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The sensitivity that defines chaotic dynamics makes accessible a wide

range of behaviors using arbitrarily small control signals. “Controlling chaos”

attempts to cause large changes in the dynamics using only small perturbations.

In targeting, one attempts to find a fast path from an initial condition a to a

target point b by exploiting the fact that transport times for a chaotic system are

highly sensitive to initial conditions and parameter values. The main difficulty

is finding the switching points, the times and places to apply judiciously chosen

perturbations.

I present a new technique to find rough orbits (epsilon chains) that

rapidly achieve a desired transport. The strategy is to build the epsilon chain

from segments of a long orbit. In two-dimensional maps, long orbits have recur-

rences in neighborhoods where faster orbits must also pass. Long orbits of higher

dimensional maps are likely to have recurrences, albeit less frequently. The re-

currences are used as switching points between segments. If a local hyperbolicity

condition is satisfied, then a nearby shadow orbit might be constructed.

In one example, I show that transport times for the standard map

can typically be reduced by a factor of 104. In another example, I apply the

technique to the restricted three-body problem from which I find a low energy

Earth-Moon transfer orbit which requires 38% less characteristic velocity than

a comparable Hohmann transfer orbit.

In yet another example, a symbol dynamics model has a closed-form

expression for the optimal transporting orbit from near a to near b. I compare
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the optimal orbit to the targeted orbit resulting from removing recurrences,

which also takes a particularly simple form in symbol dynamics.

The techniques developed here do not require a closed-form represen-

tation of the map. Using the standard map as an example, I demonstrate that

predictions from a time series may be sufficient for targeting.

Finally, as a contribution to the understanding of barriers in high-

dimensional Hamiltonian maps, I present a technique to investigate the breakup

of invariant tori with fixed frequency of a four-dimensional generalization of the

complex, semi-standard map.
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0.1 Forward

In this thesis I present techniques to exploit the sensitivity that defines

chaotic systems. Small, well-placed controlling perturbations in chaos can often

suffice for a wide range of system states. Locally calculating control perturba-

tions requires the application of standard linear control theory. Since control

signals are typically small, the methodology of “controlling chaos” is the collec-

tion of techniques that selectively chooses amongst nearby behaviors which are

concatenated to best exploit the available dynamics.

“Targeting” is the task of finding small control perturbations to rapidly

direct an orbit to a specified system state using the nonlinear nature of the

dynamics. Targeting may be described as having three aspects:

1. Local calculations to choose the correct perturbations to alter the dy-

namics.

2. An information data set formed from a long pre-study or observation

period in which observed orbit segments are recorded and organized for

quick access in the form of a library of known behaviors.

3. A general understanding of the transport mechanisms typical of chaotic

dynamical systems.

Hamiltonian dynamics are particularly difficult to target because par-

tial barriers layer the phase space into resonance regions with slow average trans-

port between resonances. In this sense, there is an “order” in the “chaos”. Pre-

vious techniques have been unable to find paths through such layered phase

spaces due to difficulty in finding orbit segments between distinct layers. The

targeting technique of this thesis excels in identifying the switching points at the
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recurrences in turnstiles between layers; such identification proves particularly

effective in improving slow transport.

The organization of this thesis is outlined below. Chapter 1.1 reviews

previous work in chaos control. In Chapter 1.2, I discuss known chaotic transport

mechanisms, a definition of the term “barrier”, a description of the homoclinic

tangle in two dimensions. Chapter 1 closes with a numerical demonstration of

the localization implied by transport across a barrier in the standard map.

In Chapter 2, a numerical experiment demonstrates that transport

across a barrier in the Hénon map can be performed solely by monitoring ac-

tivity in the barrier’s small turnstile. This demonstration is followed by the

technique which constitutes a major part of this thesis: “Controlling Chaotic

Transport through Recurrence.” I argue that localization of a transporting or-

bit across a barrier can distinguish slow orbits from fast orbits and identifies

the control switching points. An inefficient orbit typically crosses a barrier sev-

eral times, while an efficient orbit crosses only once. Thus a recurrence in the

turnstile during successive crossings identifies an inefficient orbit. By removing

(frequently long) recurrent loops a locally efficient orbit may be created. Loops

may be removed by shooting at the orbit’s stable manifold after the recurrence

from the unstable manifold of the orbit before the recurrence, hence constructing

a shadow orbit. This targeting technique is demonstrated for the standard map,

for which we show at least a factor of four improvement over the numerically

calculated average transport rate. The reliance on hyperbolicity of construct-

ing a shadow orbit is discussed We numerically investigate this reliance in the

“chaotic” region accessible to our starting point a and target point b by testing

if the stable and unstable directions are bounded away from zero. Chapter 2

closes with a modification of the control algorithm can be readily modified for
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targeting on the fly using small parameter perturbations, which we demonstrate

by numerical experiment.

In Chapter 3, we apply the control algorithm of the previous chapter

to the planar restricted three-body problem. This has been shown to be a good

first-order model of a spacecraft in the Earth-Moon system. After deriving the

time-independent two degrees-of-freedom Hamiltonian and equations of motion

we investigate dynamical properties of the flow which is restricted to a three-

dimensional submanifold. Numerical integration of these equations is nontrivial

because they are stiff near the singularities. Performing a Poincaré section yields

an area preserving map in two dimensions. The resonance layered phase space

structure of the restricted three body problem is qualitatively similar to that

of the standard map. Hence, the targeting problem is like that of the standard

map. We also discuss the special issue of finding the most stable and unstable

directions in the full four-space, correctly restricted to the surface of section.

The chapter is concluded by numerically demonstrating a new chaotic orbit

from a parking orbit around the Earth to a Moon-orbiting KAM circle which

requires only small transfer manoeuvres. The chaotic orbit requires 38% less

characteristic velocity when compared to a classical Hohmann transfer orbit.

Chapter 4 is devoted to finding a closed form solution to the optimal

control problem of transport in a horseshoe map model dynamics. We write

the closed form optimal transfer orbit between a given starting point a and

target point b to specified precision which we then compare to a closed-form

path calculated by the technique in Chapter 2. We find that our targeted path

is nonoptimal, but nonetheless good. Finally, we discuss the applicability of the

model.

In Chapter 5 we discuss control where a global model is not available,
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but a large data set of observed iterates can be substituted to make nearby pre-

dictions. The goal is to control chaotic dynamics using only a map reconstructed

by a delay embedding of an experimental time series. First we review the tech-

nique of time series embedding. Then we formulate the equations required to

least-squares fit a local affine model for nearest-neighbor prediction. Numerical

results are presented for the standard map targeting problem where moderate

success is demonstrated. We close the chapter with a discussion of the serious

limitations of conceivable computer resources presented by increasing dimension.

Chapter 6 represents a contribution to the understanding of barriers

and their breakup in higher-dimensional Hamiltonian dynamics. We compute

the domain of existence of two-dimensional invariant tori with fixed frequency

vectors for a four-dimensional, complex, symplectic map. The map is a gen-

eralization of the semi-standard map studied by Greene and Percival. It has

three parameters: a1 and a2 represent the strength of the kicks in each degree

of freedom, and ε represents the coupling. The domain of existence of a torus

in (a1, a2) is shown to be complete and log-convex for fixed k = ε
a1a2

. Explicit

bounds on the domain for fixed k are obtained. Numerical results show that

quadratic irrationals can be more robust than the cubic irrational, “the spiral

mean”.

Finally, there are several further explanations and directions for future

research presented in the appendices. In particular, the orbit-restriction method

is presented as an alternative technique to shooting from the unstable manifold

to the stable manifold. It uses the action of a pseudo-orbit to relax the entire

orbit patch simultaneously. Shooting between higher-dimensional manifolds is

also investigated along with a discussion of Bennitin’s algorithm for constructing

higher-dimensional stable and unstable manifolds. Lastly there is a discussion
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of the targeting technique which I presented as my thesis proposal: the de-

composition of the large targeting problem in the standard map into smaller

subproblems by targeting between switching points which can be found in the

turnstiles corresponding to “noble” cantori. After several months of difficulties,

I achieved a working solution to this approach just several hours before realizing

the more elegant and widely applicable solution of removing recurrences. The

last appendix contains this solution of my original approach, for completeness.



CHAPTER 1

INTRODUCTION

1.1 Using Chaos

Chaos in a nonlinear dynamical system is roughly defined as the pres-

ence of extreme sensitivity to perturbations. Specifically, this means that two

nearby initial conditions, can quickly part company to evolve along completely

separate and seemingly unassociated trajectories. This property seems to make

chaotic systems difficult to forecast, and hopeless to control. Historically, a

typical approach for predicting any dynamical system was to attempt to fit

global linear models, even if the basic dynamics were nonlinear (e.g., regression

analysis is still used widely today in many sciences). A control theorist, when

presented with a possibly chaotic system, would try to avoid the chaos either by

re-engineering all together or by making large and often costly changes in the

system using large perturbations. Generally, chaos was a pitfall.

This attitude has been changing. The very sensitivity of chaos presents

a unique opportunity not available to non-chaotic dynamics: a deliberate small

perturbation can result in drastically different system performance, often with

rapid response. Even if a budget restricts one to small perturbations, a slightly

perturbed initial condition can access virtually all phase space behaviors. Char-

acteristically, every small neighborhood of a given point in a chaotic region of

phase space contains points on orbits that will visit arbitrarily closely to all other

regions of chaotic and accessible phase space. Near any given point, orbits exist
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with drastically different behaviors and rates to destinations.

Controlling chaos is the exercise of encouraging the dynamics to follow

one particular behavior of its many regular behaviors. This is typically done

by first learning (i.e. recording by observation) the behaviors. Standard linear

control theory may then be applied locally near observed dynamical behavior.

In this way we can concatenate a pseudo-orbit from the library of observed data

by only small alterations to the dynamics. A pseudo-orbit1 which makes use of

the nonlinear aspects of the dynamics is achieved by keeping the control orbit

within the limit of validly applying linear control to the pre-recorded orbits.

Many practical uses of chaos control have already been achieved. These

include:

1. The synchronization of the output of chaotic electronic circuits [19].

2. The increase of the power output of a broad banded laser by selecting

the unstable frequency output peak [88].

3. A pacemaker which successfully stabilizes a periodic heart beat of a

rabbit with an arrhythmia (aperiodic heart beat) [36].

4. A technique for secure communications by encoded electronic messages

[43].

5. Maneuvering the spacecraft ISEE-3/ICE on an extremely limited fuel

budget more than fifty million miles across space to an otherwise impos-

sible comet rendezvous [32, 25].

1.1.1 Stabilization One of the major tools borrowed from tradi-

tional control theory is the linear feedback control loop. In this section I will
1A pseudo-orbit {zi} of a map T such that ‖T (zi) − zi+1‖ < ε, ∀i is defined an

ε-chain.
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present the well-known pole placement solution, and then the special solution

which is most useful to chaotic control.

We begin by constructing a Poincaré map from a flow

ż = Fk(z), z ∈ IRd+1, (1.1)

yielding a map

zn+1 = Tk(zn), z ∈ IRd. (1.2)

Note that I have explicitly written the dynamics in a form that expresses depen-

dence on an adjustable parameter k ∈ IR. We allow only small variations δkmax

around the nominal value k0.

I will describe stabilizing an unstable fixed point for ease of exposition.

The straightforward generalization to periodic points will be discussed at the

end of this section. Suppose the dynamics (1.2) has an unstable fixed point z∗k0

at the nominal parameter value. We will stabilize z∗k0
by adding a small forcing

term, known as a feedback gain, to (1.2). We linearize (1.2) near z∗k0
,

(zn+1 − z∗) = A · (zn − z∗) + δkB, (1.3)

where A = ∂Ti
∂zj

|z=z∗ is the d×d-dimensional Jacobian matrix and B = ∂Ti
∂k |k=k0

is the d × 1-dimensional matrix of parameter variations of the map. If a linear

time-dependence of the parameter k of the form

δk = −Kt · (zn − z∗), (1.4)

is assumed, in terms of a 1× d “feedback gain matrix” Kt, on substitution into

Eq. (1.3) we obtain

(zn+1 − z∗) = (A−B ·Kt) · (zn − z∗). (1.5)
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This is a linear transformation from a state zn near z∗ to the new state zn+1.

To stabilize z∗, we must choose K such that A−B ·Kt has eigenvalues

of modulus less than one. This is sufficient for Eq. (1.5) to be a contraction

mapping with stabilized fixed point z∗. The correct choice of the matrix K, and

the requirements on the original dynamics Eq. (1.2) such that the matrix ex-

ists, is the issue of “controllability” resolved by the well-known “pole placement

technique” from control theory [78].

We can uniquely choose K such that the eigenvalues (“poles”) of A−B ·

Kt have any specified values, with corresponding consequences to the stability

of the dynamics in Eq. (1.5), if and only if A and B satisfy the controllability

condition that the n× n matrix

C = [B|AB|...|An−1B], (1.6)

has full rank. If C is of sufficient rank we may determine K with Ackerman’s

formula [78] in terms of C, A, the original unaltered poles of A, and the desired

“regulator” poles of A−B ·Kt. Note that the “gain” matrix is fixed, indepen-

dently of zn, once z∗ and the regulator poles have been chosen. See Appendix

A.1 for further discussion of the pole placement technique and derivation of

Ackerman’s formula.

An immediate result of Eq. (1.4) is a description of the controllable

region around z∗ in terms of a maximum perturbation limit |δkmax|.

|δk| = |Kt · (zn − z∗)| < |δkmax|. (1.7)

This defines a region in which the limited perturbation still allows the desired

stabilizing poles, but only in terms of a linear theory. For large δkmax, a lineariza-

tion of Eq. (1.2) can break down. However, this type of control has been success-

fully used in conjunction with the technique of E. Ott, C. Grebogi, and J. Yorke
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[79], commonly known as “OGY” control. Their technique has been demon-

strated in many examples, including stabilization of points in the Hénon map

and in the double rotor (see [86]).

A special case of pole placement applies when the stability matrix at z∗

has a hyperbolic structure, as is common for chaotic systems. A periodic point

z∗ is defined as hyperbolic if the tanget manifold of the map T at z∗ (given by

the Jacobian matrix A) has a decomposition into stable and unstable subspaces,

identified Es and Eu. That is, there is no center space, Ec. These subspaces are

defined by the eigenvalues and eigenvectors of A as follows:

Es ≡ {z : z ∈
⊕

i vs,i where vs,i correspond to |λs,i| < 1},

Eu ≡ {z : z ∈
⊕

i vu,i where vu,i correspond to |λu,i| > 1},

Ec ≡ {z : z ∈
⊕

i vc,i where vc,i correspond to |λc,i| = 1}.

For a hyperbolic point, a natural choice for the regulator poles is to

cause the λs to remain unaltered, and the λu to become 0. This was the choice

made in the original OGY paper [79]. For this special case, it is possible to derive

the necessary perturbations to the original dynamics by geometric arguments. I

will describe this derivation below for a simple model in which Es and Eu are

both one-dimensional. The generalization to higher dimensions will be described

briefly at the end of this section.

For this simplified model, we assume a change of coordinates so as to

cause z∗k0
= 0 and k0 = 0. Again, we linearize Eq. (1.2) near the unstable fixed

point z∗k0=0, but this time we do not explicitly include the variations in the

parameter:

(zn+1 − z∗δk) ≈ A · (zn − z∗δk). (1.8)
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The matrix A may be written in the form

A = λuûfu + λsŝfs, (1.9)

where û and ŝ are the stable and unstable unit eigenvectors corresponding to

the eigenvalues λu > 1 and λs < 1. fu and fs are the contravariant basis vectors

defined by fu · û = fs · ŝ = 1 and fu · ŝ = fs · û = 0.

Since there is only one unstable direction, we generically need only one

control parameter δk. Hence, B is an n×1 matrix, which may be approximated

by

B ≡ ∂T

∂k
|k=0 ≈

z∗δk

δk
, (1.10)

for small δk.

We need to choose the adjustable parameter’s perturbation δk that

causes zn to iterate onto the stable direction of z∗0. The vector û(z∗0) lies in the

stable subspace Es(z∗0), which, in turn, approximates the full stable manifold

W s(z∗0) close to z∗0. Once zn+1 = Tδk(zn) lies on the stable manifold of z∗0 at

k = 0, applying T0 causes future iterates to march exponentially towards z∗0.
2

We may write the geometric statement that zn+1 has zero component in the

unstable direction:

fu · zn+1 = 0. (1.11)

figure=pic1.eps,height=3.5in

Figure 1.1. A geometric interpretation of local stabilizing control of a hyperbolic
fixed point. Variations δk of the control parameter cause movement of the fixed
point, which can be placed to cause the point zn to iterate onto the stable
manifold of the fixed point at the original parameter value.

2Actually, small errors, included in the linearization, require that the stabilization
control be frequently reapplied.
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Fig. (1.1) displays parameter variations which effectively cause the

fixed point under the new parameter value to move to where zn will iterate

onto Es(z∗0).

Substituting Eqs. (1.10) and (1.9) into (1.8) and dotting with zn+1

yields the expression for the parameter perturbation:

δk =
λu

(λu − 1)
zn · fu

B · fu

. (1.12)

From this equation, quickly follows an expression for the size of the

“capture window” parallelogram, based on the maximum allowed perturbation

δkmax.

‖zn‖ ≤ δkmax|(1−
1
λu

)B · f |. (1.13)

Geometrically, this describes a situation similar to “jiggling” a horse

saddle to balance a ball-bearing near the moving unstable fixed point.

To derive a higher-dimensional version of Eq. (1.12) we require neu-

tralization of all unstable vectors spanning Eu(z∗
k0

). This can be done in one step

if m variations of the available control parameters span the m-dimensional un-

stable subspace Eu(z∗
k0

). Alternately, if the variation of the single parameter has

a component in each of the unstable directions, we can perform the control in

m iterations by neutralizing one unstable direction at a time. This is discussed

more fully in Appendix A.4.

Both of these methods of stabilizing control are also readily applicable

to unstable orbits which are not necessarily fixed points. A period p point can be

controlled by applying the above techniques to the fixed point of the composed

map T p. However, this is not a stable solution for long periods p, since control

is only possible every pth step [86]. A better alternative is to successively cause

iterates of zn to land on the stable manifold of the corresponding iterates of
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zk0 . The appropriate equations of the parameter perturbations are found in an

analogous fashion to the above. In fact, such a derivation also works when the

goal is to stabilize an open ended orbit which is not necessarily periodic. We

will see in Chapter 2 that for an open-ended path, it is easier to stabilize by the

equivalent technique of shooting at the (future) stable manifold of the path.

We do not need to have an analytic model of a physical system to apply

these techniques. All the necessary quantities z,fu, and, B are accessible from

a time series through time-delay embedding [1, 80]. Delay embedding offers the

laboratory experimenter, who can measure only one of the system variables,

the full dynamics, but in a transformed coordinate system. Further discussion

on delay coordinates can be found in Sec. 5.2. In Sec. 5.3, I will explain the

technique of Eckmann and Ruelle [26] to predict the Jacobian matrix allowing

only observed dynamics.

It may seem surprising that the stability of the d-dimensional dynamics

can be so easily altered. We resolve this issue by considering the dimension of the

phase space in which the dynamics takes place. The dynamics of z are defined on

a d-dimensional hyperplane with fixed k. This is a codimension one slice of the

augmented d + 1-dimensional space (z, k). The controlled dynamics is defined

on the d + 1-dimensional parameter extended space, whose dynamics effectively

includes shifting up or down the stack of constant k sheets, as governed by

Eq. (1.12).

1.1.2 The OGY Technique The most famous application of chaos

control is the OGY technique [79]. An earlier paper due to A.M. Bloch and

J.E. Marsden [10] outlines a similar strategy. The goal is to stabilize an un-

stable periodic orbit of the map (1.2) using only small parameter perturbations
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δk ≤ δkmax. The first step is to find the periodic orbit (perhaps numerically)

experimentally by an averaging process near recurrences, thus closing the re-

current loop. Alternately, the constructive closing lemma, referred to again in

Sec. 2.2.1, is applicable.

In addition to finding the periodic points, we need to collect data cor-

responding to unstable directions and parameter derivatives as called for by

Eq. (1.12). By definition, a chaotic attractor has embedded within it an infi-

nite number of unstable points [86]. Unstable periodic orbits are dense in the

attractor and have important implications for the attractor’s ergodic properties.

Most chaotic orbits (accessible to z∗) eventually enter the capture win-

dow. The idea is to choose any initial condition, on the chaotic attractor, in

the subset of phase space accessible to the periodic point. There is a typically

long, chaotic transient for the orbit to enter the control window described by

Eq. (1.13). Once within reach, the orbit can be controlled by applying formula

(1.12). The global control program δkn has the form

δkn =


k0 if ‖zn − z∗k0

‖ > δkmax|(1− 1
λu

)B · û|
λu

λu−1
zn·fu

B·fu

otherwise
. (1.14)

Hence, an important point is that the global control strategy relies only

on the inherent, chaotic properties of the dynamical system that cause the orbit

to wander into the control window. The only active control is local. Thus the

only information needed, besides the knowledge that the dynamics is chaotic, is

local (derivative) information at z∗. This technique is particularly accessible to

laboratory experiments, since only limited data must be collected.

The technique is robust to system noise. The complication is that

unaccounted for perturbations can cause the captured orbit to be kicked outside
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the control window. The probability of being kicked out of the control window

is a function of the ratio of noise amplitude to control window size. An orbit lost

by a noise perturbation can be reacquired, after a possibly lengthy wait, just as

any other initial condition is acquired.

An important feature of the control scheme is the acquisition time of an

initial condition to wander into the neighborhood of z∗, which is unbounded as

δkmax → 0. At any given iteration, the probability of falling within the control

window is approximately the natural measure of the window on the uncontrolled

chaotic attractor [28].

Transport in an area preserving map is particularly slow; it proceeds

only algebraically, due roughly to the “stickiness” effect of resonant island chains.

A point initially near a KAM surface has a survival probability, F (t), asymp-

totic to t−z, that the point will still be near the surface at large time t [42, 71].

We therefore say that, in the presence of KAM surfaces, we find long correla-

tions and, hence, roughly a power law decay. This contrasts to the exponential

spreading expected on a typical chaotic attractor. See Sec. 2.2.6 for further

discussion.

Hence, we have the potential for unacceptably long transients, and

so we are lead to search for more active target acquisition techniques. These

techniques will use the full nonlinear aspects of the dynamics. The cost of using

the full nonlinear structure of the dynamics is a much higher overhead on learning

time and information storage.

1.1.3 Targeting Stabilization, in its various forms, is always a

local issue. If, however, a system starts unacceptably far from the “to be sta-

bilized” state, global issues become important. In the previous section, we saw
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that the OGY technique avoids the full brunt of this global problem by using

the fact that a chaotic orbit will densely fill a chaotic phase space. This solu-

tion is costly in that the initial transient may be extremely long, (see [11, 52]),

and in particular, Hamiltonian transport is extremely slow. Nonetheless, an ad-

vantage of the OGY technique is that only knowledge about the stabilization

neighborhoods is needed.

In a chaotic system, small perturbations can steer an orbit to a desired

state where it can be stabilized. The time optimal control problem for a chaotic

dynamical system is known as “targeting”. A new targeting solution is one of

the main objectives of this thesis.3 The goal of targeting is to steer a dynamical

system from near an initial condition a to near the target b in the shortest time

possible. Since the objective is to use only small perturbations, the target is

basically achieved within variations on the dynamic’s original behaviors. This is

an important contrast to other techniques of control which may resort to large

alterations in the dynamics to achieve that goal.

There are several different approaches to targeting, but they all have

certain common characteristics. A typically long, global pre-study of the chaotic

dynamics is required to learn “what goes where.” For this reason, we can only

hope to apply these methods to a compact attractor. The cost of targeting is

the increased knowledge needed, and pre-processing time. The payoff is that

transients are drastically reduced by choosing the best orbit segments amongst

those stored in the “library” of already observed dynamics.

Targeting starts with a map which may be in the form of Eq. (1.2),

possibly having been derived from a flow such as in Eq. (1.1). The problem is

3In the literature, simply improving transport time is commonly called “targeting”
[94]; no optimal solution is discussed.
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to find an initial condition za near a starting point a and a control strategy {ki}

that will cause the point to iterate near a target point b as quickly as possible,

using only small perturbations. Thus, with ε > 0 and ∆ > 0 given, we wish to

minimize the cost function

I({ki},za) ≡ n, (1.15)

where n is the first time that

zb = [Πn−1
i=0 ◦ Tki

](za) ∈ Bε(b), (1.16)

subject to the constraints

‖ki − k0‖ < ∆, za ∈ Bε(a). (1.17)

The epsilon ball around a is defined by Bε(a) ≡ {z : ‖z−a‖ < ε}. Minimization

of I with respect to the constraints is the minimum-time control problem [46,

102]. In general, the minimum of I occurs not at a fixed value of k, but for a

sequence of parameter values {ki}n
i=1.

I will now briefly review several techniques that have been applied to

this problem. The first technique of targeting is by T. Shinbrot et. al [92], which

can be illustrated with the following simple example from their paper. Consider

the logistic map

zn+1 = Tk(zn) = kzn(1− zn), (1.18)

with a nominal parameter value k0 = 3.9, and starting point a = z1 = 0.4. The

goal is to reach a neighborhood of the target zn = b = 0.8 as quickly as possible

by varying k in the range 3.8 to 4.0. After one iteration of the entire range

k ∈ [3.8, 4.0], we can have the second iterate in the interval z2 ∈ [0.91, 0.96]. Only

a single perturbation is needed for this example, so all subsequent iterations are

made at the parameter ki set to the nominal value 3.9. Now we iterate the entire
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interval of possible z2’s, which grows to z3 ∈ [0.15, 0.31]. On the third iterate,

we find z4 ∈ [0.5, 0.84]. Since this range of third iterates of z1 brackets the target

b = 0.8, we are done. The value of k ∈ [3.8, 4.0], which iterates directly to b, can

be found by Newton’s method.4

The lesson learned here is that the small perturbation quickly grows to

fill the compact phase. As we will see, the fact that the phase space was only

one-dimensional plays a large part in making targeting so simple.

This technique can be made to allow for noise, or small modeling errors,

by retargeting at each step along the way. Shinbrot et al. [91] successfully applied

their technique, in a laboratory experiment, to a time series derived model of

the dynamics of a magnetoelastic ribbon with a varying Young’s modulus. Their

time series allowed for a one-dimensional model, and so targeting was similar to

targeting the logistic map. In their experiments, small noise and modeling errors

were present and unavoidable. They improved typical orbits, which required 500

iterations, to an average of 20 iterations.

Now we will see some of the complications that arise from generalizing

the technique to two dimensions [93]. First note that it is no longer typical for

za = a and zb = b. For the moment, we will continue to restrict ourselves to

a single initial-parameter perturbation. Even though one perturbation does not

typically yield an optimal I, there may nonetheless exist a δk ∈ [−δkmax, δkmax]

which iterates to within ε of b faster than the original map. As before, the

answer can be found by testing the entire possible range of δk, on the computer.

The first iteration of a for the range of possible one-dimensional param-

eter perturbations results in the line segment5 δzmax = T[k0−kmax,k0+kmax](a),

4Zeroing Tk0(Tk0(Tk(a))) = b as a function of k is straightforward once the number
of iterates needed is known. For the above example, k0 + δk = 3.83189...

5only when δkmax � 1
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represented by a grid on k. The length of the vector δzmax, the phase space

variation due to the small parameter perturbation range 2δkmax, can be approx-

imated

‖δzmax‖ ≈ 2
∂T

∂k
|(z∗,k0)δk. (1.19)

The parameter is now returned to k0, and the entire interval is iterated.

The interval quickly grows in length6 and becomes curved.7 When, on the nth

iterate, the interval intersects the ε ball around b, we may find the δk in the

allowed range, since n is now known.

One of the problems with this technique comes from the fact that we

are attempting to fill two-dimensional space with a line. We will see this prob-

lem again. Another problem comes from representing the perturbation with a

grid, which makes the exponential growth, necessary to quickly fill the space, a

problem.

Consider that if m points representing the grid have ‖δz‖ = ‖δzmax‖
m

spacing between each point after the first iteration, then after n iterations, the

space between grid points grows roughly according to the Lyapunov number

λn‖δz‖. (1.20)

If the phase space is of order one, we see that

n ≈ − ln δz

lnλ
(1.21)

is the number of iterations required for the typical distance between grid points

to grow to the size of the entire phase space. Hence, exponentially more grid

points are required, as the number of iterations increases, to maintain a minimum
6The growth rate is approximately exponential according to the largest Lyapunov

exponent.
7Typically, we will see folds which are one of the ingredients of chaos.
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useful distance between the grid points. This distance should be at least 2ε to

resolve the intersection with Bε(b). Thus we can solve for the number of grid

points, m, required at the first iteration:

m ≈ ‖δzmax‖
2ε

λn. (1.22)

By simultaneously back-iterating the target ball Bε(b) using the in-

verse map,8 the situation can be improved by a factor of two. If the resulting

improved time from a to b is still large, the need to store the entire grid be-

comes restrictive.9 The whole grid must be stored and evolved because, all grid

points are equally likely candidates to intersect the target neighborhood. We

can see that the technique, though plausible, would be quite difficult in higher

dimensions.

The above technique attempts to find a faster path from start to finish

by storing all possible alternatives along the way. This is brute-force and requires

a lot of computer memory. The following alternative technique attempts to find

a balance between knowing all orbits and using the chaos to “forget” the lack of

information.

For higher-dimensional dynamics, filling the phase space with all pos-

sible alternatives, to bracket the best one, is impractical. The statement follows

by considering that a unit hyper box requires a cover of typically N = ε−d balls

of radius ε. E. Kostelich et al. [51] realized that for a higher-dimensional system,

they could not hope to find enough orbits to choose the best. Instead, they set
8The ball quickly stretches along the direction of the maximum Lyapunov exponent

of T−1, which is in fact the minimum Lyapunov exponent along the forward orbit T .
9In Sec. 2.2.7, we will see an example for the standard map where, for k=1.25, we

find an orbit which is n=131 steps long. For this parameter value, λ ≈ 1.2 and so
λ131 ∼ 1010. For an initial segment ‖zmax‖ = 0.1 (this is large in an order one phase
space), according to Eq. (1.22), we require m ≈ 1010 grid points for a final average
intergrid spacing ‖δz‖ ∼ 0.05.
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out a net of known paths leading to the target b. The chaotic nature of the

dynamics guarantees that the orbit of a will eventually wander into a neighbor-

hood of the known paths. In this sense, the technique is similar to OGY, except

that control is activated if the test orbit falls within the control window of any

one of the points in the network’s data set, compared to monitoring a single

OGY window.

Kostelich’s net is organized in a tree hierarchy defined so that there is

a set of paths that lead to a set of paths, etc., that lead to the predetermined

target point b. This tree is stored as a library of known paths. The tree branches

provide a set of epsilon chains leading to b (pseudo-orbits which miss being exact

orbits by a small phase space error at the junctions).

The first step in building the tree, in their example, requires (arbitrar-

ily) a path of 20 iterates, from anywhere, to near b. Searching for a point from

anywhere to near b, rather than fixing the starting point near a, tremendously

reduces the difficulty of the problem. Such paths could be found by using the

inverse map, when available. Alternately, one could wait for a random initial

condition to eventually iterate close enough to b, and then store only the last

20 iterates. This transient is a necessary part of the long pre-study typical of

targeting. This 20 step path represents the first level (or trunk) of the tree.

The second level of the tree consists of 20 step paths which lead to near

any one of the 20 points on the first level, and can be found as described above.

Once an nth level has been found, the (n + 1)th level can be found by keeping

the last 20 iterates of a randomly chosen orbit leading to any one of the points

on an nth branch. Of course, if an orbit leads first to an earlier branch, it should

be stored in the appropriate level of the tree.

The hope is that once the tree has been built, a significant portion of



22

the phase space will be within only a few iterates from one of the branches. Then,

just as in the OGY technique, we again rely on chaos when patiently waiting for

a given real time initial condition to wander into the realm of known behaviors.

In the OGY technique, the known behaviors only consist of a small box around

the target point b. The idea here is that if there are enough branches, then any

arbitrary initial condition a will rapidly iterate close to the tree. Once there, it

could be stabilized to reach b.

The “thickness” of the branches (i.e. the size of the control windows

around each point of the tree) depends on the size of the maximum allowed

parameter perturbation δkmax. Once a real time orbit (a “test orbit”) wanders

close to any point on the tree, it can be stabilized on the fly onto the known

path by the techniques described in Sec. 1.1.1. Specifically, the authors use an

open-ended path technique Eq. (A.40) similar to the on the fly control described

in Sec. 2.2.2.

Notice that, unlike previous techniques, Kostelich allows for a pro-

gram of parameter perturbations, {ki}, starting at the switching points between

branches and continuing beyond for stabilization. The switching points and

branches however are independent of the starting point a. It is possible for a

and b to be in regions of phase space separated by (perhaps many) “partial

barriers”10. In such a situation, the branches of the tree may be confined to b’s

section of phase space, hence offer little improvement of transport from a’s sec-

tion of phase space. This sort of complication will be addressed in later sections

of this thesis, specifically with regard to Hamiltonian maps.

In the example presented by Kostelich, the authors successfully tar-

geted the kicked double rotor map, which is a four-dimensional version of the

10These structures will be described in Sec. 1.2.2.
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coupled dissipative standard map. They built a three level tree consisting of 104

points on 500 paths leading to b. Once within stabilization range of any of the

104 points, b is guaranteed to be within 60 iterates. Stabilization was achieved

by parameter perturbations whenever the test point wandered within 0.05 of

the tree.11 They found that they needed an average of only 35 iterates to target

their example b, in contrast to the 1011 iterates they argued would be required

without control.

Dimension is an important aspect in targeting. It dictates the amount

of information, represented by the already observed orbits in the pre-study, re-

quired to cover a compact attractor. The dimension of the chaotic attractor is

germane. For the kicked double rotor, the attractor dimension is approximately

2.8. An ergodicity assumption implies that a large number of iterates of the orbit

can be described approximately as being uniformly distributed with respect to

the ergodic measure.12 Therefore, the average distance between nearest neigh-

bors on a subset of N points on the attractor scales as N−1/2.8. This indicates

the number of points in the library required to adequately fill the space. It also

describes the number of iterations required for a test orbit to wander near an

N point library by considering the probability that the test orbit does not land

near any one point of the N points on a given iteration.

The final technique of targeting I will describe involves dividing the

global dynamics into cell maps. The objective is to learn the dynamics by

putting it on a grid, and refining where detail is needed. A complete description

of how to learn a dynamical system using a grid analysis can be found in the

book by C. Hsu [45].

11The phase space of the double rotor is a (2π × IR)× (2π × IR) 2-cylinder.
12Specifically, a dynamics is defined as ergodic if there exists a measure such that the

phase space averages of orbits are equal to the time averages of the orbit.
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Transitions rules between the cells are similar to those of a Markov

tree model [71] where, instead of probabilities of transitions, only 0’s or 1’s,

representing “yes” and “no”, occupy the matrix of allowed transitions between

states. Once we categorize the parameter extended dynamics,

zn+1 = T (zn,k), (1.23)

into corresponding cell maps, we can choose a final path by using segments of

the possible trajectories, for the recorded parameter values, represented by cell

sequences of the cell map. We can represent an entire epsilon-chain orbit by

a sequence of cells (at the switching points) where each cell represents a true

trajectory.13 Note that learning the dynamics of Eq. (1.23) on a grid does not

necessarily require availability of an analytic form of the map. Again, time

series embedding of observed data can replace Eq. (1.23), making the technique

applicable to real systems.

In this framework, there are typically a huge number of permutations

of cell orbits14 between a given a cell and b cell. Hence, finding the optimum

cell path involves more than simply choosing the fastest from a finite list. A

technique of finding a “highway system” of orbits is described by E. Bradley

[15], where the search is broken into a hierarchy of paths, first from the vicinity

of a to the vicinity of b (the major highway), and then from a vicinity of a (and

also b) to the vicinity of the major highway (the secondary roads), etc., until

sufficient refinement has been achieved.

This technique also requires a high overhead pre-study to completely

classify the dynamics into discrete cells. Nonetheless, it has proven successful

13The trajectory represented by a cell is that of the point contained in its center.
14Allowing cycles generates an infinite number of orbits.
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for targeting a variety of systems [15], including experimental chaotic circuits,

an experimental pendulum, and the Lorenz system.

1.2 Transport Through Chaos

Control of chaos attempts to make use of only the available dynamics,

since only small controls are allowed. This means that targeting is a transport

issue when we look for pseudo orbits extending from near a to near b. In

this section, after a few preliminaries, I will discuss chaotic transport, to better

address the targeting problem. Transport is best understood for chaotic maps

of the plane, which I will explain in some detail. Further detail can be found

in the book by S. Wiggins devoted to the topic [104] or in the review article by

J.D. Meiss [70]. Some of the ideas are applicable to higher-dimensional maps as

well. We will see that a crucial part of understanding transport across a barrier

is defining the term “barrier.”

1.2.1 Preliminaries and the Basic Transport Mechanism First

recall the map from Eq. (1.2), which is an example of a dynamical system. Define

a map T as a function of a differential manifold back into itself. To understand

transport, we will restrict the discussion to continuous dynamical systems of

orientable manifolds.15 The reason for this will become clear shortly. In addi-

tion, we will discuss orientation preserving maps, which are so defined, in terms

of the tangent map DT |z , if det(DT |z) > 0,∀z. We can also develop trans-

port mechanisms for other types of maps, such as orientation reversing maps

(det(DT |z) < 0,∀z), as long as the property is consistent.

Two-dimensional transport is particularly well understood and will be
15Two-dimensional, orientable manifolds include the plane, the sphere, and the torus,

but not the Klein bottle or the Mobius strip. (Q: Why did the chicken cross the Mobius
strip? A: To get to the same side.)
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the subject of most of this discussion. A two-dimensional map can, as usual,

result from a flow on a three-dimensional manifold. I will start by presenting

the following example. Given a Jordan curve C enclosing a region A, we want to

investigate the relative orientation of forward and backward iterations of these

sets (see Fig. (1.2a)). There are four basic types of iterations:

1. T (A) ∩A is empty.

2. T (A) is completely contained in A.

3. A is completely contained in T (A).

4. T (A) ∩ A is nonempty and neither set is completely contained in the

other.

I choose to illustrate the final variety because it is typical of the “nice” barriers

we will define in the next section. For example, if there exists a fixed point z∗

on C, then T (C) ∩ C 6= ∅. Similarly, a fixed point z∗ ∈ A is sufficient, but not

necessary.

figure=figabcd.eps,width=6.0in

Figure 1.2. a: Jordan curve C enclosing a region A. b: The first iterates of C
and A, intersect C and A respectively. c: The region B = T (A) − T (A) ∩ A
contains all points which will enter A on one application of the inverse map. d:
The region Ex = T−1(B) contains all the points in A which will leave A upon
one application of the map, and hence will be called the “exit region.” e: The
“entrance region”, En = T−1(A) − T−1(A) ∩ A, contains all points which will
enter A upon one iteration of the map.

To define the subset of A that leaves A on one iteration of the map,

consider the first iterate of the curve, T (C), enclosing T (A). This is drawn in

Fig. (1.2b), illustrating the fourth of the four possible orientations above. Notice

in particular the region B = T (A) − T (A) ∩ A, shaded in Fig. (1.2c). The set
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B contains all those points that left A after one iteration. Alternately, it is the

set that will enter A in one iteration of the inverse map T−1. Thus, B defines

the entrance set of T−1. In this sense, we can say that the points in B cross the

barrier C.

The inverse iterate of B is shown in Fig. (1.2d), and is labeled Ex =

T−1(B). Ex is the subset of A that will leave A on one iteration of T and hence

is called the exit set. The only way for an orbit initially contained in A to leave

A is for an iterate of the orbit to land in Ex. The map moves all the contents of

Ex outside the closed curve on each iteration.

We may similarly construct the entrance set En outside of C, which is

defined as T−1(A)−T−1(A)∩A. It is the set outside of C which is moved inside

of C on each iteration. It is the only way in, across C.

In summary, the entrance and exit sets are defined

En = T−1(A)− T−1(A) ∩A,

Ex = T−1[T (A)− T (A) ∩A]. (1.24)

These definitions apply to all four of the intersection types listed. The fourth is

shown in Fig. (1.2d), but the other three are just as valid. In the first case, for

example, if T (A) is disjoint from A, then Ex = A. In the second case where T (A)

is completely contained in A, we see that T (A)− T (A)∩A = T (A)− T (A) = ∅,

and therefore Ex = ∅.

There are certainly more complicated configurations possible for T (A),

relative to a general set A, than are implied by the previous figures. Some of

these are indicated by Fig. (1.3a). Nonetheless, we can uniquely define En as

the set that enters A in one iteration, and Ex as the set that leaves A in one

iteration. Eq. (1.24) defines the entrance and exit lobes with no limitations on
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figure=fig3.eps,height=2.5in

Figure 1.3. a: A possible, more complicated iterate (and back-iterate) of the
region A. The implied entrance and exit regions in this example can intersect,
which simply means that some subset of points entering A will immediately exit
A on the next iterate. b: This configuration of T (C) is not possible because it
violates continuity. c: This configuration of T (C) overlaps itself, and so violates
single valuedness of T−1(T (C)).

the amount of folding possible. A configuration such as Fig. (1.3a) presents no

contradictions; it simply implies that once leaving A, the subset T (Ex)∩En ∩ Ā

will immediately re-enter A on the next iteration. Eq. (1.24) makes no statement

regarding two iterations. Configurations such as in Figs. (1.3b) and (1.3c),

which may present problems, are not possible due to violations of continuity

and single-valuedness.

On certain manifolds, it is possible to describe transport across a barrier

C which is not a Jordan curve. The role which the closed curve serves in the

above discussion is that it divides the space in two - an inside and an outside.

Hence, it makes an appropriate barrier. If a curve does not completely divide the

space, transport can occur “across” the barrier by going around it (or by going

the “other way” around the cylinder S1 × IR to avoid an infinite line “barrier”

in the case of a cylinder). The surface of a cylinder can be divided in two (a top

part and bottom part) by a closed curve (a “belt” wrapped around the “waist”).

The surface of any two-dimensional manifold can be divided in two

by any closed curve that is homotopic16 to the point. These are the Jordan

curves. On a sphere, all closed curves are Jordan curves because the sphere is

of a trivial homotopy type; it has no holes. A torus, however, has a hole. Some

closed curves are not Jordan curves since they contract to the circle through the
16A curve f(z) is homotopic to g(z) iff there exist a continuous deformation of f

transforming it to g.
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hole. These curves do not serve as barriers since we can go the other way around

the torus. Higher genus two-dimensional manifolds have even more holes and so

admit more non-Jordan closed curves with similar complications. However, we

saw that the cylinder admits a barrier which is not homotopic to the point. To

summarize, we can state that on all two-dimensional manifolds, a closed curve

homotopic to the point is Jordan, and hence is a good barrier. On a compact

two-manifold, a closed curve not homotopic to the point is not a barrier, and

finally, on an unbounded two-manifold, a noncontractable curve may or may not

form a barrier depending on whether it goes through a hole.

The description of transport across any barrier is made by forward

and backward iterating the barrier, then finding the regions bounded by C and

T−1(C) (or C and T (C)) and asking “Which region crosses the barrier on the

next iterate (back-iterate)?” We found “lobe-like” structures in Figs. (1.2)-(1.3)

because we illustrated the situation where T (A) ∩ A 6= ∅ and neither set is

completely contained in the other. We will see this situation in the next section

where there will typically be a fixed point z∗ on C.

1.2.2 Chaotic Transport Mechanism In the previous section,

we saw that transport across any appropriately chosen barrier can be character-

ized. In this section, we ask the question, “What are the most natural barriers

in chaotic transport?” The arbitrarily chosen barriers in the previous section

move upon iteration. The entire barrier typically deforms upon iterations. The

situation is even worse with continued iterations. A natural choice of barriers is

one that has “minimal alterations” upon iteration.

We will see below that a natural barrier can be constructed of segments

of stable and unstable manifolds on a homoclinic orbit. Given a period-n point
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z of Eq. (1.2), define W s(z), the stable subspace, and W u(z), the unstable

subspace, as follows:

W s(z) ≡ {x : T jn(x) → z as j →∞},

W u(z) ≡ {x : T jn(x) → z as j → −∞}. (1.25)

In Sec. 1.1.1, a point was defined to be hyperbolic when the tangent space at

that point is decomposable as the direct sum

M = Es(z)⊕ Eu(z), (1.26)

where Es(z) (or Eu(z)) is the linear subspace of the tangent space at z, spanned

by the eigenvectors corresponding to eigenvalues with modulus strictly less (or

greater) than one. The stable manifold theorem [85] implies that these eigenvec-

tors can be continued to the global stable (unstable) manifolds. The Hartman-

Grobman theorem [3] states that, for a diffeomorphism Tn and a small enough

neighborhood U of z, there is a homeomorphism between the dynamics of DTn

on Es(z)⊕Eu(z) and Tn|U . A hyperbolic saddle point is categorized by having

all of the eigenvalues λi of the tangent map at z such that λi ∈ IR, |λi| 6= 1,

∀i. Hence, points not on an eigendirection move along a hyperbola upon ap-

plication of DTn, and so do orbits close enough to z, upon application of Tn.

In Sec. 2.2.3, we will discuss further the stable and unstable manifolds and the

extension of the concept to nonperiodic points.

A hyperbolic saddle fixed point of a two-dimensional map is shown in

Fig. (1.1). It should be stressed that the smooth curves shown are not flows

of a single point. Each point “jumps” upon application of the map to another

location on the curve. Continuity implies that a nearby point jumps nearby.17

17It may seem paradoxical that a chaotic dynamical system can nonetheless be con-
tinuous. Sensitivity to initial conditions and exponential spreading of nearby points
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Certain rules must be obeyed by such manifolds. By definition, a point

on the stable (unstable) manifold remains on the manifold. Single valuedness

forbids that a stable (unstable) manifold intersects itself or the stable (unstable)

manifold of another point. It is allowed, however, for the stable manifold to

intersect the unstable manifold. A point p on the intersection of W s(zi) and

W u(zj) is called a homoclinic point if i = j or a heteroclinic point if i 6= j.

By definition, the orbit of p accumulates on zi in forward time, and on zj in

backward time. Thus, iterates of homoclinic (heteroclinic) points are homoclinic

(heteroclinic) points. The existence of one intersection implies infinitely many

intersections.

As one varies the parameters, the manifolds W s(zi) and W u(zj) may

intersect either transversally or tangentially. The tangent-type intersections are

not generic because they are not structurally stable, but the transverse-type are,

and so will be the subject of the discussion to follow.

figure=fig4.eps,width=5.5in

Figure 1.4. a: A transverse homoclinic connection at point p, and a few of
its iterates and pre-iterates. b: A single “lobe” between p and T (p) causes an
illegal orientation change from p,x,z to T (p), T (y), T (x). c: The “orientation
of surface” (or “signed area”) of the parallelogram described by the vectors p− y
and p− x has opposite sign to that of parallelogram T (p)−T (y), T (p)−T (x).
d: Inserting one more transverse homoclinic point q yields a legally oriented
image of p,x,y. e: Here we can see that the sign of the area of the nearby
parallelogram is preserved by T .

Fig. (1.4a) shows a homoclinic orbit with transverse intersection. Also

shown is part of the family of points corresponding to the orbit of p. The

stable and unstable manifolds must intersect at each point in this family, but

seems to exclude continuity. However, continuity is a property of single applications of
the map, and sensitivity to initial conditions describes the evolution of nearby points
under many applications of the map.
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Poincaré showed that there exists another homoclinic point q between p and

T (p), due to orientation preservation. Consider two arbitrary nearby points, x

near p where x is on W u(z) “farther” along W u(z) before T (p),18 and y, also

near p, but on W s(z) closer to z, but again before T (p). The relative configu-

rations of x, y and p are drawn in Fig. (1.4b). Reading clockwise around, the

order is p, x, and y. T (x) must still be farther along than T (p), and likewise

so must T (y) occur after T (p). Again, reading clockwise around, we get T (p),

T (y), and T (x), which is in violation of orientation preservation. We can see

this in Fig. (1.4c), where the area of the parallelogram, described by the vectors

p− y and p− x, has opposite to the parallelogram T (p)− T (y), T (p)− T (x).

However, we can see in Fig. (1.4d) that inserting an additional transverse homo-

clinic intersection at q preserves the orientation, shown in Fig. (1.4e). Hence,

there must be at least one more homoclinic point q.

It is convenient to choose p to be what Wiggins defines as a principle

intersection point (or p.i.p.). Any point on W s(zi)∩W u(zj) is a heteroclinic (or

homoclinic) point. Using the ordering implicit along these invariant manifolds,

we can define a p.i.p. as a heteroclinic (homoclinic) point for which the stable

manifold segment between zi and p has no previous intersections with the un-

stable manifold segment between zj and p. These segments of the stable and

unstable manifolds are called “initial segments” [27]. Iterates of p.i.p.’s are also

p.i.p.’s. Both families of points, shown in Fig. (1.4d), are examples of p.i.p.’s.

Starting with p.i.p.’s, non-principle intersection points arise from the stretching

and folding typical with transverse heteroclinic (homoclinic) intersections. The

18An ordering on Wu(z) is possible since the invariant manifold is one-dimensional.
A point is defined as farther away from z than another in the sense of the arc length
along the unstable manifold. An ordering on W s(z) can be similarly defined in terms
of the arc length closeness to z.
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resulting “tangle” quickly generates infinitely many other families of heteroclinic

(homoclinic) points which are not p.i.p.’s. More will be said about the tangling

process in the next section.

In Fig. (1.5c), the shaded regions are labeled “Ex” and “En”, describ-

ing their transport roles. These “lobes” have infinitely many (pre)images, whose

end points are the (pre)images of p and q.

We may now define a Jordan curve C using the unstable manifold initial

segment between z and p, and the stable manifold initial segment between z

and p, for any p.i.p. p19. See Fig. (1.5a). There is a well defined inside and

outside, for this barrier C. Eq. (1.24), defining transport across an arbitrary

barrier, applies to this special choice of C.

figure=fig5.eps,width=5.5in

Figure 1.5. a: Defining the barrier by initial segments of the stable and unstable
manifold between the fixed point z and p.i.p. p. b: The iterate C lies largely
on top of C, as much of the curve stretches over itself. c: The exit and entrance
lobes Ex and En, which together are called the “turnstile”.

The claim is that we have chosen the most natural barrier C because or-

bits on the manifolds stay on the manifolds. Following the discussion in the pre-

vious section, in Fig. (1.5b) we draw T (C), and in Fig. (1.5c), we draw T−1(C).

In terms of the original barrier C, we see that the shaded region En in Fig. (1.5c)

iterates to the region T (En) inside C (which we easily see by following the iter-

ates if p, q, and the manifold segments in between).

The only alteration in the overall form of C is the “growth” of the lobes

En and Ex upon application of T−1. In this sense the choice of the barrier C is

“minimal.” Mackay, Meiss, and Percival coined the term “turnstile” to describe
19In fact, as long as p is a p.i.p., any of its iterates are just as legitimate, and the

resulting entrance and exit lobes can be used to define transport.
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the two lobes En and Ex in that they act like rotating doors, transporting area

across C.

An important point of the previous section, summarized by Eq. (1.24),

is that all orbits which transport across C must be localized in En ∪ Ex. Specif-

ically, if we choose a fixed iteration of the turnstile, then we will find in it all

orbits which transport. In the next section, I will describe how the lobes stretch

in forward and backward time. The choice of the p.i.p. which is most appropri-

ate to this thesis will be the one in which localization in En or Ex also implies the

most localization in terms of the Euclidean norm.20 This is the iteration where

the diameters of Ex and En are minimal. (The diameter of a set is defined by

the supremum of the Euclidean norm between any two points in the set.) This

localization statement will be key in finding transporting orbits (i.e., targeting),

which will be discussed in the next chapter.

Studying Fig. (1.5), there is another perspective on “transport” to be

made. Forgetting our barrier C for a moment, let us focus on a point in the

entrance set En “outside”21 of the manifold segment of W s(zi) between p and

q. The role of iterating the map is to cause that segment of W s(z) to push in

(relative to C). Points outside that segment may be viewed as still outside. In

this perspective, there is no transport at all; it is just an illusion of the outside

punching in further and further. This description only makes use of the stable

manifold. Of course, only in terms of the full barrier C can we truly describe

transport across the barrier.

I conclude this section by stressing that, while the topology of a single
20If En is a “long and narrow” shaped set, nonetheless, with perhaps small measure,

two points could conceivably be localized (in terms of measure) in En, and yet far apart
in terms of norm.

21Of course, a curve segment is not enough to define a barrier; a fully closed curve is
required.
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entrance and single exit lobe which do not intersect, is implied by the figures

of this section, the situation is by no means exclusive22; defining the exit and

entrance lobes across a barrier according to Eq. (1.24) avoids any such compli-

cations.

1.2.3 The Homoclinic Tangle What is the long-term fate of C

in forward and backward time, and what is the fate of the points in En and Ex?

These are the questions we address in this section. Their answers will lead us to

horseshoes, the prototypical example of chaos.

In terms of the simple two p.i.p. family generated by q and p above,

we see that the arc length between q and p along W s(z), labeled `(W s
[q,p]),

must eventually (though not immediately) shrink upon repeated applications of

the map, as the two points eventually accumulate at the fixed point. The arc

length at time n is the line integral of the nth iterate of W s
[q,p]. Likewise, the arc

W u
[q,p] iterates with q and p. Hence, the curve W u

[q,p] ∪W s
[q,p] is a dynamically

varying boundary of T (En).

In the case of area preserving maps, so defined when λu = λ−1
s , the

area of a region is constant upon iteration. So while Tn(En) may stretch expo-

nentially, the area is preserved for all time, resulting in a long and narrow lobe

for large n. Stretching is one of the main components that can result in chaos.

In the area preserving case, it is easy to see that the finite area of region

A, bounded by C, cannot completely contain all future iterates of En. There is
22More intermediate p.i.p.’s other than just the required transversal type point q are

possible. They may be of either transversal or tangential type. We do not define the
“lobes” so formed as the exit or entrance lobes unless they contain the entire entering
or exiting set.
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a time m when
m∑

i=1

µ(T i(En)) ≥ µ(A), (1.27)

i.e., the first time

m ≥ µ(A)
µ(En)

. (1.28)

In terms of transport, some of the points in En which enter A must leave A by

the mth iterate, implying that there exists an r ≤ m such that T r(En)∪Ex 6= ∅.

Almost all of the points must eventually leave. Once this intersection occurs, a

new family of homoclinic points is implied. Considering the history of the lobe

Ex, which also becomes long and narrow (as n →∞), we see that a homoclinic

point is implied each of the times m and −n that Tm(En) ∩ T−n(Ex) 6= ∅. The

segment W u
[q,p] accumulates at z as n → −∞, and W s

[q,p] accumulates at z

as n → ∞. Of course, a “new” family of intersections implies infinitely more

intersections as the homoclinic point iterates in forward and backward time.

This is the “homoclinic tangle.”

The horseshoe construction implies a set which remains trapped inside

the region A for all time. S. Smale [95, 104] showed that for a diffeomorphism

T with a transverse homoclinic point p, there exists m > 0 such that the com-

position map Tm has an invariant Cantor set Λ ∈ A. He also showed that there

exists a conjugacy

h : Λ → Σ (1.29)

such that

h ◦ Tm|Λ = α ◦ h. (1.30)

The conjugacy is with the dynamics of the Bernoulli shift map α on the space

of bi-infinite sequences of countably many symbols σi. In the simple horseshoe,
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we let

σi = 0 or 1. (1.31)

By now, the horseshoe construction for the homoclinic tangle and corre-

sponding symbol dynamics is quite standard, which I will only briefly review. A

bi-infinite sequence of the two symbols consists of two infinite sequences {σi}∞i=0

and {σj}−∞j=−1 appended at their starting members, where the second sequence

is written right to left as follows:

σ = ...σ−2σ−1.σ0σ1σ2... (1.32)

The “decimal point” can be thought of as marking “now” from which the bi-

infinite sequence is to be read. The action of α is to shift the period to the

right,23 bringing new symbols into attention. The norm on this sequence space

‖ · ‖ =
∑∞

i=−∞
σi

2|i|
serves to weight the symbols near the period (middle).24 Two

symbol sequences are close if they agree over their middle portions. The norm

implies a topology on Σ, where a neighborhood in Σ is defined by 2k+1 symbols

centered around the decimal. The map α serves to shift these known symbols out

of focus and to bring “beyond accuracy”, or “unspecified” symbols, into focus.

These unspecified symbols are as random as a coin toss.25 Hence, α serves as a

“forgetting” process.

It is not difficult to show that two properties which define “chaos”,

sensitivity to initial conditions26 and transitivity,27 both hold for the Bernoulli
23Alternately, we can imagine holding the period fixed and shifting the symbols to

the left, bringing new symbols into focus from the right.
24In the case of an area preserving map, if we define the norm using λ instead of 2,

the norm can serve as the conjugacy h between Λ and Σ.
25“Heads” and “tails” also define a legitimate symbol space.
26A map T on a metric space is said to have sensitive dependence on initial conditions

if there is an r > 0 such that, given a point x and arbitrary ε > 0, there is a point y
such that d(x,y) < ε and a time k when d(T k(x), T k(y)) ≥ r [85].

27A map T is transitive if there exists a dense orbit.
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shift on bi-infinite sequences of two symbols. Any dynamics conjugate to α|Λ can

be defined as “Bernoulli,” which is one of the stronger notions of chaos, though

some only define a chaotic system as Bernoulli if there exists a conjugacy to the

shift map valid for a set of nonzero measure (such as the Arnold cat map).

The horseshoe may be constructed for Fig. (1.5) by drawing a thin

curved strip S over W s
[z,p] as shown in Fig. (1.6). As p iterates closer to z,

it drags the strip with it. Meanwhile, the point s, defined as the intersection

W u
[z,p] ∩S, marches away from z. Define m as the first time that Tm(s) is after

p. By time m, the short side of the strip has stretched and folded over to the

strip Tm(S) along W u
[z,p] which intersects S by construction. Here we see the

stretch and fold, which can be thought of as the ingredients for chaos.

figure=fig6.eps,width=3.5in

Figure 1.6. Constructing a horseshoe on a homoclinic orbit. The strip S con-
tracts along the stable manifold, and expands along the unstable manifold to
the shorter, wider strip T (S). By the mth iterate, the point T (s) has passed p;
the long and short sides of the strip Tm(S) are reversed from the long and short
sides of the original strip S. The invariant sets H0 and H1 are the first steps in
generating the invariant Cantor set Λ.

Define

H0 = Tm(S) ∩ S (1.33)

at p and

H1 = Tm(S) ∩ S (1.34)

at z, and define

H = H0 ∪H1. (1.35)

By inspection, we see that the invariant set of Tm is contained in Tm(H) ∩

H, which defines two vertical strips in H0, and the two vertical strips in H1.
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Similarly, the invariant set of T−m is T−m(H) ∩H, which forms two horizontal

strips in H0 and H1. Define

Σ =
∞⋂

i=−∞
T im(H). (1.36)

Σ is the invariant set of the horseshoe,28 which we see is the product of two

Cantor sets, one in forward and one in backward time. For a thin enough strip

S, the invariant set is hyperbolic [85, 57].

The “address” of a point in “H” can be labeled “.0” if it is in H0 or

“.1” if it is in H1. On iteration, the point (say it is .0) lands in either H0 or

H1, and hence is labeled “.00” or “.01”, that defines which vertical strip in H0

contains the point. Similarly, the address to the left of the decimal determines

in which square the point lands, H0 or H1.

The construction directly implies that h is onto, and thus a semiconju-

gacy h : Λ → Σ. By showing that Tm|Σ has a hyperbolic structure (see [85, 95]),

it can be seen that h is also one-to-one. T−m|Σ causes two horizontal strips to

expand to either fill H0 or H1. The 2n + 1 symbols near the decimal in Λ have

a one-to-one correspondence with approximately rectangular neighborhoods in

Σ. The dynamics Tm|Σ expands the strip until it fills H which is similar to the

forgetting process in α|λ.

figure=homoc5.ps,height=5.5in

Figure 1.7: A “typical” homoclinic tangle.

It is possible to construct a horseshoe explicitly for the Hénon map, or

for the standard map when k > 2π (see [57]). Horseshoes can also be constructed

28The Smale horseshoe is so named because the horseshoe is constructed by stretching
and folding a square into horseshoe shapes (again and again and...). The process is
perhaps more akin to building a Japanese Samurai sword whose building process includes
thousands of stretches and folds.
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for heteroclinic cycles. Other “grammars”, besides the simple left shift29, on

many symbols can also be useful in certain situations.

In terms of transport, the horseshoe makes a disappointing model for

two reasons. Typically, one may be interested in the transport of more than a

measure zero set of points. More seriously, the horseshoe models those points

invariant to the horseshoe, i.e., those points which never transport out of the

horseshoe set. Transport within Σ is completely described within the horseshoe,

but no more. Given a complicated transport problem from a to b, where only

a long, convoluted, heteroclinic connection may exist, one may be successful in

finding a complex grammar rule on a long list of symbols, if a and b happen to

be in some invariant set of the dynamics. But, in general, only heteroclinic cycles

are homeomorphic to the horseshoe, and hence have a reasonably easy-to-find

symbol dynamics.

1.2.4 Transport Localization and Control The lesson learned

is that transport across a heteroclinic or homoclinic barrier between a and b is

localized to En and Ex. For a concrete example, I choose the much studied

standard map

z′ =

 y′

x′

 = T (z) ≡

 y − k
2π sin(2πkx)

y − k
2π sin(2πkx) + x

 , (1.37)

which has many complex and intriguing properties, some to be discussed later

in Sec. 2.2.4. For now we need only observe that there is a periodicity in x, with

period 1. The phase space is the cylinder.

We will be studying transport from a region near a = (xa, ya) =

29The Bernoulli left shift grammar on two symbols can be described by the directed
graph 0 ↔ 1 which is equivalent to the 2×2 identity transition matrix. Other grammars
on n symbols have directed graphs describable by more general n×n identity matrices.
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(0.5, 0.0) to near b = (xb, yb) = (0.5, 1.0), for k = 1.25. The prescription for

this algorithm is as follows. First, we randomly choose an initial condition z1
0

from a small box around a. (Define the “a box” as {z : ‖z − a‖1 ≤ l} where

here we choose l = 0.01.) Then iterate until z1
n ∈ “b” box, recursively defining

z1
i = T (z1

i−1). We expect there to be such an n for at least some of the initial

conditions in the a box, because numerical evidence indicates that both the a

box and b box intersect a connected chaotic region.30 If the randomly chosen

initial condition never, in fact, reaches the b box, or simply takes too long (de-

fined by n ≥ 107 in this study), then we simply choose another initial condition,

until a satisfactory z1
0 is found.

This orbit will be used as the primary list, and each of its entries are

center points. We then choose a “common radius” δ > 0. The trick is to find the

points on the primary list which are in regions important to the transport. We

define importance by the observation that other transporting orbits also pass

within δ of the primary passing z0
i .

Now we find a second transporting orbit, again by choosing z2
0 ∈ a box

and iterating until z2
m ∈ b box. The points z1

i of the primary orbit are arbitrarily

treated as centers for this localization test. In turn, we compare each point z1
i

to every point on the second list z2
j . If

‖z1
i − z2

j‖ > δ ∀j, (1.38)

then z1
i is removed from the primary list. This is repeated for all i, which leaves

a somewhat restricted primary list.

The process is performed again for 3rd and 4th,...,etc., randomly chosen

transporting initial conditions. Any primary point z1
i is removed if it is not

30There must be a heteroclinic connection.
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within δ for some zk
j on every list for k = 2, 3, 4, ....

We continue to restrict the primary list until comparing it to new trans-

porting orbits no longer removes any z1
i . For a pre-chosen δ, this shortens the

original transporting orbit until we are left with just a handful of points in re-

gions, which, by construction, all the tested orbits must have occupied while

making the a box to b box trip.

The number of “common regions” left on the primary list depends on

the value of δ chosen. If δ is too small, then the entire primary list will evaporate.

There is a threshold δ1, the minimum value of δ, which will cause the list not to

evaporate, leaving at least one important transport region. Thus, δ1 represents a

“radius” of these important regions. Likewise, there exist other threshold values

δ2, δ3,..., etc. which cause more and more centers on the primary list to survive

comparison with other transporting orbits. Given n, we are able to find δn by a

bisection scheme.

Fig. (1.8) shows just such a region. We can observe what appear to be

bands of various lobes which intersect through this main lobe in what we know

to be the classic rainbow-like cantor structure.

figure=clust2.eps,height=2.0in

Figure 1.8. A “common lobe” for the standard map. A region which 2000
different orbits had in common while transporting from near a = (0.5, 0.0) to
near b = (0.5, 1.0). Displayed are the 2000 points in the common lobe, each
from a different orbit.

Other studies of the standard map seem to indicate that our common

region must correspond to the turnstile through a cantorus [70]. The cantori

with the smallest turnstiles (which can be calculated by an action principle [61])

are those with golden mean frequencies.31 We observe empirically this exact
31See Sec. 2.2.4 for more discussion of the phase space structures of the standard map.
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phenomenon. The one lobe shown corresponds to the 1
γ golden mean frequency.

With n = 2, the second lobe we found corresponds to the 1
γ2 frequency. These

are the most important barriers to transport. Note that we find the lobes in a

“minimal diameter” state. Iterates of the lobes are just as valid for transport

considerations, yet even though all iterates of the lobe have the same area, they

become long and narrow under forward and backward iterations. Hence, they

become increasingly difficult to resolve on a computer. The minimal diameter

state is most natural in this sense.

Other important barriers (low area turnstiles) correspond to other “no-

ble frequencies.”32 We managed to verify the hypothesis that our common lobes

appear to correspond to the noble lobes up to n = 6.

An important point of this experiment is that it can be used as a tool

to learn about transport in the absence of a good analytic model. Not much

was assumed. It is valid to reconstruct the important barriers in a time series

embedding representation of a dynamics where no model is available. It also may

be useful to test for localization of transport for higher-dimensional transport as

well.

32The golden mean, or γ = [1, 1, 1, ...] in continued fraction notation, is the “most”
noble number and has the the most persistent KAM curves (the last to become cantori).
The 1’s in the tail of the continued fraction make γ hard to approximate by a rational
number, which is responsible for the persistence of the frequency. Any number with
all 1’s in the tail of its continued fraction expansion is defined as noble and satisfies a
Diophantine condition. The nobles tend to have particularly persistent KAM curves.
See Chapter 6 for more details on the relationship between the breakup of barriers and
Diophantine frequencies.



CHAPTER 2

CONTROLLING CHAOS THROUGH RECURRENCE

2.1 Monitoring the Turnstiles

A major theme of the previous chapter was that transport across a

barrier is localized to the barrier’s turnstiles. Before presenting my technique to

make use of this fact, I will discuss the following example to demonstrate the

power in the statement of localization and its pertinence to control.

As an example, let us take the area-preserving Hénon map

zi+1 = T (zi) =

 xi cos α− yi sinα + x2
i sinα

xi sinα + yi cos α− x2
i cos α

 =

 cos α − sin α

sinα cos α


 xi

yi − x2
i

 ,

(2.1)

where we write zi = (xi, yi). We may interpret this mapping according to Moser

[73] as the composition of a rotation and a shear. This map is perhaps the

prototypical example for its conjugacy to the horseshoe, whose stretch and fold

dynamics are visibly apparent and proven in [57].

Let us define our barrier by the stable and unstable manifold segments

from the hyperbolic fixed point z to their intersections at the p.i.p. p, displayed

in Fig. (2.1a). This is similar to the barrier shown in Fig. (1.5a). We have seen

that it is possible to nonlinearly continue the unstable and stable directions to

the full manifolds W u(z) and W s(z) by iterating a fine grid of points started

near z on the eigenvectors of the stability matrix of Eq. (2.1). By doing this,

we can find the two p.i.p.’s p and q. Actually, there are two potentially serious

complications to accurately finding p and q as I have drawn them. First, in
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order to find the “symmetric” intersection at p, I shoot each manifold at the

symmetry line S : (x, y) → (y, x) through which the dynamics are identical.

This avoids the need to address the issue of balancing time to guarantee a p.i.p.

Second, the shooting algorithm, which finds the parameterization t on z + tfs

(or z + tfu) which iterates to y = x, has infinitely many zeroes. At least one

zero exists for each decade on the stable (unstable) direction since if z + t0fs (or

z + t0fs) is a zero, then so are z +λn
s t0fs (and z +λ−n

u t0fu) ∀n. This is only one

family of zeros. Infinitely many zeros exist in a given λs ( λu ) decade as well,

corresponding to nonprincipal intersection points. I mention this complication

because we will see it again in subsequent sections.

Between the two p.i.p.’s, I represent the exit lobe Ex by a grid of

points on W s(z) and W u(z) ordered sequentially between p and q. This grid

representation of Ex is drawn in Fig. (2.1b).

figure=snap.eps,height=3.5in

Figure 2.1. a: The homoclinic tangle of the Hénon map. Shown are the fixed
point z, the two p.i.p.’s p and q, and the exit lobe Ex. b: The exit lobe Ex

of the Hénon map. c: Controlled dynamics. We reflect a point zi through the
symmetry S : y = x into the entrance lobe whenever it enters the exit lobe.
Hence, no escape is allowed.

The control objective is to prevent transport across the barrier by mon-

itoring only the small region Ex. The “control” action1 will be to kick the point

zi back inside the barrier before it escapes, whenever zi ∈ Ex. In this case I

choose to do this operation by reflecting zi through the symmetry line S, which

lands it in the entrance lobe. Therefore, T (S(zi)) is back inside the barrier.

In Fig. (2.1c), we see the orbits of several initial conditions under the

1I put quotes around the word “control” because this control typically has a large
perturbation magnitude. It therefore is no surprise that we can drastically alter the
dynamics. I will address smaller controls in the subsequent sections.
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influence of the altered Hénon dynamics

zi+1 =

 T (S(zi)) if zi ∈ Ex

T (zi) otherwise

 . (2.2)

An interesting consequence of the symmetric nature of both the dynamics and

the control is that new periodic orbits appear.2 As an aside, let us recall the

definition (see [57]) that a map T has a symmetry S iff S is an orientation

reversing involution such that

S2 = (TS)2 = I. (2.3)

It follows that

T−1 = STS−1. (2.4)

So we see that in fact our particular choice of control is equivalent to inverting

the map for the image flipped through the symmetry line. All those points which

eventually escape the barrier under the Hénon map, many of which are shown

in Fig. (2.1c), are now periodic under Eq. (2.2). All those points which are

forever bounded inside the barrier, including the quasi-periodic invariant circles,

the regions they bound, and other chaotic orbits which may wander indefinitely

without escaping, remain aperiodic because Eq. (2.2) allows them to follow their

original Hénon dynamics.

Of course, it may not always be desirable to apply such a large control.

Fortunately, such large controls are not necessary. The size ε of the perturbation

to zi required to kick zi out of Ex depends on the shape of the set Ex. The

particular iteration of p and q chosen makes Ex as “evenly proportioned” as

possible. The lobes Tn(Ex), n > 0 have the same area, but become long and

2If we fold the paper through the line y = x, we have still captured the whole orbit.
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narrow under the influence of the unstable and stable manifolds respectively.

Likewise, the lobes in backward time T−n(Ex), n > 1 are narrow and long. To

stop transport across the barrier, it is just as valid to monitor any of the lobes

T−n(Ex). The key point is that the original required perturbation, ε, diminishes

approximately proportionally as

λn
s ε, (2.5)

providing that we choose the direction carefully.3 Hence we see that it is possible

to prevent transport across the barrier with an arbitrarily small control as long

as we are willing to monitor a sufficiently early pre-iterate of Ex.

The control I have described so far was to prevent transport, and so I

call it a “negative” control. It is also possible to encourage transport across a

barrier, which is the goal of targeting. In this case, we wish to perturb points

into Ex. If we wish to do so with a small control ε, then we can imagine the

controllable set as an ε-thickened boundary region around Ex (and inside the

transport region). An improvement to the scheme would be to keep several ε-

thickened pre-iterates {T−j(Ex)}n
j=0. This description of targeting is similar in

character to the web built by Kostelich et al. [51].

A complete charting of transport by keeping iterates of the lobes (on a

grid) of the barriers in phase space seems promising. It was my original approach

to the targeting problem in the standard map. I had planned to put all the lobes

of all the important barriers on a grid. This would put targeting squarely in the

intersection with pattern matching and artificial intelligence. I targeted the

standard map following this type of approach, the discussion of which can be
3The “round” lobe becomes long and narrow under the influence of the strong growth

and contraction directions. The small control Eq. (2.5) is sufficient only if it is applied
in the stable direction (the unstable direction of the inverse map) in which the lobe
becomes thinnest.
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found in Appendix B.1.

There is a fatal flaw with this scheme. The same Lyapunov contraction

which allowed us to use arbitrarily small controls in Eq. (2.5) makes it impossible

to store the lobe on an adequately fine grid on a computer. The number of grid

points N required to preserve a maximum intergrid distance of l (on the unstable

sides of the lobe) scales approximately proportionally as

N ∼ λn
u

l
. (2.6)

Meanwhile, two opposite ends of the lobe rapidly get so close, the grid seems to

lie on a single line. It becomes almost impossible to distinguish inside the lobe

from outside the lobe.4 Another problem is that actually finding the turnstiles

requires special knowledge about the dynamics, either from an enormous pre-

study by the technique of common lobes, described in Sec. 1.2.4, or by having

the map in analytic form (which nonetheless also requires a large computational

pre-study).

In the rest of this chapter, I present an alternative approach which

automatically uses the switching points (the turnstiles) without explicitly finding

them, and uses the Lyapunov error expansion only to our advantage.

2.2 Controlling Chaotic Transport Through Recurrence

We have seen that transport times for a chaotic system are highly sen-

sitive to initial conditions and parameter values. In the subsequent sections of

this chapter, I present a new technique to find rough orbits (epsilon chains)

that achieve a desired transport rapidly and which can be stabilized with small

parameter perturbations [12]. The strategy is to build the epsilon chain from
4No matter what the grid density is in fact, there is always the possibility of inside-

outside classification errors for a point near the boundary due to the representation of
a curved lobe boundary by straight line segments.
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segments of a long orbit; the point is that long orbits have recurrences in neigh-

borhoods where faster orbits must also pass. The recurrences are used as the

switching points between segments. The resulting epsilon chain can be refined

by gluing orbit segments over the switching points, provided that a local hyper-

bolicity condition is satisfied. As an example, we show that transport times for

the standard map can be reduced by factors of 104. The techniques presented

here can be easily generalized to higher dimensions and to systems where the

dynamics is known only as a time-series.

2.2.1 Introduction This chapter addresses the problem of time-

optimal control, or targeting as stated by (1.15)-(1.17). This, I remind the

reader in brief, is the technique to steer a dynamical system from near an ini-

tial condition a to near a target point b in the shortest possible time. The

major difficulty in targeting is to find a scheme to decide when and where judi-

ciously chosen perturbations should be applied. All of the techniques discussed

in Chapter 1.1 involve directly looking for these paths and suitable switching

points. This can be impractical, we saw in the previous section, because the

switching points can become effectively invisible in a computer calculation due

to the stretching typical in chaotic dynamics. This problem becomes increasingly

important when even the fast orbit is not particularly short and incorporates

many switching points. The standard map Eq. (1.37) is just such a case. The

technique I present avoids this issue with the alternative approach of letting the

short path reveal itself as the shadow of a longer orbit.

In order to best choose the orbit segments of the epsilon chain, we would

like to know where to most efficiently switch between the segments. I present

here an alternative approach for building and managing a library of numerically
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known orbit behaviors so that this information can be quickly accessed to build

fast-transporting epsilon chains. Our main result is that by studying the path

of a non-optimal orbit that, nonetheless, eventually achieves the desired target

objective, the switching points reveal themselves.

In Sec. 2.2.2, I argue that recurrences are common in slow orbits, and

that these should be tested as switching point candidates. The resulting epsilon

chain can by refined, as we show in Sec. 2.2.3, by gluing patches across the

switching points (points where orbit segments are joined). This requires finding

the stable and unstable directions along the original orbit, and provides a patch

orbit segment that:

1. Skips the recurrent loop, often representing of the bulk of the orbit’s

length.

2. Converges to the original orbit backward in time.

3. Converges to the original orbit forward in time from the point of recur-

rence.

The patch size can be chosen to meet the control saturation bound. Hence, we

can effectively pick and choose desired segments of a slow orbit using hyperbol-

icity to our advantage to leverage away the error upon gluing in an orbit patch.

Gluing has been used, for example, in proving the shadowing theorem for Axiom

A systems [14] as well as in other contexts [98].

The obvious advantage here is the possibility of constructing fast orbits

between any two points in accessible phase space. By following an arbitrary orbit

for a long time and recording its local stability properties, any two points near

the observed dynamics can now be reached by an epsilon chain constructed



51

from segments of the observed dynamics. A chaotic orbit will cover all of its

accessible phase space and so will have most starting and target points close to

the accessible set somewhere within its length. We propose that this technique

is also applicable in the case where we only have an approximate model of

the dynamics formed by a time series of data from a real world system, and

from which we can make local predictions according to the work of Farmer and

Sidorowich [29]. This is possible since no inverse image of the map is necessary

for our method.

We use a local linear controller at each step of the predicted orbit to

diminish the effects of modeling error and system noise. Local linear controllers

have been demonstrated using accessible dynamic parameters for a number of

chaotic systems, and have also been shown to be effective even for dynamics

specified only by time series. An effective method is to use accessible parameters

to cause the image of an initial condition to have no component on the unstable

manifold of the target point [52, 79]; hence, knowledge pertaining to the map’s

parameter derivatives and the unstable directions is required. More traditional

“pole placement” techniques yield much the same result [86].

In Sec. 2.2.4, there is a demonstration of the method for the standard

map, which has notoriously slow transport. We investigate transport distri-

butions before and after control. We also investigate the hyperbolicity of our

trajectories before and after control by computing the distribution of angles

between the stable and unstable manifolds [53].

2.2.2 Chaos and Recurrence In this section we will discuss the

difference between an optimal trajectory and a non-optimal trajectory of dy-

namics arising from a given map. We write a map in the form of Eq. (1.2).
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which could have been derived from the continuous time flow of a differential

equation by Poincaré section. We demonstrate rather general conditions under

which a non-optimal path has a nearby path that reduces the time-optimal cost

function.

Our problem is to find an initial condition za near the starting point

a, and a control strategy consisting of a set of parameter values {ki}, that will

cause za to iterate near the target point b as quickly as possible.

figure=sm.eps,height=4.0in

Figure 2.2. A phase space portrait of the Standard map for the range 0 ≤ x < 1
and 0 ≤ y < 1. The o’s are centered on the 131 step path between a and b
constructed by cutting the recurrences from a 80307 step orbit. The 1

γ and 1
γ2

golden mean cantori are represented by the gray squares in the middle region of
the picture. The point a is located at (0.5, 0.0) on the (0, 1) hyperbolic point,
and b is located at (0.5, 1.0) on the (1, 1) hyperbolic point.

Fig. (2.2) displays the orbit of such a control solution. Thus, we wish

to minimize a cost function I in Eq. (1.15) subject to Eqs. (1.16) and (1.17),

known as the minimum time control problem.

In general, the minimum occurs not at a fixed value of k, but for a

program of parameter values. Knowing when and where to vary k leads us to

consider whether there might be regions of phase space through which transport

must occur. These regions are analogous to hub airports used in deciding which

trajectory an airplane takes between L.A. and Boston. Finding the actual route

seems hopeless at first, until we realize that there are just a few possible switching

points: e.g., Denver, Chicago, and Houston. With this sort of model, we reduce

the infinite-dimensional search in all of “phase space” for places to program k

to a few small switching regions. Targeting can then successfully be performed

between a finite, hopefully complete, set of such regions. The problem then
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becomes just one of permutations among the fastest orbits between switching

regions; but it still may be intractable if the number of switching regions is high

and there is no obvious order of their importance. See Appendix B.1 for further

discussion about this sort of approach.

To find these switching regions seems at first to require detailed knowl-

edge of the transport properties of the chaotic system; yet these are only under-

stood for the case of two-dimensional mappings (see Chapter 1.2). The solution

is that transport between two regions separated by a homoclinic orbit occurs by

landing in the exit lobe delineated by intersections of stable and unstable mani-

fold segments of the homoclinic orbit. Thus, a transiting orbit must always have

a point in the lobe between the two regions, regardless of the orbit’s complexity.

The lobes are examples of switching regions. The most efficient transporting

orbit lands on a subset of the exit lobe that does not intersect the lobe again

before intersecting the target b. The inefficient orbit will in fact recur in the

exit lobe. A complete description of the transport may even be reducible to a

shift on a set of symbols such as the Smale horseshoe example [95, 104] which we

will discuss as a model for our targeting algorithm. Unfortunately, using such a

description to quantitatively define transport between a and b requires knowing

the stable and unstable manifolds that delineate the important switching lobes.

In addition, the geometry for higher-dimensional phase space is not yet well

understood.

Even though the lobe structure is special for the case of two dimensions,

there is an important aspect of it that has much wider application: recurrence.

Lemma 2.2.1 (Poincaré ) Let Eq. (1.2) represent a continuous map on a

compact, finite-dimensional phase space T : Ω → Ω, with metric ρ(·). Given an
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initial condition z0 ∈ Ω and a δ > 0, then there exists an m ≥ 0 such that there

are infinitely many times q, p where q > p, q ≥ m and such that the orbit of z0

will recur with itself at these times to within δ. Hence, ρ(T q(z0)− T p(z0)) < δ.

The reader will note that this lemma is similiar to the Poincaré recurrence

theorem [83]. The proof of the lemma is quite simple, using the pigeonhole prin-

ciple. Assume that the lemma is false. Recall that if we cover a compact set

with δ balls {Bδ(z)}, then we may take a finite subcover
⋃m

j=1 Bδ,j ⊇ Ω. By

assumption, T i(z0) must each lie in a distinct ball of the subcover. However, if

i = q − 1 and q ≥ m, then there are no balls left to accommodate another iter-

ate; all the pigeonholes are filled. Hence the qth iterate must fall in an already

occupied pth ball, indicating a recurrence. We see that there must be infinitely

many such instances if we shift t = 0 to t = q. 2

Now we consider what this implies in terms of minimum-time control.

If za is in a hyperbolic set and if the recurrence distance δ between zi and

zi+s is small enough, hyperbolicity implies that there exists a real orbit that

converges to that of zi backward in time and converges to that of zi+s forward

in time. Thus our original orbit could not have been time-optimal since the loop

{zi+1, ...,zi+s−1,zi+s} only serves to increase I(k). We can only determine if a

given recurrence is in fact close enough on a case-by-case basis by successfully

constructing a patch of the shadow orbit. A technique to cut the loop and re-glue

using an orbit segment is described in Sec. 2.2.3 below. Such a construction,

when successful, monotonically decreases the value of I. Since the patched

segment asymptotically converges to the original orbit, we can also satisfy the

constraints Eqs. (1.16) and (1.17) as well.

The important point here is that it is very difficult to find fast orbits
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or to know apriori when and how to apply a control sequence {ki}n
i=1. On the

other hand, it is relatively easy to find slow orbits. However, slow orbits tend

to waste time on long, sometimes extremely long, recurrent loops. These loops

serve little more than to bide time until an appropriately aligned pass through

the ball of recurrence has been achieved.

Slow orbits, while not useful in themselves, tell the story of how to

find the switching points. Furthermore, the orbit segments between recurrences

which do not themselves recur are assumed to be locally optimal. This assump-

tion relies on having correctly chosen the preassigned recurrence threshold δ so

that all possible patches are glued. Choosing the threshold too large, however,

wastes time checking “recurrences” that have no chance of being patched.

There are similar ideas to this in classical control literature. Dynamic

programming, based on Bellman’s principle of optimality, asserts that a globally

optimal orbit (and its associated control function) must also necessarily be lo-

cally optimal for segments of the orbit [46, 102]. While local optimization does

not in general imply global optimization, a huge improvement may nonetheless

be achieved with a small amount of computer work, in the process of satisfying

Bellman’s necessary condition. For the two-dimensional case, if we correctly

choose δ as the radius of a lobe, and if each region only has one family of lobes,

I believe that the restricted orbit found must be close to optimal.

In order to efficiently find the recurrences, we use the following al-

gorithm. Given an orbit {z0, ...,zj , ...,zN}, where z0 = za is close to a and

zN = zb is close to b, we perform the following:

for i=0 to N

for j=N to i+1, step -1

if ρ(zi − zj) ≤ δ /*Is there a recurrent loop?*/
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then

attempt to remove the loop /*Can a patch be found?*/

if recurrent loop can be removed,

then

cut it and glue in patch

let i=j

end if

end if

loop

loop

This algorithm automatically considers the largest recurrences for re-

moval first by working forward from z0 and backward from zN . Shorter, inter-

mediate recurrences that occur inside of a bigger recurrence are automatically

removed without ever being considered. This represents an improvement over a

purely forward search which might require an ordering according to lengths of

loops.

It may not always be necessary to have a single orbit from a to b to

use this algorithm. Two regions of phase space can be explored separately by

starting separate initial conditions and concatenating their resulting orbits. This

can be a useful way to explore the phase space near a and b separately when a

single orbit between them is particularly difficult to find. If the two orbits closely

approach each other, then it might be possible to patch from one to the other.

The above algorithm, applied to the concatenated orbit, will automatically test

all such possibilities. If, however, such a patch is not possible, then the end of the

first orbit will be reached with no connection to the second orbit. In contrast,

when a single orbit between the two regions can be found, the algorithm is
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robust, because the original, albeit slow orbit is always available as the path.

The prerecorded orbit represents known information about transport

in the visited phase space. How we manage this information depends on our

assigned task. If we are likely to be presented with a variety of initial conditions

a and targets b, then the following model may be used. Ergodicity causes a

long orbit to cover accessible phase space. The longer the orbit, the better the

cover. Any target point close to the known orbit is feasible, and initial conditions

close to the orbit allow for immediately starting stabilization. Alternatively, if

no points of the known orbit are close enough to the initial condition, then

uncontrolled iteration will quickly cause it to come close. This model requires

directly stabilizing the initial condition to the known orbit and restricting its

length at points of recurrence, on the fly.

Stabilization can be performed by shooting the initial condition at the

stable manifold of the known path using Newton’s method to find the correct

perturbations to the internal parameters. Details are discussed in [51] and rep-

resent only a slight modification to the gluing algorithm presented in the next

section. Recurrences are detected and cut according to the above algorithm,

where stabilization can immediately be used to skip a loop by shooting at the

path after the loop. A successful cut is one in which the recurrence is close

enough so that stabilization works with a sufficiently small parameter perturba-

tion.

Another possible control task is one where a and b are fixed in advance.

We may be presented with such a model either when just a few objectives are

likely, or perhaps a decision tree is to be built and even the segments of the

tree are difficult to find. In this case, time can be spent to find a more optimal

solution achieving the transport. The resulting epsilon chain can be stabilized
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later, in real-time as above. This model tends to build faster orbits since the

patches are built forward and backward from the switching points, as compared

to the on the fly model described above where only the future points can be

modified.

2.2.3 Cutting Recurrent Loops Suppose that we find a recur-

rence between zi and zi+s, s steps later, i.e. ‖zi+s − zi‖ < δ. Already, it is

possible to skip (s− 1) iterates of the orbit by making the appropriate δ pertur-

bation from zi to zi+s. Even better, it may be possible to find a patch consisting

of a nearby orbit z′i with the property that ‖zi−m−z′i−m‖ and ‖zi+s+m−z′i+m‖

are both small enough to satisfy the control constraint. If the orbit is hyperbolic,

then we can remove the (s − 1) step loop using an exponentially smaller total

perturbation. We find a patch {z′i−m, ...,z′i+m} consisting of a nearby orbit seg-

ment which is close to the pre-orbit of zi before the recurrence, and close to the

orbit of zi+s after the recurrence, and which completely avoids the unwanted

loop {zi+1, ...,zi+s−1,zi+s}. We choose m so that the perturbation onto the

patch from the natural orbit is as small as we require. The existence of such

an orbit patch is guaranteed if the recurrent points are hyperbolic and the re-

currence distance δ is small enough, but the condition is not necessary. For the

hyperbolic case, the size of δ depends on the geometry and angle of intersection

between W s(zi) and W u(zi+s). We will start by describing a point p on the

patch which is between zi and zi+s; then the rest of the patch is formed by for-

ward and backward iteration. The point p lies on the intersection of the stable

manifold of zi+s, denoted W s(zi+s), and the unstable manifold of zi, similarly

denoted as W u(zi) and therefore has the property that

‖Tn(p)− Tn(zi+s)‖ → 0 and ‖T−n(p)− T−n(zi)‖ → 0 as n →∞. (2.7)
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figure=ums.eps,height=2.5in

Figure 2.3. Construction of a patch. When the point zi recurs with zi+s, the
point of principal intersection p between W u(zi) the unstable manifold of zi

and W s(zi+s) the stable manifold of zi+s converges to the orbit of zi+s under
applications of the map T , and converges to the pre-orbit of zi under applications
of the inverse map T−1.

By the proximity of zi to zi+s, p is within hδ of both zi and zi+s,

where h is a constant that depends on the geometry of the intersection between

W s(zi+s) and W u(zi). To lowest order, h depends on θ, the angle of intersection

between the local linear approximations to the manifolds. We expect that our

technique will be less effective when θ is small; the resulting triangle implies

that p will be far from the point of recurrence which invalidates the locality

assumptions. By construction, we expect that

‖Tm(zi+s)− Tm(p)‖ < hλm
s δ

‖T−m(zi)− T−m(p)‖ < hλ−m
u δ (2.8)

where λs < 1 is the local stable Lyapunov number at zi+s and λu > 1 is the

local unstable Lyapunov number at zi (see Fig. (2.3)).

In principle, it should be possible to choose m so that the perturbations

from the original orbit onto the patch, and then back onto the original orbit are

as small as we like. However, numerically finding points on the stable (unstable)

directions becomes increasingly ill-conditioned if m is too large. In practice

finding the complete manifolds W s(zi+s) and W u(zi) in order to find p is not

practical, efficient, or even important. Instead we find p indirectly by making the

approximation that T−m(p) lies in the tangent space of W u(zi−m), and likewise

that Tm(p) lies in the tangent space of W s(zi+s+m). Hence finding T−m(p) can
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be reduced to a problem of shooting.

In two dimensions we can parameterize the unstable direction with

the vector fu(zi−m), a unit vector in the tangent space of W u(zi−m), with the

variable t. An initial condition is chosen using

z0(t) = zi−m + tfu(zi−m). (2.9)

The success of an initial condition can be measured by how closely T 2m(z0(t))

lands on the line zi+s+m + τfs(zi+s+m). We write components of the vectors

z(t) = (x(t), y(t)) and fs = (fs,x, fs,y). The roots of the expression,

F (t) = fs,y(x(t)− xi+s+m)− fs,x(y(t)− yi+s+m) = 0, (2.10)

can be found quickly using a Newton-secant method. We need only make an

appropriate initial guess so that the point we find will in fact be a principal

intersection point.5 As a rough guess, we can use Eq. (2.8) to write

t0 = λ−m
u δ (2.11)

where we have assumed that h ≈ 1. Extension to higher dimensions is straight-

forward. The number of variables needed to parameterize the initial condition

must equal the dimension spanned by the unstable subspace of the tangent

space at zi−m. Likewise, examining the related problem of shooting at the sta-

ble manifold using the parameters k provides the controllability condition that

perturbations to k must span the unstable subspace of the tangent space at

zi+s+m.
5There are in fact an infinite number of zeroes to (2.10) due to the stretching and

folding of the line (2.9) by the chaotic map. There is however a first zero t corresponding
to the p.i.p. p. If Newton’s method bounces chaotically between basins of attraction,
even when given a “good” guess (2.11) it may be necessary to use a sure bracketing
algorithm such as the bisection method until the parameter is sufficiently close to use
the faster Newton’s method.
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Finding the stable direction fs and the unstable direction fu at a point

z, which is not necessarily periodic, from a chaotic set first requires the complete

orbit {..., z−n, ...,z−1,z0,z1, ...,zn, ...}. Recall that the Jacobian matrix rotates

a vector in the tangent space towards the unstable direction, and the Jacobian

matrix of the inverse map T−1 rotates a vector towards the stable direction.

Therefore, in practice, we choose an arbitrary unit vector u and forward multiply,

starting at z−n, the Jacobian matrices along the orbit to z, normalizing the

vector at each step:

DTn|z−n · u ≡ DT |z−1 ·DT |z−2 · ... ·DT |z−n · u → fu(z) as n →∞. (2.12)

Likewise, the stable direction is formed from the inverse Jacobian starting at

Tn(z).

DT−n|zn · u ≡ DT−1|z1 ·DT−1|z2 · ... ·DT−1|zn · u → fs(z) as n →∞. (2.13)

Convergence is exponential; in practice we find that n = 20 gives an error of

10−5. We use n = 40 which we expect is more than adequate considering the

scale of other errors, (see [53]). At the same time, as in the above calculation,

we calculate the corresponding Lyapunov multipliers, also by the power method.

All of the required quantities for cutting and gluing are in fact accessible

to a model of a dynamics formed by time-series embedding. The primary piece of

information, a recurrence, requires no modeling to identify. To form the patch,

however, we need to fit a piecewise model of the data in order that predictions

may be formulated between known data points [29]. In such a case, a more

accessible numerical technique to form the unstable and stable directions at

a point z is to consider the recorded histories of nearby clusters of points in

forward and backward time. Likewise, from T−n(z), nearby points orient along
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the unstable axis in forward time at z. In addition, partial derivatives of the

map T in each of the parameter directions may be approximated by interpolating

between three models of separate data sets which bracket the range of each

parameter. More details on modeling can be found in Chapter 5.

Note that further refinement to the epsilon chain can be achieved by

running a second pass of the gluing algorithm, by treating chain errors as the δ

and finding a patch over it to further reduce the error by a factor of λm. Hence

a smaller error epsilon chain can be achieved with a modest m by redistributing

the points of the error to the ends of the new patch.

2.2.4 The Standard Map, an Example:

2.2.5 Area Preserving Transport We now demonstrate our method

for the case of the much studied standard map. The standard map, also known

as the kicked rotor, is an area preserving twist map of the plane:

z′ =

 y′

x′

 =

 y − k
2π sin(2πx)

y − k
2π sin(2πx) + x

 . (2.14)

The phase space structures and transport characteristics are typical of Hamil-

tonian systems with two degrees of freedom. There is periodicity in both x

and y with period 1, so the phase space is the torus. Hence according to the

Poincaré recurrence lemma 2.2.1 every orbit must eventually recur.

As a concrete example, we investigate transport from a neighborhood of

the (0, 1) hyperbolic point of (2.14), to a neighborhood of the (1, 1) resonance.

The notation (p, q) denotes the frequency of an orbit, i.e. q iterations of the

map results in exactly p wraps around the cylinder: T q(z) = z+p. The starting

point (0, 1) a is located at (xa, ya) = (0.5, 0.0), and (1,1), our target point b, at

(xb, yb) = (0.5, 1.0).
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It is not possible to find such an orbit if k < kc ≈ 0.97163540631...

[70]; kc is the parameter value at which the last invariant curve dividing phase

space between (0, 1) and (1, 1) becomes a cantorus. The most robust curves

between (0, 1) and (1, 1) are the circles with rotation frequencies 1
γ and 1

γ2 ,

where γ = 1+
√

5
2 is the golden mean.6

The standard map is an example of an area preserving twist diffeomor-

phism. Therefore, a theorem of Mather [69] allows us to conclude that if there

are no separating invariant curves between any two unstable periodic orbits,

then there exists a heteroclinic connection between these points. Specifically, if

k > kc, there are no invariant curves separating vertical transport of the cylin-

der, and therefore according to Mather’s theorem, there exists a heteroclinic

connection between the (0, 1) and (1, 1) orbits for which we will search.

For k > kc, the golden mean invariant curves become cantori. They

have the smallest lobe areas, and hence, represent the most difficult barriers

to transport. An arbitrary orbit will typically pass through these lobes many

times before finally reaching the target point b. This effect also occurs when an

orbit is trapped near an island, and near islands around islands, and so on. This

phenomenon has been successfully modeled using Markov trees [42, 71]. It was

found that a point initially “near” a KAM surface has a survival probability F (t)

is asymptotic to t−α and that the orbit will still be near the surface at large time

t with small constant α [71]. Therefore in the presence of KAM surfaces, we find

long correlations and, hence, roughly power law decay. However the important

point is that, without knowing where the lobes are located, recurrence is a way

of locally detecting globally inefficient orbits.

6See Sec. 6.3 for further discussion of noble numbers such as the golden mean and
their role as robust frequencies in the breakup of invariant KAM tori.
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2.2.6 Transport Time Distributions Before we demonstrate

the improvements made by cutting recurrences, we first investigate the natural

transport time distributions for a range of parameter values. We performed a

Monte Carlo study within a box of size 0.1 centered around our starting point

a at (−0.5, 0.0), from which we randomly choose an ensemble of 104 initial

conditions, and bin them according to how long they took to arrive in a similar

box around the target b at (−0.5, 1.0). Two of the resulting histograms are

displayed together in Fig. (2.4) for the parameter values k = 1.01, just above

kc, and the moderately high value k = 1.25.

figure=Fig3.eps,height=3.5in

Figure 2.4. Histograms of transport time for the standard map between the
box of side 0.1 centered on the starting point a at (0.5, 0.0) to a similar box
centered on the target point b at (0.5, 1.0). 104 initial conditions are randomly
chosen from the a box and binned according to time to transport into the b box.
The number of bins allotted is 100 chosen as the square root of the population.
The solid curve is for k = 1.01, and the dashed curve is for k = 1.25. The
maximum iterations performed on an initial condition is 5 · 106 before cut-off.
Points requiring more iterations are found in the last bin.

We find results similar to the experiment performed by Chirikov [21]

who observed that transport time from y ≈ 0 to y ≈ 1 obeyed a power law.

Fig. (2.5) displays average transport time on a log log plot versus (k − kc),

demonstrating that the average crossing time is indeed well approximated by

the singular power law (k − kc)η [21, 23].

figure=Fig4.eps,height=3.5in

Figure 2.5. Transport times from the a box to the b box as a function of (k−kc).
The top curve shows the average time, calculated amongst 104 randomly chosen
initial conditions from the a box iterated until first intersection with the b box.
The bottom curve shows optimized transport times from a to b resulting from
cutting recurrent loops from slower orbits.
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It is possible that many of the initial conditions are chosen in the subset

of the box that is inaccessible7 to zb. These, and other initial conditions have

such long transport times, that we choose a cut-off time of 5 ·106 iterates, which

is increasingly a problem for k approaching kc. This causes the value of η that we

calculate to be somewhat less than the value 3.012 predicted [70]. The variance

of the distribution is large, as seen in Fig. (2.4), but impossible to measure

due to the large fraction of the box with transport times in the last bin, for

any reasonable finite cut-off. Indeed, we observed that the transport rate is

extremely sensitive to the initial condition, so that the average transport rate is

not an indicative measure of a “typical” rate. Fig. (2.6) displays the percentage

of initial conditions from the a box that never reach b.

figure=Fig5.eps,height=3.5in

Figure 2.6. The percentage of the initial conditions from the a box which take
longer than 5 · 106 iterations to reach the b box.

Here we find that as k approaches kc, most of the transport times

are actually larger than our cut-off. Thus, our computed statistics are only

lower bounds on the actual transport statistics. Nonetheless, the point is that

transport is slow as k → kc, indicating that our efforts to find faster orbits are

worthwhile.

2.2.7 Cutting and Gluing Slow Orbits From the same box

around the initial point a described above, we choose an initial condition which

iterates eventually to near the target b. We restrict ourselves to the orbits

of randomly chosen initial conditions that perform the transport required in
7In order for an initial condition to be accessible to zb it must lie in a pre-iterate

of the box around b which is contained in a pre-iterate of each of the lobes of each of
the barriers in between. Another way of saying this is that there must be a heteroclinic
connection.
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less than 106 iterations so that we do not strain the memory capacity of our

computing resources by storing uninteresting information.

As a concrete example, consider a 80307 step orbit for k = 1.25. Re-

currences are sought following Sec. 2.2.2 searching for zi from the start of the

orbit, and the last recurrence zi+s (largest value of s) from the end of the orbit.

A certain amount of space must be reserved in order to fit the patches.8 We

used patches consisting of (2m + 1) = 31 steps so m = 15 steps must be allowed

for on either side of the recurrence in order that the error may have time to con-

tract sufficiently that the constraint (1.17) is satisfied. The rate of contraction

is determined by the Lyapunov exponents, according to Eq. (2.8). Therefore

a strict lower bound on the cost function I for our technique is (2m + 1) + 1,

the space required for one patch. If patches are forced to not overlap, then q

recurrences imply that I is bounded by q(2m + 1) + 1. In principle, arbitrarily

small constraints (1.17) can be met, but in practice, solutions become numeri-

cally ill-conditioned as m gets large. We chose a modest value m = 15 for this

example, although m = 25 and m = 30 were successfully tested.

The first recurrence that we can successfully remove from our 80307

step orbit is between z16 and z78704 which recurs to a distance δ = 0.08. The

cut and glue algorithm allows us to construct an orbit patch {z′1, ...,z′31} such

that the error to perturb on to the orbit patch is only ‖z′1 − z1‖ = 0.002,

and the error to perturb back off of the orbit patch is ‖z′31 − z78720‖ = 0.002.

Fig. (2.7), showing the error between the patch orbit segment and the two ends

of the recurrence on the orbit, displays how hyperbolicity is used to diminish the

recurrence error. The slopes of the decaying error on either side of the recurrence
8We will see in Chapter 4 by examining a symbol dynamics model how this required

space implies that we do not actually get an optimal orbit, but we are nonetheless close.
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figure=Fig6.eps,height=3.5in

Figure 2.7. The error between a patch orbit {z′n}15
n=−15 and an original orbit at

each of the points zi+s+n for n ≥ 0, and zi+n for n ≤ 0.

represent the corresponding stable and unstable Lyapunov exponents.

With this single patch, we have already demonstrated a 1619 step ep-

silon chain orbit near our original orbit. By finding every recurrence within a

threshold δ = 0.1 and cutting those that can be patched within the error ε =

0.005 we eventually construct a 131 step epsilon chain orbit including 13 overlap-

ping patches. The largest error found in this example was ‖T (z92)−z93‖ = 0.003,

but there were several others of the same order. For this case, 13 important

switching points in 13 important lobes are inferred, and orbit segments between

the switching points are automatically found by keeping those segments that do

not recur close enough to be further cut.

To further demonstrate manageability of the errors, we ran a second

pass of the patching algorithm over the error points of the newly formed epsilon

chain. Pushing the errors back along the unstable manifold, and forward along

the stable manifold, applies just as readily to new ε-chain as it did to the δ-chain.

Redistribution of the errors yields a further reduction by a factors of 50 to 1000.

A phase space portrait of the final path is displayed in Fig. (2.2). The

black regions in the plot represent inaccessible regions of phase space, corre-

sponding to elliptic islands with rational frequencies between 0 and 1. The 131

step epsilon chain orbit, marked by black circles, manages to transport through

all the resonances without getting caught in their periodicity, even though orbits

trapped in a given resonance layer must move at that frequency. The efficiency
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of transport can be observed by the lack of getting bogged down in almost pe-

riodicities as revealed by the lack of corresponding recurrences.9

Several different runs with k = 1.25 for various initial conditions rang-

ing up to a length of 106, and various recurrence thresholds from δ = 0.02 to

0.07 yield epsilon chain orbits of lengths n = 131 to 251. There is a trade off

when choosing the recurrence threshold value δ. Recall that the rate at which a

recurrence error δ can be reduced to the tolerance ε is governed by inequalities

(2.8) which we adapt here to require that

ε > hλ±m
s,u δ, (2.15)

where we choose m = 15. Close recurrences are more likely to be cut. The

resulting t and τ , the perturbations along the vectors fu(zi−m) and fs(zi+s+m)

both denoted ε, are small according to (2.15) for fixed m. In addition, it is often

possible for (2.10) to be solved even if t and τ are large, but the linearization

of the stable (unstable) manifolds is not valid, and so contraction according to

(2.15) is not expected. A successful cut is one where a given tolerance ε can be

satisfied. Since zeroing (2.10) is relatively cheap10, it is practical to set δ, the

recurrence testing threshold, to a relatively high value where most recurrences

are not successfully cut, but no opportunities are missed.

Table (2.1) shows that higher δ can yield faster orbits, but at a cost

of many more trials. We observe in fact that δ ≤ 0.1 and δ ≤ 0.2 yield the

same paths; considering δ ≤ 0.2 recurrences yields no extra successful patches.

This is reflected in the success rate column of Table (2.1). All increases in δ

9This observation can perhaps be used to loosely distinguish slow transporting orbits
from faster orbits by the degree of their quasi-periodicity.

10It is cheap when we have a closed form representation of the map. It may not be
as cheap if we must calculate the map from a flow by Poincaré section. Hence we will
need to take more care in the next chapter.
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Table 2.1. Various recurrence thresholds. Values of δ are tested on a single
109594 step orbit between the a box and b box for k = 1.25 and patch size
m = 15 to achieve an ε = 0.005 tolerance. This shows how increasing computer
work, to a point, yields faster paths by considering unlikely patchable recur-
rences. Tabulated quantities are: the threshold tested δ, the resulting epsilon
chain length n, the number of loops successfully cut, and percentage ratio of
successfully cut loops to those attempted when a δ recurrence was detected.

δ n loops cut % success rate

0.005 748 15 100.0
0.01 597 13 3.96
0.025 236 8 2.020
0.05 177 14 1.552
0.08 173 14 1.14
0.09 156 16 1.16
0.1 156 16 0.920
0.2 156 16 0.096
1.0 156 16 0.035
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up to 0.09 did in fact yield faster paths. By contrast, if we allow ourselves to

use longer patches by increasing m to allow more space to contract, in principle,

we expect that higher values of δ are likely to be successful, but at the cost of

ill-conditioning the solution of (2.10). We find a good balance at m = 15, but

this choice of m is arbitrary. We note that the solution of the long time targeting

problem would be trivial if there were no ill-conditioning problem with growing

m, since we could simply choose δ = 1. There would be no need to consider

intermediate switching points, the location of which is the source of the major

difficulty to slow transport problems. In that case a would be recurrent with b

and by choosing a very large value of m (such as m = 65 as indicated by our

131 step orbit above) we could shoot directly from beginning to end.

To find the optimum value it is best to choose δ equal to the “diam-

eter” of the important lobes between a and b, in their most round iteration

as they become long and thin in both forward and backward time. Define the

most round iteration of a lobe as the iteration with minimum diameter, where

diameter is defined by the supremum of the distance between any two points in

the set. Unfortunately, in general we do not know this value apriori. An efficient

technique would involve several passes for increasing values of δ, first forming an

epsilon chain orbit that always stays below control saturation (1.17), and then

removing any possible recurrences for the next value of δ. This would repre-

sent a multi-pass algorithm since the length of the epsilon chain orbit decreases

monotonically.

The lower curve of Fig. (2.5) displays “optimized” transport times as a

function of (k− kc), for a one pass optimization. These values can be compared

to the uncontrolled transport time averages also displayed in the same figure.

We see an improvement by a factor of almost 104 on average for the lower values
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figure=Graph.eps,height=4.5in

Figure 2.8. Histograms of angles between stable and unstable manifolds. In (a)
the distribution shows angles for each of the 975760 points along an uncontrolled
orbit between the a box and b box for k = 1.01. In (c) the angles along an
uncontrolled orbit for k = 1.25 are shown. In (b) the 975760 step orbit for
k = 1.01 has been restricted to a 778 step epsilon chain. Similarly in (d) for
k = 1.25, a 80307 steps orbit has been restricted to a 131 step epsilon chain.

of k.

2.2.8 Hyperbolicity in the Standard Map The construction

of an orbit patch as explained in Sec. 2.2.3 is guaranteed to work when the

orbit is a hyperbolic saddle. A hyperbolic invariant set is defined as a compact,

nonattracting, invariant set with a dense orbit such that each point of the set

has a stable direction and unstable direction. A hyperbolic saddle has all the

angles between stable and unstable manifolds bounded away from zero, and

a nonhyperbolic saddle may have angles that approach zero. In order that

the intersection point p is close to the δ ball containing the recurrent points,

the constant h, depending on the angle between stable manifold at zi+s and

unstable manifold at zi, must be large. In this section, we discuss the validity

of this assumption by numerically investigating the angle distribution between

stable and unstable directions, calculated according to Eqs. (2.12)-(2.13), at

each point along a slow orbit between the objectives a and b. This is in the

spirit of the recent paper by Lai et al. [53] who perform similar calculations for

the Hénon map.

Fig. (2.8) show angle distributions for k = 1.01 and k = 1.25. Dis-

tributions found were similar in shape, average, and peak for each value k,

independent of initial condition. In Figs. (2.8a) and (2.8c) we can see a definite

spike at the peak in the angle distributions. From there the probability falls off



72

smoothly with increasing angle. It is not clear whether the angles are bounded

away from zero or not, since the curve falls off smoothly, seemingly toward zero.

This situation for the standard map is qualitatively quite different from that

of the Hénon map, where the distributions show “complicated structure with-

out much regularity near θ = 0.” The lowest angle for the figures displayed is

θ = 0.0009 for Fig. (2.8a) and θ = 0.12 for Fig. (2.8c). Results are similar when

other transporting initial conditions from the a box are chosen.

The point that concerns us here is that the probability of finding angles

below any reasonable value is quite low. According to our algorithm, a recurrence

is only cut when an orbit patch within the control tolerance can be found on

a trial and error basis. So, we are only concerned here with the probability of

small angles: for example in Fig. (2.8c) P (θ < 8o) ∼= x = 0.7%.

It is interesting to compare the angles between fu(zi) and fs(zi+s) of

recurrences that cannot be successfully mended to those that can be mended.

For k = 1.25 and δ = 0.01 we recorded separately the angles of successes and

failures. The failure category includes the entire range of angles. We expect a

problem with small angles, but even large angles can be a problem for recurrences

that are not close enough or when the manifolds curve sharply away from the

linear approximations. In contrast, the smallest successfully mended angle found

was 11o, and the angles tend to be much higher than that in general.

Figures (2.8b) and (2.8d) show the angle distributions for the mended

epsilon chain orbits. Angles are now calculated using the epsilon chain rather

than following the natural orbit of the point z which may quickly diverge from

the predicted pseudo-orbit. The main feature we observe in the restricted orbits

is that the average angle invariably increases. For example, the average for

Fig. (2.8a), < θ >= 29.9o was increased to < θ >= 50.9o along the 778 step
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epsilon chain. Similarly, Fig. (2.8d) reveals a change from < θ >= 40.5o to

< θ >= 46.9o along the 131 step path.

2.2.9 Stabilization We next demonstrate that an initial condi-

tion can indeed be stabilized onto the epsilon chain with small parameter per-

turbations as described in Sec. 2.2.2. As an illustration consider the same orbit

as in Sec. 2.2.7 for which we found a nearby 131 step pseudo-orbit {z1, ...,z131}

with 13 overlapping patches. The parameter perturbation size required for sta-

bilization depends directly on the phase space error found.

We demonstrated that initial conditions close to z1 can be stabilized

along the epsilon chain to z131. Parameter perturbations were used to shoot at

the stable manifold further down the path, and were calculated whenever a point

of error was predicted on the epsilon chain, or the test point drifted outside a

predetermined tolerance of the known path. For this particular example, a

maximum value ∆k = 0.016 was required, but most perturbations were several

orders of magnitude smaller. Stabilization was successful for all the epsilon

chains tested, for various values of k0.

For comparison, we also tested on the fly stabilization directly to the

long 80307 step orbit. Again, we used a randomly chosen initial condition near

the known orbit and stabilization was turned on whenever the test orbit drifted

outside a set tolerance. In addition, whenever a recurrence in the pre-recorded

orbit was detected along the way, stabilization was attempted by shooting at

the end of the loop. We expect that the length of the test orbit will be longer,

because with this method, only future events can be modified. In this example,

the test orbit achieves the final destination in 464 iterations. In spite of being

typically slower, on the fly control can be more flexible since one can rapidly
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retarget11 as needed, as the whole pre-recorded orbit is available.

2.2.10 Conclusions We have discussed the time-optimal control

problem for chaotic regions, presenting a method to find paths that quickly

achieve transport goals and which can be stabilized with small parameter per-

turbations. A recurrent orbit necessarily violates Bellman’s condition for opti-

mality; we eliminate recurrences by using them as switching points between orbit

segments. The resulting epsilon chain is refined by smoothing with a patch that

shoots from the unstable manifold of the orbit before the recurrence onto the

stable manifold of the orbit after the recurrence. The method was demonstrated

on the standard map for which uncontrolled transport is extremely slow and the

statistics of the transit times are anomalous. The technique, when applied to

orbits of up to 106 iterates, typically reduces transport times by factors of up

to 104, even for k close to kc where previous targeting schemes are unsuccess-

ful [52]. Finally, we demonstrated that small parameter perturbations can be

used to stabilize a test orbit onto either a pre-calculated fast epsilon chain, or

alternatively onto a long known orbit, eliminating recurrences on the fly.

In straight forward manner, the techniques in this chapter can be ex-

tended in a number of directions. Though we used a Hamiltonian mapping as an

example, the method makes no assumptions as to the nature of the dynamics;

indeed since the inverse map is not needed, the dynamics can even be noninvert-

ible. The use of recurrences as switching points requires no assumptions as to

the dimensionality of the phase space, though recurrences will be less common

in higher dimensions. As well as optimizing transport between two separated

points, the method could also be used to eliminate escape from a region, using

11We can choose a new b near our long orbit library at any time.
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the recurrences to construct a rough periodic orbit. This might require smaller

and less frequent control than stabilizing a fixed point in a given region. Finally,

the techniques presented in this chapter are also applicable to a piecewise local

model of a time series built through embedding, which we will explore in more

detail in Chapter 5.



CHAPTER 3

TARGETING CHAOTIC TRANSFER ORBITS TO THE

MOON THROUGH RECURRENCE

3.1 Introduction

In this chapter, we will apply the targeting technique of the previ-

ous section to another well known area preserving map: the circular1 restricted

three-body problem. As with the standard map, we will see the resonance lay-

ered phase space portrait typical of Hamiltonian maps, which makes targeting

particularly difficult.

After a brief overview of the restricted three-body problem and deriva-

tion of its equations of motion, I will discuss some problems special to integrating

this flow. Then I will discuss the process of building a Poincaré map of the flow,

and some special issues involved with finding the stable and unstable manifolds

restricted to the surface of section. Finally, I will perform “targeting through

recurrence.” Fixing the the mass ratio to that appropriate for the Earth - Moon

system, orbits found have real life application of sending a rocket to the Moon

with small perturbations (rocket burns) in minimal time. In the final discussion

of the chapter, we will compare these low energy orbits to the classic Hohmann

transfer orbits.
1In the literature we find the description “elliptic restricted three-body problem.”

The convention is that if the word “elliptic” is omitted, then it is understood that we
are discussing the circular problem.
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3.2 The Restricted Three-Body Problem

The full three body problem Hamiltonian may be written [72]

H(P ,Q) = T (P ) + V (Q) =
3∑

i=1

‖P i‖2

2mi
−

∑
1≤i<j≤3

Gmimj

rij
, (3.1)

where

rij = ‖Qi −Qj‖. (3.2)

We see that this Hamiltonian is in the form of kinetic energy plus a potential.

Each Qi ∈ IR3 and has a conjugate momentum P i ∈ IR3. Thus the general

problem requires an 18-dimensional phase space. Poincaré ended a long standing

search for a closed form solution to the general n-body problem by proving that

standard perturbation theory does not converge [83, 56]. In fact, the only general

solutions to this problem are the Kepler solutions applicable to the two body

case [99].

The “restricted” problem is a special case of (3.1) first formulated by

the American astronomer G.W. Hill2 in 1878 [100]. Here one of the n masses

is assumed to be vanishingly small, and so has no influence on the remaining

bodies, the “primaries”, which are free to follow Keplerian motion. For the three

body case, the Hamiltonian for the small mass becomes

H(P ,Q) =
‖P ‖2

2
− Φ(Q), (3.3)

where

Φ(Q) = (
m1

r1
+

m2

r2
), (3.4)

and

r2
1 = (Q1,x −Qx)2 + (Q1,y −Qy)2,

r2
2 = (Q2,x −Qx)2 + (Q2,y −Qy)2. (3.5)

2In this paper, Hill argued that the Moon is permanently bounded near the Earth
by using his method of “curves of zero velocity.”
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Here (Q1,x, Q1,y) and (Q2,x, Q2,y) are the time dependent positions of the two

primary masses m1 and m2 which may be solved for exactly, given the primaries’

orbital elements.

We choose to normalize units such that the sum of the two masses is

one,

m1 = 1− µ,

m2 = µ, (3.6)

the distance between the primaries is one and the gravity constant is one. We

will derive the conversion between these units and the physical units at the

end of the section. We may also restrict the small mass to the plane of the

primaries’ orbits by assuming that Qz = 0 and Pz=0. For simplification, it is

assumed that the two primaries orbit each other with zero eccentricity. This

is typically a well founded approximation for many of the orbits in our solar

system. The eccentricity of the lunar orbit is e = 0.0549, and that of the Earth’s

solar orbit is e = 0.0167, to cite two examples. The exact Hamiltonian of

the elliptic restricted problem may be expressed perturbatively in terms of the

circular restricted Hamiltonian with small parameter e (see [72]).

We may change coordinates to a rotating frame with the generating

function

S2(p,Q) = pt ·R ·Q, (3.7)

expressed in terms of the old position and the new momentum, where

R =

 cos t − sin t

sin t cos t

 , (3.8)

is a rotation matrix. In Goldstein [37] we learn that choosing the function

S = S2(p,Q) + p · q, (3.9)
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is appropriate for the second type of function S2, so that we may match the

correct terms. The canonical change of coordinates follows from Hamilton’s

least action principle which states that the action is stationary,

δ

∫ tf

t0
(P · Q̇−H)dt = 0. (3.10)

The statement is true after the canonical transformation,

δ

∫ tf

t0
(p · q̇ −K)dt = 0, (3.11)

which implies that the actions in both coordinate frames agree up to the deriva-

tive of a perfect derivative because

δ

∫ tf

t0

dS

dt
dt = δ(S(tf )− S(t0)) = 0. (3.12)

Here S is the generating function bridge between the two coordinates and is itself

a Hamiltonian. Therefore we may compare the two actions using the generating

function (3.9),

P · Q̇−H(P ,Q, t) = p · q̇ −K(p, q, t) +
dS

dt
, (3.13)

written in differential form. Substituting the generating function (3.9) into (3.13)

and expanding, we find

P · Q̇−H(P ,Q, t) = −ṗ · q −K(p, q, t) +
∂S2

∂p
· ṗ +

∂S2

∂Q
· Q̇ +

∂S2

∂t
. (3.14)

Linear independence of the Q̇, ṗ, and 1 terms allows us to compare their coeffi-

cients separately yielding the transformation equations

P =
∂S2

∂Q
=

∂

∂Q
(pt ·R ·Q) = R−1 · p, (3.15)

q =
∂S2

∂p
=

∂

∂p
(pt ·R ·Q) = (R ·Q), (3.16)
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and

K(q,p, t) = H(Q,P , t) +
∂S2

∂t
. (3.17)

First inverting equation (3.16) to eliminate the old coordinate

Q = R−1q, (3.18)

we may then write

∂S2

∂t
=

∂

∂t
(pt ·R(t) ·Q) = pt · Ṙ(t) ·R−1(t) · q. (3.19)

The reader may check the identity

Ṙ ·R−1 =

 0 −1

1 0

 = −J. (3.20)

Substituting (3.18) and (3.20) into (3.19) yields the term

∂S2

∂t
= −pt · J · q, (3.21)

corresponding to coriolis of the rotating coordinates.

R is a unitary matrix and therefore it follows from Eqs. (3.15) and

(3.18) that

‖p‖ = ‖P ‖, (3.22)

‖q‖ = ‖Q‖. (3.23)

Assuming that we start the two primaries m1, and m2 at (Q1,x, Q1,y) = (−m2, 0)

and (m1, 0) respectively, and that they rotate around their center of mass at

(0, 0), we find

r2
1 = (Qx −m2 cos t)2 + (Qy −m2 sin t)2 = (qx −m2)2 + qy (3.24)

r2
2 = (Qx + m1 cos t)2 + (Qy + m1 sin t)2 = (qx + m1)2 + qy. (3.25)
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Defining

φ(q) ≡ m1

r1(q)
+

m2

r2(q)
, (3.26)

we may now write the new Hamiltonian in its canonical coordinates

K(q,p) =
1
2
(p2

x + p2
y)− pt · J · q − φ(q). (3.27)

The Hamiltonian equations of motion are

q̇x = ∂K
∂px

= px + qy, ṗx = − ∂K
∂qx

= py + ∂φ
∂qx

,

q̇y = ∂K
∂py

= py − qx, ṗy = − ∂K
∂qy

= −px + ∂φ
∂qy

.
(3.28)

The time independent form of the Hamiltonian (3.27) implies that the flow in

this four-dimensional phase space is restricted to a three-dimensional subman-

ifold of constant energy. Choosing the surface qy=0 yields a two-dimensional

Poincaré map.

The standard practice in the astronomy literature is to work with a

Lagrangian form of the equations of motion, in which the coordinates (q, q̇) are

used in favor of the canonical variables (q,p). Eliminating p from (3.28) we find

q̇x = u,

q̇y = v,

u̇ = qx + 2v +
∂φ

∂qx
,

v̇ = qy − 2u +
∂φ

∂qy
. (3.29)

On the Poincaré section qy = 0 we see in (3.28) that the velocity corresponds

to the momentum because q̇x = px + 0. There are two area preserving maps

corresponding to qy = 0, one for each branch of ±q̇y. We choose the branch

qy > 0.
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Finally we may rewrite the Hamiltonian (3.27), replacing (q,p) in favor

of (q, q̇) which yields Jacobi’s constant3

J(qx, qy, q̇x, q̇y) = ‖q̇‖2 − ‖q‖2 − 2φ(q). (3.30)

figure=otmp.eps,height=3.5in

Figure 3.1. A phase space portrait of the Poincaré mapping of a 105 iterate test
orbit for the restricted three-body problem with J = −3.177. The point (qx, q̇x)
is plotted every time the flow pierces the surface qy = 0 with positive q̇y. The
Earth and Moon are clearly labeled at their fixed locations in the rotating frame.
The phase space locations of the starting point a near the Earth, and the target
point b, near a Moon orbiting invariant torus, are also labeled. Several invariant
tori are also shown to improve features.

An application of the model (3.29) is to look for a low energy transfer

orbit to the Moon. To this end, we set m1
m2

= 0.0123. Fig. (3.1) shows a phase

space portrait of a long chaotic orbit of a small mass in the Earth - Moon system.

In deriving (3.29) we normalized our units by setting G = 1, m1 + m2=1, and

|q1,x−q2,x| = 1 which can be used to find the normalized time and distance. The

normalized qx unit is L = 3.844·105km, the time unit4 is T = 104h and therefore

the velocity is V = 1024m/sec. For comparison we calculate that the Earth -

Sun restricted three-body problem has normalized units L = 1.496 · 108km, the

time unit5 is T = 1395h, and therefore V = 29.8km/sec.

The Earth - Moon system has a very low eccentricity, and so is well

approximated by the circular problem. An orbit which becomes a real mission

is typically obtained first by such an approximate system, and then later refined
3Jacobi’s constant is often defined as the negative of two times the energy. I have

chosen to define it here J = 2H to preserve its relation to energy.
4To find the time unit, we make use of the fact that m1 + m2 = 1 corresponds to

the actual value of 5.9742 · 1024Kg + 7.3483 · 1022Kg. We may then eliminate the mass
and distance units from the gravity constant G = 6.672 ·10−11m3Kg−1sec−2 which also
corresponds to one.

5Now we have m1 + m2 ≈ m1 = 1.9891 · 1030Kg.



83

through more and more precise models which eventually include small effects

such as the influence of other planets, solar wind, high altitude atmospheric

drag, etc. In addition, there is a limited precision to which a rocket can be

positioned and thrusted thus requiring occasional corrective manoeuvres. With

this in mind, (3.29) is considered a good starting model [22, 87].

3.3 Hill’s Curves of Zero Velocity - Accessible Regions

Although long time solutions of (3.29) are difficult to obtain except for

certain special cases (i.e. the Lagrange points). Hill first realized that the form

of the equation for J implies a restriction on the configuration space in which a

particle with fixed energy may visit [44]. Within these bounds, the curves of zero

velocity, Hill’s technique has little to say about exactly where the particle may

be found. Nonetheless, this represents an important achievement as he was able

to show, for example, that the Moon (the small mass!) is permanently bounded

to the Earth in the Earth - Sun - Moon three body system as approximated by

(3.29). We will also see in this section that the idea may be modified to find an

upper bound on accessible phase space.

A requirement on the velocity (u, v) is that it remain real valued.

Therefore u2 ≥ 0 and v2 ≥ 0. At the boundary of the closed set of allowed

states in configuration space, u = v = 0 and so following Eq. (3.30) Hill’s curve

of zero velocity, for fixed J , bounds Hill’s region, given by the relation

C + (x2 + y2) + 2(
m1

r1
+

m2

r2
) ≥ 0, (3.31)

where we take C as a fixed value of J (a negative quantity).

In Fig. (??) we see the surface over (qx, qy) given by J(qx, qy, 0, 0).

Each of the five Lagrange points are critical points on this surface. L1, L2, and

L3 can be found at the saddle points along the line through the two masses on
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the qy = 0 axis, and L4 and L5 are located at the maximum points located

symmetrically off the qy = 0 axis.

A slice at constant C yields the curve bounding the accessible region

for a given orbit. We see that a low value of C causes the slice to cut through

the wells of the two primaries. A point starting near a primary stays within a

“circle” around the primary forever,6 which we see portrayed in Fig. (3.3a).

Increasing C to J2 = −3.1883... causes the circles to enlarge (the wells

widen) until they touch at L2.7 For a slightly higher value of J , a particle

may pass between the two primaries through the neck, and is bounded within a

“dumbbell” shaped region (see Fig. (3.3b)). We also see in a configuration space

plot Fig. (3.6) showing that an orbit with such a value of Jacobi’s constant stays

within the dumbbell shaped region.

figure=Hill-0.eps,height=1.5in

Figure 3.3. a: A sketch of a slice of the zero velocity surface for a value of J
below the level at which the two primaries are accessible. A particle starting
near one of the primaries at this energy level is deep down the primary’s well
and inaccessible to the other primary. b: The critical value J2 at which the two
primaries become accessible. The two regions connect through a “neck” at the
critical point of the zero velocity surface at L2.

For a still higher value of C = J1 = −3.174..., we reach the “top of

the hill” at the second saddle point L1 on the outside of the smaller primary.

Now the dumbbell opens, allowing access to the region away from the primaries.

A particle with this higher level of energy is no longer bounded to the primary

system for long times.
6The surface also intersects the plane of constant C well away from both primaries.

Thus a particle starting outside that “circle” stays outside. The region between is
inaccessible for that value of C as that would require imaginary velocity.

7At the libration point L2, we see a saddle on the C(x, y) surface where a fixed value
of C allows the “neck” to open.
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The targeting technique of the previous chapter calls for a long orbit

which explores accessible phase space. We choose J larger than the critical

value J2 at which the neck opens [22], so that the spacecraft may drift between

the primaries. We must also choose J less than the critical value J1 where the

spacecraft may escape as we require a long bounded orbit for the library.8 This

long orbit may explore an accessible phase space which includes proximity to

both primaries. The range of J2 ≤ J ≤ J1 within which we will work turns out

to be quite small because the ratio m1
m2

is small.9

A curve of zero velocity may also be found on the section qy = 0,

v > 0. We may modify the expression for J to yield u as a graph over qx. Again

assuming that v = 0 at the boundary of real valued states, solving (3.30) for u

yields

|u| ≤
√
|J + x2 + 2(

m1

|x + m2|
+

m2

|x−m1|
)|. (3.32)

Fig. (??) is the plot of this graph for J = −3.177 in which we see that the neck

is open, but the orbit is bounded.10 This region we see closely approximates the

upper bound on the region of accessible phase space revealed by Fig. (3.1).

3.4 From Flow to Map, Special Issues

In this section, we will discuss how to accurately integrate (3.29) be-

tween sections and through the singularity at close approaches to m1 or m2.

Then we will find the stable and unstable directions of the full four-dimensional

flow, restricted to the two-dimensional surface of section.
8We are also motivated to choose a small value of energy J since we wish to find a

low energy orbit.
9However, m1

m2
for the Earth Moon system is in fact the largest such ratio in our solar

system.
10The orbit on the section is unbounded in velocity u, as arbitrarily close approaches

are possible which cause correspondingly large increases in velocity. Nonetheless, the
particle must remain bounded in qx within the curves of zero velocity.
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To find the map, we integrate the flow until we cross the section in

a given step. Then by “backing-up” we shoot at the surface with smaller and

smaller values of h until |qy| < 10−16. A cleaner alternative would be to change

the independent variable in (3.29) from t to qy, so that each integration step

automatically increments qy, and we may find qy = 0 exactly. For (3.29) however

the scheme is not so pleasing and the shooting method works quite well.

We see that if r1 � 1 (or r2 � 1), then (3.29) becomes singular.

Conservation of energy implies that the velocities become correspondingly large.

Hence, special precautions must be taken.

If possible, it would seem to be favorable to make use of the symplec-

tic structure definitive in Hamiltonian systems such as (3.27). For example, the

“leap-frog” integrator calls for adding the potential change and then the momen-

tum change in successive half steps to exactly conserve a nearby Hamiltonian of

a discretized separable Hamiltonian (see [107]).

Unfortunately, symplectic integrators are not well suited to stiff prob-

lems such as those derived from 1
r potentials. The dynamics of the Hamiltonian

that the discrete scheme conserves in fact may not be very close to the original

dynamics.11 The singularities make the use of a fixed step size of even a high de-

gree scheme eventually inaccurate for a close enough approach (which typically

occurs, eventually, along a general orbit). Meanwhile, a small step size may not

11The discretization may in fact “add new dynamics” if too large a step size is chosen.
A nice example [105] is given by the standard map (1.37) which is a first order leap-frog
discretization of a simple pendulum flow, H = 1

2p2 + ε cos θ. Alternatively one can
use the discretized Hamiltonian H = 1

2p2 + 2πδ2π(Ωt)ε cos θ. It is straight forward to
exactly integrate the momentum change through the delta functions, which yields the
standard map where the parameter is k = (2π

Ω )2ε. If the time between the delta function
potential bursts is very small, then k is small, and so we know that the standard map
phase space is filled with KAM circles which bound a given numerical solution and keep
it from from wandering far from the corresponding continuous solution. However, for
larger values of k, in particular for k > kc ≈ 0.971, solutions may wander tremendously.
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be so well suited for a “flat” potential found away from the primaries. Hence,

an adaptive scheme is called for. There is, however, no adaptive symplectic inte-

grator [89]. A variable step size integrator, which we would require here, would

specify the step size as a function of the position, dt(z). This we see alters the

Jacobian along an integrated orbit perhaps resulting in non-conservation of the

symplectic forms.

Instead, an adaptive RK4 [31] scheme can be used to conserve J within

a preset tolerance. We wish to find J to within 10−12 for each iteration flowing

between section piercings, keeping in mind that an error in J relates to an error

in u on the section according to

|δu| ≤ 2δJ

J
, (3.33)

found by implicit differentiation of (3.30) and realizing that the maximum vari-

ation in u occurs when δqx = δqy = 0 and δv = 0. We analogously find a similar

expression for δqx. If a given step size h is insufficient to conserve J , then we

halve h until the tolerance is met. Because RK4 has an O(h5) error term, each

halving of h results in decreasing the error term by at least a factor of 32.

We still need a good first guess at the step size to minimize time spent

testing overly large stepping attempts. To this end we follow an idea in [47] to

choose each new integration step size as

h = c min
i=1,2

|ri|√
u2 + v2

, (3.34)

where the authors advise that one arbitrarily choose c = 0.1.

Typically, these procedures might be enough for many tasks, but we

need to integrate (3.29) for 105+ iterates of the map, where each iterate repre-

sents many integration steps, while conserving J to a high degree of accuracy

over the entire orbit.
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To further improve accuracy we make use of a manifold correction

technique [76] to take a “Newton” step back onto the manifold of constant J

after a (sequence of) integration step(s) moves us off. Referring to Eq. (3.30),

we may define a function f as follows,

f(w) = u2 + v2 − (q2
x + q2

y)− 2(
m1

r1
+

m2

r2
)− J = 0, (3.35)

where w = (qx, qy, u, v) is a point exactly on the manifold of fixed J . Rather

than finding w on the manifold, a numerical error yields w′ which is on another

J ′ manifold. We may write an error vector e, which brings us from w′ back to

w.

w = w′ + e. (3.36)

Using Eq. (3.35), we may expand a Taylor’s series of f to first order around w′

as follows,

f(w) = f(w′) + e · ∂f

∂w
(w′) + O(|e|2), (3.37)

from which we can solve for e, the correction back to w.

Nonetheless, it is difficult to integrate through the singularities for

too close an approach. There exists an exact coordinate transformation to a

regularized12 coordinate system, due to Birkhoff, which eliminates the singu-

larities at the primaries. However it can be extremely cumbersome due to the
12Regularization is a class of exact coordinate transformations which eliminate a re-

movable singularity of a point mass, sometimes at the cost of creating new singularities,
such as at infinity in the case of the Birkhoff transformation. The change of coordinates
can be cumbersome to work with. We can get the flavor of regularization by considering
the case of a straight line two body problem ẍ = ∓1/x2. A change of the independent
variable t to a “slow time” variable τ can be made where the old and new times are re-
lated differentially by dt = dτ/x. Performing the change of coordinates requires liberal
use of the chain rule. The Birkhoff transformation removes simultaneously both singu-
larities of the restricted three-body problem. Details of this and other regularizations
can found in Szebehely.
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appearance of fractions with high degree rational terms in the vector field (see

Szebehely [100]).

Close approaches the the center of masses are not physical because the

surface of the Earth is at a radius of 0.0156 normalized units above its center and

that of the Moon is at 0.0035 above its center. Integrating long orbits of (3.29)

is mathematically interesting regardless of the approach, however not important

when we consider our final goal here. I find that my integrator with the above

special improvements allows me to integrate quickly and to within the required

accuracy for an approach of ∼ 10−6 to a center. When we convert this value to

real units, we find that it implies less than a one hundred meter approach to the

center, which is not practical.

In generating the long test orbit, we avoid the issue of close approaches

with the following scheme. Whenever an approach closer than 10−4L is detected,

we “backup” 25 iterates, and make a 10−8 perturbation in a random direction

on the surface. The procedure is used to build a 105 iterate pseudo-orbit, with

several small errors, which conserves the integral J to within 10−12. Note that

the test orbit needs to be generated only once and then stored as a “library” of

known behaviors. It may be used for generating paths for any mission in the

accessible phase space.

Our targeting algorithm requires us to find the stable and unstable

directions at a point. This requires that we integrate the variational equations

of (3.29), written in the form ẇ = F (w), which are

˙δw = DF (wb) · δw. (3.38)

Evaluating the derivative DF (wb) along the base flow wb, (3.38) yields the total

change of a variation δw(t0) at wb(t0) until the finish of integration δw(tf ) at
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wb(tf ). The variation for an iterate of the Poincaré map is found simply by

integrating (3.38) from an initial wb(t1) on the section, and a variation δw(t1)

on the section to wb(t2), the next iterate on the section, yielding δw(t2). A basis

of variations at t1 may be evolved to t2 to generate the matrix M(t1, t2). This

fundamental solution of (3.38) which is often called the “monodromy” matrix

serves the role to evolve an arbitrary variation at wb(t1) to its image at wb(t2).

We find the stable and unstable manifolds at a nonperiodic point analogously

to the power method based technique defined by Eqs. (2.12)-(2.13).

Since the stable and unstable directions found, by integrating along

the base flow w(t) from section to section, have components not on the surface,

we must project the flow from a perturbation of the base curve back onto the

surface. Projecting the (un)stable direction of the full 4-dimensional dynamics

back along the flow onto the surface of section recovers the (un)stable direction

of the 2-dimensional Poincaré map. The linear approximation of this statement

is portrayed in Fig. (3.5), and expressed by the first order equations

δqx = sqx − (
q̇x

q̇y
)|wsqy ,

δq̇x = sq̇x − (
u̇

q̇y
)|wsqy ,

δq̇y = sq̇y − (
v̇

q̇y
)|wsqy ,

δqy = 0, (3.39)

where the stable vector is written in the form s = (sqx , sqy , sq̇x , sq̇y), and ẇ =

(q̇x, q̇y, u, v) denotes the vector field of the base point wb at time t. These

formulas follow immediately from the approximation that the perturbation εu

flows back along the vector field locally along straight lines for small enough

ε. Eqs. (3.39) are written in slope intercept form on each of the three cross
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sections, and may be represented succinctly by the vector equation

S = s− (
sqy

q̇y
)ẇ. (3.40)

Eq. (3.40) has the alternative geometric interpretation that on each of

the four projections, the length l along the flowback vector ẇ such that the vector

sum s−lẇ is in the qy section may be found by similar triangles. The right trian-

gle labeled < a, b, c > where a = wb+S, b = the projection of wb + s onto qy = 0

(the height), and c = wb + s, is similar to the triangle outlined by the incidence

of the flow labeled < d, e, f > where d = wb, e =the projection of wb + ẇ onto

qy = 0 (again the height), and f = wb + ẇ. Hence by elementary Euclidean

geometry the hypotenuses of the two triangles are proportional to their heights.

l =
sqy

q̇y
. (3.41)

figure=flowback.eps,height=1.5in

Figure 3.5. A projection in the qx, qy plane of the flowback of a perturbation
along the stable manifold back along the vector field ẇ onto the section qy = 0.

In Fig. (3.5), we see that on the (qy, qx) cross section, the point (sqx , sqy)

away from the base point w flows back to the section qy = 0 at (δqx, 0) with

the vector field slope 1
m = ( q̇x

q̇y
) according to the slope intersect formula sqx =

( q̇x

q̇y
)|wuy + δx from which the formulas (3.39) follow immediately. Hence, we

find that the stable direction on the section is (δqx, δq̇x). Invisible to the map,

but necessary to integrate the flow, we set δqy = 0 on the section and δq̇y is

fixed by (3.30) for constant J . The unstable direction of the map can be found

analogously.
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3.5 A New Orbit to The Moon

In this section we will now target a chaotic orbit to the Moon [13]. In

evaluating this new orbit, the goal is to beat the energy requirements of the

standard Hohmann transfer from a parking orbit around the Earth to a parking

orbit around the Moon. This transfer typically takes only a few days, depending

on the altitude of the initial parking orbit. It requires two large rocket thrusts

(perturbations), one parallel to the motion to leave the Earth, and one anti-

parallel to the motion to capture the rocket around the Moon. The size of

these perturbations, measured by the velocity boost ∆V , depends again on the

altitudes of the Earth and Moon orbits. Fig. (3.6) shows our reference Hohmann

figure=Hoh.ps,height=2.5in

Figure 3.6. A Hohmann transfer from the parking orbit at the location of a
near the Earth to the location of b near the Moon. Flight time between the
two orbits is approximately 6.67 days and requires ∆V = 1250 m/sec specific
impulse. Note that the first manoeuvre is parallel the Earth parking orbit, the
second is anti-parallel to the Moon parking orbit, and the spacecraft is allowed
to drift between.

transfer orbit. We will see that the chaotic orbit will eliminate the need for the

large deceleration at the Moon and reduce required initial boost.

Of course, the required energy for the transfer is J2 = −3.1883, which

is that of the Lagrange point L2. This is the minimum energy for which an

orbit could possibly move between the primaries. For our mission we set J =

J0 = −3.177 slightly above J2, but below the critical value J1 at which orbits

may escape, so that we may have a long bounded test orbit. This energy we

imagine is attained by an impulsive boost, ∆V , of a spacecraft in a parking

orbit around the Earth to the energy J0. Fig. (3.1) shows a phase space plot of

a single “chaotic” test orbit with 105 iterates. This test orbit may be stored as
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a “library” of known behaviors, and used for generating many missions in the

accessible portion of phase space. Certain islands in phase space are inaccessible;

these are bounded by invariant tori, some of which are shown. At the center of

each island is a periodic orbit.

We choose the point a = (x0, u0) to achieve a fast chaotic orbit. A trial

and error search for various x0 along the line segment u0 = 0 gave the best results

for an orbit at an altitude of 57310 km above the Earth’s center. As our target,

we choose the outermost invariant torus, marked “b” in Fig (3.1), corresponding

to a quasi-periodically precessing “ellipse” around the Moon. For the actual

target point b, we use the point of closest approach of our test orbit to b, at

an altitude of 13970 km above the Moon’s center. From b a tiny perturbation

will move the orbit onto the torus, thus achieving a state bound to the Moon

without the large deceleration required by a Hohmann transfer.

Our targeting algorithm calls for finding the stable and unstable di-

rections of a point. This requires that we integrate the variational equations,

˙δw = DF (w) · δw. Numerical errors in both the calculation of the stable (un-

stable) directions and the integration of the flow, both of which require many

integration steps between surface intersections, limit the accuracy of the calcu-

lation to about 25 iterates, and the total compression to factors ranging from

102 to 103. This therefore limits the extent to which a recurrence δ can be com-

pressed to meet a tolerance ε, and the length of the patch, 2m + 1. We choose

to make the patch length 25 steps by setting m = 12. A better integrator would

presumably allow us to choose a larger patch, thus allowing smaller ε.

The 105 iterate test orbit has a 15037 iterate segment which goes from

a to b. By fixing the recurrence distance at δ = 0.01, which considering the size

of (X, L) is quite large, we achieved a 117 iterate pseudo-orbit by cutting out
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4 recurrence loops and requiring a maximum perturbation of ε = 2.14 × 10−4.

Note that this implies perturbations to the real coordinates of δx ≤ 82.3km and

δu ≤ 0.219m/sec. The actual time along this orbit is T = 325.6 = 3.87 years.

Standard optimal control theory can be applied to our pseudo-orbit to

find the orbital maneuvers to transfer between each segment. Finite parameter

optimization theory techniques can be used to determine the optimal solution

(in a local sense) for the locations and times of the deterministic ∆V manoeuvres

between nearby orbit segments. The strength of our algorithm is to find a globally

improved path. Finding these “drift” orbit segments solves what is known as

Lambert’s problem. Once found, we have a first guess to prime an optimization

technique to find the local optimum.

figure=orbit.to.moon.ps,height=4.0in

Figure 3.7. A configuration space plot (qx, qy) of the first ten iterates (dashed)
around the Earth and the last twenty iterates (solid) of the 117 iterate transfer
to the Moon. The final state at b is a precessing ellipse around the Moon
corresponding to the targeted invariant torus.

The first several (dashed) and last several (solid) rotations of our orbit

are shown in configuration space in Fig. (3.7). On the solid segment, we can

see the accelerating boosts of the Moon’s gravitational pull as the earth orbiting

spacecraft swings by (in the inertial frame). These boosts perturb the spacecraft

into just the right orientation to pass through the neck around L2 exactly once

with the correct speed and position so that it is captured by the Moon near

the chosen invariant torus. In Fig. (3.8) we see the phase space plot of the 117

iterates between a and b. Of interest to note is the lack of recurrences of this

fast orbit as it avoids getting trapped in any given resonance layer. We saw

exactly the same property in the fast transporting standard map orbit displayed
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in Fig. (2.2). In a sense these fast transporting orbits are the opposite of an

orbit which displays any given frequency.

figure=otm.eps,height=3.5in

Figure 3.8. A phase space plot (qx, q̇x) of the 117 iterate orbit to the Moon.
This is the restricted three-body analogue of Fig. (2.2). Note that the fast orbit
spends a minimum of time in resonance layers, which would be characterized by
recurrences, which we have removed.

The boosts required for our chaotic trajectory can be compared to those

of a corresponding Hohmann like, two impulse transfer (the classic mission).

Both orbits start at the (almost circular) parking orbit around the Earth at the

starting altitude 57310 km with Jacobi’s constant J = −7.431084. An initial

impulsive thrust is required for both transfers to increase the energy such that the

zero velocity curves permit the transfer, J > J2. The chaotic transfer requires

an initial boost of ∆V = 771.8 m/sec to attain J0 = −3.177. Additionally,

it requires 4 patches with ε ≤ 2.14 · 10−4, and therefore the total change in

velocity is bounded by ∆V ≤ 4 · 0.219m/sec = 0.876m/sec. Finally, to jump

from b to the targeted invariant torus requires ε = 9.96 · 10−4 and therefore

∆V ≤ 1.02m/sec. Thus the total perturbation required by the chaotic transfer

is 773.7m/sec. By contrast, the Hohmann transfer requires an initial parallel

burn of ∆V = 846.6m/sec boosting the energy to attain J = −2.747. At this

energy level, there are no longer any zero velocity curves restricting the motion.

The spacecraft is then allowed to coast until it arrives near the Moon parking

orbit at the same altitude as b, where a deceleration of ∆V = 403.5 m/sec is

applied. Therefore the total boost required for this Hohmann transfer is 1250.1

m/sec, but the transfer requires only 6.67 days.

Therefore we find that the ratio between the impulses is 1.616, or a
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38% advantage over the Hohmann orbit. This is a significant improvement, but

at the cost of a much longer (and circuitous) transfer. In terms of transferring

passengers, the extra time is probably not worth the savings. However, for trans-

ferring freight, the ∆V savings of our orbit translates directly to a considerably

smaller fuel requirement and therefore allows the transfer of a larger payload.

Recently, another approach due to Belbruno was used to find chaotic

transfer orbits to the moon utilizing the so called “fuzzy boundary” [5, 6]. This

method was successfully applied to send the spacecraft Hiten to the Moon, thus

saving an otherwise failed mission when the original Moon probe was lost. The

Hiten orbit requires a restricted four-body model, including the Sun. The tech-

nique is to send the spacecraft to the fuzzy boundary between the Earth and

Sun, where their gravitational effects balance, so that only a small perturba-

tion is necessary to reach the Moon in a “ballistic capture orbit”. This orbit

is much less circuitous than our transfer Fig. (3.7) and requires approximately

4.6 months. However, a larger rocket burn ∆V is required to escape the Earth

in order to reach the fuzzy boundary, well away from the Earth - Moon zero

velocity curve at Jc.

The technique developed here could also be applied to the restricted

four-body problem (with the added complication that the dimension of the phase

space is increased since time cannot be eliminated by going to a rotating frame),

to provide a systematic method for finding fast orbits in this case as well.



CHAPTER 4

A CLOSED FORM OPTIMAL ORBIT

4.1 A Symbol Dynamics Description of Optimal Chaotic Trans-

port

In Sec. 1.2.3 we saw that there is a conjugacy between T |Λ, the in-

variant set of a horseshoe arising from a transverse homoclinic intersection, and

α|Σ the left shift map on the space of all bi-infinite sequences of 0’s and 1’s.

In this section we will discuss optimal paths of chaotic targeting for the model

dynamics α : Σ → Σ. In the next section we will then examine the cut and glue

optimizing technique specifically applied to this model.

Our problem is as always to find a fast epsilon chain path from a to b

with small epsilon. Given a and b with specific symbol representations:

a = ...σa
−2σ

a
−1.σ

a
0σa

1σa
2 ... (4.1)

and

b = ...σb
−2σ

b
−1.σ

b
0σ

b
1σ

b
2..., (4.2)

we wish to find a point aε ∈ Bε(a), defined in terms of the Σ topology. Here,

the topology is induced by the norm as usual: Bε(a) ≡ {z : ‖a− z‖Σ < ε}. The

definition of

‖a− b‖Σ =
∞∑

i=−∞

δi(a, b)
λ|i|

, (4.3)

where

δi(a, b) =


0 if σa

i = σb
i

1 if σa
i 6= σb

i

 , (4.4)
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implies that two symbol sequences are close if they agree on their “middle sec-

tions” near the decimal point. It follows that for any particular choice of ε, there

exists the corresponding k, where k ≥ − ln ε
ln λ such that the symbols of z ∈ Bε(a)

must agree with at least the 2k + 1 symbols of a before and after the decimal

point. This correspondence lets us write “Bk(a).”

As is well known, there is a point d dense in Σ and nonperiodic. We

use this as the test point required by the recurrence cutting algorithm. Here, d

is the library of known behaviors of orbits encoded in 0’s and 1’s. We choose to

write d in the form

d = ...0.1011011000100010001... (4.5)

which consists of all permutations of n symbols, followed by all permutations of

n+1 symbols, etc., for all n. This particular choice of d is obviously nonperiodic.

We see that d is dense in Σ since for any ε (with corresponding k) and z, ∃ an m

such that αm(d) ∈ Bk(z). The 2k + 1 “centered” symbols of z must be amongst

the 2k + 1 permutations of d, and will be shifted to the decimal point (“now”)

under enough applications of the map α.

It is convenient to define a truncation operator

ẑk = σz
−kσ

z
−(k−1)..σ

z
−1.σ

z
0σ

z
1 ..σ

z
k, (4.6)

which can be used to define an equivalence class amongst bi-infinite sequences

as those points with the same “k hat” truncation. Such points are in the same

“k ball.” In terms of targeting, and epsilon chains, it is the equivalence class in

which we are most interested. After all, a path is said to reach b if it gets close

enough, and the path consists of a pseudo-orbit which is exact in terms of the

equivalence class.

We now have the tools to address the issue of the optimal path. Given
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ε, the control tolerance threshold, we have the corresponding k, in targeting bi-

infinite sequences. Then by definition of the point d, there exists a time ma ≥ 0

such that ma applications of the shift operator causes the point d to iterate to

a in terms of “k hat” equivalence classes. Hence

âk = ̂αma(d)
k
. (4.7)

Likewise, there exists a time mb ≥ 0 when

b̂k = ̂αmb(d)
k
. (4.8)

Note that d recurs with a and b infinitely many times since all sequences are found

as subsequences amongst all permutations of longer sequences. Nonetheless ma

and mb do have finite values since d contains all subsequences in increasing order

of complexity by construction, including the 2k + 1 symbol length sequences âk

and b̂k. We wish to find an orbit from a and then to b; hence we consider only

mb > ma.

The optimal time of transport for the orbit of d, in terms of k hat

equivalence classes, is

n = min |mb −ma| (4.9)

which is simply the smallest integer amongst the finite values of mb and ma.

Theorem 4.1.1 Given a control tolerance ε > 0, and therefore the correspond-

ing k > 0 symbol space tolerance, with implied ·̂k operator, the point aε ∈ Bε(a)

with the fastest orbit to near b has the form

aε = âk b̂k = ...σa
−k..σ

a
−1.σ

a
0σa

1 ..σa
kσb

−k..σ
b
−1σ

b
0σ

b
1..σ

b
k... (4.10)

and requires 2k + 1 − o applications of the shift map, where o is the number of

symbols which agree at adjoining ends of âk and b̂k.
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Proof: All points in Bε(a), have the same âk, and so agree in the

2k + 1 symbols around the decimal. Likewise, all bε ∈ Bε(b) have the same b̂k.

Shifting the b̂k in âk b̂k to the present by applying α2k+1 causes the âk part to

be “forgotten” in the k equivalency. This represents a path between âk and

b̂k which is the fastest such path possible in general since âk b̂k contains the

minimum information necessary to represent the two neighborhoods. There can

however be the special case of a faster path when an 0 symbol overlap between

the two ends of the form {σa
i }k

i=k−o+1 = {σb
−i}k

i=k−o+1 exists. Hence, 4k + 2− o

symbols are sufficient to represent aε which iterates to bε in 2k + 1 − o shifts,

where o is the number of overlap symbols. 2

Note that neighborhoods of the horseshoe are squares, which can be

seen by examining what the conjugacy h : Σ → Λ does to neighborhoods. The

k symbols to the right of σa
0 restrict the location of a point to lie in a λ−k wide

vertical strip. The k symbols to the left of the decimal further restrict the point

to also lie in a λ−k wide horizontal strip. So the 2k + 1 symbols in âk tell us

in which λ−k × λ−k box, amongst the 22k+1 choices our point lies. The 2k + 1

symbols to the right of σa
k specify the added information as to which λ−[k+(2k+1)]

wide vertical strip inside the âk box our fast transporting orbit lies.

In the next section we will examine the cut and glue strategy at recur-

rences as formulated for the symbol dynamics. We will then compare results to

the optimal orbit which we now know for this simple dynamics.

4.2 Cutting Recurrences in Σ

We now reprise the cut and glue process to targeting in Σ. Just as in

Sec. 2.2.3, we will start with a long chaotic test orbit. Given an arbitrary k ≥ 0,

the orbit d, defined in Eq. (4.5) will eventually visit Bk(a) at time ma and then
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Bk(b) at time mb according to Eqs. (4.7) and (4.8). We rewrite d so as identify

the inclusion of the symbols of âk and b̂k somewhere in its length.

d = ...

âk︷ ︸︸ ︷
σa
−k..σ

a
k ..

2m+1 symbol recurrence︷ ︸︸ ︷︷ ︸︸ ︷
σ−m..σm ...︸ ︷︷ ︸
s iterate loop

︷ ︸︸ ︷
σ−m..σm ..

b̂k︷ ︸︸ ︷
σb
−k..σ

b
k ... (4.11)

Let N be the (first) number of iterates along d to shift from âk to b̂k.

An s iterate recurrent loop is also explicitly shown, where s left shifts brings the

same 2m + 1 symbol subsequence to the center. This recurrence is δ = 2m + 1

symbols close. Hence there exist a point d̃ whose orbit agrees with that of

d between âk and b̂k, but skips the s step recurrent loop. Only a δ = 2m + 1

perturbation is required at the first time the recurrence is encountered to perturb

from d to d̃ to save s iterates. In terms of the horseshoe, this corresponds to a

perturbation within the λ−m×λ−m box implied by the 2m+1 centered symbols.

In the notation of Chapter 2, to cut and glue a delta recurrence requires

us to shoot from fu(zi−n) to fs(zi+s+n). We need to exercise care to correctly

interpret these expressions in symbol dynamics since d represents the point and

its orbit at the same time. Only the location of the decimal distinguishes zi from

zi+s. Let us define z0 to be the mth
a iterate of d when âk is prominent, zN the

mth
b iterate when b̂k is prominent, zi when the 2m + 1 symbol recurrence first

occurs, and zi+s when the 2m+1 symbols last occur.1 Define i as the time (left

shifts) to cause ẑi
k to have the decimal point centered, starting from ẑ0

k = âk.

Let us choose n, the patch length, so as to not alter the endpoints âk and b̂k.

Therefore n may be chosen n + m = min{i,N − (i + s)}.

We may define a patch orbit d′ such that d̂′
n+m

agrees with the n + m

1The phrases “now”, “centered”, and “prominent” tell us that given a point, (i.e. d)
the decimal point is centered so as to make a given iteration of the point prominent.
Similarly, the symbols of a given point along an orbit “occur” at the appropriate iteration
when those symbols are centered.
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symbols before the recurrence and the n + m symbols after the recurrence. We

see that shooting is quite simple in symbol space. By altering n symbols of d

before ẑi
m and n symbols after ẑi+s

m, we have a patch d′ such that only an

ε = δλ−n perturbation is required at zi−n to jump onto the patch d′ and then

another ε perturbation 2n iterates later to jump back onto d after the recurrence

(near zi+s+n). As before, we demand

ε > δλ−n, (4.12)

which we now rewrite in symbol space, making use of the norm based conjugacy,

λ−k ≥ λ−mλ−n. (4.13)

This translates to the following form, relating recurrence size and the required

patch length to meet a desired tolerance, all in terms of the symbol count,

k ≤ m + n. (4.14)

This allows us to investigate the best path achieved in general by cut-

ting and gluing all recurrences possible to the optimal transport orbit written in

Eq. (4.10). To cut all recurrences “possible” we need to set the recurrence δ as

large as possible so that no possibilities are missed, an issue we have discussed

previously (see Table (6.6)). We consider a trivial recurrence of only one symbol.

Say we have a 0 symbol at time i, and then another 0 symbol at some time i+ s

later. Such a one symbol recurrence is guaranteed, allowing for recurrences of

1’s as well. Hence m = 1, and so according to Eq. (4.14), the patch length n

must be at least k − 1. We see that removing the trivial recurrence leads to at

best a 2k step orbit segment (patch) between âk and b̂k. The conclusion then is

that recurrence removal, using cut and glue to satisfy the tolerance, results in at
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best an orbit which is 2k iterates longer than the optimal achieved by the point

âk b̂b as in theorem 4.1.1.

4.3 Validity of the Model

Unfortunately, the simple horseshoe dynamics is not such a good model

for general transport even in two dimensions, except for special examples. We

know that heteroclinic cycles have a horseshoe structure [104]. A heteroclinic

cycle is defined by the heteroclinic orbit between the points of a periodic hy-

perbolic orbit. In another example, Mackay [57] explicitly writes down a form

of the standard map and restricts it to a deformed square to demonstrate the

horseshoe structure when k ≥ 2π. It may even be possible to demonstrate other

restrictions of the standard map to subsets with the horseshoe structure for com-

positions of the map for k > kc. The horseshoe is the prototypical example of

chaotic dynamics. The shift is a forgetting process.

The horseshoe, however, is only valid for the map T restricted to a

subset of the phase space Λ with zero measure. The Arnold cat map is an

example where the full phase space is hyperbolic, and there exists a conjugacy to

a symbol dynamics valid for the full phase space. (Hence the cat map is defined

as Bernoulli.) We certainly want a more general description of transport, at

least on a subset of full measure. Demonstrating a conjugacy to the horseshoe

implies hyperbolicity, but Λ is not necessarily the largest hyperbolic subset of

the phase space; nor is hyperbolicity a requirement to discuss transport.

It is often possible to describe the dynamics of a homoclinic tangle not

representable by a shift on 0’s and 1’s by a more general grammar of a finite

set of symbols. Likewise, higher-dimensional dynamics can be conjugate to a

symbol dynamics of several symbols. It may be possible to find a conjugacy of
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the map with a symbol dynamics for a subset of chaotic phase space containing

many a and b general targeting goals.

Suppose a and b are contained in a subset of T ’s phase space which is

conjugate to a more general symbol dynamics with a finite grammar. It is likely

that a version of the optimal symbol path theorem 4.1.1 is still valid with trivial

modification. The main conclusion here is that the optimal symbol orbit from a

to b with precision k is the minimum number of symbols required to represent a

and then b. The recurrence skipping algorithm does not yield this optimal orbit

in general, but always yields a very fast path between these two states.



CHAPTER 5

CONTROL WITHOUT GLOBAL MODELING

5.1 A New Twist on the Old Problem

In previous chapters we targeted the standard map, the restricted three-

body problem, and dynamics conjugate to the horseshoe. We used the method

of controlling through recurrences, which has two key elements. First, there is

the identification of switching points with recurrences. Second, there is either

a patching or a stabilization step, both of which we perform by shooting at the

stable manifold. The first step makes no use of the analytical representation of

the map. Although our technique for the first step requires observation of a long

test orbit so that we may infer the switching points, once we have collected the

test orbit data, the map is not needed. However, the second step, shooting at the

stable manifold, utilizes the map to advance successive trials and the derivative

of the map to find the linear approximations of the (un)stable manifold.

In this chapter we will play a new game. We will reprise the problem

of targeting the standard map. This time however, we assume that we do not

know the map in the form Eq. (1.37), and therefore neither do we know its

derivative. Instead, we will put the test orbit data to a second use. We will

reconstruct the map by nearest neighbor piecewise linear models. This relies on

the availability of enough data to insure that any predicted orbit will have enough

close neighbors so that the linear approximation is valid. The chaotic test orbit

will hopefully be long enough and visit enough of its accessible phase space so



106

that good predictions can be made. It must be cautioned that the conclusion of

this chapter is somewhat negative because the techniques developed here require

too much resources in general as I will discuss further in the final section.

5.2 Time Series Delay Embedding

In real world applications, one does not always have the dynamics avail-

able in the form of a flow (1.1) or a map (1.2). Without knowledge of the correct

dimension of the vector z and which quantities to measure, it is still possible to

infer topological information pertaining to the ω-limit1 set of the flow from the

measurement of a single smooth scalar function of the state vector,

x(t) = f(z(t)). (5.1)

In 1980, Packard et al., [81] proposed that the “time series embedding”

vector,

X(t) = (x(t), x(t− τ), x(t− 2τ), ..., x(t− (D − 1)τ)), (5.2)

for a delay time τ , yields a state vector which (as Takens [101] proved) generically

provides an orbit homeomorphic to the orbit of z(t). Takens’ argument suggests

that the choice of time lag τ is not important for almost all τ (τ not rationally

related to periods of orbits on the ω-limit set). The choice of delay however is

quite important in practice.

Almost all choices yield a topologically valid coordinate system. Yet

we see that if τ is quite small, then the dynamics have little time to evolve and

so coordinates are nearly singular:

x(t) ≈ x(t− τ) ≈ ... ≈ x(t− (D − 1)τ). (5.3)

1A sequence {zn}∞n=0 has a limit point z iff there exists a subsequence {znk
} such

that znk
→ z as nk → ∞. The ω-limit set is defined as the set of all limit points of

{zn}.
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Similarly if τ is chosen too large, each of the coordinates becomes completely

uncorrelated. An embedding dimension D, larger than 2r+1, is sufficient where

r is the box counting dimension of the attractor (see [101, 90]).

An interesting problem is the following: given a time series (from a

black box) deduce the minimal embedding dimension D and the “best” delay

time τ . This turns out to be a rather difficult problem to define and solve. An

entire “embedding community” has arisen with literature devoted to this and

the related problem of noise reduction and filtering. A comprehensive overview

of some of the many approaches can be found in the review article by Abarbanel

et al. [1]. In particular, I would like to mention the work of Broomhead and

King [17] who by singular value decomposition compute the spectrum of the co-

variance matrix (xi(t)xj(t)). The kth eigenvalue is the average root mean square

projection of the D-dimensional time series onto the kth eigenvector. Their nu-

merical calculations demonstrate that by ordering the eigenvalues according to

size, one finds that after an exponential fall off, a floor value is reached due to the

projection of the dynamics onto the higher-dimensional noise. Their method is

to discard all the projections below the noise floor by a Gram-Schmidt process,

thus automatically keeping the cleaned data projected onto the D axes. Another

well known competing approach due to Fraser and Swinney [33] is to maximize

the mutual information inherent in the data. They argue that their information

theoretic approach is more valid than diagonalizing the covariance matrix.

In this chapter I will not worry about the many issues involved with

finding a good embedding of a time series and filtering noise. Instead I will

imagine that we already have available a sequence of vectors Xi which may have

been derived from a delay embedding where Xi = X(t+ iτ), a Poincaré section,
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or directly from a map of a chaotic dynamics2. The rules of this game dictate

that we do not know the underlying dynamics generating the time series, but

that we may nonetheless assume that there is a deterministic dynamical system

which generated the data. The goal will be to predict the dynamics in order to

infer short orbits. To simulate this game, I will generate a 106 iterate orbit of

the standard map. After storing just the x values, the game is to repeat Sec. 2.2

without referring to the analytic form of the map Eq. (1.37) or its derivative.

Instead, we can predict these quantities.

5.3 Prediction

In Weigend and Gershenfeld [103] we find a distinction between weak

modeling (data-rich and theory-poor) and strong modeling (data-poor and theory-

rich). This is related to “...the distinction between memorization and general-

ization...” It is always nice to have a general theory from which we may write

down a global set of equations of motion. However, this is not always necessary.

Predicting the future evolution of dynamical systems has been a main

goal of scientific modeling for centuries. The classic approach has been to build

a global model based on fundamental laws yielding a differential equation or

otherwise describing the motion of the states. “This requires strong assumptions.

A good fit of the data to the model validates the assumptions.” [103].

In the absence of a good model, accurate predictions may be made

using a large collection of data. Given the sequence of state vectors {Xi}N
i=1,

which evolves according to some (unknown) dynamics

Xi+1 = T (Xi), (5.4)

2Actually, for our limited application X will have be the x components of an orbit
of the standard map. It is generally accepted [33] that the correct delay for a map is
one, which we will adopt for our “model” problem.
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we may approximate the function T at Xi locally. The map T is replaced by a

patchwork of “charts.” Local modeling depends on finding k near neighbors to

X. The “first order approximation,” according to the classification of Farmer

and Sidorowich [30] the simplest local modeling technique called the “method of

analogs”, approximates that given the nearest neighbor Xj to Xi, that Xj+1

is the prediction for Xi+1. This is how weather prediction according to tables

was performed for years. A higher level of accuracy and sophistication is gained

by the “second order approximation” to T locally by the affine model

X ′ = T (X) ≈ A ·X + b. (5.5)

X evolves according to an interpolation of the evolutions of its nearest neighbors.

Given k ≥ D+1 nearest neighbors, we may least squares fit the Jacobian matrix

A and the shift vector b by minimizing the chi-square function

χ2(A, b) =
k∑

j=1

‖A ·Xj + b−Xj+1‖2, (5.6)

for each of the j ≤ k near neighbors.

First let us investigate how to least squares fit a linear model of the

form

u′ = u ·M . (5.7)

Given X we wish to predict its local linear behavior, i.e. the Jacobian of T

near X. In this form, M is the transpose of the Jacobian matrix. We use

this transposed form of the usual equations to emphasize that u and u′ are the

known data and we wish to solve for the unknown M . We require {Xi,X
′
i}k+1

i=1 ,

the k ≥ D near neighbors and their iterates from which we form the variation

vectors {ui,u
′
i}k

i=1 that we define as the row vectors

ui−1 ≡ (Xi −X1)T ,
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u′i−1 ≡ (X ′
i −X ′

1)
T . (5.8)

The matrix M must simultaneously fit each of these k transformations from ui

to u′i as equations of the form (5.7) which may be “stacked” as k row vector

equations by writing the matrix equation

k
↓

D dim
~[
u′i

]
=

k
↓

D
~[
ui

]
·

D
~[

Mi,j

]
D
↓ . (5.9)

If k = D, then the least square problem reduces to an exact change of basis

whose solution is M = [u]−1 · [u′], providing the uk are linearly independent.

figure=trans.eps,height=2.0in

Figure 5.1. Nearby X1, DT rotates the variation vectors ui to u′i. Given at
least D transformations {ui,u

′
i}, the Jacobian DT ∈ IRD×D may be least square

fitted.

Usually, least squares linear modeling in the literature (e.g., see Stoer-

Bulirsch [97]) is presented for a vector equation of the form

[
u′
]
j = [u] · [Mi,j ]j , (5.10)

where the symbol “[ ]j” denotes the jth column vector of the bracketed matrix.

The solution of Eq. (5.10) in the least square sense

min
k∑

i=1

‖
[
u′
]
j − [u] · [Mi,j ]j ‖

2, (5.11)

strives to find the minimizing column vector of parameters [Mi,j ]j . The mini-

mum is stationary, thus

∇M ((
[
u′
]
j−[u]·[Mi,j ]j)T ·(

[
u′
]
j−[u]·[Mi,j ]j)) = 2 [u]T ·[u]·[Mi,j ]j−2 [u]·

[
u′
]
j = 0,

(5.12)

yielding the “normal equations,”

([u]T · [u]) · [Mi,j ]j = [u]T ·
[
u′
]
j , (5.13)
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with the solution

[Mi,j ]j = ([u]T · [u])−1 · [u]T ·
[
u′
]
j . (5.14)

Note we can see that the D least squares fitting problems for each of the

[Mi,j ]j , j = 1, 2, .., D all rely on the same [u] data (called the “design matrix” in

Numerical Recipes [31]) and independent [u′]j data (called the “measured values

of the dependent variable”). Each of the D solutions in the form Eq. (5.14) may

be stacked side by side to form the full solution to Eq. (5.11) written compactly

as a single matrix equation,

M = ([u]T · [u])−1 · [u]T ·
[
u′
]
. (5.15)

We may similarly solve the affine least squares problem Eq. (5.6) which

we see requires at least one more data vector to fit the extra parameter vector

corresponding to the shift b. The following augmentation by a column of “1’s”

allows for the shift b to be incorporated into a linear model yielding an equation

analogous to Eq. (5.9),

k+1
↓

D dim
→[

X ′T
i

]
=

k+1
↓

D+1
~ 1 XT

i

...
...

 ·
D
~[

Ni,j

]
D+1
↓ , (5.16)

where
[
1 XT

]
is the design matrix,

[
X ′T

]
j

are the measured values of the

dependent vectors, and [N ]j are the vectors of parameters to be fitted for 1 ≤

j ≤ D + 1. The least squares solution to this equation follows similarly to that

for (5.9) and has normal equations analogous to (5.15).

In theory, we may solve the normal equations in straight forward man-

ner by LU decomposition. However, according to the authors of Numerical

Recipes [31], “..the solution of a least squares problem directly from the normal
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equations is rather susceptible to roundoff error.” There may exist several dif-

ferent fits of the model to the data, all of which are close to optimal; this causes

singular normal equations. Singular value decomposition (“SVD”) is well suited

for dealing with sets of equations that are numerically almost singular and over

determined. Thus SVD is the preferred solution to our problem; an appropriate

routine SVDFIT is supplied in Numerical Recipes, which we need to apply for

each j.

Higher order models other than those mentioned above may be fitted

by least squares regression as long as the fitting parameters are the quantities of

a linear combination of basis functions. A trade off exists (see [29]) in that high

order polynomials give better predictions when fitted over data in a given neigh-

borhood size. However, since more near neighbors are required to determine the

increased number of parameters of a high order polynomial, the neighborhood

size tends to increase.

An advantage of polynomial models is that one may perform an error

analysis of their likely accuracy based on a Taylor series of the map T around

the point of prediction (see [1, 30]). An important issue for us to decide is how to

iterate a prediction which we require to shoot from the unstable manifold before

a recurrence to the stable manifold after the recurrence. Skipping the lengthy

details which may be found in the above citations, I would nonetheless like to

mention the results comparing the worthiness of “direct forecasting,” (a single

model is made directly to the k near neighbors to predict the evolution under Tn

in one step) in contrast to “iterative forecasting,” (n models of T are composed

to evolve a prediction for X under Tn). The leading order error is the (q + 1)th

term of the Taylor series for a qth degree polynomial interpolation. Several

assumptions are used including that the difference between the forecast orbit and
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the true orbit separate approximately as the most unstable Lyupanov exponent;

thus < DTn >∼ exp(λn) where n is the expansion time (or prediction interval).

Farmer and Sidorowich argue that higher order derivatives scale similarly, <

DqTn >∼ exp(qλn). Making further assumptions on the average data density

for an ergodic map based on a data set size N and attractor dimension dA yields

an RMS error estimate for a direct forecast,

E ∼ N
−q
dA exp(qλn). (5.17)

Contrast this to the iterative forecast error

E ∼ N
−q
dA exp(λn), (5.18)

in which there is absent the q term in the exponent. Therefore, iterative forecasts

can be expected to give better predictions. This is sensible in that iterating n

one step models allows for the information from up to nk different near neighbors

(k new near neighbors for each of n iterates), whereas a direct forecast allows

for only k near neighbors.

We also predict the (un)stable directions with the iterative process of

composing the tangent maps attached along an orbit by replacing predictions

of the Jacobian matrices for the exact matrices specified in the defining equa-

tions for the (un)stable directions along a nonperiodic orbit, Eqs. (2.12)-(2.13),

following a suggestion of Eckmann and Ruelle [26].

Since we wish to apply prediction near recurrent points, we are in

the fortunate situation that there will be near neighbor data where we need it

(assuming a long enough test orbit). Another issue of concern is that there will

only be near neighbors in regions of phase space accessible to the test orbit.

A prediction in some other region of phase space is impossible, no matter how
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long the test orbit. This potential problem does not arise because fast orbits

optimizing the slow test orbit are in the same accessible phase space, and this is

where shooting by prediction will be required.

For the on the fly control performed in Sec. 2.2.9, we additionally re-

quire information pertaining to the parameter derivative ∂T
∂k . A minimum model

of this requires a difference quotient between predictions of models of two time

series data sets, one for each parameter value kl, kh where ∆k = |kh − kl| is

small. Call PTk(X) the predicted value of Tk(X). In [91] the authors mod-

eled the parameter derivatives of a one-dimensional map by difference quotients

between independent predictions formed from different data sets measured at

several nearby parameter values, kl < ... < ki < ki+1 < ... < kh. The idea

extends directly to higher-dimensional predictions where we may approximate

∂T

∂k
(X)|ki

≈
PTki+1

(X)− PTki
(X)

ki+1 − ki
. (5.19)

For ∂T
∂k (X)|k where ki ≤ k ≤ ki+1, a linear interpolation should yield a reason-

able answer for ∆k small. Of course, more sophisticated models with several

different parameter valued data set predictions using a higher order polynomial

interpolation should yield improved accuracy.

A philosophical note is in order on the validity of using predictions

to find paths which may be longer than our ability to make a prediction with

confidence. Recall that for k = 1.25 the fastest orbit we found was n = 131.

Fig. (5.3) (below) implies that about twenty iterates is the longest time we can

expect accurate predictions (for a million iterate data set). Extrapolating the

error growth rate, we expect errors of order one (the size of the phase space)

by about fifty iterates. Nonetheless, the idea is valid since we do not predict

an entire path. What we do is skip long recurrent loops of a known path. The
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predictions are only between sections of known orbit. Between patches, the

original exact path is used. For the nonoverlapping patch technique described in

Sec. 2.2.7, the known test orbit is always available as the reference from which

to make relatively short predictions for the patches.

5.4 Targeting Revisited - Numerical Results

We have seen above how we may replace the map and derivative with

predictions formed from observations of the test orbit which we already have

available. We may now repeat controlling chaos through recurrence.

First we must address a slightly contrived problem to which I propose

an equally slightly contrived solution. Since we know that the phase space

topology of the standard map is the torus3 which lives in IR3, we know that we

generally require a sufficient embedding dimension D = 2 · 2 + 1. However, as

we will discuss in more detail in the next section, computer memory restrictions

make it difficult to achieve the data density required for good predictions, as

outlined by Eq. (5.18). Lower-dimensional embeddings alleviate this problem

which motivates us to make use of our special knowledge about the form of the

standard map phase space which we know to be the torus. The range of the

map (1.37) is a unit square (x, y) ∈ [0, 1) × [0, 1). Therefore the range of the

time series “embedding” of the x variable is (xi, xi−1) ∈ [0, 1)× [0, 1).

Local linear model predictions as described in the previous section can

cause the iterate of a predicted point to leave the unit square under the mapping

twist. On the next iterated prediction, we find an unfortunate situation where

the closest k “neighbors” to the point X are on the nearest edge of the square.
3or the cylinder depending on whether we modulus the momentum. There is an

aliasing effect in the momentum direction which allows us to identify 2π segments of
momentum.
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Without some insight into the submanifold’s topology the computer program

may (and did for a certain “buggy” version I made) attempt to fit a linear

model to these “neighbors” and then proceed to make an absolutely meaningless

prediction.

Recall that the modulus function was used in the standard map to

“roll” the unit square into a torus, so we never see the third dimension of this

two-dimensional submanifold. Another choice of measurement function such

as y = f(x) = cos(2πx) would preserve the natural periodicity of the map. A

physical example of this would be the measurement of the angle θ, the rotation of

a pendulum arm. It has values θ ∈ IR, if we keep track of winding numbers, but

there is a natural 2π periodicity. If instead we measure a value y as the projection

of the tip of the pendulum arm (of length l), i.e., y = lcos(2πθ), then y never

experiences the discontinuity at the boundaries θ = 2kπ. Typically, we would

never encounter this problem for an attractor derived from a real world time

series for a generic measurement function. With this in mind, the predictions

which follow were made as described above, followed by an application of the

modulus function. If we nonetheless want to know the topology of the attractor

using the time series embedding, there is available a technique of Muldoon et al

[75] which totals the Euler index using a complex of symplices.

figure=embedd.eps,height=3.0in

Figure 5.2. Left: A phase space plot of the canonical variables (xi, yi) of the
standard map at k = 1.25 for a 106 iterate test orbit. The range is (x, y) ∈
[0, 1) × [0, 1). Right: A delay plot of the same orbit using the coordinates
(xi−1, xi) in place of the canonical variable.

In Fig. (5.2) we see a delay plot (xi, xi−1) of the standard map data

side by side with the usual phase space data (xi, yi) for a 106 iterate test orbit
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with parameter value k = 1.25. We can see clearly that, albeit distorted, both

plots display the same structures or holes which correspond to elliptic islands

inaccessible to our long chaotic test orbit. Besides being promised by embedding

theorems, it should come as no surprise that x data alone is enough exhibit

the topological structures of the standard map when we recall that orbits are

described by stationary action δW (x0, x1, ..., xn) = 0 which depends only on x

data, as described in Appendix A.2.

Fig. (5.3) shows a graph of the error of a predicted orbit of (xi−1, xi)

against the prediction interval n for several data set sizes including N = 103, 104, 106.

For short time predictions, smaller data set sizes give good results. However, we

can see that for a reasonable prediction error of ∼ 10−5 we do require the full

one million data points. This algorithm is indeed data hungry!

In Chapter 2, we set the recurrence threshold to a relatively high value

δ = 0.1 in order to guarantee that no opportunity to remove a patchable re-

currence was missed, at the cost of making more unsuccessful trials. Table

(2.1) displayed the trade off between δ, patching success, and the resulting orbit

length. Now the cost of unsuccessful trials is much higher; predicted shooting

and predicted calculation of local linear manifolds fu and fs is computation-

ally intensive. In addition, numerical inaccuracies become more of a problem;

patching may now fail due to the predicted orbit failing to land on the predicted

stable manifold. We choose here to set δ = 0.02 to reduce work at the cost of a

possibly longer path. The goal is to achieve an ε = 0.005 tolerance for k = 1.25.

Following Fig. (5.3), we choose the patch size 2m+1 = 21, a length for which we

expect reasonable predictions. This reduced space to contract to ε was another

motivating factor in choosing the smaller δ. Examining Fig. (2.7), revealing a

rough estimate for the Lyupanov contraction rate λ, we see that this is almost



118

the best contraction for which we can hope.

figure=predict.ps,height=3.0in

Figure 5.3. The error of a predicted orbit as a function of time for the standard
map, k = 1.25. The top two curves are for N = 103 and 104 respectively, while
the bottom solid is for N = 106.

The best path found takes 618 steps requiring 5 patches with up to

0.003 perturbations from patch to orbit. A second path of 760, and a third of

1024 were found. These computations require several computer days. Compare

this to version in Chapter 2, using the analytic map, which took tens of seconds.

Besides the successful paths, there were many trials where I was forced to kill

the job after several days under the persuasions of other users of the computer

lab who were unhappy of my use of too much CPU and all the memory. In

the next section, I will discuss reasons for the difficulty of prediction control,

especially in higher dimensions, and the lessons learned.

5.5 Conclusions - Memory Limitations

In the end, time series prediction as described above is more akin to

memorization than modeling. My original intention on undertaking the work of

this chapter was to build a generic black box predictor controller. To this end,

I programmed all of the prediction models above in general-dimensional form

and built correspondingly general code. The hope was that once the code was

written, it could just churn out controlled paths. This thesis was to read as a

list of problems to which it applied, but there was to be no such luck.

Let us first consider what can be done. In [91], Shinbrot et al. tar-

geted a magnetoelastic ribbon which they found could be represented by a one-

dimensional map. Here Xn+1 is a graph over Xn. The authors made good

predictions by spline fitting 500 observed data points. Parameter variations
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were predicted as described above. Recall for a moment the logistic map exam-

ple in Sec. 1.1.3 where we saw that a small parameter perturbation quickly fills

the entire accessible one-dimensional range. Such is typical of one-dimensional

maps. The magnetoelastic ribbon was successfully controlled in real time.

The two-dimensional standard map above requires a two-dimensional

model. We used 106 points to guarantee sufficient data density, a little more than

the square of the number of points used for sufficient one-dimensional density.

This is exactly as we should expect.

A basic definition relating dimension and volume is

V = Ld. (5.20)

This tells us how many parts on a side L fill a d-dimensional volume. In par-

ticular an average distance ε between data points, assuming uniform density,

translates to

N = ε−d, (5.21)

points are required to fill a unit hypercube. So in terms of a given data accuracy

ε for good predictions, we expect the number of points required for enough two-

dimensional coverage to be roughly the square of the one-dimensional value.

This trend is bad news for higher-dimensional prediction control.

Consider that on the workstation that I use, 8 bytes are required to

represent one double precision entry Xn in a time series. The five hundred

points required for a 1-D model fit in requires 40Kbytes; no problem for an

average PC. The one million points for a 2-D model fit in 8 Mbytes, which

fits nicely on a work station. A corresponding 3-D model would require about

(106)
3
2 = 109bytes= 1Gbytes. Computers this big exist now, but are very ex-

pensive and hard to find. Continuing, we see that a four-dimensional model



120

requires 1000 Gbytes, bigger than anything around now, but still conceivable.

A ten-dimensional model requiring 1030bytes= 1021 Gbytes is out of the ques-

tion. I was forced to stop with two-dimensional prediction control because that

is all that fits on the computers to which I have access. Clearly the brute-force

memorization approach will almost surely never be workable for anything over

five (or certainly six?!) dimensions.

This story is not all bleak. There may be special cases for which higher-

dimensional prediction is possible. A typical special case occurs when the ω-limit

set lives on a lower-dimensional attractor of dimension dA. In that case the data

requirement Eq. (5.21) depends on dA. To give an example, I was able to make

pretty good predictions for the Lorenz attractor which lives in IR3, but has a

box counting dimension only slightly bigger than 2. Memory requirements are

similar to those for the standard map. Another dynamical system I worked with

is the kicked double rotor map,4 [86]. The phase space is four-dimensional, but

its ω-limit set lives on a 2.8-dimensional attractor. I was able to make reasonable

predictions (but not accurate enough for control) for this map as well.

It is fairly common for a high-dimensional dynamics to contract to an

attractor with a much smaller box counting dimension, often small enough that

we can expect to make good predictions on available computers. The box count-

ing dimension dA speaks to us of the set covered and therefore predictability,

given N . However, it does not tell us about the dynamics on the d-dimensional

manifold. For example, it turns out that the kicked double rotor has a two-

dimensional unstable manifold and a two-dimensional stable manifold at a given

point [51]. In this case, shooting from the unstable manifold before a recurrence

4The double rotor models a two armed pendulum under a kick potential with dissi-
pation. It is a four-dimensional generalization of the dissipative standard map.
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to the stable manifold after the recurrence requires a more general form than

Eq. (2.10) to include the extra parameters. A discussion of the issues involved

in shooting between higher-dimensional saddles can be found in Appendix A.4.

The transport mechanism in higher dimensions is not clear. We cannot

be as sure that if an orbit goes from point a to point b that it was necessarily

localized in an intermediate turnstile. We saw in Sec. A.5 that there can be

higher-dimensional analogues of turnstiles, but the general case is not as clear.

Nonetheless, we have the recurrence lemma 2.2.1 for dynamics on a compact

manifold of arbitrary dimension. Thus we expect that long orbits will recur

with themselves, and so if they are part of a hyperbolic set, they are likely

shadowed by much faster orbits that skip the recurrent loops. However, we

expect that recurrences are less frequent along such orbits since exponentially

more pigeonholes are needed in higher dimensions.5 Experimenting with the

double rotor map does seem to reveal recurrences, albeit less frequently. Let

us also realize that in higher dimensions an orbit having no recurrences is not

necessarily optimal. In the end, there may be substantial savings as a result

of removing all unnecessary recurrences even if this does not always yield the

optimal orbit.

We can see that there are severe limitations to the amount of mem-

orization which can be done for higher-dimensional dynamics. For the special

case that there is a sufficiently low-dimensional attractor, prediction control

may still be workable. Higher-dimensional targeting still requires some straight-

forward extensions of already developed algorithms to account for generalized

saddles. Putting this all together can be the subject of some interesting future
5In terms of probabilities of a recurrence, it is the box counting dimension dA, not

the manifold dimension d which is important, good news for targeting a dynamics which
collapses significantly.
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research.



CHAPTER 6

BREAKUP OF INVARIANT TORI FOR THE

FOUR-DIMENSIONAL SEMI-STANDARD MAP

6.1 Introduction

Stability of motion in Hamiltonian systems and symplectic mappings

is of great interest in many physical situations such as plasma and accelerator

confinement and stellar and planetary dynamics; an understanding of stabil-

ity is also of intrinsic theoretical interest. The primary stability result is the

KAM theorem which asserts that most of the invariant tori of a nonlinear inte-

grable Hamiltonian survive upon a small, smooth perturbation [2]. The robust

tori, according to the theorem, are those that have sufficiently incommensurate

frequency vectors (they satisfy a Diophantine condition, see Sec. 6.3). As a

practical result, however, the KAM theorem has several drawbacks. The first is

that estimates of the perturbation size for the destruction of tori are typically

extremely small: much smaller than the size indicated by numerical computa-

tions for specific perturbations on specific tori (of course the theorem guarantees

the survival of any Diophantine torus for any small enough perturbation). The

second is that the theorem guarantees stability only for systems of two degrees of

freedom since the invariant tori have half the dimension of phase space. Nonethe-

less, computations indicate that while a system of three degrees of freedom may

not be rigorously stable, it exhibits a “practical stability” since orbits appear to

remain trapped near invariant tori for extremely long periods. To some extent



124

this is addressed by the Nekhoroshev theorem [77], though this theorem requires

extremely small perturbation sizes as well.

For the case of two degrees of freedom, or equivalently area preserv-

ing mappings, much progress has been made in determining the existence of

invariant tori. Three basic techniques have been used. The first is to examine

the stability of a sequence of periodic orbits whose frequencies limit on the ir-

rational frequency of interest—this gives rise to the residue criterion [38, 58].

This technique yields extremely accurate values for the parameters at which in-

variant circles are destroyed and can be made rigorous [59]. The second method

is a nonexistence criterion for twist maps, called converse KAM theory [68, 63].

The final technique is numerical computation (in some cases using interval arith-

metic) of the conjugacy to pure rotation [82, 24, 9, 67]. These methods can give

accurate nonrigorous values for the critical parameter for essentially arbitrary

Diophantine frequencies, and can also give reasonable rigorous values.

Though many have attempted to generalize these techniques to Hamil-

tonian systems with more than two degrees of freedom, or equivalently, symplec-

tic maps of four or more dimensions, there has been limited success in determin-

ing the existence of invariant tori. Periodic orbit approximations to invariant

tori have been obtained [50, 74], and computations reveal that the stability do-

mains of periodic orbits limiting on an incommensurate frequency vector may be

converging for a volume preserving example [65]. However the existence of the

limit is difficult to prove [8], primarily because the ordering property of periodic

orbits on the circle no longer applies on the torus. Converse KAM theory can

be generalized to higher dimensions [62], though in this case one must assume

that the tori are Lagrangian graphs.

One of the fundamental problems in these studies is number theoretic:
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there is no satisfactory generalization of the continued fraction theory to si-

multaneous approximation of several irrationals (perhaps the most promising is

that of Brentjes [16]). In the case of the residue criterion, it is the best approxi-

mants (convergents of a continued fraction) whose properties converge to those

of the invariant circle. Furthermore, quadratic irrationals play a large role in

these studies because their continued fraction expansions are eventually periodic

(these give rise to self-similar structures). Finally, the most robust tori appear

to correspond to the class of quadratic irrationals known as the noble numbers;

these have a continued fraction expansion with a tail of all one’s. Roughly speak-

ing, the explanation for this is that the noble numbers are the most difficult to

approximate in the sense of Diophantine. The generalization of this class to

higher dimensions is unknown.

There has been some speculation that for four-dimensional mappings,

cubic irrationals will replace the quadratics. One reason for this is that a periodic

approximation scheme based on a Farey tree construction necessarily leads to

a frequency which is the eigenvalue of a 3 × 3 matrix, and is therefore cubic

[41, 49]. However, even in this case it has been difficult to determine if there

is self-similar behavior near breakup [65], and there is no evidence that cubic

irrationals are more robust than others.

In this chapter we study the four-dimensional, complex, symplectic map

corresponding to the coupling of two semi-standard maps, as introduced in [40].

This map is the complex version of a mapping introduced by Froeshlé [34, 50]—

we call it the semi-Froeshlé map. We generalize the method of Percival and

Greene [40] to this case and find recursion formulae for the Fourier coefficients

of an invariant two torus with a fixed frequency vector in Sec. 6.4. Existence

of such a torus for small enough parameter values is guaranteed providing the
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frequency vector satisfies a Diophantine condition; we discuss this in Sec. 6.3.

Because of the simple structure of the Fourier series for the semi-Froeshlé map,

we are able to apply some results from the theory of holomorphic functions of

several complex variables in Sec. 6.5, and show that the domain of convergence

of the Fourier series has a particular form; it is complete and log-convex. Finally

in Sec. 6.6 we compute these convergence domains for several example frequency

vectors, including quadratic and cubic irrationals.

6.2 Coupling of Two Semi-standard Maps

The semi-standard, area preserving map was introduced by Greene and

Percival [40] as a numerically simpler model than the standard map for the

investigation of the analytic properties of invariant circles. In Lagrangian form,

the semi-standard map takes {xt−1, xt} 7→ {xt, xt+1} and is defined by

δ2xt ≡ xt+1 − 2xt + xt−1 = iaeixt ; (6.1)

this is a map on C2. The notation δ2 is reminiscent of the second derivative

operator.

In this paper we study a four-dimensional generalization, analogous to

the map introduced by Froeshlé [34, 50]. Letting xt ∈ C2, the semi-Froeshlé

map is

δ2xt ≡ xt+1 − 2xt + xt−1 = F(xt) , (6.2)

where

F(x) ≡ i

 a1e
ix(1)

+ εeix(1)+ix(2)

a2e
ix(2)

+ εeix(1)+ix(2)

 . (6.3)

There are three parameters, the strength of the kicks for each component semi-

standard map (a1, a2) and ε, the strength of the coupling of the two maps.
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Equation (6.2) is symplectic since F is the gradient of a scalar potential (see for

example [50]).

We are looking for solutions xt of Eq. (6.2) which lie on an invariant

two-torus homotopic to the trivial torus defined by the momentum yt ≡ xt−xt−1

being constant. In fact, we demand that this torus be analytically conjugate to a

uniform rotation on the angle variable θ with a given frequency vector w. These

tori include those found by KAM theory. The conjugacy is represented by the

following commuting diagram

xt −→ xt+1

↓ ↓

x(θ) −→ x(θ + 2πw) .

(6.4)

Thus, for a given w, an invariant torus for Eq. (6.2) is given by

xt = x(θ + 2πwt) , (6.5)

for θ ∈ T2. The homotopy condition implies that

x(θ + 2πm) = x(θ) + 2πm ∀m ∈ Z2 , (6.6)

thus x(θ) is coperiodic with θ;

x(θ) = θ + χ(θ) (6.7)

where χ(θ) is doubly 2π periodic. If we suppose that x is analytic, it can be

expanded in a Fourier series

x(θ) = θ +
∑
n∈Z

2

χnein·θ (6.8)
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Inserting Eq. (6.5) into Eq. (6.2) yields the Percival form of the mapping

δ2x(θ) ≡ x(θ + 2πw)− 2x(θ) + x(θ − 2πw) = F(x(θ)) . (6.9)

Inserting the series (6.8) into Eq. (6.9) will yield equations determining

the Fourier coefficients χn; these will be obtained in Sec. 6.4.

6.3 Incommensurate Frequencies

The convergence of the Fourier series for the semi-standard map has

been studied extensively in [40, 82, 67]. In particular, rather sophisticated tech-

niques for computing convergence of this series were developed in [82]; these

give accurate results for quite general frequencies. In general one determines a

parameter interval |a| < ass(ω) for which there is an analytic invariant circle

with frequency ω. Here ass, the critical function, is zero for every rational value

and exhibits a maximum for

ω = γ ≡ 1 +
√

5
2

. (6.10)

The critical function appears to have a local maximum at each of the noble fre-

quencies: those equivalent to γ under a modular transformation, or equivalently

that have a continued fraction expansion whose elements are all 1 beyond some

level.

These results also apply to the semi-Froeshlé map when ε = 0. Thus an

invariant torus of frequency w = (ω1, ω2) exists within the rectangle {(a1, a2, ε) :

|a1| < ass(ω1), |a2| < ass(ω2), ε = 0}. Furthermore, since the semi-Froeshlé map

is an analytic perturbation of a twist map, KAM theory implies that for suffi-

ciently small values of the three parameters (a1, a2, ε) there exists an invariant

torus analytically conjugate to the rotation θ 7→ θ+2πw providing the frequency

vector satisfies a Diophantine condition.
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For d-dimensions, the set of Diophantine vectors Dµ consists of those

w ∈ IRd for which there exists a C > 0 such that for all (p, q) ∈ Zd+1

|p ·w − q| ≥ C

||p||µ
, (6.11)

where ||p|| = max(|p1|, ..., |pd|). It is easy to see that if µ > d, the measure of

Dµ approaches one as C → 0; however, the measure of Dd is zero.

Certainly if w ∈ Dµ, then it is incommensurate, that is 1 and ω1, ..., ωd

are linearly independent over the rationals. For d > 1 one must distinguish

between commensurate vectors and resonant vectors. While the former satisfy

some rational relation p ·w = q, the latter have all components rational and cor-

respond to periodic orbits. A straightforward generalization of Greene’s method

[38] to higher dimensions would use resonant vectors, e.g. [41], instead of com-

mensurate vectors. However, in KAM theory it is commensurabilities which

cause the problems, not just resonances.

Though there exist many Diophantine vectors, a result of Minkowski

implies that every w can be closely approximated in a certain sense [18]:

Theorem 6.3.1 For any w ∈ IRd there are infinitely many integer vectors (p, q)

such that when K = 1

|p ·w − q| < K
||p||d

. (6.12)

If d = 1 then K can be replaced by 1/
√

5 but nothing smaller.

To our knowledge, the minimal value of K for d > 1 is not known.

One class of frequency vectors which are Diophantine are those con-

structed from algebraic irrationals [18]:

Theorem 6.3.2 If the components of w are incommensurate and elements of

a real algebraic field of degree d + 1, then w ∈ Dd.



130

Recall that an algebraic field generated by ξ ∈ IR of degree n is defined as the

set of numbers of the form

R(ξ) =
P (ξ)
Q(ξ)

where P and Q are polynomials of degree n with integer coefficients.

One would expect that a frequency vector w which is more incom-

mensurate, in the sense of having a larger Diophantine constant C and smaller

exponent µ would tend to persist for higher perturbations. This is numerically

verified for the standard and semi-standard maps where the noble numbers give

local maxima of ass, and are also the “most” irrational in the sense of Dio-

phantine. Unfortunately, to our knowledge, there are no results in the theory of

simultaneous approximations which determine a class of frequency vectors anal-

ogous to the noble numbers. Indeed one of the main reasons for our numerical

investigation is to attempt to develop a technique for determining this class.

We will choose several simple frequency vectors as examples for our

study. In addition to the golden mean, we will use the quadratic irrationals

σ ≡
√

2 = [2, 2, 2, 2....] ≡ [2∞] ; ζ ≡ 1 +
√

2
5 + 4

√
2

= [0, 4, 2∞] . (6.13)

The expressions on the right above give the continued fraction expansions. Set-

ting w = (γ, σ) or (γ, ζ) yields two incommensurate frequency vectors since√
5
2 is irrational. Furthermore by Theorem 6.3.2, both of these vectors are in

D2, since they are elements of the algebraic field of degree three generated by

ξ =
√

2 +
√

5. This is easy to see, since any cubic polynomial in ξ has the form

P (ξ) = a+ b
√

2+ c
√

5+ d
√

10 for a, b, c, d ∈ Z. Thus γ, σ, and ζ are all in R(ξ).
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Finally we consider a cubic irrational, the real solution of

τ3 = τ + 1

τ ' 1.32471795724474602596090885447809734

' [1, 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, 3, 1, ...] .

(6.14)

This so called “spiral mean” frequency, was introduced in [49] as a possible

analogue of the golden mean since in the Ostlund-Kim version of the Farey

tree, τ has a simple periodic construction. The number τ is Diophantine since

according to a theorem of Roth, every algebraic irrational is in D1+δ ∀δ > 0.

Thus the critical function ass(τ) 6= 0; however, determining its value is difficult

because the continued fraction elements appear unbounded [66]. Nonetheless,

for the four-dimensional case we will study the vector (τ, τ2) which is in the cubic

field generated by τ , and so an element of D2. Furthermore, τ is the smallest of

the “PV numbers,” which implies that the rational vectors on the Farey sequence

approaching (τ, τ2) converge more slowly than any other algebraic pair [49].

As we will see in Sec. 6.6, the frequencies enter the Fourier expansion

for x(θ) solely in terms of the small denominators

Dn = 4 sin2(πn ·w) ; (6.15)

that is, the nth Fourier coefficient of x(θ) is divided by Dn. For Diophantine

frequency vectors, Dn is bounded from below; in fact Eq. (6.11) implies that if

w ∈ D2, then 1/Dn < O(||n||4). Unfortunately, there is no theory analogous

to the continued fraction theory which provides the values of n for which there

are large peaks in 1/Dn. In Fig. (6.1) we show a plot of the values of n for

which (Dn(γ, σ)||n||4)−1 > 1.0 × 10−2 and 5.0 × 10−5. As this figure shows,

these peaks are quite isolated and rare. Thus, following the results for the semi-

standard map, one would expect the Fourier coefficients to have similar isolated
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figure=fig1k2.eps,height=3.5in

Figure 6.1. Peaks in the inverse of the small denominator where w = (γ, σ).
Values of (D(m.n)(γ, σ)||(m,n)||4) > 1.0 × 10−2 are displayed as bold dots and
those > 5.0× 10−5 as light dots.

peaks, and for the convergence determination of the Fourier series to be quite

delicate. However, as we will see in Sec. 6.6, this is fortuitously not the case.

6.4 Recursion Relation

In this section we will derive recursion relations for the Fourier co-

efficients of x(θ), the solution to Eq. (6.9). For the semi-standard map it was

possible to find a solution analytic in the upper half θ plane. In this case only the

positive Fourier coefficients are nonzero. This is one advantage over the series for

real mappings where all the Fourier coefficients must be considered. In the case

at hand, since the force, Eq. (6.3), has only positive imaginary exponentials, we

can also find solutions analytic in the domain {(θ1, θ2) : Im(θ1) ≥ 0, Im(θ2) ≥ 0},

so that only positive Fourier coefficients are needed

It is convenient to define u ∈ C2 as

u =

 a1e
iθ1

a2e
iθ2

 =

 u1

u2

 . (6.16)

The advantage of this definition, is that the parameters a1 and a2 will not appear

in any of our expansions. Further, using Eq. (6.7) we define

g(u) = i(x(θ)− θ) = iχ(θ) . (6.17)

Since by ansatz, only the positive coefficients will be needed in the Fourier

expansion of χ(θ), g(u) has a Taylor expansion

g(u) =
∑

n∈IN2

bnun ≡
∞∑

n1=0

∞∑
n2=0

 b
(1)
(n1,n2)

b
(2)
(n1,n2)

un1
1 un2

2 . (6.18)
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Here we use standard multi-index notation for the vector exponentiation: while

u ∈ C2 and n ∈ IN2, un ≡ un1
1 un2

2 ∈ C. In addition to the expansion of g, we

will need the expansions of its exponential as well:

egi(u) =
∑

n∈IN2

c(i)
n un (6.19)

where i = 1, 2. In terms of the new variables, the map Eq. (6.9) takes the form

δ2g(u) = −

 u1e
g1(u)

u2e
g2(u)

− k

 u1u2e
g1(u)+g2(u)

u1u2e
g1(u)+g2(u)

 (6.20)

where

k =
ε

a1a2
(6.21)

is the coupling parameter. Note that these equations depend upon the three

parameters a1, a2 and ε solely through k.

Substituting Eqs. (6.18)-(6.19) into Eq. (6.20) and noting that for a

term in the Fourier series the operator δ2 becomes −Dn, as defined by Eq. (6.15),

yields the recursion relation for bn :

Dnbn =

 c
(1)
n−(1,0)

c
(2)
n−(0,1)

+ k

n−(1,1)∑
m=(0,0)

 c
(1)
m c

(2)
n−m−(1,1)

c
(1)
m c

(2)
n−m−(1,1)

 . (6.22)

If w is incommensurate, then Dn is nonzero, so that Eq. (6.22) defines bn. In

fact bn is a convolution sum of {cm} for those m ≺ n where we define the partial

order ≺ on integer vectors by m ≺ n if mi ≤ ni, and m 6= n.

A simple derivative identity allows us to find the cm coefficients.

d

duj
egi(u) = [

d

duj
gi(u)]egi(u), (6.23)

which upon substitution of Eqs. (6.18)-(6.19) yields

njc
(i)
n =

n∑
m6=(0,0)

mjb
(i)
m c

(i)
n−m . (6.24)



134

Note that Eq. (6.24) allows the two forms, j=1 or 2, for n off the axis (these

are equivalent), but for n on the axis, only one is valid because of a required

division by a zero value of nj .

Examining Eq. (6.24) reveals that cn is a function of strictly previous

cm, but up to current bn, therefore the process must be started by generating

bn. Since the choice of initial phase θ is arbitrary, we can set

b0 = 0 . (6.25)

Examination of the mapping Eq. (6.20) yields in addition

b
(2)
(n1,0) = 0 ; b

(1)
(0,n2) = 0 . (6.26)

Similarly, Eq. (6.25) and Eq. (6.19) imply that c0 = 1, and Eq. (6.24) yields

c
(2)
(n1,0) = 0 ; c

(1)
(0,n2) = 0 . (6.27)

Finally, the recursion (6.22) implies that the values b
(1)
(n1,0) and b

(2)
(0,n2) are identical

to those for the semi-standard map with frequencies ω1 and ω2, respectively.

This completes the recursion algorithm which allows bn to be built

as an explicit function of previous bn and cn coefficients. Note that if k >

0 then bn is positive and real, a big advantage in their computation. Since

equation Eq. (6.18) actually represents two series, one in each component of the

vector g, the domain of convergence of g(u) is the intersection of the domains

of convergence of each component’s series.

6.5 The Domain of Convergence

In this section, we review some relevant results on the domain of con-

vergence for power series in several complex variables. Let z = (z1, ...zd) ∈ Cd,
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and for m ∈ INd, define zm = zm1
1 zm2

2 ....zmd
d ∈ C. We consider a power series,

S =
∑

m∈INd

bmzm , (6.28)

similar to the series obtained in the previous section. We denote the radii by rj =

|zj |. The projection onto the radius space is denoted Π : Π(z) = (r1, r2, ....rd).

The subset Cd∗ = {z : zj 6= 0} excludes points for which any component of z is

zero.

Several types of subsets of Cd are of interest. The domain of conver-

gence of a series is the interior of the set of points for which it converges abso-

lutely. A polydisk is the appropriate generalization of a disk: P (a) = {z : |zj | <

|aj |, j = 1, ..., d}. A Reinhardt domain is a domain R such that R = Π−1(Π(R));

that is, if it contains a point with radii rj , then it must contain every point with

those same radii, regardless of phases. Reinhardt domains are conveniently pic-

tured in the radius space Π(Cd) = IRd. A Reinhardt domain is complete if for

every z ∈ R, the polydisk P (z) ⊂ R; thus a complete domain contains all points

with smaller radii. Finally a domain D is log-convex if the set

log(Π(D)) ≡ {(log(r1), log(r2), .... log(rd)) : z ∈ Cd∗ ∩D} (6.29)

is a convex subset of IRd.

We will use the following theorem [84, 48]:

Theorem 6.5.1 If S converges for all orderings of its terms at a point z then

it converges absolutely to a holomorphic function. The domain of convergence,

D, of S is the interior of the set for which |bmzm| is bounded. Furthermore D is

a log-convex, complete Reinhardt domain. Conversely, if |bmzm| is unbounded

then there is an ordering of the terms in S for which it diverges.
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The proof of this theorem is straightforward. Its most unusual aspect

is that the domain of convergence is log-convex, which we will discuss in more

detail. Suppose z,x ∈ Cd∗ ∩D. Then for α + β = 1 let u be any point in Cd∗

such that

Π(u) = (rα
1 sβ

1 , ..., rα
d sβ

d ) , (6.30)

where rj and sj are the radii of z and x, respectively. Then, since S converges

at both z and x, B = sup(|bmzm|, |bmxm|) exists, and

|bmum| = |bm|
d∏

i=1

rmiα
i smiβ

i ≤ Bα+β = B (6.31)

is bounded as well. Thus S converges at u. Now since

log(Π(u)) = α log(Π(z)) + β log(Π(x)) , (6.32)

we have shown that D is log-convex. 2

The application of Theorem 6.5.1 to our system is straightforward since

the series Eq. (6.18) has the desired form; it yields the interesting result

Corollary 6.5.2 For fixed k defined by Eq. (6.21), an analytic invariant torus

with Diophantine frequency w of the semi-Froeshlé map exists in a parameter

domain in (a1, a2) which is complete and log-convex.

In particular, for fixed k, completeness implies that the domain of convergence

is simply connected, and its boundary projected onto the radius space can be

expressed as a graph of a function r1(r2) or r2(r1).

As we will see in the next section, the calculation of these domains is

possible with reasonable accuracy using the requirement that the terms in the

series must be bounded.
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6.6 Numerical Results

Determination of the sequence of {bm} of Fourier coefficients of χ(θ)

using the recursion algorithm of Sec. 6.4 is straightforward, since they are real

and positive for k ≥ 0. The next issue is to numerically find the domain of

absolute convergence, which from Sec. 6.5, is the set of u ∈ C2 for which |bmum|

is bounded. We begin by noting that the series (6.18)

g(u) =
∞∑

n=0

∞∑
m=0

bm,num
1 un

2 (6.33)

converges absolutely in the polydisk P (u) if the reordered series

∞∑
n=0

∞∑
m=0

bm,nrm
1 rn

2 =
∞∑

n=0

rn
1Bn(s) . (6.34)

converges. Here we define the slope s ≡ r2/r1, and the diagonal coefficient,

Bn(s) ≡
n∑

m=0

bn−m,msm (6.35)

which, most importantly, is expressed as a finite sum. It follows that the radius

of convergence for the ith component is

log(r(i)
1 (s)) = − lim

n→∞
log B

(i)
n (s)
n

(6.36)

for each fixed s. Since the domain of convergence is complete according to

Theorem 6.5.1, r1(s) is a single valued function.

To avoid numerical overflow for large sm, we use Eq. (6.35) when s ≤ 1,

and use a corresponding formula with the slope defined as r1/r2 otherwise. Fur-

thermore, we can take advantage of definition (6.35) by computing the coeffi-

cients bm in a triangular domain m+n ≤ N . This saves approximately a factor

of ten in computing time over using the square domain. Computer memory

constraints lead us to chose N = 255 as our matrix dimension.
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The efficacy of this method depends upon estimating Eq. (6.36), the

asymptotic growth rate of the Fourier coefficients. We first consider w = (γ, σ)

where the components were defined by Eqs. (6.10) and (6.13). Fig. (6.2) is a

figure=fig2k2.eps,height=3.5in

Figure 6.2. Logarithmic contour plot of the Fourier coefficients b
(1)
n where w =

(γ, σ) and k = 0.2. Here 0 ≤ b
(1)
n ≤ 10150.

logarithmic contour plot of b
(1)
m . It can be seen that bm grows rapidly as m

grows, indeed the maximal values of bm in the figure are O(10150). This is a

result of the recursion algorithm, which shows that bm is a combination of all

the previous cm. When k ≥ 0, the cm coefficients are positive and cm > cn

for m � n. Whenever there is a near commensurability, Dm is small, and bm

takes a sudden jump. This can be seen in the contour plot as a serrating of

the contour lines. The neighboring coefficients for greater m are influenced by

this jump, but the recursion algorithm serves to spread and dissipate the extra

height. In other words, the coupling serves to dampen the commensurabilities.

This partly accounts for the stepping up nature of the contour plot.

Fortunately, the limit (6.36) is not as difficult to evaluate for this prob-

lem as it could be in general. It turns out that log Bn behaves quite linearly as

a function of n; this can be seen clearly in Fig. (6.3). The small spikes visible

figure=fig3k2.eps,height=3.5in

Figure 6.3. Log B
(1)
n (s) vs. n for various values of the slope s, where s has the

range 1 ≤ tan−1 s ≤ 83 and every odd degree angle is displayed.

on a given “line” of (log[Bn(s)], n) are due to near commensurabilities.

By contrast, the Fourier coefficients for the semi-standard map, bn,

depend only on the small denominator and the single previous coefficient cn−1,
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(which is in turn implicitly a function of the coefficients (b1, ..., bn−1). Resonances

are extremely important, and primary, secondary, and even tertiary prominences

can be observed, so that the Fourier coefficients have an extremely spiked profile.

In the four-dimensional case the coupling between the frequencies w appears to

play the dominant role. Resonances gain and lose prominence in a delicate

balancing of the coupling between frequencies, which can be seen as shadows of

vertical lines in Fig. (6.3).

To determine the radius in Eq. (6.36) we performed a least squares fit

of variable data sets. The top and bottom ends of the fit were allowed to float

by n = 10 points each, and the fit with the lowest residual was automatically

chosen. This eliminates the problem of a given fit falling just above or below a

resonance spike. RMS errors in the slope fit are typically σc = 0.003 ± 0.001,

which leads us to expect at least 2 decimal accuracy in the ri values.

figure=fig4k2.eps,height=3.5in

Figure 6.4. Boundary of the domain of convergence for w = (γ, σ).and various
fixed values of k. Curves for B

(1)
n are solid, and are dashed for B

(2)
n . Values of

k are 10−5, 10−4, 10−3, 10−2, 10−1, 0.2, 1.0, 10.0. The vertical axis corresponds to
the frequency ω1 = γ, and the horizontal to ω2 = σ.

figure=fig5k2.eps,height=3.5in

Figure 6.5: Same as Fig. (6.4) with w = (γ, ζ).

Using the three frequency pairs, w = (γ, σ), (γ, ζ), and (τ, τ2), we

generate the respective (r1, r2) = (a1, a2) curves for various coupling constants

k, and for each of the B
(i)
n components. These domains of convergence are

displayed in Figs. (6.4)-(6.6). B
(1)
n is represented as solid curves, and B

(2)
n as

dashed curves.

Fig. (6.7) displays the (a1, a2) curves for w = (γ, σ) on a log- log scale.
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figure=fig6k2.eps,height=3.5in

Figure 6.6: Same as Fig. (6.4) with w = (τ, τ2).

This example shows that D is log-convex in accord with Theorem 6.5.1. The

sharp bends seen in some of the curves are due to the regular spacing of angles

on a grid, which the log scale makes especially prevalent near the axes.

Here we will discuss the behavior of the curves for the first component,

B
(1)
n (solid curves). When a2 → 0, r1 must approach ass(ω1) since the map

Eq. (6.20) becomes uncoupled in this limit, and B
(1)
n becomes the coefficients of

the semi-standard map with frequency ω1. We call the r1 axis the “dominant

axis” for B
(1)
n ; similarly, the r2 axis will be the dominant axis for B

(2)
n . This

behavior can be seen in Figs. (6.4)-(6.6) as all the various curves intersect the

dominant axis at ass(ω1). For reference, Table 1 gives the critical values of the

semi-standard map for the various frequencies. Note that the curves in Fig. (6.4)

and (6.6) actually overestimate the correct values on the axis; for example in

Fig. (6.4), the intersection with the r2 axis occurs near 0.985, while Table 1

implies that the correct value is 0.966. This overestimate is due to the fact that

we compute the coefficients only out to the 255th Fourier coefficient, and that

near the axes the spikes in the Bn curves become more prominent (see further

discussion of this below). For the semi-standard mapping, more sophisticated

fitting techniques (e.g. [82]) are required for an accurate evaluation of the critical

function. For our mapping we believe that, away from the axes, the radius curves

are actually more accurate than this indicates. In Fig. (6.5), the intersection

with the r1 axis appears to be much lower than the value r1 = 0.979 given

figure=fig7k2.eps,height=3.5in

Figure 6.7: Same as Fig. (6.4) except on a log-log scale.
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Table 6.1: Critical values for the semi-standard map.

ω ass

γ 0.979661
σ 0.966165
ζ 0.833726
τ 0.657
τ2 0.660

γ + σ 0.09
γ + ζ 0.66
τ + τ2 0.33

in Table 1; however these curves actually rise rapidly to the correct (actually

overestimated) value as r2 → 0. It is interesting that in this case, even though the

values on axis are quite different, the convergence boundary has adjusted itself

to be nearly square for small k. Finally, this rapid rise—approaching ass(ω1) at

a sharp angle, does not violate log-convexity, as required by Theorem 6.5.1.

The figures also show that the solid curves limit to ass(ω2) on the r2

axis, which we call the “subdominant” axis for B
(1)
n . This phenomena requires

some explanation. When ε ≡ 0, the boundary of domain of convergence for B
(1)
n

is r
(1)
1 = ass(ω1), independent of r2; the numerical results for nonzero ε, however,

imply that r2 limits to ass(ω2) on the r2 axis. This also occurs for the domain

of convergence of the second component B
(2)
n : r1 → ass(ω1) as r2 → 0. To

explain this phenomena, consider for example the small slope limit of B
(2)
n (s).

Equation (6.35) implies that

B(2)
n (s) = b

(2)
n,1 s + O(s2) (6.37)

where the s0 term vanishes according to Eq. (6.26). Using the recursion relation

(6.22) implies

B(2)
n (s) ' sk

D(n,0)

D(n,1)
b
(1)
(n,0) (6.38)
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Thus using Eq. (6.36) the radius of convergence is

log(r(2)
1 ) ' log [ass(ω1)] − lim

n → ∞
1
n

log

(
D(n,0)

D(n,1)

)
(6.39)

The last limit in fact is zero, since by the Diophantine condition Eq. (6.11), the

ratio of the denominators is bounded by O(n4). A similar result holds for the

first component of the mapping along the r2 axis, so we have shown that

lim
s → 0

r
(2)
1 (s) = ass(ω1), lim

s → ∞
r
(1)
2 (s) = ass(ω2) (6.40)

Furthermore, Eq. (6.40), together with completeness, implies that the

the domain of convergence is bounded by the rectangle

a1 ≤ ass(ω1), a2 ≤ ass(ω2) (6.41)

In fact the figures show that as k → 0 the domain of convergence approaches

this rectangle. Our interpretation of this is that for small but nonzero k, the

singularity corresponding to r2 = ass(ω2) is still present, though weakened (the

“residue” of this singularity, limits to zero as k → 0, but it is still present for

any nonzero k). This causes a difficulty with our numerical scheme for finding

r1(r2) when k is small; we discuss this further below.

figure=fig8k2.eps,height=3.5in

Figure 6.8. Bn(s) vs. n where s = 10−25 and w = (γ, σ). The upper plot displays
B

(1)
n (s) vs. n; with s � 1, γ is the dominant frequency, and so B

(1)
n approaches

the γ semi-standard map coefficients. The lower plot displays B
(2)
n vs. n; again

with s � 1, σ is the subdominant frequency, and so B
(2)
n decays.

Fig. (6.8) displays the coefficients B
(1)
n and B

(2)
n for s = 10−25 and w =

(γ, σ). In the limit of small slope B
(1)
n ≈ b

(1)
n,0 which are the Fourier coefficients for

the semi-standard map [40]. Thus the upper plot is indistinguishable from that

for the semi-standard map. The lower half of Fig. (6.8) shows B
(2)
n for small
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slope. The profile exhibits spikes and valleys corresponding to a complicated

coupling between σ resonances and the still important γ resonances, as shown

in Eq. (6.38). Furthermore, Eq. (6.38) implies that the profile approaches a

limiting form as s → 0, even though the magnitude of B
(2)
n approaches zero.

Likewise, B
(2)
n near the r2, axis yields the semi-standard coefficients for ω2 = σ,

while B
(1)
n goes to zero, while similarly converging to a fixed profile.

As the domain of convergence plots show, the rectangular domain for

small k contains the domain for any finite k. This follows from the completeness

of the domain of convergence, and the fact that the curves limit to the semi-

standard values on the axes. This fact can be used as an upper-bound when

discussing the question of which torus is “last.”

We also computed r1(r2) curves for negative values of k. By the same

argument as above, the negative k curves intersect the axis at ass(ω1) and

ass(ω2). Otherwise the curves are qualitatively similar to those shown in Figs.

(6.4)-(6.6), so we omit the plots. Since the domain of convergence depends only

on k, these curves provide the boundary of existence in four of the octants in

(a1, a2, ε) space, the other four being determined by the positive k results.

As k increases all of the boundaries in Figs. (6.4)-(6.6) become hyper-

bolic in shape. This can be seen most clearly in Fig. (6.5), for w = (γ, ζ). The

large k limit corresponds to

ε � (a1, a2). (6.42)

Taking this to the extreme, we set a1 = a2 = 0, then Eqs. (6.2)-(6.3) have the

form

δ2x = iε

 eix1+ix2

eix1+ix2

 . (6.43)
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Defining the new variables

ξ1 = x1 + x2 (6.44)

ξ2 = x1 − x1, (6.45)

and adding and subtracting the components of Eq. (6.43) yields a new map.

δ2ξ1 = 2iεeiξ1

δ2ξ2 = 0.
(6.46)

Thus, there exists an invariant torus for (ξ1, ξ2) up to some critical

value

2ε = ass(ω1 + ω2). (6.47)

Now Eq. (6.43) is approximately valid for small a1 and a2, so we expect that as

k →∞, using ε = ka1a2, the fixed k boundary will limit to

r1r2 =
ass(ω1 + ω2)

2k
, (6.48)

which defines a hyperbola.

Thus we have three analytic bounds on the domain of existence of a

torus:

a1 < ass(ω1), a2 < ass(ω2), ε < 0.5ass(ω1 + ω2) , (6.49)

though the last equation is not rigorously derived. As a confirmation, Table 1

shows that ass(γ + σ) is much smaller than ass(γ + ζ) and ass(τ + τ2). Thus,

Eq. (6.48) predicts that the curves for w = (γ, σ) should become hyperbolae

more quickly than for other w curves, as we do in fact observe.

As mentioned earlier, the scheme (6.34)-(6.36) for finding r1(s) has

numerical problems when k � 1. For such small k, the singularity on one axis

is dominant over the singularity on the other axis. To illustrate the problem,
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consider a simple example which has a similar imbalance in the prominence of

its singularities. Let

S(r1, r2) =
α

α− r1
+

δβ

β − r2
=
∑
m,n

bm,nrm
1 rn

2 . (6.50)

Here small values of δ simulate small values of k; however, for any nonzero δ, the

domain of convergence of this series is the rectangle {(r1, r2) : r1 < α, r2 < β}.

We examine the behavior of equations (6.34)-(6.36) when applied to

Eq. (6.50) by a perturbation analysis near s = 0. For a finite n, the algorithm

gives an error in r1 of

∆r1 ∼ − δα

n

(
αs

β

)n

. (6.51)

Thus the method works well provided s < β/α, but fails drastically for larger s.

In our computations, the slope is never larger than one; we switch to the inverse

of the slope when s = 1. Thus, supposing β < α the method fails in a cone

β/α < s < 1. So for the Froeshlé mapping, we also expect that slopes within a

similar cone will give bad results if k is too small. That this is true can be seen

as a slight loss of convexity for the smallest values of k along the subdominant

axis in Figs. (6.4)- (6.6). In practice we are unable to lower k below 10−5 in the

computations.

figure=fig9k2.eps,height=3.5in

Figure 6.9. Radii of convergence curves in (a1, a2, ε) space for B
(1)
n and w =

(τ, τ2) where the r1 axis is represented as the τ axis, and r2 as the τ2 axis.

figure=fig10k2.eps,height=3.5in

Figure 6.10: Same as Fig. (6.9) with w = (γ, ζ).

Finally, our r1(r2) data can be displayed in terms of the coupling pa-

rameter ε, instead of k. Figs. (6.5) and (6.6) are converted via Eq. (6.21) to
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the three-dimensional graphs seen in Figs. (6.9) and (6.10). Here we see in a

new way the importance of the sum frequency (ω1 + ω2) through Eq. (6.49).

Numerical overflow for large k prevents us from calculating the curves for ε too

close to its maximum value.

In many ways, it is these three-dimensional plots that are most use-

ful when deciding a partial order to determine the “last invariant torus.” One

concept of ordering of the domains of convergence is to choose a directed curve

in (a1, a2, ε) beginning at the origin. One could linearly order the domains of

convergence in terms of the order of intersection of the domain boundaries with

this curve. This motivates the following local definition of order.

Curve based Order: An w torus persists longer than a µ torus along

a curve ξ(t) for which ξ(0) = 0, if ξ(t) intersects the boundary of the domain of

convergence of the µ torus first.

The simplest example of a parameterized family is a line emanating

from the origin. Another example is a parabolic ray a1 = t, a2 = st, ε = kst2 for

fixed s and k. Figs. (6.4)-(6.6) order domains in this sense.

In general, one wants to do more than compare two surfaces using a

single point from each surface, which is all a curve based order allows. In some

sense, one may want to incorporate the information of the entire surface in a

comparison. This motivates the definitions of the following global comparisons.

Metric based Order: For a given metric, an w-torus persists longer

than a µ-torus if the boundary of the domain for w has a point farther from the

origin than that for µ.

This definition for ordering is limited in that it requires the choice of a

metric.

If one surface is completely contained inside another, then that torus
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is more persistent than the other according to any definition, since containment

is a topological notion. Thus we define the partial ordering

Topological Order: An w torus persists longer than a µ torus if the

domain for w contains that of µ.

Of course, the surfaces for two different frequencies will intersect in

general, and then the topological ordering does not apply. In our examples, the

surface for (τ, τ2) is completely contained inside that of (γ, ζ), and therefore the

(γ, ζ) torus is more persistent. The complete containment of the (γ, ζ) surface

is partly due to the fact that each of (ass(γ), ass(ζ), ass(γ + ζ)) are greater

than their counterparts (ass(τ), ass(τ2), ass(τ + τ2)). On the other hand, in

order to compare the (γ, σ) and (γ, ζ) tori, note that though ass(σ) > ass(ζ),

ass(γ + σ) < ass(γ + ζ). Thus the surfaces must intersect, and therefore there

can only be parameterized comparisons.

6.7 Conclusions

We have determined the domain of existence of invariant two-tori ana-

lytically conjugate to a rotation for the semi-Froeshlé mapping by expanding the

conjugacy function in a Fourier series in the angle variables. The semi-Froeshlé

mapping has the advantage that two of the parameters can be eliminated in

the Fourier series, so that the boundary of existence of the tori in all three pa-

rameters can be obtained with a single parameter sweep. We have studied the

boundary of the domain for several frequency vectors, all of which are elements

of a cubic algebraic field, and therefore satisfy Diophantine conditions. The

boundary of these domains appears to be smooth; rather surprisingly, it appears

smooth even when the parameters have opposite signs (i.e. negative values of

k). We have shown that when projected on the parameters (a1, a2) for fixed
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k = ε/a1a2, the boundary is log-convex and complete, and that as k → 0 the

domain limits to the rectangle corresponding to the domain for the uncoupled

mappings. Furthermore, numerical results imply that the domain is bounded by

the critical function for the sum frequency, as shown by Eq. (6.47).

The methods and theorems of this paper are not restricted to the four-

dimensional version of Eq. (6.2). They also apply to the 2d-dimensional complex

semi-Froeshlé map, providing only that each occurrence of x(j) in an exponential,

exp (imx(j)), in the force, has the same sign. The main bottleneck is computing

the Fourier coefficients recursively which involves a (d-1) degree iterated convo-

lution sum, where d is the dimension. Computing the md coefficients would take

O(m2d) steps, making computer time a major problem in practice. In the same

vein, more complicated forcing terms in Eq. (6.3) could also be considered, but

similar time constraints may be a problem.

There are a number of open questions left by our study.

1) When the Fourier series does not converge, does there exist an in-

variant Cantor set for the mapping (a cantorus)? Results for twist mappings

near the anti-integrable limit show the existence of cantori for all frequencies

[60]. What is the nature of the invariant set when the Fourier coefficients for

x(2) converge, but those for x(1) do not, as seen especially in Fig. (6.6)? One is

tempted to think it is a Cantor set of circles.

2) Are all invariant tori for the semi-Froeshlé mapping analytically

conjugate to a rotation? Perhaps all tori with Diophantine frequency vectors?

3) Is there an extension of the converse KAM theory of [62] to complex

mappings?

4) Is there an extension of some of the results of Theorem 6.5.1 to real

valued four-dimensional mappings of some class? It is possible that such a map
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may also have a log-convex domain in the proper coordinates.

5) Can one use similar techniques to study the existence of invariant

circles for a four-dimensional mapping? In [62] it was suggested that circles may

last longer than any tori.

6) Which class of frequency vectors correspond to the most persistent

invariant tori? In this paper we compare several likely candidates, but do not

present evidence that there are not more persistent tori. In searching for a

particularly persistent torus, a first step might be to maximize the values of

ass(ω1), ass(ω2), and ass(ω1 + ω2). Which class of frequency vectors does this?

Of course, since denominators containing all m·w occur, the most persistent class

of frequencies may be that with maximal Diophantine constant C in Eq. (6.11).

Since incommensurate algebraic frequency vectors form a field, any elements of

such a field will have the same C. Moreover, since a degree three algebraic field

has the minimal exponent µ in Eq. (6.11), it seems reasonable that it is such

a field which will be most persistent. Of course the definition of persistence

will depend on the choice of a partial ordering, and even then it is not clear

how dependent upon the specific model the results would be. An enlightening

discussion of these issues is given by Lochak [55].



CHAPTER 7

SUMMARY

In this thesis I demonstrated that the sensitivity defining chaotic dy-

namics makes accessible a wide range of behaviors with an arbitrarily small

control signal. In targeting, finding long paths may be broken into smaller prob-

lems of finding short paths between switching points. Finding the switching

points between orbit segments is the key difficulty.

Given a test orbit which explores its accessible phase space, I presented

an algorithm to remove the long recurrent loops resulting from several passes

through a barrier’s turnstile by inefficient multiple passes across the barrier.

Multiple crossings of a barrier distinguish an inefficient orbit from the efficient

orbit, which crosses a barrier exactly once. The point is that it is easy to find an

an inefficient orbit which eventually achieves the desired transport from near a to

near b. Using recurrence to indicate multiple crossings of intermediate barriers,

we can construct a pseudo-orbit consisting of only the segments of the test orbit

required for the efficient single crossings of barriers. The required orbit segments

of a pseudo-orbit are those in which we truncate (long) recurrent loops from the

test orbit. Given a mild hyperbolic splitting hypothesis between the stable and

unstable manifolds along the orbit segments of the test orbit we wish to keep,

we present an algorithm to find a nearby shadow orbit to the pseudo-orbit. The

algorithm reduces the error of truncating recurrent loops, by shooting from the

unstable manifold of the orbit before the recurrence to the stable manifold of
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the orbit after the recurrence. Thus the error of the pseudo-orbit can be pushed

backwards in time along the unstable manifold, and forwards in time along the

stable manifold to achieve arbitrary control constraints on the error’s size.

In two dimensions, the switching point may be recognized automati-

cally and model independently by recurrence in the barrier’s turnstile. In higher

dimensions, we have the recurrence lemma from which we conclude that long

orbits must have recurrences and hence may be shortened by their removal. We

showed that this algorithm allows us to manage efficiently all of the test orbit

data simultaneously, as a library of known behaviors, to target between any a

and b in the accessible phase space.

Targeting through recurrences requires a chaotic dynamical system.

To shoot from the unstable manifold before a recurrence to the stable manifold

after the recurrence seems to require that the test orbit belong to a uniformly

hyperbolic subset of the accessible phase space. We constructively build an ε

shadow to the δ shadow of the test orbit with the recurrences deleted. We saw,

however that the standard map test orbit is not uniformly hyperbolic; angles

between stable and unstable manifolds do not appear to be numerically bounded

away from zero. Thus, a “glitch” may occur. Nonetheless, the algorithm seems

to work on an “accept on success” basis. Small angles that occupy a small

measure on the angle frequency distribution do not present a problem; larger

angles prove to be frequent enough that successful patches are found.

We also require that there exist a test orbit which visits an accessible

phase space with large measure. This seems to require a transitivity condition.

An ergodic orbit is certainly sufficient. However, such a condition is not neces-

sary, and unproven for the standard map. A mixing property is also sufficient

but unnecessary and unproven.
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The algorithm has allowed us to find fast paths in:

1. The standard map (an example of a discrete dynamical systems in which

the typical “layered phase space” of area preserving maps due to KAM

curves and residual cantori makes competing targeting techniques inef-

fective).

2. The restricted three body problem (a flow which yields and area pre-

serving map by Poincaré section).

3. The Bernoulli shift map (this model of chaotic transport allowed us

to find closed form paths which we compared to the closed form time-

optimal orbit from a to b).

4. A map which we recovered by prediction of phase space data from time-

series delay embedding techniques.

The main goal of the targeting algorithm presented here has been to

make targeting widely accessible, in a manner independent of special knowl-

edge about the dynamics, and in some cases, independent of even an analytic

representation of the dynamics (i.e. only using observed time-series data). Our

technique is widely applicable, and has achieved a high degree of success towards

these goals. It remains to continue exploring ever more (applied) examples to

which the technique may prove useful.

Finally, on a separate note, we have presented techniques to find the

breakup of invariant tori due to a Hamiltonian perturbations to the four-dimensional

semi-standard map. This allows for discussion of finding frequency vectors w

with the most robust invariant tori and comparison of more persistent frequen-

cies by several definitions of the (partial) orders which we present.
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7.1 Problems for the Future

There are a number of directions in which research continuing the work

of this thesis may proceed. Some of these are enumerated as follows.

• Extend the model of the Earth - Moon spacecraft system. The ellip-

tic restricted three-body problem is time dependent as is the restricted

four-body problem including the Sun. A four-dimensional Poincaré map

results. There are likely other interesting and efficient chaotic transfer

orbits.

• Build a better RTBP integrator using Birkhoff’s regularization transfor-

mation so that test orbits with close approaches can be generated. In

principle, a starting point a located on the Earth’s surface is possible,

requiring an initial δV to jump onto the correct energy level J2.

• Apply optimal control theory to connect the epsilon chain transfer orbit

to the moon with small manoeuvres. Finite parameter optimization

can be used to find the locations and times of ∆V manoeuvres between

nearby segments.

• Investigate further the recurrence frequencies in higher dimensional maps

and resulting path lengths.

• Shoot between higher dimensional saddles as described in Appendix

A.4. To this end, find full stable and unstable manifolds, and gener-

alize Eq. (2.11) for a good Newton-secant primer.

• Investigate further the possibilities of prediction control as formulated

in Chapter 5 for a high dimensional dynamics that collapses sufficiently

to a low dimensional attractor.
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• Add noise. Kostelich has noted that his tree based targeting algorithm

is quite sensitive to noise; a 1% noise signal is enough to lose a targeted

path.

• Do the orbit restriction method described in Appendices A.2-A.3.

• Investigate further the drift through momentum “barriers” caused by

coupling between two standard maps as modeled in Appendix A.5, by

Eqs. (A.42) and (A.43), a Hénon map which drives a simple twist map

(see Fig. (A.3)). The more complex phenomenon of “Arnold Diffusion”

allows for back coupling, i.e. in the Froeshle’ map, two standard maps

simultaneously drive each other. There is the possibility of a picture

analogous to Fig. (A.3) for each commensurate vector frequency w. The

important w have important resonant channels. This is the so called

“Arnold web”. An interesting question concerns what route an orbit

travels through the web, and why it takes a given direction at a fixed

junction w. A first approach is to investigate the path of the unstable

manifold at a fixed commensurance w both by writing down the unstable

manifold of the linearized coupled map near the commensurance and by

then following the unstable manifold by evolving a nearby cluster of

points on the unstable eigenvector. This is analogous to seeing how the

unstable manifold of the fixed point of Eq. (A.42) tips in the I direction

in the coupled map. This should give us some idea of the vertical drift.
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APPENDIX A

A.1 Pole Placement

In this section we give a brief example of how the poles (eigenvalues)

of Eq. (1.3) might be arbitrarily chosen with a well defined gain matrix K. For

more details of this derivation (see Douglas Miron). We rewrite Eq. (1.3) in the

form

z′ = A · z + Bu, z ∈ IRd, (A.1)

with one signal (u ∈ IR). B distributes the signal to each of the d states. The

stability of z∗ = 0 is governed by the eigenvalues of the matrix A. The goal is

to effectively alter the dynamics (A.1) to a contraction mapping by altering the

Bu term. We will see that if we choose a gain matrix K and feedback rule of

the form

u = −Kt · z. (A.2)

then we may be able to alter the eigenvalues of the resulting dynamics

z′ = (A−B ·Kt)z, (A.3)

arbitrarily.

For ease of exposition, we restrict the discussion to d = 3. Assume that

we have performed a linear change of coordinates of (A.1) to “control canonical
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form.”

A =


0 1 0

0 0 1

−a3 −a2 −a1

 , B =


0

0

1

 , and K =


k1

k2

k3

 . (A.4)

The gain matrix ki holds the free parameters to alter the dynamics by the rank

one modification −B ·Kt. We obtain the characteristic equation

|(A−B ·Kt)− sI| =

∣∣∣∣∣∣∣∣∣∣∣
−s 1 0

0 −s 1

−a3 − k1 −a2 − k2 −a1 − k3 − s

∣∣∣∣∣∣∣∣∣∣∣
(A.5)

= s3 + (a1 + k3)s2 + (a2 + k2)s + (a3 + k1) = 0.

If we wish to obtain the poles (λ1, λ2, λ3), then the characteristic equation must

be of the form

(s−λ1)(s−λ2)(s−λ3) = s3−(λ1 + λ2 + λ3)︸ ︷︷ ︸
α1

s2+(λ1λ2 + λ1λ3 + λ2λ3)︸ ︷︷ ︸
α2

s+λ1λ2λ3︸ ︷︷ ︸
α3

.

(A.6)

Matching with the controlled characteristic equation (A.5) we obtain

α1 = a1 + k3 = −(λ1 + λ2 + λ3)

α2 = a2 + k2 = (λ1λ2 + λ1λ3 + λ2λ3)

α3 = a3 + k1 = −λ1λ2λ3, (A.7)

from which we can solve for the gains
k1

k2

k3

 =


−a1 − (λ1 + λ2 + λ3)

−a2 − (λ1λ2 + λ1λ3 + λ2λ3)

−a3 − λ1λ2λ3

 . (A.8)
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Hence we see that we may arbitrarily choose the poles {λi} less than 1 to force

a contraction if we can find a change of coordinates to the form (A.4).

The more general result, of course, is Ackermann’s formula for the nec-

essary and sufficient condition which are already stated (see Eq. (1.6)). The

derivation of the Ackermann formula bears a similar flavor to the above cal-

culation which is made much cleaner for arbitrary dimension d by making use

of the Caley-Hamilton theorem which states that a matrix C satisfies its own

characteristic equation.

Cd + α1C
d−1 + ... + αd−1C + αdI = 0. (A.9)

(For details see [78]).

A.2 Action of a “Pseudo-orbit” the Orbit Restriction Method

In this section, we present an alternative method to that presented in

Sec. 2.2.3 to find a real orbit patch through a recurrence. The technique was

developed in Chen et al. [20] to find and track periodic orbits for the special case

of area preserving maps, such as Eq. (1.37). In this paper they developed what

they call an “orbit extension method” to find a high order periodic orbit nearby

a lower order periodic orbit. Using a numeric rule, they were able to identify for

“ordered orbits” the points of the low order orbit which are “parents” to several

iterates of the higher order orbit. These points they identified as the iterates of

a pseudo-orbit near the real high order orbit. Under the assumption that they

were close enough to have a convergent Newton’s method, they then used the

Lagrangian rule that a real orbit has zero variation of its action.

Our goal is quite similar in targeting. We wish to build a real orbit

segment (patch) given a nearby δ pseudo-orbit. The method of Sec. 2.2.3 was

similar to the closing lemma [14] which uses hyperbolicity to constructively prove
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the existence of a periodic orbit, only we constructed an orbit which avoided the

periodic part. Similarly, we modify the orbit extension method to again build a

non-periodic path. By analogy, we can call this targeting technique the “orbit

restriction method” as it throws away the periodic part.

Given a pseudo-orbit {zi}n+1
i=0 where zi = (xi, yi), with epsilon errors

‖T i(zi−1)− zi‖ < ε, i = 1, 2, ..., n + 1, (A.10)

one approach to find a true nearby orbit (which we expect to exist in a hyperbolic

set due to the shadowing theorem [14]) is to simultaneously zero all 2n equations

implied by (A.10). The existence of a Lagrangian for the dynamics T allows to

alternatively require that the real orbit have stationary action. This will yield a

nth order tri-diagonal system.

The action of the pseudo-orbit is simply

W (x0, x1, ..., xn) =
n∑

i=1

F (xi−1, xi), (A.11)

where F is the Lagrangian generating function. The basis of our relaxation

scheme will be to require that the “test” orbit {zi}n+1
i=0 have stationary action

δW = 0. (A.12)

Therefore, we obtain

∂W

∂xj
=

∂

∂xj
(
∑

F (xi−1, xi)) = F2(xj−1, xj) + F1(xj , xj+1) = 0, (A.13)

where

F1(a, b) =
∂F (a, b)

∂a
and F2(a, b) =

∂F (a, b)
∂b

. (A.14)

We see that (A.13) defines a tri-diagonal system.
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Once we have found the n x coordinates of the real orbit, we may

recover the other n y coordinates using the action:

y = −F1(x, x′)

y′ = F2(x, x′). (A.15)

We will solve (A.13) by a Newton scheme when the ε-chain errors are

small, thus giving a good initial guess. We rewrite each of the n equations of

(A.13) in the form

fj(xj−1, xj , xj+1) = 0, j = 1, ..., n. (A.16)

Note that we expect for a hyperbolic orbit small errors at the ends between the

test orbit z̃j and the real orbit zj . The errors we expect are proportional to

‖z0 − z̃0‖ ≈ kελ
−n

2
u and ‖zn − z̃n‖ ≈ kελ

n
2
s .

Linearizing (A.16), we obtain

fj(x + δx) = fj(x) +
n−1∑
i=1

∂fj

∂xi
δxi, (A.17)

where we have written xt = (x0, ..., xn+1).

One Newton iteration is to solve the above linear system for the cor-

rections δx which cause f(x + δx) = 0.

n∑
i=0

(
∂fj

∂xi
)δxi = −fi(xi−1, xi, xi+1), (A.18)

may be inverted with an efficient tri-diagonal solver.

For the standard map (1.37), the action is

F (x, x′) =
1
2
(x− x′)2 +

k

4π2
cos(2πxi), (A.19)

and therefore we find

F1(x, x′) = (x′ − x)− k

2π
sin(2πx), (A.20)
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and

F2(x, x′) = (x′ − x). (A.21)

Hence, we wish to zero the functions

fj(xj−1, xj , xj+1) = xj+1 − 2xj + xj−1 −
k

2π
sin(2πxj) = 0. (A.22)

Equation (A.18) calls for finding the derivatives ∂fj

∂xi
of (A.22). We may

now write (A.18) in its matrix form

A · δx = b, (A.23)

where

Am,n =
∂fm

∂xn
=



1 if n = m + 1,

− k
2π cos(2πxm) if n = m,

−1 if n = m− 1,

0 otherwise,


(A.24)

and,

bn = fn(xn−1, xn, xn+1). (A.25)

Some remarks are in order comparing this technique to that of Sec. 2.2.3.

By shooting from W u(z0) to W s(zn+1) we had only a first order system to zero

by Newton’s method. However, we only had errors at the end points z0 and zn+1.

The orbit between has zero chain error by construction. Alternatively, minimiz-

ing (A.10) may result in an epsilon chain with the cumulative error distributed

evenly through the patch and hence perhaps with much smaller maximum error

as compared to the technique with error only at the ends. Ultimately, I have

not pursued the variational formulation of patching at this time due to both

its limited applicability and increased complexity. Shooting seems more natural

and the model seems realizable.
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A.3 An Initial Condition for Orbit Restriction

The standard map in its Hamiltonian form (1.37) may be rewritten in

Lagrangian form

(xi+1 − xi)− (xi − xi−1) +
k

2π
sin(2πxi) = 0. (A.26)

This version of the standard map has an interpretation in solid state physics

called the Frenkel-Kontorova model in which a chain of molecules is deposited

on a one-dimensional periodic crystal lattice and experience nearest neighbor

simple spring potentials of the form V (x) = k
4π2 cos(2πx) [70].

In this section we present an initial condition (a “pseudo-orbit”) be-

tween the a box at (0, 1) to the b box at (1, 1), which using the orbit restriction

method of the previous section, may be convergent to a single real orbit segment.

A chain of molecules in the (0, 1) state has the orbit

xj = 0, ∀j, (A.27)

meaning they are all to be found in the same lattice site. The chain of molecules

at the (1, 1) state has the orbit

xj = j, ∀j, (A.28)

which means that each consecutive molecule is to be found at the bottom of

each consecutive potential well.

The idea is to write the initial guess for the pseudo-orbit as a concate-

nation of a long time of state (A.27) followed immediately by state (A.28).

{xj}n
j=−n =


0 j < 0

j j ≥ 0

 where n →∞. (A.29)
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This initial state is shown in Fig. (A.1). We know such an orbit exists near

the anti-integrable limit (i.e. k → ∞), and so we continue the orbit downward

(lowering k) using the orbit at the previous value of k to prime the convergence

towards an orbit at the next lower value of k.

Once given the initial guess, it may be possible to use (A.18) to relax

the state to a real orbit between a and b. A reasonable hypothesis [4] for the

relaxed state is shown by the dashed hyperbolic curve also in Fig. (A.1), which

represents a maximum smoothing of the discontinuous derivative change between

states (A.27) and (A.28).

It is uncertain whether (A.29) is in the basin of attraction of a real

orbit. It might be analogous to shooting from the unstable manifold of (near)

a to (near) b. In that case, we found that there are too many iterates in be-

tween, so zeroing equation (2.10) was impractical. The orbit restriction method

does however have the advantage over the shooting method in that it simultane-

ously relaxes the entire middle portion of the pseudo-orbit, whereas the shooting

method “flies blind” in the middle portion (and may numerically drift off the

calculated manifold segments).

A.4 Shooting Between Higher-Dimensional Saddles

Here we will discuss the higher-dimensional generalization of Eq. (2.10),

the shooting equation between the unstable manifold along the test orbit before

figure=F-K.eps,height=3.5in

Figure A.1. An initial configuration of the Frenkel-Kantorova model for the orbit
restriction method. This represents a real orbit at the anti-integrable limit. The
dashed hyperbolic curve is a reasonable guess at the form of the relaxed state.
Left: molecules number i in their well sites x plotted next to a potential diagram
V (x). Right: Well site xi as a function of molecule number i.
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the recurrence to the stable manifold of the test orbit after the recurrence. This

now requires the full Lyapunov spectrum.

First let us note that Eq. (2.10) is no longer sufficient on a d > 2 di-

mensional manifold. For d > 2, Eqs. (2.12)-(2.13) define the most (un)stable

direction, not necessarily the complete (un)stable manifold. Eq. (2.10) attempts

to shoot from the most unstable direction to the most stable direction. In gen-

eral, such an intersection does not exist, therefore two curves in d ≥ 3 generically

do not intersect.

A codimension q hyperplane generically intersects a codimension p hy-

perplane if q + p = d. Recall the general definition of the stable and unstable

manifold Eq. (1.25) and that the orbit through a point z is called hyperbolic

if its tangent space is decomposable into the stable and unstable tangent sub-

spaces, Es(z) and Eu(z) as in Eq. (1.26). A hyperbolic saddle may be identified

by a Lyapunov spectrum of q positive and p negative values on a d-dimensional

manifold. Let us assume that the tangent subspace Es(z) is spanned by the

vectors {vs,l}p
l=1 and that Eu(z) is spanned by the vectors {wu,l}q

l=1.

In this setting we may generalize shooting a 2m+1 step patch from the

unstable manifold of zi−m before a recurrence to the stable manifold of zi+s+m

after the s step recurrence. Eq. (2.10) generalizes by requiring that a point with

initial condition

z0(ρ1, ρ2, .., ρq) = zi−m +
q∑

l=1

ρlwu,l, (A.30)

has a 2m + 1th iterate, z2m+1(ρ1, ρ2, .., ρq) on the hyperplane

zi+m+s +
p∑

l=1

%lvs,l, (A.31)
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We may solve the d equation

z2m+1(ρ1, ρ2, .., ρq)− zi+s+m −
p∑

l=1

%lvs,l = 0, (A.32)

for the d values {ρl}q
l=1 and {%l}p

l=1 by the Newton-secant method. This, how-

ever, is an overdetermined solution.1 It should be possible to solve for only the

independent variables {ρl}q
l=1. For example, if Es(zi+s+m) is two-dimensional

and d = 3, we may write the iterate z2m+1(ρ1) on this tangent plane in the form

n · (z2m+1(ρ1)− zi+s+m) = 0, (A.33)

where

n = vs,1 × vs,2, (A.34)

is the normal to the plane. This eliminates the dependent variables %1 and %2.

More generally, we see that a p-dimensional hyperplane in d dimensions

is of codimension q meaning that q equations are needed to specify the object.

In other words, the d Eqs. (A.32) are over specified. We may solve this by

considering q vectors which span Eu(zi+s+m):

span(wu,1, ..,wu,q) = Eu(zi+s+m). (A.35)

Since the tangent space is a direct product of stable and unstable linear sub-

spaces, we may specify the stable subspace by stating that a vector

(z2m+1(ρ1, ρ2, .., ρq)− zi+s+m) ∈ Es(zi+s+m) (A.36)

1Recall that in Eq. (2.10), there was the t parameterization along the unstable direc-
tion which resulted in a τ parameterization along the stable direction. We could have
solved for t and τ simultaneously by a two-dimensional Newton’s method. Instead we
were able to eliminate the dependent variable τ , leaving the solution of the independent
variable t to a one-dimensional Newton’s method.
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has no component in any of q directions spanning Eu(zi+s+m). Hence we may

replace the d equations (A.32) with the q equations,

(z2m+1(ρ1, ρ2, .., ρq)− zi+s+m) ·wu,l = 0, l = 1, .., q. (A.37)

Let us consider the example of shooting from a one-dimensional un-

stable manifold (span(vs) = Es(zi−m)) to a one-dimensional stable manifold

(span(wu) = Eu(zi+s+m)) as in Eq. (2.10). Here Eq. (A.37) becomes the single

equation

(z2m+1(ρ)− zi+s+m) ·wu = 0. (A.38)

But any vector in span(wu) is sufficient, including (vs,y,−vs,x) which is orthog-

onal to vs = (vs,x, vs,y). Thus we may write

(z2m+1(ρ)− zi+s+m) · (vs,y,−vs,x) = (z2m+1(ρ)− zi+s+m)× vs = 0, (A.39)

which is an equivalent form to Eq. (2.10) which we included in [13].

Kostelich et al. [51] performed a similar shooting algorithm for on the

fly control of the kicked double rotor map in four dimensions. After resolving

hyperbolic saddles into two stable and two unstable directions, it was determined

that two parameter perturbations generically specify a point intersection with

the two-dimensional tangent stable manifold. The authors of [51] shoot from z0

to Es(zn) by making two successive perturbations of a single accessible system

parameter k. The equation

T−(n−2)(zn + %1vs,1 + %2vs,2) = Tk0(Tk1(z0)), (A.40)

was solved simultaneously for the four2 variables %1, %2, k0, and k1.
2According to the above argument, four variables over-specifies the solution. Only

two variables are required since Eu(zn) is 2 dimensional.
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A numerical estimation of the full Lyapunov spectrum is a delicate

problem. In higher dimensions, Eqs. (2.12) and (2.13) define the most stable

and the most unstable directions. These definition of fu and fs work analogously

to the power method which rotates almost all arbitrary vectors to the dominant

eigendirection.

Following the algorithm of Benettin et al, [7], higher order Lyapunov

exponents and directions may be found in a stable fashion by monitoring the

long term growth of volume elements under application of the tangent maps

along the orbit. A spheroid evolves to an ellipsoid. A given volume element

outlined by the two vectors v1, v2 has area Det([v1, v2]) which evolves to α1 =

Det([DT · v1, DT · v2]). Analogously for (2.12)-(2.13) we can evolve these two

vectors along a long orbit, rescaling by the area αi at each step. The limit

λ1 + λ2 = lim
i→∞

lnαi

i
, (A.41)

yields the second Lyapunov exponents, having previously calculated the first

exponent λ1. This technique may be performed recursively to find all the positive

exponents in turn. Wolf et al. [106] successfully applied such an algorithm to

extract exponents from experimental time-series data. The negative exponents

may be extracted similarly to Eq. (2.13) by performing the process to the inverse

transformations.

For shooting we require a set of vectors spanning the (un)stable man-

ifold. These may be found recursively by a Gram-Schmidt process of following

the evolution of n vectors simultaneously and then subtracting off components

in the already found more dominant directions. Thus by evolving n vectors and

subtracting off n− 1 vectors spanning the n− 1 more dominant (larger positive
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λi) directions, we may find the nth orthonormal vector to span3 an n-dimensional

unstable submanifold. Again, stable directions may be found by applying the

process in reverse to the inverse transformation. There exists another competing

theory of Greene and Kim [39] which extracts similar information pertaining to

“magnitudes and directions of stretching and shrinking of an initial small sphere

of realizations”, based on the singular values of the linearization along the orbit.

Higher-dimensional targeting is a yet unfinished work. The discussion

of this section furnishes some of the tools required to connect path segments

once they have been identified.

A.5 An Example of Higher Dimensional “Transport Mechanism”

A useful technique, but of only limited success, is to understand com-

plicated, higher-dimensional dynamics as the cross-product of low-dimensional,

well understood dynamics. Consider, for example, the cross-product of the area-

preserving Hénon map with rotation of constant twist:

x′ = y,

y′ = y(k − y)− x, (A.42)

I ′ = I + εF (y),

θ′ = [θ + ω(I)]mod1, (A.43)

where F (α) = F (α + 1). For the uncoupled case (ε = 0), each of these two-

dimensional dynamical systems is well understood. The Hénon map, Eq. (A.42),

makes a nice homoclinic tangle in IR2, while the trivial twist map Eq. (A.43), on

S1×IR, in action angle form, is effectively represented by a map of the line alone.

The full cross-product map can be viewed in IR3 where we see stacked leaves in I

3These n directions do not generally point along the n unstable directions, which in
fact are not well defined. However, a spanning set is sufficient for our purpose.
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of homoclinic tangles. Each point in the (I, x, y) volume has a circular rotation

in θ attached to it. Meanwhile, the Hénon dynamics is obeyed independently in

the (x, y) plane (see Fig. (A.2)).

A barrier, formed of stable and unstable manifold segments between

a p.i.p. and the fixed point as in Sec. 1.2.2, and then crossed with the action,

forms a normally hyperbolic cylinder.4 The transport dynamics are exactly as

before, with the twist playing no influence.

figure=fig7.eps,width=5.0in

Figure A.2. The cross-product of a homoclinic tangle with a uniform twist
map, in the presence of a small coupling ε. The transverse intersections of
the homoclinic tangle persist for small enough ε, but the stable and unstable
manifolds are free to wander between the various leaves, in the I dimension.

For small, nonzero coupling 0 < ε � 1, the transverse intersections

of the Hénon map persist due to a local structural stability property of hy-

perbolic points under sufficiently small C1 perturbations (see [3]). However,

the (un)stable manifold can possibly wander between leaves, as depicted in

Fig. (A.2). This in turn implies that there is now transport between the leaves.

Hence, we see a complication in higher dimensions.5 Properly defining a barrier

may allow us to find the transport according to Eq. (1.24), but we see that a

“nice” barrier, as in Sec. 1.2.2, may be more difficult to define.

4The unstable manifold segment, in IR2 cross the twist direction, forms an unstable
manifold “sheet” in IR3, with points moving with component normal to its surface due
to the influence of the transverse stable manifold intersections. Similarly, the stable
manifold forms a sheet which, together they form a cylinder.

5This makes a nice model for the mechanism of Arnold diffusion through a given
(vector) resonance channel. In the full Arnold diffusion, we see this picture for ev-
ery resonance corresponding to the dynamics of rational relations between two cou-
pled Hamiltonian maps, forming the interconnected “Arnold web.” See Lichtenberg and
Lieberman [54] for a description of transport rates through the various channels.
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figure=diff.eps,height=3.5in

Figure A.3. Driving diffusion of a coupled map. The outlines of entrance lobes of
the Hénon map Eq. (A.42) are shown in the (x, y) plane. Below, the projection
of an above iterate of the entrance lobe in the (x, I) plane. Note that the
coupling drive of the Hénon map causes the “constant” twist map Eq. (A.43) to
have drift in I. Without the coupling, we would expect that the simple twist map
has constant value I. This partly models the mechanism of “Arnold Diffusion”.



APPENDIX B

B.1 Knowing the Switching Points Apriori

The following represents some early work toward a more straightfor-

ward search for paths through an area preserving map such as the standard map.

For the discussion of this section, we will reprise the problem of Chapter 2 to

find a path between the a box near the (0, 1) resonance to the b box near the

(1, 1) resonance.

The basic targeting mechanism is an extension of the Shinbrot tech-

nique discussed in Sec. 1.1.3. Recall briefly that the idea is to iterate the

initial point a by the map T with a small range of variations such as δk ∈

[−δkmax, δkmax] which are represented by a grid of m points. Iterating these m

grid points forward by Tk0 causes them to quickly align themselves along W u(a).

Back-iterating a grid of points on a small variation (this time in phase space)

around the target point b causes them to quickly align themselves along W s(b).

Generically, there is a transverse intersection between the two intervals, and so

by bisection, we would hope to be able to bracket the correct δk which iterates

to the neighborhood of b. However, we also saw that the intergrid spacing δz be-

tween grid points grows roughly as the Lyapunov number according to λn‖δz‖.

The inverse of this quantity tells us the scaling of the number of grid points

required to maintain a given spacing despite the unstable manifold’s stretching

and folding. Targeting a long orbit directly by this technique (such as for an area

preserving map were transport is typically slow) is impossible as the number of



179

grid points required grows exponentially with the length of the path according

to Eq. (1.22).

Breaking up the targeting problem into smaller pieces keeps n and

therefore m to reasonable proportions. We achieve this by targeting between

successive switching regions that lay between a and b. Regions between a and

b consist of resonance layers corresponding to all the frequencies ω where 0
1 ≤

ω ≤ 1
1 . Inefficient orbits tend to spend a long time trapped in a given layer,

mostly rotating with a period approximately that of the major periodic elliptic

island chain. Since the most irrational tori (in a Diophantine sense) break-up

last, their residual cantori tend to have smaller turnstiles and thus offer the most

difficult barriers to transport. We have seen that the way between the resonance

layers is through the turnstile of one of the bounding cantori. Between the 0
1

layer and the 1
1 layer one finds that the most difficult barriers correspond to

0
1

<
1
γ2

<
1
γ

<
1
1
, (B.1)

where γ is the golden mean and < describes the order in which one finds the

various resonances in phase space.

The main difficulty here is to find an appropriate ordering on the impor-

tance of the possible switching points amongst the infinite number of irrational

frequency cantori. The nobles1 are the last Diophantine frequencies to break up

and may be ordered accordingly. The critical function ass(ω) provides a partial

order on the persistence between the noble frequencies in the standard map and

may be used to rank switching points. The frequencies w may then be found by
1Noble numbers ω have continued fraction expansions ending in all ones after an

arbitrary finite beginning. This makes these numbers particularly difficult to find a
rational approximation, and so they have correspondingly large Diophantine constants.
The size of the Diophantine constants govern the persistence of the tori, and so indicate
the importance of the remaining partial barriers.
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one of several specialized algorithms (such as orbit extension method [20]).

In an attempt to avoid the specialization to the standard map inherent

in the above switching point identification and location scheme, we may turn to

the method of common lobes introduced in Sec. 1.2.4. Recall that the technique

allows us to identify the most important switching points by collecting a large

number of orbits (2000 in this case) which achieve the studied transport and

asking the question, “What regions do all the orbits have in common?” We have

verified up to the 6 most important regions, and these do in fact correspond

to prominent noble frequencies. The importance of this technique is that it is

model free, requiring only a large data set of sample iterations which may be

obtained even by time series embedding.

The costly step of targeting between switching points is testing the

intersection of the forward iterating grid of variations against the backward

iterating grid of variations. An O(m2) operation is required to test whether the

line segment zi,zi+1 from the first grid intersects z′j ,z
′
j+1 from the second grid

at a point inside the trapezoid formed by these four points. Additionally, there

is a clipping problem, as the phase space of the standard map is a torus, which

on the computer is represented by unit square with opposite ends identified

using a modulus function. Considering that this test must be performed for

i = 1, ..,m− 1 against j = 1, ..,m− 1, we see the cost of the operation.

figure=C.F.Intersect.eps,height=2.0in

Figure B.1. a: For the line segment l1 = (zi+1−zi) to intersect l2 = (z′j+1−z′j) it
is necessary that the line segment l2 “straddles” the line continued from l1. The
condition may be checked by the sign of cross-products test. b: The condition
however is not sufficient as is portrayed by this image. Reapplying the test after
reversing the roles of primed and unprimed variables completes the sufficiency
test.
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It is worthwhile to write down a clean test for the intersection between

the two grids which avoids too many “if then” statements. The following is just

such a test. In Fig. (B.1) we have drawn a configuration of four grid points

zi,zi+1,z
′
j ,z

′
j+1 which intersect inside their trapezoid. A requirement for their

intersection is that the line segment z′j+1 − z′j straddles the line through the

line segment zi+1 − zi between zi+1 and zi. The reader may check that this is

equivalent to the statement that

v1 = |z′j − zi||zi+1 − zi| sinα, (B.2)

has a sign opposite to the sign of

v2 = |z′j+1 − zi||zi+1 − zi| sinβ. (B.3)

We see that (B.2) and (B.3) may be evaluated as the cross products so that we

equivalently require that

v1 = (z′j − zi)× (zi+1 − zi),

v2 = (zj+1 − zi)× (zi+1 − zi),

and

sgn(v1)sgn(v2) < 0. (B.4)

Since this still allows the situation portrayed in Fig. (B.1), we need to reverse

(rotate) the roles of the primed and the unprimed variables to further require

that

v3 = (zi − z′j)× (z′j+1 − z′j),

v4 = (zi+1 − z′j)× (z′j+1 − z′j)

and

sgn(v3)sgn(v4) < 0. (B.5)
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Together, (B.4) and (B.5) represent a cheap and easy test for intersection which

may be easily performed along the entire grids.

Now putting this all together, we will target between the first switching

point, which we label “a” and the second switching point, which we label “b”

in Fig. (B.2a), both found by common lists. In the Fig. (B.2a), we have also

shown the golden mean cantori. We can see that the common region b is located

in a gap in the 1
γ2 cantorus, indicating that the technique indeed has found what

we know to be an important turnstile. Starting a parameter perturbation of

δk = 0.02 around the nominal value k = 1.25 at a we iterate a grid of 500 points

forward until we detect an intersection with an inverse image of the 500 point

grid on the δz = 0.02 variation around b. We can see in the figure how the two

variations spend time twisting around the torus, as they stretch and fold, until

they are both large enough and in the same vicinity in which an intersection

occurs. The detected intersection is denoted by a solid box. Since 10 forward

iterations and 8 backward iterations were required, we have shown a 18 step

path between a and b requiring the above perturbations.

I must mention that the situation is not always as nice as I have in-

dicated in the Fig. (B.2a). If the perturbation ranges started at a and b are

too small, then by the time the two grids have reached the same resonance layer

(in approximately 10 and 8 iterations respectively) they may not have stretched

sufficiently so that an intersection between them is likely. Typically, a small grid

of points around a center point can wander chaotically between layers with the

center point. Only when the grid has grown enough so that different grid points

can incorporate different behaviors can a new path be found. The trick is to

hope that the two grids grow to a “reasonable size” in the same resonance layer.

This need is contrary to the competing need that there are enough grid points
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figure=2in1k2.eps,height=3.0in

Figure B.2. Building a path for the standard map between known switching
points by following variations on a grid. Left: A small variation in a cantorus at
a is iterated forward, while a small variation at b in a nearby cantorus is iter-
ated backward until an intersection between the two curves of perturbations is
detected, shown as a box between. Right: This process is repeated for successive
nearby “important” resonances until a path all the way from the a box to the b
box is found.

on a given range so that the intergrid point distance remains small. Otherwise,

the grid grows incoherent, and the grid ordering is lost. Having enough switch-

ing points so that the big targeting problem is sufficiently broken into smaller

targeting problems plays an important role. Some trial and error is required to

choose the grid sizes, perturbation ranges, and number of switching points so

that the “intermediate” range may be achieved.

By trial and error, we can find workable grid sizes and perturbations to

target all the switching points between the 0
1 box and the 1

1 box. For k = 1.25, 9

switching regions were required. Thus 9 δk < 0.02 perturbations were required to

target a 250 step path. All the variations tested are depicted by the “scribbles”

strewn across the standard map portrait in Fig. (B.2b).

This work demonstrates a completely different approach to the same

targeting problem for which we used cut and glue at recurrences in previous

chapters. Comparing the two, we see that the forward iteration of a variation

around a aligns itself along W u(a) and inverse iteration of a variation around b

aligns itself along W s(b). Hence the point we find and refine in the intersection

of the two grids lies on (nearly) the intersection of W u(a) and W s(b). So in

this sense, the Shinbrot technique is similar in its end result to the shooting

technique developed here.

In terms of computational efficiency, using a grid is inferior. Typically
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mn map applications are required to advance the two m point grids in an n step

path, and approximately n
2 m2 checks for grid intersections are required along

the way. In contrast, the shooting technique requires just a handful of map

iterations for an intelligent initial guess (according to Eq. (2.11)). When a good

guess is chosen, convergence is extremely fast. Table (2.1) address the issue of

success ratios.

The grid based targeting method is very similar in computational re-

quirements and in methodology to manifold continuation which is more easily

compared to shooting. Recall that the technique in Chapter 2 strives to find p

on the intersection of W u(T
n
2 (a)) and W s(T−n

2 (b)), by shooting from W u(a)

to W s(b). The point p may be found alternatively by continuing the manifolds

W u(a) and W s(b) as defined by Eqs. (1.25)-(1.26) using the stable manifold

theorem. Continuing the (un)stable manifolds requires starting a grid of points

along the (un)stable direction, and then iterating. This process is continued

until we find a p. The steps to perform this task are analogous to Shinbrot’s

technique and even many of the grid intersection subroutines can be recycled.

Since we still want a p.i.p., the special guess, Eq. (2.11), helps us identify where

we should look for p.

Note that techniques presented in this section are not as good (in terms

of generality and computer speed) as cutting loops at recurrences. This approach

however, was in my thesis proposal and so I feel obliged to include it here. I opted

in this thesis for the Newton based targeting method for reason of computational

efficiency of shooting at a single point instead of brute force tracking a whole grid.

I also chose the more natural approach of allowing the dynamics to show us the

switching points through recurrence instead of looking for them at resonances or

by using common lobes. Nonetheless, I hope that the techniques in this section
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have provided an interesting alternative to the targeting problem. In addition,

this work is the solution of the problem and approach that I presented in my

thesis proposal, before I realized the more efficient method of constructing a

shadow orbit by removing recurrences.


