriction that the corresponding intralayer
adjacency matrix commutes with the interlayer adjacency matrices.

Remark 5.7. This type of time-average Laplacian matrix occurs if the time-varying net-
work architecture is ER random with a certain edge joining probability. Another possibility
is that \=L [1] is a weighted Laplacian matrix and the weight from node j to node i is only a
function of the source node j but not of the destination node i.

6. Numerical example. To illustrate the theoretical results, we consider a 2 \times 200 set
of R\"ossler oscillators, with our discussed time-varying network machinery. We know that a
network of chaotic R\"ossler oscillators can be synchronized by a suitable coupling. Here two dif-
ferent types of interactions are considered in the intralayer connection of each layer and which
are associated with two structurally different network typologies. Intralayer synchronization
is assessed by examining the local asymptotic stability of the oscillators along the synchro-
nization manifold in each layer. To reveal the underlying mechanisms for the emergence of
the synchronization state, coupled R\"ossler oscillators offer a generic test-bed for investigation.
In this section, our main emphasis will be to identify the parameter regions for the intralayer
synchronization state.

We consider the multiplex network (3.1), where each layer is composed of R\"ossler oscil-

lators. We take one tier of the intralayer coupling function G
[l]
1 (x) as diffusive through the

variable x, whose underlying network is the random network with probability pr for l = 1, 2.
The connectivity of the random network for layer-l is described by the Laplacian matrix

L [l,1](t). For another tier, the coupling function G
[l]
2 (x) is also of diffusive type but through

the variable y for l = 1, 2. The Laplacian matrices corresponding to these tiers in the two lay-
ers are L [1,2](t) and L [2,2](t), respectively, which was considered to be a small-world network
with average degree of the network 2ksw and edge rewiring probability psw. Each node in a
layer is connected to its replica on the other layer by diffusive coupling through the y variable.
So the mathematical forms of the autonomous evolution functions F1,2(x), intralayer coupling

functions G
[1,2]
1 (x), G

[1,2]
2 (x), and interlayer coupling functions H1,2(x) are as follows:

(6.1)

F1,2(x) =

\left[   - y  - z
x+ ay

b+ z(x - c)

\right]  , G
[1,2]
1 (x) =

\left[  x0
0

\right]  , G
[1,2]
2 (x) =

\left[  0y
0

\right]  , H1,2(x1,x2) =

\left[  0
y2  - y1

0

\right]  ,

where a = 0.1, b = 0.1, and c = 14.0. With this set of parameter values, each individual
oscillator retains chaotic behavior.

Here the simulations are presented by obtaining N = 200 oscillators in each layer. We
integrate the entire network numerically using the fifth-order Runge--Kutta--Fehlberg integra-
tion algorithm scheme with a time step 0.01 up to 5\times 105 iterations. All the numerical figures
are drawn after an initial transient of 2\times 105 units.

In our prescribed model, the two intralayer coupling topologies are time-varying; i.e., one is
a small-world network, and the other one is an ER random network, and both are bidirectional.
With probability pr, the edges are included in the ER network independently from the other
edges. The small-world networks are constructed by following the procedure proposed by
Watts and Strogatz [57]. Each link in the small-world network in both of the layers is rewired
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stochastically. Particularly, at any time, we rewire these two tiers by constructing a new
small-world network from the initial ring, independently with probability f dt, where f is the
rewiring frequency and dt is the integration time step.

Consider E1 = limT\rightarrow \infty 
1
T

\int T
0

\sum N
j=2

\| \bfx j(t) - \bfx 1(t)\| 
N - 1 dt to be the complete synchronization error

of layer-1 and that of layer-2 to be E2 = limT\rightarrow \infty 
1
T

\int T
0

\sum N
j=2

\| \bfy j(t) - \bfy 1(t)\| 
N - 1 dt, where \| \cdot \| denotes

the Euclidean norm and T is the long time interval. The asymptotic stability of El (l = 1, 2)
will imply that each oscillator in layer-l is synchronized. Then the asymptotic stability of each
oscillator with respect to the intralayer synchronization solution is investigated by plotting the
average synchronization error, defined as E = E1+E2

2 . In the following numerical simulations,
our main target is to investigate the intralayer synchronization state as a function of intralayer
and interlayer coupling strengths \epsilon 1,2 and \lambda for different rewiring frequencies.
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Figure 2. Intralayer synchronization error by varying the tier-2 coupling strength \epsilon 2 for a fixed value of
tier-1 coupling strength: (a) \epsilon 1 = 0.0, (b) \epsilon 1 = 0.015. Other parameters are dsw = 4, psw = 0.1, pr = 0.015,
and f = 0.1.

Let us now investigate the intralayer synchronization with respect to the tier-2 coupling
strength \epsilon 2 in the absence and presence of tier-1 for the moderate switching case f = 0.1.
The corresponding results are shown in Figures 2(a) and 2(b), respectively. The intralayer
synchronization error E is plotted in Figure 2 by considering various values of \lambda and fixed
values of dsw = 4, pws = 0.1, and pr = 0.015. The open blue circle, red square, and green
triangle lines denote the results for \lambda = 0.0, 0.25, and \lambda = 1.0, respectively. When interlayer
coupling strength and intralayer strength for tier-1 are set to zero (\lambda = \epsilon 1 = 0.0), then the
intralayer synchronization states arrives at \epsilon 2 = 0.8. The corresponding result is represented
by the blue open circle line in Figure 2(a). But if we introduce the layer-layer interaction
strength at \lambda = 0.25, the intralayer synchronization is enhanced at \epsilon 2 = 0.68 despite the
absence of \epsilon 1. More enhancement of the intralayer synchrony (\epsilon 2 = 0.56) is observed (green
line of Figure 2(a)) for even higher values of \lambda = 1.0. Figure 2(b) depicts these enhancement
changes in the presence of tier-1 interaction. For certain values of \epsilon 1 = 0.015, the critical
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transition appears at \epsilon 2 = 0.6 for \lambda = 0.0, and this critical threshold enhances for higher
values of the \lambda (Figure 2(b)). Note that greater enhancements of the intralayer synchrony
are shown in Figure 2(b) compared to Figure 2(a) with the same set of interlayer coupling
strengths.

So in this figure it is clearly shown that the combined effect of the two types of intralayer
coupling strengths leads to the enhancement of the intralayer synchrony in the slow switching
case and further significant enhancing is taking place for the intercoupling strength \lambda .

Figure 3. Intralayer synchronization error in the (\epsilon 2, \lambda ) plane for (a) \epsilon 1 = 0.0, (b) \epsilon 1 = 0.015, (c) \epsilon 1 = 0.03,
and (d) \epsilon 1 = 0.045. Other parameters are dsw = 4, pws = 0.1, pr = 0.015, and f = 100.0. The color bar denotes
the variation of the intralayer synchronization error E of the multiplex temporal hypernetworks where the deep
red and blue correspond to the desynchronized and synchronized domains, respectively.

For fast switching (f = 100.0), the intralayer synchronization regions are plotted in Figure
3 for different values of tier-1 intralayer coupling strength \epsilon 1 in the plane of intralayer coupling
strength \epsilon 2 of tier-2 and interlayer coupling strength \lambda . The color bar denotes the variation
of the intralayer synchronization error E of the multiplex temporal hypernetworks where the
deep red and blue correspond to the desynchronized and synchronized domains, respectively.
In the absence of tier-1 (i.e., \epsilon 1 = 0.0), the coherent and incoherent domains are plotted in
Figure 3(a), and by introducing the \epsilon 1 at \epsilon 1 = 0.015, the enhancement of the synchrony is
shown in Figure 3(b). Also, by considering the several exemplified values of \epsilon 1 as \epsilon 1 = 0.03
and 0.045, the enhancing phenomena are delineated in Figures 3(c) and 3(d), respectively.
However, in all these figures, the critical transition point against the \epsilon 2 is almost vertical.
This means that the transition point is only affected by the intralayer coupling strengths \epsilon 1,2
and interlayer interaction strength \lambda has no effect on the intralayer synchronization transition
in the fast rewiring case.
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Figure 4. Variation of the intralayer synchronization error E with respect to \epsilon 1 for several values of the
rewiring frequencies f = 0.0001 (blue circle line), f = 0.01 (red square line), f = 1.0 (green diamond line),
and f = 100.0 (magenta triangle line). Other parameters are dsw = 4, pws = 0.1, pr = 0.015, \epsilon 2 = 0.2, and
\lambda = 0.5.

Figure 4 represents the variation of the intralayer synchronization error E with respect to
\epsilon 1 for four different values of the rewiring frequencies f = 0.0001 (blue circle line), f = 0.01
(red square line), f = 1.0 (green diamond line), and f = 100.0 (magenta triangle line).
For these rewiring frequencies, the critical values of \epsilon 1 for the intralayer synchronization are

\epsilon 
(1)
1 = 0.057, \epsilon 

(1)
1 = 0.047, \epsilon 

(1)
1 = 0.03, and \epsilon 

(1)
1 = 0.023, respectively. Here the superscript

(1) denotes the critical threshold for the first transition from desynchrony to synchrony, while
the second transition (from synchrony to desynchrony) is represented by the superscript (2).
This layerwise synchrony persists up to a certain value of \epsilon 1 but depending on the rewiring
frequency f . For f = 0.0001, the transition from synchronization to desynchronization occurs

at \epsilon 
(2)
1 \simeq 11.0. For the slow-switching case, the range of synchronization is [0.057, 11.0].

For other values of f , these transitions occur respectively at \epsilon 
(2)
1 \simeq 15.0, \epsilon 

(2)
1 \simeq 19.0, and

\epsilon 
(2)
1 \simeq 21.0. So the intralayer synchronization state appears in

\bigl[ 
\epsilon 
(1)
1 , \epsilon 

(2)
1

\bigr] 
and the length of

this interval increases on both sides by increasing the rewiring frequency of each temporal
intralayer network. The stability of the synchronization regime loses at increasing the x-
coupling strength due to the short wavelength bifurcation [24]. Additionally, for f = 0.0001,
the system becomes unbounded for \epsilon 1 \geq 16.1. By increasing the rewiring frequency, this
unboundedness can be de-enhanced. For f = 0.01 and f = 1.0, the system becomes unbounded
at \epsilon 1 = 19.8 and \epsilon 1 = 22.7, respectively. Interestingly, for very fast switching, the dynamical
network possesses a bounded solution up to \epsilon 1 = 30.

Next, we find the low-dimensional MSE based on the approach discussed in section 4. If
\=L [1] is the time-average Laplacian matrix for tier-1 (random network) in both of the layers,

then

(6.2)
\=L
[1]
ij =  - pr for i \not = j

= (N  - 1)pr for i = j.



EVOLVING MULTIPLEX HYPERNETWORKS 945

Also, if \=L [2] is chosen by tier-2 (small-world network), then

(6.3)

\=L
(2)
ij =  - (1 - psw) for i - ksw \leq j \leq i+ ksw and i \not = j

= 2ksw for i = j

=  - ksw psw
N  - ksw  - 1

otherwise.

It is clear that the two matrices \=L [1] and \=L [2] are commutative with respect to each other,
and eigenvalues of these two matrices are all real. Then the transverse MSEs can be written
as

(6.4)

\delta \.x1i =  - \delta y1  - \delta z1  - \epsilon 1\gamma 
[1]
i \delta x1,

\delta \.y1i = \delta x1 + a \delta y1  - \epsilon 2\gamma 
[2]
i \delta y1 + \lambda (\delta y2  - \delta y1),

\delta \.z1i = z1\delta x1 + (x1  - c)\delta z1,

\delta \.x2i =  - \delta y2  - \delta z2  - \epsilon 1\gamma 
[1]
i \delta x2,

\delta \.y2i = \delta x2 + a \delta y2  - \epsilon 2\gamma 
[2]
i \delta y2 + \lambda (\delta y1  - \delta y2),

\delta \.z2i = z2\delta x2 + (x2  - c)\delta z2.

Here i \in N2 and (x1, y1, z1), (x2, y2, z2) are the state variables of the synchronization manifolds
for layer-1 and layer-2, respectively, satisfying

(6.5)

\.x1 =  - y1  - z1,

\.y1 = x1 + a y1 + \lambda (y2  - y1),

\.z1 = b+ z1(x1  - c),

\.x2 =  - y2  - z2,

\.y2 = x2 + a y2 + \lambda (y1  - y2),

\.z2 = b+ z2(x2  - c).

We calculate all the Lyapunov exponents of the above six-dimensional system for each
i \in N2. The transition from desynchrony to synchrony is characterized through a maximum
Lyapunov exponent (MLE) \Lambda max of the transverse master stability equation (6.4). The MLE of
each of theseN - 1 transverse error systems is drawn in the color-coded Figure 5(a) with respect
to the interaction strength \epsilon 2 in the x-axis, and the y-axis depicts the index of transverse
error dynamics; the color bar shows the variation of the MLE of the transverse systems. The
interaction strength of the other tier is kept fixed at \epsilon 1 = 0.03 and the interlayer coupling
strength at \lambda = 1.0. Figure 5(a) describes that the critical coupling strength required to
stabilize the error systems (6.4) monotonically decreases as i increases. That is, as \epsilon 2 gradually
increases, 200th error dynamics first stabilize and then second error dynamics stabilize after
stabilization of all other subsystems. Hence, the variation of MLE in the most unstable
direction corresponding to the subsystem i = 2 signifies the transition from synchronization
to desynchronization states of the layer in the network. For the coherent oscillation, all error
dynamics stabilize at the origin. Therefore, they all stabilize at the critical coupling strength
where the intralayer coherence stabilizes when oscillation of the transverse systems vanishes.
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To gauge this transition scenario, we plot the bifurcation diagram of \delta x2 against the coupling
strength \epsilon 2 in Figure 5(b). The black dot, red dot, and open circle denote the unstable fixed
point, stable steady state, and stable oscillation states, respectively.

Here the transition from the oscillatory to the steady state appears through the Hopf
bifurcation (HB) and the critical transition point of this least stable error system is also
reflected in Figure 5(a). The vanishing of \delta x2 versus \epsilon 2 refers to the synchronized states in
each layer.

So this numerical experiment confirms our theoretical prediction that the transverse direc-
tion corresponding to the smallest nonzero eigenvalue of the average Laplacian matrices for
each tier determines the intralayer synchronization transition in the whole network.

Figure 5. (a) Maximum Lyapunov exponent of each transverse component of the error system with respect
to \epsilon 2, which enunciates that system (6.4) corresponds to the least unstable direction for i = 2. (b) Bifurcation
diagram of the least unstable direction with respect to \epsilon 2. Other parameters are \epsilon 1 = 0.03 and \lambda = 1.0.

Thus by Corollary 4.3 we calculate the MLE of the block-diagonal transverse error dy-
namics to analyze the stability of the synchronization states. The intralayer synchronization
assimilates with respect to the stability of the transverse error dynamics. Among all the Lya-
punov exponents, let \Lambda max be the maximum one. The variation of \Lambda max as a function of the
system parameters and network parameters yields the necessary and sufficient conditions for
the intralayer synchronization state when \Lambda max < 0. Then the perturbations transverse to
the synchronization die out and both of the layers evolve in unison. So the negativity of \Lambda max

obtained from linearized equation (6.4) together with nonlinear equation (6.5) implies stable
intralayer coherence.

The variation of \Lambda max corresponding to Figure 3 is plotted in color-coded Figure 6 for
the parameter space of (\epsilon 2, \lambda ). The color bar shows the variation of \Lambda max, where colors
below 0 value signify the intralayer synchronous state. The variation of \Lambda max as a function
of \epsilon 2 and \lambda are plotted in Figures 6(a), 6(b), 6(c), and 6(d) respectively for \epsilon 1 = 0.0, \epsilon 1 =
0.015, \epsilon 1 = 0.03, and \epsilon 1 = 0.045. In these figures, the regions of the negative MLE of
the transverse error systems and the region of the zero synchronization error in Figure 3 of
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Figure 6. MLE of the transverse error system for (a) \epsilon 1 = 0.0, (b) \epsilon 1 = 0.015, (c) \epsilon 1 = 0.03, and (d)
\epsilon 1 = 0.045. Other parameters are dsw = 4, pws = 0.1, and pr = 0.015.

the dynamic network for f = 100.0 are exactly identical. So the linear stability analysis of
the time-average network exactly matches the numerical results of the time-varying networks
for sufficiently fast switching. Hence, our analytical results are verified by taking multiplex
temporal hypernetworks of R\"ossler oscillators.

Next, we investigate the simultaneous effect of the network probability pr and the coupling
strength \epsilon 1 corresponding to tier-1 interaction on the intralayer synchronization for the fast-
switching case. Here the synchronization transitions are characterized through the variation
of the MLE of the error systems in the transverse direction delineated in the color-coded
Figure 7. The deep red and blue regions in Figure 7 correspond to the desynchronized and
synchronized states, respectively. The desynchronization and synchronization regions are
plotted for various values of the intralayer coupling values \epsilon 2 with fixed values of dsw = 4 and
pws = 0.1. For small values of the \epsilon 2 = 0.15 (Figure 7(a)), higher ER probability pr is required
of each individual layer to attain the synchrony and the critical transition point of pr decreases
with the increasing values of \epsilon 1. In Figure 7(b), when \epsilon 2 is increased at \epsilon 2 = 0.2, a slight
enhancement of synchrony is observed in the (\epsilon 1, pr) plane compared to the previous one.
However, for a greater increment of \epsilon 2 = 0.25 and \epsilon 2 = 0.3, the significant enhancement of the
intralayer synchrony is observed in Figures 7(c) and 7(d), respectively. Here the enlargement
of the synchronization regions occurs due to the increased values of the intralayer coupling
strength of one layer.

Note that the combined effect of the speedy rewiring links and the higher values of the
intralayer coupling strength leads to the enlargement of the intralayer synchrony domains and
shrinking the desynchronized regions.
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Figure 7. MLE of the transverse error system in the (\epsilon 1, pr) parameter plane for (a) \epsilon 2 = 0.15, (b) \epsilon 2 = 0.2,
(c) \epsilon 2 = 0.25, and (d) \epsilon 2 = 0.3. Other parameters are dsw = 4, pws = 0.1, and \lambda = 1.0.

Similarly, in Figure 8, we investigate the influence of the probability psw of the small-world
network and its interaction strength \epsilon 2 on the emergence of the intralayer synchronization
states. The synchronized and desynchronized regions in Figure 8 are measured through the
MSF characterization by considering several specific values of the intralayer coupling constants
\epsilon 1 = 0.0, 0.015, 0.03, and 0.045 in Figures 8(a)--(d). Here also the synchronization region
is dominated for higher values of the intralayer coupling values. Also, for sufficiently fast
rewiring, links in the hypernetwork and larger values of \epsilon 1,2 give rise to reducing the small-
world probability against the intralayer coupling strength for the intralayer synchronization
states.

7. Conclusions and future problems. In this paper, we have carried out a detailed analy-
sis of the stability of the complete intralayer synchronization properties in a time-varying
multiplex hypernetwork. The main result of this paper specifically builds on the concept of
the fast-switching stability criterion and the MSF approach. Using the fast-switching stability
criterion, we show the following.

If a dynamical hypernetwork in a multiplex structure possesses intralayer synchronization
in the static time-average network topology, then for a sufficiently fast switching case, each
layer of the time-varying multiplex hypernetwork will also be synchronized.

So the stability of intralayer synchronization for a specific averaged system implies the
stability of original systems for sufficiently fast switching. Using the master stability frame-
work, the stability condition of this state is derived analytically and we generalize the results
in the time-varying network architecture in terms of a time-average network.
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Figure 8. Variation of the MLE of the transverse error system for (a) \epsilon 1 = 0.0, (b) \epsilon 1 = 0.015, (c)
\epsilon 1 = 0.03, and (d) \epsilon 1 = 0.045. Other parameters are dsw = 4, pr = 0.015, and \lambda = 1.0.

For verification of the analytical results, we have considered the paradigmatic chaotic
R\"ossler oscillator as nodal dynamics of the hypernetwork and found that our numerical results
are perfectly matched with our obtained analytical conditions. Finally, we have explored our
proposed mechanism on the effect of the coupling strength after the existence of the synchro-
nization manifold. The stability of intralayer synchronization in the time-varying multilayer
hypernetwork is also derived. We try to make progress towards developing a general approach
to study the stability of intralayer synchronization of time-varying multilayer hypernetwork
architecture. Further, by numerical experiments, we have shown that the spectrum of the
time-average graph Laplacian together with the MSF formalism works well to accurately pre-
dict intralayer synchronization. The synchrony concept of this multiplex hypernetwork offers
studying a large variety of complex systems, including mobile networks, ecological networks,
neural networks, and many natural phenomena, where the time-varying features are typical.

The interplay between multilayer structure and dynamics still remains unexplored. Espe-
cially the study of synchronization under temporal network architecture remains in infancy. In
the future, the stability of the intralayer synchronization state in temporal multilayer hyper-
networks for nonfast rewiring may be studied. For this, the nonfast stability criterion which
was recently developed [18, 37] can be used. The global stability of the intralayer synchro-
nization in the temporal multilayer networks in the presence of different interaction tiers is
also an interesting problem and may be studied further.

Appendix A. Proof of corollaries.

Proof of Corollary 4.3. Since the time-average Laplacian matrices \=L [\alpha ], \alpha = 1, 2, . . . ,M,
are real symmetric, their eigenvalues are all real and each of them can be diagonalizable over
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the field \BbbR by the orthogonal basis of eigenvectors V [\alpha ].
Additionally, there exists a time-average Laplacian (say \=L [1]) which commutes with all

other time-average Laplacians. So \=L [1] and \=L [\alpha ] share a common eigenspace. In other words,
they have the common orthogonal basis of eigenvectors, i.e., V [1] = V [\alpha ] for all \alpha = 1, 2, . . . ,M .
Hence, all the matrices \=L [\alpha ] can be simultaneously diagonalizable by V [1]. So from (4.7), we

obtain V [1] - 1 \=L [\alpha ]V [1] = diag
\bigl\{ 
0 < \gamma 

[\alpha ]
2 \leq \gamma 

[\alpha ]
3 \leq \cdot \cdot \cdot \leq \gamma 

[\alpha ]
\mathrm{N}

\bigr\} 
.

Therefore, all the terms of the transverse equations (4.8b), (4.8d) become block-diagonal.
So their stability is equivalent to the stability of the uncoupled systems,
(A.1)

\.\eta 
(\bfw )
Ti

= JF1(x0)\eta 
(\bfw )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i JG[1]

\alpha (x0)\eta 
(\bfw )
Ti

+ \lambda 
\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
Ti

+DH1(x0,y0)\eta 
(\bfz )
Ti

\Bigr] 
,

\.\eta 
(\bfz )
Ti

= JF2(y0)\eta 
(\bfz )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i JG[2]

\alpha (y0)\eta 
(\bfz )
Ti

+ \lambda 
\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
Ti

+DH2(y0,x0)\eta 
(\bfw )
Ti

\Bigr] 
,

i \in N2. So we are now able to decouple the effect of the coupling function from the structure
of the network. Since the Jacobians of the functions are evaluated at the synchronization
state, they are the same for each block. For each i, the form of the entire equation is the same

but only differs by the scalar multiplier \epsilon \alpha \gamma 
[\alpha ]
i .

Proof of Corollary 4.4. From the hypothesis, we have each layer of the multiplex hyper-
network consisting of two tiers. Between these two tiers, the eigenvalues of the Laplacian
matrix of one tier (say \=L [1]) are 0 with algebraic multiplicity 1 and \=a with algebraic multi-
plicity N  - 1. In addition, \=L [1] is diagonalizable, i.e.,

V [1] - 1 \=L [1]V [1] = diag = \{ 0, \=a, \=a, . . . , \=a\underbrace{}  \underbrace{}  
(N - 1) \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

\} .

We have

V [1] - 1 \=L [2]V [1] =

\Biggl[ 
0 \=U

[2]
1

ON - 1\times 1
\=U
[2]
2

\Biggr] 
.

Now the transverse error dynamics can be rewritten as

(A.2)

\.\eta 
(\bfw )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfw )
T  - 

\Bigl[ 
\epsilon 1\=aIN - 1 \otimes JG

[1]
1 (x0) + \epsilon 2 \=U

[2]
2 \otimes JG

[1]
2 (x0)

\Bigr] 
\eta 
(\bfw )
T

+\lambda 
\Bigl[ 
IN - 1 \otimes JH1(x0,y0)\eta 

(\bfw )
T + IN - 1 \otimes DH1(x0,y0)\eta 

(\bfz )
T

\Bigr] 
,

\.\eta 
(\bfz )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfz )
T  - 

\Bigl[ 
\epsilon 1\=aIN - 1 \otimes JG

[2]
1 (y0) + \epsilon 2 \=U

[2]
2 \otimes JG

[2]
2 (y0)

\Bigr] 
\eta 
(\bfz )
T

+\lambda 
\Bigl[ 
IN - 1 \otimes JH2(y0,x0)\eta 

(\bfz )
T + IN - 1 \otimes DH2(y0,x0)\eta 

(\bfw )
T

\Bigr] 
.

Here \=U
[2]
2 is a square matrix of order N  - 1. Let V

[2]
2 be a matrix of eigenvectors of the matrix

\=U
[2]
2 . Also, V

[2] - 1

2
\=U
[2]
2 V

[2]
2 = S[2] is an upper triangular matrix. Now, again projecting the

transverse error components onto the eigenspace of \=U
[2]
2 , we have \zeta 

(\bfw )
T =

\bigl( 
V

[2]
2 \otimes Id

\bigr)  - 1
\eta 
(\bfw )
T
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and \zeta 
(\bfz )
T =

\bigl( 
V

[2]
2 \otimes Id

\bigr)  - 1
\eta 
(\bfz )
T . Then the new projected transverse error system can be written

as

(A.3)

\.\zeta 
(\bfw )
Ti

= JF1(x0)\zeta 
(\bfw )
Ti

 - 
\Bigl[ 
\epsilon 1\=aJG

[1]
1 (x0)\zeta 

(\bfw )
Ti

+ \epsilon 2
N - 1\sum 
j=i

S[2]JG
[1]
2 (x0)\zeta 

(\bfw )
Tj

\Bigr] 
+\lambda 

\Bigl[ 
JH1(x0,y0)\zeta 

(\bfw )
Ti

+DH1(x0,y0)\zeta 
(\bfz )
Ti

\Bigr] 
,

\.\zeta 
(\bfz )
Ti

= JF2(y0)\zeta 
(\bfz )
Ti

 - 
\Bigl[ 
\epsilon 1\=aJG

[2]
1 (y0)\zeta 

(\bfz )
Ti

+ \epsilon 2
N - 1\sum 
j=i

S[2]JG
[2]
2 (y0)\zeta 

(\bfz )
Tj

\Bigr] 
+\lambda 

\Bigl[ 
JH2(y0,x0)\zeta 

(\bfz )
Ti

+DH2(y0,x0)\zeta 
(\bfw )
Ti

\Bigr] 
,

i = 1, 2, . . . , N  - 1. Again, if \=U
[2]
2 is a real symmetric matrix, S[2] will become a diagonal

matrix whose diagonal elements are the eigenvalues of \=U
[2]
2 , say \nu 1, \nu 2, . . . , \nu N - 1. Accordingly,

(A.3) becomes N  - 1 decoupled equations
(A.4)
\.\zeta 
(\bfw )
Ti

= JF1(x0)\zeta 
(\bfw )
Ti

 - 
\Bigl[ 
\epsilon 1\=aJG

[1]
1 (x0) + \epsilon 2\nu iJG

[1]
2 (x0)

\Bigr] 
\zeta 
(\bfw )
Ti

+ \lambda 
\Bigl[ 
JH1(x0,y0)\zeta 

(\bfw )
Ti

+DH1(x0,y0)\zeta 
(\bfz )
Ti

\Bigr] 
,

\.\zeta 
(\bfz )
Ti

= JF2(y0)\zeta 
(\bfz )
Ti

 - 
\Bigl[ 
\epsilon 1\=aJG

[2]
1 (y0) + \epsilon 2\nu iJG

[2]
2 (y0)

\Bigr] 
\zeta 
(\bfz )
Ti

+ \lambda 
\Bigl[ 
JH2(y0,x0)\zeta 

(\bfz )
Ti

+DH2(y0,x0)\zeta 
(\bfw )
Ti

\Bigr] 
for i = 1, 2, . . . , N  - 1.

Proof of Lemma 5.1. If the multilayer hypernetwork (5.1) starts evolving with the in-
tralayer synchronization state at time t = t0, then xi(t0) = x0 and yi(t0) = y0 for all i \in N1.
Then the velocities of the node i in both of the layers at t = t0 are

(A.5)

\.xi(t0) = F1(x0) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

L
[1,\alpha ]
ij (t0)G

[1]
\alpha (x0) + \lambda 

N\sum 
j=1

B
[1]
ij H1(x0,y0)

= F1(x0) + \lambda e
[1]
i H1(x0,y0),

\.yi(t0) = F2(y0) - 
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

L
[2,\alpha ]
ij (t0)G

[2]
\alpha (y0) + \lambda 

N\sum 
j=1

B
[2]
ij H2(y0,x0)

= F2(y0) + \lambda e
[2]
i H2(y0,x0).

To maintain the intralayer synchronization state, each individual layer should evolve syn-
chronously. Therefore, the velocities of any two different nodes in layer-1 should be equal, i.e.,

\.xi(t0) = \.xk(t0) for all i, k \in N1. This yields e
[1]
i = e

[1]
k for each i, k \in N1. Hence, the interlayer

degree of each node in layer-1 should be equal (say e[1]).
Similarly, for the complete synchronous evolution of layer-2, we should have \.yi(t0) = \.yk(t0)

for all i, k \in N1. These yield e
[2]
i = e

[2]
k . Therefore, the interlayer degree of each node in layer-2

should be identical (say e[2]).

Proof of Corollary 5.5. By hypothesis, in the multilayer network architecture, the number
of tiers in each layer is one. The corresponding intralayer adjacency matrix \=L [1] has the set
of eigenvalues

\{ 0, \=a, \=a, . . . , \=a\underbrace{}  \underbrace{}  
(N - 1) \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

\} .
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Thus,

\=U
[1]
2 = diag\{ \=a, \=a, . . . , \=a\underbrace{}  \underbrace{}  

(N - 1) \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

\} ,

also given that the interlayer adjacency matrices are equal, i.e., B[1] = B[2]. Therefore, we
have that the constant interlayer degree of the nodes in both of the two layers are equal,
i.e., e[1] = e[2] = e (say). The eigenvalues of this common interlayer adjacency matrix are

e,\Gamma 2,\Gamma 3, . . . ,\Gamma N . Moreover, we have U
[1]
3 = U

[2]
3 = U3 (say).

Then, in vectorial form, the transverse error system reduces as

(A.6)

\.\eta 
(\bfw )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfw )
T  - \epsilon 1\=aIN - 1 \otimes JG

[1]
1 (x0)\eta 

(\bfw )
T

+\lambda 
\Bigl[ 
eIN - 1 \otimes JH1(x0,y0)\eta 

(\bfw )
T + U3 \otimes DH1(x0,y0)\eta 

(\bfz )
T

\Bigr] 
,

\.\eta 
(\bfz )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfz )
T  - \epsilon 1\=aIN - 1 \otimes JG

[2]
1 (y0)\eta 

(\bfz )
T

+\lambda 
\Bigl[ 
eIN - 1 \otimes JH2(y0,x0)\eta 

(\bfz )
T + U3 \otimes DH2(y0,x0)\eta 

(\bfw )
T

\Bigr] 
.

As the interlayer adjacency matrices are symmetric, thus U3 is also a real symmetric
matrix of order N  - 1. Then it can be diagonalizable by its basis of eigenvectors. If V3 is the
matrix of eigenvectors of U3, then we can write V  - 1

3 U3V3 = diag\{ \Gamma 2,\Gamma 3, . . . ,\Gamma \mathrm{N}\} .
Again, by projecting the error components \eta 

(\bfw )
T and \eta 

(\bfz )
T on the eigenspace of U3, we have

the reprojected transverse error components \zeta 
(\bfw )
T =

\bigl( 
V

[2]
2 \otimes Id

\bigr)  - 1
\eta 
(\bfw )
T and \zeta 

(\bfz )
T =

\bigl( 
V

[2]
2 \otimes 

Id
\bigr)  - 1

\eta 
(\bfz )
T .

Observe that all the components of (A.6) are block-diagonal except the last one for both
of the subequations. But due to this projection that component for the first subequation of
(A.6) becomes\bigl( 

V3 \otimes Id
\bigr)  - 1\bigl( 

U3 \otimes DH1(x0,y0)
\bigr) \bigl( 
V3 \otimes Id

\bigr) 
= V  - 1

3 U3V3 \otimes DH1(x0,y0)
= diag\{ \Gamma 2,\Gamma 3, . . . ,\Gamma \mathrm{N}\} \otimes DH1(x0,y0).

Similarly, after this projection, the corresponding term for the second subequation of (A.6)
can be written as diag\{ \Gamma 2,\Gamma 3, . . . ,\Gamma \mathrm{N}\} \otimes DH2(y0,x0).

Now all the coupling terms of (A.6) are decoupled. The requiredN - 1 decoupled transverse
error system can be written in component form as
(A.7)

\.\zeta 
(\bfw )
Ti

= JF1(x0)\zeta 
(\bfw )
Ti

 - \epsilon 1\=aJG
[1]
1 (x0)\zeta 

(\bfw )
Ti

+ \lambda 
\Bigl[ 
eJH1(x0,y0)\zeta 

(\bfw )
Ti

+ \Gamma iDH1(x0,y0)\zeta 
(\bfz )
Ti

\Bigr] 
,

\.\zeta 
(\bfz )
Ti

= JF2(y0)\zeta 
(\bfz )
Ti

 - \epsilon 1\=aJG
[2]
1 (y0)\zeta 

(\bfz )
Ti

+ \lambda 
\Bigl[ 
eJH2(y0,x0)\zeta 

(\bfw )
Ti

+ \Gamma iDH2(y0,x0)\zeta 
(\bfw )
Ti

\Bigr] 
,

where i = 2, 3, . . . , N .

Appendix B. Nonlinear intralayer coupling function with multiplex hypernetwork archi-
tecture. The dynamics of the multiplex temporal hypernetwork with a nonlinear intralayer
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coupling function can be written as

(B.1)

\.xi = F1(xi) +
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

A
[1,\alpha ]
ij (t)G[1]

\alpha (xi,xj) + \lambda H1(xi,yi),

\.yi = F2(yi) +

M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

A
[2,\alpha ]
ij (t)G[2]

\alpha (yi,yj) + \lambda H2(yi,xi),

where i \in N1. G
[l]
\alpha : \BbbR d \times \BbbR d \rightarrow \BbbR d is the vector field of the output vectorial function within

the layers for tier \alpha .

Lemma B.1. For the dynamical multiplex hypernetwork (B.1) with nonlinear intralayer
coupling, the intralayer synchronization state will be an invariant state if the intralayer degrees
of each node in a particular layer are equal.

Proof. To find the condition of the invariance of the intralayer synchronization state, we
will determine in what condition if all oscillators in a particular layer start evolving with
identical initial conditions (i.e., xi(t0) = x0 and yi(t0) = y0 for i \in N1), their velocities will
also be identical (i.e., \.xi(t0) = \.xk(t0) and \.yi(t0) = \.yk(t0) for all i \not = k).

At the initial time t = t0 with layerwise identical initial conditions, the velocity of the ith
node for both of the layers becomes

(B.2)

\.xi(t0) = F1(x0) +
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

A
[1,\alpha ]
ij (t0)G

[1]
\alpha (x0,x0) + \lambda H1(x0,y0)

= F1(x0) +
M\sum 
\alpha =1

\epsilon \alpha d
[1,\alpha ]
i (t0)G

[1]
\alpha (x0,x0) + \lambda H1(x0,y0),

\.yi(t0) = F2(y0) +
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

A
[2,\alpha ]
ij (t0)G

[2]
\alpha (y0,y0) + \lambda H2(y0,x0)

= F2(y0) +

M\sum 
\alpha =1

\epsilon \alpha d
[2,\alpha ]
i (t0)G

[2]
\alpha (y0,y0) + \lambda H2(y0,x0).

Therefore, for two different nodes i and k in layer-1, their velocities will follow \.xi(t0) = \.xk(t0)

if and only if d
[1,\alpha ]
i (t0) = d

[1,\alpha ]
k (t0) for arbitrary intralayer coupling function G

[1]
\alpha (xi,xj).

Similarly, due to the arbitrary intralayer coupling function G
[2]
\alpha (yi,yj) in layer-2, \.yi(t0) =

\.yk(t0) holds if and only if d
[2,\alpha ]
i (t0) = d

[2,\alpha ]
k (t0).

Therefore, for the invariance of the intralayer synchrony, the intralayer degree of each node
should be identical for the nonlinear-type coupling functions. However, the intralayer degree
of each node in two different layers may differ.

So, for the intralayer synchronization to exist, the in-degree for each node corresponding
to each tier in both of the layers should be equal for all time instants t. Diverse in-degree of
the nodes is unfavorable for complete synchronization when the coupling function is nonlinear.
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We will further assume that the in-degree of the node under tier-\alpha is time-invariant, i.e.,

(B.3)

N\sum 
j=1

A
[l\alpha ]
ij (t) = d[\alpha ], l = 1, 2, \alpha = 1, 2, . . . ,M \forall t \in \BbbR +.

Let x0 and y0 be the state vectors for intralayer synchronous solutions for layer-1 and
layer-2, respectively. The dynamics of this synchronization manifold become

(B.4)

\.x0 = F1(x0) +
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]G[1]

\alpha (x0,x0) + \lambda H1(x0,y0),

\.y0 = F2(y0) +
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]G[2]

\alpha (y0,y0) + \lambda H2(y0,x0).

If \delta xi(t) and \delta yi(t) are the small perturbations of the ith node, respectively, for layer-1 and
layer-2 around intralayer synchronous solutions, then the dynamics of the error system can
be written in vectorial form as
(B.5)

\delta \.x = IN \otimes JF1(x0)\delta x+
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
IN \otimes JG[1]

\alpha (x0,x0) + IN \otimes DG[1]
\alpha (x0,x0)

\Bigr] 
\delta x

 - 
M\sum 
\alpha =1

\epsilon \alpha L [1,\alpha ](t)\otimes DG[1]
\alpha (x0,x0)\delta x+ \lambda 

\Bigl[ 
IN \otimes JH1(x0,y0)\delta x+ IN \otimes DH1(x0,y0)\delta y

\Bigr] 
,

\delta \.y = IN \otimes JF2(y0)\delta y +
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
IN \otimes JG[2]

\alpha (y0,y0) + IN \otimes DG[2]
\alpha (y0,y0)

\Bigr] 
\delta y

 - 
M\sum 
\alpha =1

\epsilon \alpha L [2,\alpha ](t)\otimes DG[2]
\alpha (y0,y0)\delta y + \lambda 

\Bigl[ 
IN \otimes JH2(y0,x0)\delta y + IN \otimes DH2(y0,x0)\delta x

\Bigr] 
,

where JG
[l]
\alpha (x0,x0) =

\partial G
[l]
\alpha (\bfx ,\bfy )
\partial \bfx | (\bfx ,\bfy )=(\bfx 0,\bfx 0), DG

[l]
\alpha (x0,x0) =

\partial G
[l]
\alpha (\bfx ,\bfy )
\partial \bfy | (\bfx ,\bfy )=(\bfx 0,\bfx 0) and \delta x(t) =

[\delta x1(t)
tr, \delta x2(t)

tr, . . . , \delta xN (t)tr]tr and \delta y(t) = [\delta y1(t)
tr, \delta y2(t)

tr, . . . , \delta yN (t)tr]tr are the collec-
tion of perturbations of all oscillators. Then \=L [\alpha ] is the time-average matrix of the temporal
Laplacian matrix L [l,\alpha ](t), l = 1, 2, \alpha = 1, 2, . . . ,M .

Lemma B.2. If d[\alpha ] is the constant in-degree of each node for tier-\alpha for all times t in both

of the layers, then \=L
[\alpha ]
ii = d[\alpha ].

Although the proof of this lemma is trivial, we provide it nonetheless for the reader's
guidance.

Proof. Here d[\alpha ] is the constant in-degree of each node for the tier-\alpha for all times t in both
of the layers. Therefore,

N\sum 
j=1

A
[l\alpha ]
ij (t) = d[\alpha ] \Rightarrow L

[l,\alpha ]
ii (t) = d[\alpha ].
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Now \=L
[\alpha ]
ii = 1

T

\int t+T
t L

[l,\alpha ]
ii (\tau ) d\tau = d[\alpha ]. So d[\alpha ] is the average in-degree of each node in

tier-\alpha .

Lemma B.3. The time-average adjacency matrix for tier-\alpha in layer-l is

1

T

\int t+T

t
A [l,\alpha ](\tau ) d\tau = d[\alpha ]IN  - \=L [\alpha ].

We denote it by \=A [\alpha ].

Proof. Each component of the time-average adjacency matrix is

1

T

\int t+T

t
A

[l,\alpha ]
ij (\tau ) d\tau =

1

T

\int t+T

t

\Bigl[ 
d[\alpha ]\delta ij  - L

[l,\alpha ]
ij (\tau )

\Bigr] 
d\tau 

= d[\alpha ]\delta ij  - 
1

T

\int t+T

t
L

[l,\alpha ]
ij (\tau ) d\tau 

= d[\alpha ]\delta ij  - \=L
[\alpha ]
ij .

Hence, we have \=A [\alpha ] = d[\alpha ]IN  - \=L [\alpha ].

It is clear that like average Laplacian matrices, the adjacency matrices are also independent
of the layers due to the same topological structure of a particular tier for both of the layers.

The equation of motion of the time-static multiplex hypernetwork with these averaged
Laplacian matrices can be written as

(B.6)

\.wi = F1(wi) +

M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

\=A
[\alpha ]
ij G[1]

\alpha (wi,wj) + \lambda H1(wi, zi),

\.zi = F2(zi) +
M\sum 
\alpha =1

\epsilon \alpha 

N\sum 
j=1

\=A
[\alpha ]
ij G[2]

\alpha (zi, zj) + \lambda H2(zi,wi).

It is clear that the equation of motions of the intralayer synchronous manifolds for time-
varying and time-average networks are same. Therefore, for the time-average system (B.6),
the state vectors for the intralayer synchronization are x0(t) and y0(t), respectively, for layer-1
and layer-2, with equation of motion (B.4).

Considering the error vectors \delta w and \delta z for layer-1 and layer-2, respectively, their dynam-
ics can be written as
(B.7)

\delta \.w = IN \otimes JF1(x0)\delta w +
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
IN \otimes JG[1]

\alpha (x0,x0) + IN \otimes DG[1]
\alpha (x0,x0)

\Bigr] 
\delta w

 - 
M\sum 
\alpha =1

\epsilon \alpha \=L [\alpha ] \otimes DG[1]
\alpha (x0,x0)\delta w + \lambda 

\Bigl[ 
IN \otimes JH1(x0,y0)\delta w + IN \otimes DH1(x0,y0)\delta z

\Bigr] 
,

\delta \.z = IN \otimes JF2(y0)\delta z+
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
IN \otimes JG[2]

\alpha (y0,y0) + IN \otimes DG[2]
\alpha (y0,y0)

\Bigr] 
\delta z

 - 
M\sum 
\alpha =1

\epsilon \alpha \=L [\alpha ] \otimes DG[2]
\alpha (y0,y0)\delta z+ \lambda 

\Bigl[ 
IN \otimes JH2(y0,x0)\delta z+ IN \otimes DH2(y0,x0)\delta w

\Bigr] 
.
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To decompose the error vectors \delta w(t) and \delta z(t) into parallel and transverse modes, we project

the error vectors onto the matrix of the eigenvectors V [1] of \=L [1] corresponding to tier-1. Then

the Schur transformations \eta (\bfw ) =
\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta w and \eta (\bfz ) =

\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta z yield (B.7) as

(B.8)

\.\eta (\bfw ) = IN \otimes JF1(\bfx 0)\eta 
(\bfw ) +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]

\Bigl[ 
IN \otimes JG[1]

\alpha (\bfx 0,\bfx 0) + IN \otimes DG[1]
\alpha (\bfx 0,\bfx 0)

\Bigr] 
\eta (\bfw )

 - 
M\sum 

\alpha =1

\epsilon \alpha 
\Bigl( 
V (1) - 1 \=L [\alpha ]V (1)

\Bigr) 
\otimes DG[1]

\alpha (\bfx 0,\bfx 0)\eta 
(\bfw ) + \lambda 

\Bigl[ 
IN \otimes JH1(\bfx 0,\bfy 0)\eta 

(\bfw ) + IN \otimes DH1(\bfx 0,\bfy 0)\eta 
(\bfz )

\Bigr] 
,

\.\eta (\bfz ) = IN \otimes JF2(\bfy 0)\eta 
(\bfz ) +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]

\Bigl[ 
IN \otimes JG[2]

\alpha (\bfy 0,\bfy 0) + IN \otimes DG[2]
\alpha (\bfy 0,\bfy 0)

\Bigr] 
\eta (\bfz )

 - 
M\sum 

\alpha =1

\epsilon \alpha 
\Bigl( 
V (1) - 1 \=L [\alpha ]V (1)

\Bigr) 
\otimes DG[2]

\alpha (\bfy 0,\bfy 0)\eta 
(\bfz ) + \lambda 

\Bigl[ 
IN \otimes JH2(\bfy 0,\bfx 0)\eta 

(\bfz ) + IN \otimes DH2(\bfy 0,\bfx 0)\eta 
(\bfw )

\Bigr] 
.

Considering the transverse components \eta 
(\bfw )
T , \eta 

(\bfz )
T \in \BbbC (N - 1)d for \eta (\bfw ) and \eta (\bfz ), respectively,

and using the relation (4.7), the transverse components yield
(B.9)

\.\eta 
(\bfw )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfw )
T +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]

\Bigl[ 
IN - 1 \otimes JG[1]

\alpha (x0,x0) + IN - 1 \otimes DG[1]
\alpha (x0,x0)

\Bigr] 
\eta 
(\bfw )
T

 - 
M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
2 \otimes DG[1]

\alpha (x0,x0)\eta 
(\bfw )
T + \lambda 

\Bigl[ 
IN - 1 \otimes JH1(x0,y0)\eta 

(\bfw )
T + IN - 1 \otimes DH1(x0,y0)\eta 

(\bfz )
T

\Bigr] 
,

\.\eta 
(\bfz )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfz )
T +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]

\Bigl[ 
IN - 1 \otimes JG[2]

\alpha (y0,y0) + IN - 1 \otimes DG[2]
\alpha (y0,y0)

\Bigr] 
\eta 
(\bfz )
T

 - 
M\sum 
\alpha =1

\epsilon \alpha \=U
[\alpha ]
2 \otimes DG[2]

\alpha (y0,y0)\eta 
(\bfz )
T + \lambda 

\Bigl[ 
IN - 1 \otimes JH2(y0,x0)\eta 

(\bfz )
T + IN - 1 \otimes DH2(y0,x0)\eta 

(\bfw )
T

\Bigr] 
.

Considering \zeta a(t) =
\bigl[ 
\eta 
(\bfw )
T

tr
\eta 
(\bfz )
T

tr\bigr] tr
, the above equation can be written as

(B.10) \.\zeta a(t) =

\Biggl[ 
A(t) +

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
\=E
[\alpha ]
1 \otimes DG[1]

\alpha (x0,x0) + \=E
[\alpha ]
2 \otimes DG[2]

\alpha (y0,y0)
\Bigr) \Biggr] 

\zeta a(t),

where

A(t) =

\Biggl[ 
A11(t) \lambda IN - 1 \otimes DH1(x0,y0)

\lambda IN - 1 \otimes DH2(y0,x0) A22(t)

\Biggr] 
,

A11(t) = IN - 1 \otimes JF1(x0) +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl\{ 
IN - 1 \otimes JG[1]

\alpha (x0,x0) + IN - 1 \otimes DG[1]
\alpha (x0,x0)

\Bigr\} 
+ \lambda IN - 1 \otimes JH1(x0,y0),

A22(t) = IN - 1 \otimes JF2(y0) +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl\{ 
IN - 1 \otimes JG[2]

\alpha (y0,y0) + IN - 1 \otimes DG[2]
\alpha (y0,y0)

\Bigr\} 
+ \lambda IN - 1 \otimes JH2(y0,x0),

and \=E
[\alpha ]
1 =

\Biggl[ 
\=U
[\alpha ]
2 ON - 1\times N - 1

ON - 1\times N - 1 ON - 1\times N - 1

\Biggr] 
, \=E

[\alpha ]
2 =

\Biggl[ 
ON - 1\times N - 1 ON - 1\times N - 1

ON - 1\times N - 1
\=U
[\alpha ]
2

\Biggr] 
.
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Considering the same change of variables for the error dynamics (B.5) corresponding to the

temporal network, the error vector
\bigl( 
\delta x, \delta y

\bigr) 
transforms as \eta (\bfx ) =

\bigl( 
V [1] \otimes Id

\bigr)  - 1
\delta x and \eta (\bfy ) =\bigl( 

V [1] \otimes Id
\bigr)  - 1

\delta y, and its equation of motion transforms as
(B.11)

\.\eta 
(\bfx )
T = IN - 1 \otimes JF1(\bfx 0)\eta 

(\bfx )
T +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]

\Bigl[ 
IN - 1 \otimes JG[1]

\alpha (\bfx 0,\bfx 0) + IN - 1 \otimes DG[1]
\alpha (\bfx 0,\bfx 0)

\Bigr] 
\eta 
(\bfx )
T

 - 
M\sum 

\alpha =1

\epsilon \alpha U
[1,\alpha ]
2 (t)\otimes DG[1]

\alpha (\bfx 0,\bfx 0)\eta 
(\bfx )
T + \lambda 

\Bigl[ 
IN - 1 \otimes JH1(\bfx 0,\bfy 0)\eta 

(\bfx )
T + IN - 1 \otimes DH1(\bfx 0,\bfy 0)\eta 

(\bfy )
T

\Bigr] 
,

\.\eta 
(\bfy )
T = IN - 1 \otimes JF2(\bfy 0)\eta 

(\bfy )
T +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]

\Bigl[ 
IN - 1 \otimes JG[2]

\alpha (\bfy 0,\bfy 0) + IN - 1 \otimes DG[2]
\alpha (\bfy 0,\bfy 0)

\Bigr] 
\eta 
(\bfy )
T

 - 
M\sum 

\alpha =1

\epsilon \alpha U
[2,\alpha ]
2 (t)\otimes DG[2]

\alpha (\bfy 0,\bfy 0)\eta 
(\bfy )
T + \lambda 

\Bigl[ 
IN - 1 \otimes JH2(\bfy 0,\bfx 0)\eta 

(y)
T + IN - 1 \otimes DH2(\bfy 0,\bfx 0)\eta 

(\bfx )
T

\Bigr] 
.

Now decomposing these transformed error dynamics into parallel and transverse directions,

the dynamics of the transverse error components \zeta d(t) =
\bigl[ 
\eta 
(x)
T

tr
\eta 
(y)
T

tr\bigr] tr
become

(B.12) \.\zeta d(t) =

\Biggl[ 
A(t) +

M\sum 
\alpha =1

\epsilon \alpha 

\Bigl( 
E

[\alpha ]
1 (t)\otimes DG[1]

\alpha (x0,x0) + E
[\alpha ]
2 (t)\otimes DG[2]

\alpha (y0,y0)
\Bigr) \Biggr] 

\zeta a(t),

where

A(t) =

\Biggl[ 
A11(t) \lambda IN - 1 \otimes DH1(x0,y0)

\lambda IN - 1 \otimes DH2(y0,x0) A22(t)

\Biggr] 
,

A11(t) = IN - 1 \otimes JF1(x0) +
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl\{ 
IN - 1 \otimes JG[1]

\alpha (x0,x0) + IN - 1 \otimes DG[1]
\alpha (x0,x0)

\Bigr\} 
+ \lambda IN - 1 \otimes JH1(x0,y0),

A22(t) = IN - 1 \otimes JF2(y0) +
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl\{ 
IN - 1 \otimes JG[2]

\alpha (y0,y0) + IN - 1 \otimes DG[2]
\alpha (y0,y0)

\Bigr\} 
+ \lambda IN - 1 \otimes JH2(y0,x0),

and E
[\alpha ]
1 (t) =

\Biggl[ 
U

[1,\alpha ]
2 (t) ON - 1\times N - 1

ON - 1\times N - 1 ON - 1\times N - 1

\Biggr] 
, E

[\alpha ]
2 (t) =

\Biggl[ 
ON - 1\times N - 1 ON - 1\times N - 1

ON - 1\times N - 1 U
[2,\alpha ]
2 (t)

\Biggr] 
.

Now clearly 1
T

\int t+T
t E

[\alpha ]
l (\tau ) d\tau = \=E

[\alpha ]
l , l = 1, 2.

Therefore, by Lemma 2.3, the time-varying network (B.1) possesses the intralayer synchro-
nization whenever the corresponding time-average static network (B.6) has an asymptotically
stable intralayer synchronization solution. So the stability of the intralayer synchronization for
both the time-varying and the time-average systems is also equivalent for nonlinear intralayer
coupling functions.

In this context, our required transverse MSE being (B.9), it cannot be further reduced to a
low-dimensional form. To find the necessary and sufficient conditions for the local stability of
the intralayer coherence, we have to calculate all the Lyapunov exponents of this 2d(N  - 1)-
dimensional equation. The negative Lyapunov exponents give the signature of the stable
intralayer coherence state.
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Remark B.4. For this multiplex time-varying hypernetwork with a nonlinear intralayer
coupling function, the linearized equation parallel to the synchronization manifold can be
written as

(B.13)

\.\eta 
(\bfw )
P = JF1(x0)\eta 

(\bfw )
P +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[1]

\alpha (x0,x0) +DG[1]
\alpha (x0,x0)

\Bigr] 
\eta 
(\bfw )
P

+\lambda 
\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
P +DH1(x0,y0)\eta 

(\bfz )
P

\Bigr] 
,

\.\eta 
(\bfz )
P = JF2(y0)\eta 

(\bfz )
P +

M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[2]

\alpha (y0,y0) +DG[2]
\alpha (y0,y0)

\Bigr] 
\eta 
(\bfz )
P

+\lambda 
\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
P +DH2(y0,x0)\eta 

(\bfw )
P

\Bigr] 
,

where \eta 
(\bfw )
P , \eta 

(\bfz )
P \in \BbbR d.

The dimensional reduction of the transverse error components can further be possible for
a few special cases. We illustrate these in the next two corollaries.

Corollary B.5. Among all the time-average intralayer Laplacians, if one commutes with
all others and all are symmetric, then the transverse error dynamics can be decoupled as a
2d-dimensional N  - 1 number of systems.

Proof. Without loss of any generality, first assume that \=L [1] commutes with \=L [\alpha ] for all
\alpha = 2, 3, . . . ,M . Moreover, by hypothesis, \=L [\alpha ] is real symmetric for all \alpha .

Then there exists a matrix V [1] that consists of a common orthogonal basis of eigen-
vectors, such that \=L [\alpha ] can be simultaneously diagonalizable by V [1]. Therefore, we have

V [1] - 1 \=L [\alpha ]V [1] = diag
\bigl\{ 
0, \gamma 

[\alpha ]
2 , \gamma 

[\alpha ]
3 , . . . , \gamma 

[\alpha ]
\mathrm{N}

\bigr\} 
. Thus, commutative and symmetric Laplacians

make \=U [\alpha ] a diagonal matrix for all \alpha . Consequently, we have \=U
[\alpha ]
2 = diag

\bigl\{ 
\gamma 
[\alpha ]
2 , \gamma 

[\alpha ]
3 , . . . , \gamma 

[\alpha ]
\mathrm{N}

\bigr\} 
.

Hence, all the terms of the transverse error system (see (B.9)) of the time-average system
become block-diagonal. So its stability is equivalent to the stability of the 2d-dimensional
N  - 1 independent systems

(B.14)

\.\eta 
(\bfw )
Ti

= JF1(x0)\eta 
(\bfw )
Ti

+
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[1]

\alpha (x0,x0) +DG[1]
\alpha (x0,x0)

\Bigr] 
\eta 
(\bfw )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i DG[1]

\alpha (x0,x0)\eta 
(\bfw )
Ti

+ \lambda 
\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
Ti

+DH1(x0,y0)\eta 
(\bfz )
Ti

\Bigr] 
,

\.\eta 
(\bfz )
Ti

= JF2(y0)\eta 
(\bfz )
Ti

+
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[2]

\alpha (y0,y0) +DG[2]
\alpha (y0,y0)

\Bigr] 
\eta 
(\bfz )
Ti

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
i DG[2]

\alpha (y0,y0)\eta 
(\bfz )
Ti

+ \lambda 
\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
Ti

+DH2(y0,x0)\eta 
(\bfw )
Ti

\Bigr] 
for i \in N2.
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Among these (N  - 1) transverse equations, the least stable eigendirection becomes

(B.15)

\.\eta 
(\bfw )
T2

= JF1(x0)\eta 
(\bfw )
T2

+
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[1]

\alpha (x0,x0) +DG[1]
\alpha (x0,x0)

\Bigr] 
\eta 
(\bfw )
T2

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
2 DG[1]

\alpha (x0,x0)\eta 
(\bfw )
T2

+ \lambda 
\Bigl[ 
JH1(x0,y0)\eta 

(\bfw )
T2

+DH1(x0,y0)\eta 
(\bfz )
T2

\Bigr] 
,

\.\eta 
(\bfz )
T2

= JF2(y0)\eta 
(\bfz )
T2

+
M\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[2]

\alpha (y0,y0) +DG[2]
\alpha (y0,y0)

\Bigr] 
\eta 
(\bfz )
T2

 - 
M\sum 
\alpha =1

\epsilon \alpha \gamma 
[\alpha ]
2 DG[2]

\alpha (y0,y0)\eta 
(\bfz )
T2

+ \lambda 
\Bigl[ 
JH2(y0,x0)\eta 

(\bfz )
T2

+DH2(y0,x0)\eta 
(\bfw )
T2

\Bigr] 
.

So for the bidirectional intralayer network, if the family of average Laplacian matrices com-
mutes, then the MSE becomes 2d-dimensional equations.

Corollary B.6. Let the multiplex hypernetwork consist of two bidirectional tiers in each
layer. Among the two corresponding time-average Laplacian matrices, one has eigenvalue zero
with algebraic multiplicity one and \=a with algebraic multiplicity N  - 1. Then the transverse
error system can be decoupled as 2d-dimensional N  - 1 systems.

Proof. Given that M = 2, \=L [1] and \=L [2] are both symmetric. Without loss of any
generality, assume that the set of eigenvalues of \=L [1] is

\{ 0, \=a, \=a, . . . , \=a\underbrace{}  \underbrace{}  
(N - 1) \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

\} .

Then we have
V [1] - 1 \=L [1]V [1] = diag\{ 0, \=a, \=a, . . . , \=a\underbrace{}  \underbrace{}  

(N - 1) \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

\} ,

which yields
\=U
[2]
2 = \{ \=a, \=a, . . . , \=a\underbrace{}  \underbrace{}  

(N - 1) \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

\} .

Then, in vectorial form, the transverse error dynamics can be written as
(B.16)

\.\eta 
(\bfw )
T = IN - 1 \otimes JF1(x0)\eta 

(\bfw )
T +

2\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
IN - 1 \otimes JG[1]

\alpha (x0,x0) + IN - 1 \otimes DG[1]
\alpha (x0,x0)

\Bigr] 
\eta 
(\bfw )
T

 - 
\Bigl[ 
\epsilon 1\=aIN - 1 \otimes DG

[1]
1 (x0,x0) + \epsilon 2 \=U

[2]
2 \otimes DG

[1]
2 (x0,x0)

\Bigr] 
\eta 
(\bfw )
T

+\lambda 
\Bigl[ 
IN - 1 \otimes JH1(x0,y0)\eta 

(\bfw )
T + IN - 1 \otimes DH1(x0,y0)\eta 

(\bfz )
T

\Bigr] 
,

\.\eta 
(\bfz )
T = IN - 1 \otimes JF2(y0)\eta 

(\bfz )
T +

2\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
IN - 1 \otimes JG[2]

\alpha (y0,y0) + IN - 1 \otimes DG[2]
\alpha (y0,y0)

\Bigr] 
\eta 
(\bfz )
T

 - 
\Bigl[ 
\epsilon 1\=aIN - 1 \otimes DG

[2]
1 (y0,y0) + \epsilon 2 \=U

[2]
2 \otimes DG

[2]
2 (y0,y0)

\Bigr] 
\eta 
(\bfz )
T

+\lambda 
\Bigl[ 
IN - 1 \otimes JH2(y0,x0)\eta 

(\bfz )
T + IN - 1 \otimes DH2(y0,x0)\eta 

(\bfw )
T

\Bigr] 
.
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Here \=U
[2]
2 is a real symmetric matrix of order N  - 1. Let V

[2]
2 be the matrix of orthog-

onal eigenvectors and \{ \nu 1, \nu 2, . . . , \nu N - 1\} be the set of eigenvalues of the matrix \=U
[2]
2 . Then

V
[2]
2

 - 1
\=U
[2]
2 V

[2]
2 = diag\{ \nu 1, \nu 2, . . . , \nu \mathrm{N} - 1\} .

Again, projecting the transverse error components on the eigenspace of \=U
[2]
2 , we have the

further projected components \zeta 
(\bfw )
T =

\bigl( 
V

[2]
2 \otimes Id

\bigr)  - 1
\eta 
(\bfw )
T and \zeta 

(\bfz )
T =

\bigl( 
V

[2]
2 \otimes Id

\bigr)  - 1
\eta 
(\bfz )
T . This

transformation yields our required block-diagonal transverse error system as
(B.17)

\.\zeta 
(\bfw )
Ti

= JF1(x0)\zeta 
(\bfw )
Ti

+

2\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[1]

\alpha (x0,x0) +DG[1]
\alpha (x0,x0)

\Bigr] 
\zeta 
(\bfw )
Ti

 - 
\Bigl[ 
\epsilon 1\=aDG

[1]
1 (x0,x0) + \epsilon 2\nu iDG

[1]
2 (x0,x0)

\Bigr] 
\zeta 
(\bfw )
Ti

+ \lambda 
\Bigl[ 
JH1(x0,y0)\zeta 

(\bfw )
Ti

+DH1(x0,y0)\zeta 
(\bfz )
Ti

\Bigr] 
,

\.\zeta 
(\bfz )
Ti

= JF2(y0)\zeta 
(\bfz )
Ti

+

2\sum 
\alpha =1

\epsilon \alpha d
[\alpha ]
\Bigl[ 
JG[2]

\alpha (y0,y0) +DG[2]
\alpha (y0,y0)

\Bigr] 
\zeta 
(\bfz )
Ti

 - 
\Bigl[ 
\epsilon 1\=aDG

[2]
1 (y0,y0) + \epsilon 2\nu iDG

[2]
2 (y0,y0)

\Bigr] 
\zeta 
(\bfz )
Ti

+ \lambda 
\Bigl[ 
JH2(y0,x0)\zeta 

(\bfz )
Ti

+DH2(y0,x0)\zeta 
(\bfw )
Ti

\Bigr] 
,

where i = 1, 2, . . . , N  - 1.

The possible applications of the above corollary are similar to Remarks 4.5 and 4.6.
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