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Complex flows mix efficiently, and this process can be understood by considering the stretching

and folding of material volumes. Although many metrics have been devised to characterize

stretching, fewer are able to capture folding in a quantitative way in spatiotemporally variable

flows. Here, we extend our previous methods based on the finite-time curving of fluid-element tra-

jectories to nonzero scales and show that this finite-scale finite-time curvature contains information

about both stretching and folding. We compare this metric to the more commonly used finite-time

Lyapunov exponent and illustrate our methods using experimental flow-field data from a quasi-

two-dimensional laboratory flow. Our new analysis tools add to the growing set of Lagrangian

methods for characterizing mixing in complex, aperiodic fluid flows. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941256]

One of the hallmarks of chaotic or turbulent fluid flows is

rapid mixing. Vigorously stirred fluids mix so well

because they move material quickly and yet are con-

strained to remain in a finite amount of space. The cha-

otic mixing process can thus be conceptualized as the

result of stretching—that is, the rapid separation of

nearby packets of fluid—and folding—that is, the bend-

ing of packets of fluid to maintain the overall volume.

Because these two processes are fundamental for mixing,

they have been the subject of intense study; however,

many more methods have been developed to characterize

stretching than folding. Here, we describe a method

based on the propensity of the trajectories of fluid ele-

ments to curve that allows us to quantify both stretching

and folding at the same time. We compare this technique

with a more common tool that isolates only stretching

and demonstrate our methods on data from an experi-

mental flow.

I. INTRODUCTION

It is almost definitional to say that chaotic and turbulent

flows mix efficiently: by a repeated process of stretching and

folding material volumes,1 chaotic advection2 leads to mix-

ing that is significantly enhanced relative to diffusion alone.3

Historically, this rapid mixing has been quantified and mod-

eled using statistical metrics such as the relative dispersion

of fluid elements4 or effective diffusivities.5 These kinds of

tools capture the global effects of the fluid advection on mix-

ing and can provide a simple, high-level parameterization of

its effects that is useful for modeling.

But even though transport and mixing are sped up by

chaotic advection on average, this enhancement is rarely uni-

form; rather, it mirrors the complex spatiotemporal

heterogeneity of the flow itself.6 Even in a flow that is in

general strongly mixing, there may be regions that are sepa-

rated from the rest of the flow by dynamical barriers, and

which mix only weakly. In the terminology of dynamical-

systems theory, these weakly mixing regions may be

described as being elliptic, while those parts of the flow that

mix strongly and transport material rapidly are hyperbolic.

Since chaotic and turbulent flows are typically highly

unsteady and aperiodic, however, the instantaneous elliptic

or hyperbolic character of a particular region of the flow may

change rapidly in time. Thus, any useful partitioning of the

flow field into strongly and weakly mixing regions must

identify not only places that are elliptic or hyperbolic but

those that maintain their character over some macroscopic

time window. Such regions may be said to be coherent7 and

are often referred to as coherent structures.

Analyzing flows from the standpoint of coherent struc-

tures may allow us to move past global descriptions of trans-

port and mixing, such as overall effective diffusivities or

purely statistical models, to local characterizations. Such

local information is often a very important complement to its

global counterpart; in an oil spill in the ocean, for example,

one is more interested in knowing which areas of the coast-

line will be affected than in the net spreading rate of the

oil.8,9 Due to this goal, then, a vast set of methods has been

devised to detect and characterize coherent structures in gen-

eral unsteady flows. We focus here on methods that use pri-

marily Lagrangian information; that is, techniques that are

based on the information contained in the trajectories of fluid

elements, typically computed over some finite time that

specifies the window in which we desire coherence. Broadly,

one can classify these methods into those that attempt to find

the boundaries that separate coherent structures from the rest

of the flow10–16 and those that try to find the structures them-

selves by set oriented methods.9,17–22

We recently developed a Lagrangian diagnostic that we

term the finite-time curvature (FTC)23 and that was designed
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to study shape-coherent sets (that is, those that retain their

shape as they are advected).24 Here, we study the FTC field

in more detail and show that it contains significant further in-

formation beyond shape coherence that can be used to quan-

tify mixing. We compare the FTC to the more commonly

known finite-time Lyapunov exponents (FTLEs) often used

to identify Lagrangian coherent structures (LCSs) and show

that the two contain similar and complementary, though not

identical, information: FTLE can be thought of as the local

propensity for stretching in a dynamical system, while FTC

(appropriately extended to account for finite scale) addition-

ally captures the local propensity for folding. Although

stretching and folding often take place nearby each other in

similar places, their spatial distribution is not identical;6

folding, as a nonlinear process, often occurs in areas where

stretching is large, although the converse is not true. But

since it is axiomatic that both stretching and folding are nec-

essary for chaos,19,25–27 both kinds of information are needed

to characterize chaotic mixing fully, and it is natural to ask

about folding as well as stretching. Thus, the finite-scale

FTC we introduce here usefully extends the toolbox that can

be used to study mixing in complex flows from the

Lagrangian standpoint. We note that a clear mathematical

definition of folding is lacking in this context. Here, we

argue that since the FTC defined in Eq. (3.1) describes the

propensity for a material curve to develop curvature as time

evolves, it is a sensible indicator of what is meant by folding

in general terms. In dynamical systems, “folding” is often

associated with the Smale horseshoe,28 which may be taken

as a complete fold of a region doubly across itself when a

full shift symbolic dynamics results,29,30 and “less folding”

or double covering results in a subshift.19,29,31 In the context

of fluid dynamics, Theodorsen’s horseshoe vortex paradigm

follows from constructing a model of individual hair-

pins.32–36 Even a bending in two directions, such as an

inflection point, can eventually lead to horseshoes, as

depicted in Fig. 1 of Ref. 37.

We begin below by reviewing the FTLE in Section II. In

Section III, we review the definition of the FTC and general-

ize our previous methods to account for the effects of finite

scale and resolution. We then illustrate our methods using

experimental data from a quasi-two-dimensional laboratory

flow in Section IV. Finally, we summarize our results in

Section V.

II. REVIEW OF FINITE TIME LYAPUNOV EXPONENTS

The FTLE is a measure of local stretching in the flow.

FTLEs are commonly used as indicators for hyperbolic

LCSs,38 since in hyperbolic regions of the flow, stretching is

locally maximal. Even though FTLEs have shortcomings for

the detection of LCSs (primarily that they also detect regions

of high shear16), they remain perhaps the mostly widely used

tool for studying Lagrangian coherence, particularly in

experiments where more detailed information may not be

available. Here, we briefly review the definition and proper-

ties of FTLEs, so that we may later compare and contrast

them with FTC.

Given a velocity field u(x, t) on a manifold M � Rd, the

trajectories x(t) of fluid elements are solutions of

dx

dt
¼ u x; tð Þ; (2.1)

where x 2 M and u(x, t) is at least C2(M). Integrating this

equation yields the flow map /tþs
t : xðtÞ7!xðtþ sÞ. The

finite-time Cauchy–Green strain tensor of the velocity field

along the trajectory x(t) is given by the symmetric, time-

dependent, d� d matrix

Js ¼
d/tþs

t x tð Þ
dx

� ��
d/tþs

t x tð Þ
dx

; (2.2)

where A* denotes the adjoint of A. In the following, we

assume that d¼ 2, but this assumption is not mathematically

necessary.

If over a finite time interval [t, tþ s] the minimum and

maximum eigenvalues kmin (s) and kmax (s) of Js satisfy the

condition

ln kminðsÞ < 0 < ln kmaxðsÞ; (2.3)

then the canonical local material advective behavior is

described by the evolution of circles into ellipses, where the

major axis of the ellipse lies along the direction of instability.

This condition implies that there is compression in one direc-

tion and expansion in the other along the trajectory. Such a

trajectory in a time-dependent velocity field is referred to as

a hyperbolic trajectory.

Recall that the spectral norm of the Jacobian
d/tþs

t xðtÞ
dx

is

given by

���� d/tþs
t x tð Þ
dx

����
2

¼ kmax sð Þ/tþs
t : (2.4)

Then, the FTLE, which represents the maximum stretching

at the point x(t) along the trajectory over a time s, is given

by

rs x tð Þð Þ ¼ 1

jsj ln
���� d/tþs

t x tð Þ
dx

���� ¼ 1

jsj ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax sð Þ

p
: (2.5)

It is common to define the repelling and attracting LCSs to

be the ridges of the FTLE that are local maxima in space

when computed in forward time (s> 0) and backward time

(s< 0), respectively.39,40 Stated in terms relevant to our dis-

cussion here, the intensity of the FTLE field in a flow

describes the propensity of ensembles of fluid elements that

are nearby at time t to separate as the flow evolves.

Recall that, generally, a linear transformation of a circle

yields an ellipse27,41 (see Fig. 1). Then, the positive semi-

definite matrix Js in Eq. (2.5), as the strain formed from the

variation of the flow
d/sxðtÞ

dx
along the orbit x(t), can be

shown41 to have eigenvectors pointing along the major axis

of the ellipse, and correspondingly the singular values are

the lengths of the major axis corresponding to the growth

rate of errors. We will derive further interpretation of this

stretching picture of infinitesimal action along orbits below,
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as related to infinitesimal folding. Note that the finite-size

Lyapunov exponent (FSLE)42,43 is conceptually similar to

the FTLE but is computed slightly differently by measuring

the time it takes for nearby particles to separate by some

fixed amount. This computation is popular experimentally,

especially in oceanography, since one can use discrete trac-

ers such as buoys rather than densely seeding the system

with particles on a fixed grid. However, it has been shown

that, although related, the FSLE can be somewhat different

from FTLE, particularly depending on details such as the nu-

merical implementation and the particle seeding.44

III. REVIEW AND COMPUTATION OF FINITE TIME
CURVATURE

In our recent work,23 we developed a direct Lagrangian

measure of “curvature propensity,” which we termed the

maximum finite-time curvature (maxFTC, or simply FTC),

and which we used to infer the location of shape-coherent

sets.24 Here, we show that there is further structure to be

found in the same computed field.

The idea of a shape-coherent set is that the general con-

cept of “coherence” can be interpreted independently of the

more commonly discussed direct notions of transport. That

is, a set that maintains its shape to a high degree along its

orbit can in a visceral way be considered to be coherent (spe-

cifically shape-coherent, in our terminology). We defined a

measurement of this concept as supSðAÞ
mðSðAÞ\/TðAÞÞ

mðBÞ ,24 where

S is the set of all rigid body motions (that is, translations and

rotations). Thus, for a given set A, we measured how closely

a simple translation and rotation of A could be best matched

to the true nonlinear flow /tþs
t of A. When the measured rela-

tive overlap can be made significantly close to unity, the set

A is called “shape coherent.” With this notion in hand, sim-

ple geometric reasoning allows one to observe that the way

to maintain shape is to maintain the curvature of the bound-

ary of the set. Thus, investigating regions of space that have

a very low propensity to change curvature may reveal such

sets. This idea is closely related to the classical concept of

curve congruence by matching curvature.45 Thus, a shape-

coherent set defined in this way is meant to correspond to a

set that mostly holds together under the flow. In Fig. 2, we

have illustrated such a set (labeled (a), in the figure) in con-

trast to two other sets that have changed their shape. In Ref.

24, we recalled a tenet of differential geometry: the funda-

mental theorem of curvature indicates that the boundary

curve can remain the same in time if and only if the curva-

ture does not change. We showed that this idea can be made

into a regularity theory that small changes in curvature corre-

spond to small changes in shape coherence, and, conversely,

that large changes in curvature are required to cause a set A
to lose its shape coherence significantly. Note that other

recent works studying other concepts of coherence have

included figures comparable to Fig. 2, but with different

back stories; in Fig. 1 of Ref. 46, two advected curves are

described as remaining “coherent if an initially uniform ma-

terial belt around it shows no leading-order variations in

stretching after advection,” whereas relaxing a bit in Fig. 1

in Ref. 47 sets is described as coherent if they have bounda-

ries that are small relative to their volume and that stay

small. Both of these are stronger requirements as shape co-

herence allows arbitrary shapes as long as they have slowly

changing boundary curvature.

We therefore defined the maxFTC Kt0þs
t0 ðzÞ for a point z

in a plane M � R2 under a flow /t0þs
t0

over the time interval

[t0, t0þ s] to be

Kt0þs
t0
ðzÞ ¼ lim

e!0
sup
kvk¼1

jð/t0þs
t0
ðle;vðzÞÞÞ; (3.1)

where

le;vðzÞ :¼ fẑ ¼ zþ esv; jsj < 1g: (3.2)

Here, v is a unit vector and j is the curvature. See Eq. (A2).

So, le;vðzÞÞ is a small line segment passing through the point

z¼ (x, y), when e� 1 (although note that the limit as �! 0

and the computation of curvature cannot in general be inter-

changed). The set of points /t0þs
t0
ðle;vðzÞÞ yields a set of

FIG. 1. On the finest scale, a small material circle of radius e along the orbit

of a point x(t) evolves to an ellipse, and this estimate describes that the line-

arity dominates. However, the geometry of the intermediate scale where this

estimate differs from observation is described in Fig. 4, and the suggestion

of Fig. 5 is that this transition between fine and intermediate scale may occur

at smaller length scales than suggested by the common practice of studying

only the linear terms.

FIG. 2. A schematic of shape coherence. The idea of shape coherence for a

given set (left) is that it should evolve under the nonlinear flow /tþs
t in a

manner that is nearly a rigid body motion, namely, one composed of transla-

tion and rotation. Case (a) is such a scenario, whereas cases (b) and (c) both

develop significant stretching and folding. In these later two cases, the cur-

vature of the boundaries has changed from the original, most significantly at

the points near where the arrows point.
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curvatures jð/t0þs
t0
ðle;vðzÞÞÞ that is part of the supremum in

Eq. (3.1). Interpretations of different estimates of this set are

detailed below.

In practice, it is a computational challenge as to how

we implement both the optimization step and the limit step

(e ! 0) in Eq. (3.1). As we discuss further below, on the

finest spatial scales, there is a strong correlation between

FTC and FTLE; on intermediate scales, however, they differ,

as the FTC can uncover the nonlinearities in the flow. To

distinguish these “finest” scales and “intermediate” scales

precisely, we choose an e> 0 and define a Finite-Scale

Finite-Time Curvature (fsFTC) as

Kt0þs
t0
ðz; eÞ ¼ sup

kvk¼1

jð/t0þs
t0
ðle;vðzÞÞÞ: (3.3)

In contrast to the FTC in Eq. (3.1), notice that the limit is

omitted, and the argument explicitly includes the independ-

ent variable e> 0. Equations (3.1) and (3.3) both contain the

expression jð/t0þs
t0
ðle;vðzÞÞ, which corresponds to a curvature

computation on each of the set of points on the line seg-

ment(s) le;vðzÞ. That is, jð/t0þs
t0
ðle;vðzÞÞ :¼ fjw : w 2 le;vðzÞg

is a set of curvature values on which the sup is posed, across

all line segments le;vðzÞ in all orientations v. Since the limit

in Eq. (3.1) is taken after the curvature computation, this

effectively selects the curvature at z in the orientation in

which it is maximal. We have written it in this manner with

the limit so as to reflect the computational method for calcu-

lating the fsFTC described below in terms of estimates by

small line segments. We emphasize here that we are most

interested in small but not infinitesimal line segments; how-

ever, the full definition of the FTC in Eq. (3.1) is equivalent

to measuring the maximal curvature of all advected line seg-

ments through the base point z at /t0þs
t0
ðzÞ. Furthermore and

generally, for smooth flows, the sup should be realized and

so can be replaced by a max operation. Note that the image

of the line segment le;vðzÞ is generally a curve /t0þs
t0
ðle;vðzÞÞ,

and the role of the limit is to isolate the curvature to the lo-

cality of the image of the center point, at /t0þs
t0
ðzÞ. In prac-

tice, the finite scale implicit in where and how the curvature

is estimated in the neighborhood of /t0þs
t0
ðzÞ makes a differ-

ence for what is observed.

A. FTC on intermediate scales

The most straightforward interpretation of the estima-

tion of the FTC by the fsFTC formula in Eq. (3.3) is by what

we may refer to as the brute-force computation. First, choose

n sample vectors v pointed around a unit circle and uni-

formly spaced and scale these by a small but finite distance

e> 0 to form ev. The direction of each unit vector v is speci-

fied by an angle c. Then, form n triplets of points

A ¼ z� ev; B ¼ z; C ¼ zþ ev; (3.4)

approximating the line-segment instance of Eq. (3.2). Each

can then be mapped forward under the flow to new locations

A0 ¼ /t0þs
t0
ðz� evÞ; B0 ¼ /t0þs

t0
ðzÞ; C0 ¼ /t0þs

t0
ðzþ evÞ

(3.5)

after a finite time s; see Fig. 4 for an illustration. It is a fact

of geometry that there is a unique circle passing through any

three (non-colinear) points A0;B0;C0 called the Menger

circle. Calling the radius of this circle RA0;B0;C0 , the Menger

curvature48–50 is defined as jMðA0;B0;C0Þ ¼ 1=RA0;B0;C0 . The

Menger curvature may be computed by the convenient clas-

sical formula,

jM A0;B0;C0ð Þ ¼ c

2 sin c
: (3.6)

See Fig. 3. Here c may be chosen as any one of the 3 angles

of the triangle A0B0C0 described by the three points and c is

the length of the corresponding opposite side. Note that order

of labeling is not important, as the circle is uniquely defined

by the three points.

The unit vectors v ¼ ðcosðsÞ; sinðsÞÞ for each s 2 [0, 2p)

specify points (A, B, C) and their images ðA0;B0;C0Þ in Eqs.

(3.4) and (3.5) for each angle. We may then write

jMðs; eÞ :¼ jMðA0;B0;C0Þ. Referring to Fig. 4 for labeling,

each of the n uniformly sampled points around a circle of ra-

dius e, si¼ ih, h¼ 2p/n, i¼ 0, 1,…(n – 1), yields a sample of

the function by points (si, jM(si, e)). See Fig. 4. From this fi-

nite sample we may estimate

Kt0þs
t0
ðz; eÞ � max

i
fjMðsi; eÞg; (3.7)

for fixed e.
Proceeding more carefully, but still on a finite intermedi-

ate scale with e> 0, we can estimate the fsFTC, which then

will give us an estimate of the FTC. Unlike the above proce-

dure, where we simply selected the maximal value from a

large sampling, a more efficient and accurate way to optimize

any function is to use a standardized optimization algorithm

such as the gradient descent method.51 This approach will

work if the flow /t0þs
t0

is sufficiently smooth at z. It then fol-

lows that the fsFTC Kt0þs
t0 ðz; eÞ can be estimated by the opti-

mal Menger curvature z for a given small e, so that

Kt0þs
t0
ðz; eÞ � max

s2½0;2pÞ
fjMðs; eÞg; (3.8)

FIG. 3. Menger curvature of three points A, B, C is defined in terms of the

radius of the unique circle passing through these points by formulas, Eqs.

(3.4) and (3.6).
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where we already noted that the image of the line segment

le;vðzÞ is the curve /t0þs
t0
ðle;vðzÞÞ; the Menger curvature

jMðA0;B0;C0Þ is used here as an estimator of the curvatures

in the neighborhood of /t0þs
t0
ðle;vðzÞÞ, assuming small e and

smooth /t0þs
t0

. See Fig. 4. The function jM(s, e) shown in Fig.

4(a) shows complex structure that is due to the finite, non-

zero e> 0. In contrast, as shown below, for the finest scales

where e� 1, jM(s, e) displays only simple periodic behavior

of the ellipse with respect to s. We emphasize that this obser-

vation is not simply an issue with estimation for nonzero e;
as we demonstrate below, the transition between intermedi-

ate and fine scales may occur at extremely small e compared

with observable scales in experiments. More interestingly,

however, we also show that we can use the inherent finite-

scale nature of the fsFTC to infer information about the flow

nonlinearities.

Finally in this section, we make a remark for clarity and

contrast. There are different kinds of circles that are drawn

here, with different meanings. Fig. 3 describes a general

circle, relating to the inverse of the radius of an osculating

circle (originally named the “circulus osculans,” or kissing

circle, by Leibniz) that touches the curve at a single

point,52,53 which is one classical way to begin the discussion

of curvature (alternatively to beginning the discussion with

the rate of change of the tangent vector with respect to arc

length). In Fig. 3, we show how the Menger curvature48,49 is

an estimator of curvature, particularly if A and C are close to

B. Separately, the concept of FTC and fsFTC at a point z is

described in terms of line segment through a point z such

that when a material curve flows forward in time, this seg-

ment develops maximal curvature. Since the set of all such

line segments of radius � describes a disc, we draw the

images of discs in Fig. 4. Since the curvature is taken before

the limit in Eq. (3.1), we are indeed defining the curvature of

the image of a material line, and to estimate this, we use an

intermediate scaled triplet of points and the Menger formula.

The circle in Fig. 4 is the most salient for our purposes here;

the rest are drawn for geometric discussion and computation.

Finally, there is an estimate of the curvature in the Appendix

in terms of a small line segment through a point that may be

at the edge of a circle centered on a nearby point, and from

this, we get an estimate on the fine scales.

B. FTC on the finest scales

For fine scales with e� 1, small enough that the image

of a circle of radius e about z is essentially an ellipse with

minimal non-affine distortion, the computation of FTC sim-

plifies to an analytic expression that we describe here. In this

case, the smallness of the scale effectively linearizes the

action of the flow, meaning that the FTC can no longer cap-

ture the propensity of the flow to fold curves. In fact, under

the action of a linear flow, the image of a line is exactly a

line. Hence, one may deduce that following small line seg-

ments by the above definitions would suggest there is zero

propensity for the flow to develop curvature. However, by

the discussion in the Appendix, and referring to Fig. 7, we

show that under finite precision computation, where three

points on a straight line are represented by three points that

are not quite collinear, then some curvature is nonetheless

measured. However, the curvature measured is in fact related

to the linear flow of D ¼ d/tþs
t xðtÞ
dx

.

FIG. 4. Curvature due to sampling 3

opposing points along a line segment

le;v for n¼ 33 line segments with angu-

lar positions si uniformly around a

small circle, according to Eqs.

(3.4)–(3.5), and estimating curvature

of the image by the Menger curvature

by Eq. (3.6). See also Fig. 5. The inter-

mediate scale gives rise to (a) curva-

ture as a function of s, angle in radians

around the circle, that differs signifi-

cantly from the fine scale seen by the

limit curve in Fig. 5, related to the pre-

diction Eq. (A2). (b) In this intermedi-

ate scale, the image of a circle is not

simply an ellipse as suggested by Fig.

2, but rather there may be significant

folding nonlinearities as shown here.

In the regions of phase space where

folding is prominent, this effect can be

significant.
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Write correspondingly the strain as Js¼D*D. We can

apply a singular value decomposition (SVD) to D, obtaining

D¼URV*. R¼ diag(r1, r2) is the diagonal matrix whose

nonzero entries are the major and minor axis lengths of the

image ellipse of the unit circle shown; equivalently, they are

eigenvalues of Js. V ¼ ½v1jv2� is the orthogonal matrix whose

orthogonal column vectors are oriented along the major and

minor axes of the image ellipse and are also the right eigenvec-

tors of Js, which, without loss of generality, we have illustrated

for convenience to be oriented along the x and y axes and we

take z¼ 0. We have included a point w¼ (r1, 0), without loss

of generality at angle s¼ 0, along the major axis v1. �w ¼
ðrr1; 0Þ is the corresponding point on the concentric ellipse

shown. We also illustrate in Fig. 7 a red line segment of length

2d that gives the Menger image with sides �d through w.

Let us now consider the development of curvature by

the local dynamics as suggested by Fig. 7. The Menger cur-

vature through the points on the ellipse shown in Fig. 7,

A0 ¼ ðr1r cosðsÞ;r2r sinðsÞÞ; B0 ¼ �w¼ðrr1;0Þ, and C0 ¼ ðr1r
cosðsÞ;�r2r sinðsÞÞ, estimates the curvature of the ellipse at

�w. Specifically,

lim
s!0

jM A0; �w;C0ð Þ ¼ j �wð Þ ¼ r1

rr2
2
: (3.9)

The first part of this equality follows from the continuity prop-

erty of Menger curvature: for smooth curves, if the three points

A0; �w;C0 ! �w, then the Menger curvature limits to the curva-

ture at the point. The computation of the second part of the

equality is detailed in the Appendix. In stating the next limit,

notice that Eq. (3.10) differs from Eq. (3.9) in that �w and w are

similarly positioned, but on concentric ellipses. Considering

concentric circles of radius r> 1, the Menger curvature of

the points shown in Fig. 7, A0 ¼ ðr1r cosðsÞ; r2r sinðsÞÞ;
B0 ¼ w ¼ ðr1; 0Þ, and C0 ¼ ðr1r cosðsÞ;�r2r sinðsÞÞ, are

estimated by the curvature of the ellipse at �w, since �w ! w as

r! 1, so that

lim
�w!w

jM A0;w;C0ð Þ ¼ j wð Þ ¼ r1

r2
2
: (3.10)

It then follows that if the flow /t0þs
t0

at z is continuously

differentiable, the FTC is estimated by the limit of curvatures as

Kt0þs
t0

zð Þ ¼ lim
e!0

Kt0þs
t0

z; eð Þ 	 max
s2 0;2p½ Þ

jM s; eð Þ
� �

	 max
r1

r2
2

;
r2

r2
1

� 	
; (3.11)

where the terms are, in order, the FTC, the fsFTC, the maxi-

mum Menger curvature evolved from center of the circle

according to Eq. (3.8), and the maximum ratio of the singular

values. If furthermore the flow is area-preserving, then

r1¼ 1/r2. Hence, in this special case, r1

r2
2

¼ r3
1;

r2

r2
1

¼ r3
2, and

so Kt0þs
t0 ðzÞ ¼ r3

1. The arguments supporting these statements

in the Appendix are straightforward. We note that one can

construct some special cases where the estimate in Eq. (3.11)

does not perform well; however, such cases are not generic.

In Section III C, we interpret consequences both for the

relationship of the study of curvature evolution to coherence,

hyperbolicity, and the contrast of scales. Below, we will dis-

cuss then how it is often the intermediate-scale folding that

presents the interesting features.

C. Contrast of scales

As noted above, the FTC should be interpreted in differ-

ent ways depending on the spatial scale on which it is

applied. Specifically, consider Fig. 5, where we plot profiles

of the curvatures around the circle for decreasing e¼ 10�1,

10�2,…, 10�7. We indicate the transition that separates the

intermediate scale from the fine scale at roughly e¼ 10�2,

where the local circle of line segments exhibits significant

folding, from the finest scales, where it shows the simpler

curvature of ellipses behavior predicted by Eqs. (3.9)–(3.11),

FIG. 5. Curvature as a function of angle 0
 s< 2p around the circle, with e decreasing in decades. Compare this picture to Fig. 4, where we show how

the details of the fsFTC (Eq. (3.3)) involve estimates of the way in which small line segments le;v (Eq. (3.2)) through the center point z each yield an estimated

curvature by the Menger formula (Eq. (3.6)) in Eq. (3.7). Considering each line segment through the center point yields a curve of curvature values, one

for each possible angle s specifying the rotational orientation of the initial line segment le;v. Here, e� 10�2 roughly corresponds to the transition between

the intermediate and finest scales. The system used is the standard, non-autonomous double gyre, given by _x ¼ �pA sinðpf ðx; tÞÞ cosðpyÞ; _y ¼
pA cosðpf ðx; tÞÞ sinðpyÞ df

dx ; f ðx; tÞ ¼ � sinðxtÞx2 þ ð1� 2� sinðxtÞÞx with parameters A¼ 0.1, �¼ 0.1, and w¼ 2p/10. The gyre was run for a time of T¼ 20,

and the curves here correspond to an initial condition of (0.1240, 0.1200). Note that we see convergence of the curvature estimates—the blue curves accumu-

lating on the green—and that for maximal values, the red curve as described by values around a circle occur at maximal position suggested by the discussion

in the Appendix.
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(A2). Figure 5 illustrates the two somewhat different types

of information contained in the FTC. To restate these two

aspects more descriptively, minimal values of the FTC mark

regions in the flow where material curves change spatiotem-

porally slowly. This feature of the FTC was the original rea-

son we developed the analysis,23 as it can be used to locate

shape-coherent sets.24 The converse, however, also holds:

maximal values of the FTC indicate regions where material

curves most rapidly develop curvature, and thus the places in

the flow where the shape of a set changes most rapidly.

How can we understand these opposite aspects in more

familiar terms? The description in terms of shape coherence

suggests that it is the elliptic-like behavior of the flow that

causes the low troughs of the FTC field. Hyperbolic material

curves, however, will cause any transverse curve of material

to deform rapidly, suggesting that ridges of the FTC field

likely indicate hyperbolic behavior. Thus, the single FTC

computation can be used to locate both hyperbolic (ridges)

and elliptic (valleys) regions of the flow field.

The analysis above in Eqs. (3.9)–(3.11) affirms that

there is a strong relationship between FTC and FTLE on fine

scales, since both are related to the singular values of the

Jacobian matrices along the flow. But, on the finest spatial

scale, Eq. (3.11) shows that FTC is related to the cube of the

FTLE. This feature has an important consequence: one

would expect that ridges of the FTC field will be more prom-

inent and will appear for shorter advection times than ridges

of the FTLE field. We expect, heuristically even if not in

detail, that this feature will be retained even on coarser scales

since the general notion that hyperbolicity emphasizes defor-

mation of material curves is generally understood by consid-

eration of a transverse curve that samples the flow and

becomes exponentially deformed. The more rapid appear-

ance of structure in the FTC field makes it a promising can-

didate for forecasting applications, since less future-time

information is needed to locate hyperbolic regions. Both

complimentary aspects of coherence are revealed in a FTC

field.

IV. EXPERIMENTAL DEMONSTRATION

To illustrate the similarities and differences between the

FTC and the FTLE in a practical example and to demonstrate

that they are computable using real data, we measured both

using experimental data from a quasi-two-dimensional labo-

ratory flow. The details of this experiment have been

described previously.54–56 Briefly, we used a thin electro-

magnetically driven layer of an electrolytic fluid to produce

nearly two-dimensional flow. The working fluid was a layer

of salt water (16% NaCl by mass in deionized water) meas-

uring 86� 86� 0.5 cm3 that rested on a glass plate coated

with a hydrophobic wax. A square array of permanent neo-

dymium-iron-boron magnets with vertical dipole moments

and a lateral spacing of Lm¼ 2.54 cm lies beneath the glass;

here, the magnets were arranged in stripes of alternating po-

larity. By running an electric current (of 1.25 A for the

experiments analyzed here) through the salt water, we gener-

ated a Lorentz body force on the fluid that set it into motion.

The Reynolds number Re¼ULm/�, based on the in-plane

root-mean-square velocity U, the magnet spacing, and the ki-

nematic viscosity �, was 270.

We measured the velocity field using particle tracking

velocimetry (PTV). The electrolyte was seeded with 50-lm-

diameter fluorescent polystyrene microspheres; as the

spheres are somewhat less dense than the electrolyte, they

rise to its surface. To eliminate long-range surface-tension-

driven forces between the floating particles, we floated a

layer of pure water 5 mm deep on top of the electrolyte. We

imaged the motion of the particles in the central

31.7� 23.6 cm2 (roughly 12.5� 9 Lm) of the apparatus using

a 4 megapixel IDT MotionPro M5 camera at a rate of 60

frames per second. We then tracked about 30 000 particles

per frame using a multi-frame predictive tracking algo-

rithm57 and computed time-resolved velocities from the tra-

jectories by convolving them with a smoothing and

differentiating kernel.58 Finally, we used the instantaneous

velocities of all the tracked particles to create velocity fields

by projecting the data onto the eigenmodes of a streamfunc-

tion,54 removing noise from the data and ensuring that the

measured velocity fields are reliably two-dimensional.

In Fig. 6, we show both the FTC and the FTLE com-

puted over the same time window for the experiment. Even

though it is high, the experimental resolution is still finite;

thus, the FTC plotted here should be interpreted as the

fsFTC, and we may expect it to display finite-scale fea-

tures—most importantly, the folding propensity of the flow.

The FTLE (Fig. 6(b)) contains the features that are typi-

cally seen in this kind of flow. Most of the field is filled with

relatively small, though still positive, values, indicating that

the full field mixes chaotically, but relatively weakly. The

FTLE also reveals very strongly stretching regions that are

nearly co-dimension one; these line-like regions should

approximately correspond to the Lagrangian coherent struc-

tures in the flow. In the cores of the areas in between the

FTLE ridges, the FTLE values go negative, marking regions

that are elliptic in character.

Comparing the FTLE with the fsFTC shown in Figs.

6(a) and 6(b), it is clear that the fsFTC reveals some of the

same features, even though the FTLE captures only stretch-

ing while the fsFTC additionally captures folding. This

rough spatial correspondence between strong stretching and

strong folding is not surprising and has been demonstrated

before.6 Here, however, for the same integration time (which

was fixed for both panels in Fig. 6), these features are sharper

for the fsFTC: the colormap for the fsFTC in Fig. 6(b) is on

a logarithmic scale, while it is on a linear scale for the FTLE

in Fig. 6(a). This kind of rapid convergence is very useful in

experimental or observational applications, where long

records of future flow-field information may not be available.

But more than this simple difference, the fsFTC reveals addi-

tional structure. Regions where the fsFTC is small are not

simply not stretching; they are also, by construction, not
folding and are thus evolving as semi-rigid bodies over the

time window used to calculate the fsFTC. This kind of

behavior should be contrasted with structures such as the

Great Red Spot on Jupiter, where a macroscopic region of

the flow is elliptic in that it is separated from the rest of the

flow by a persistent transport barrier, but where the flow

023112-7 Ma, Ouellette, and Bollt Chaos 26, 023112 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.153.18.158 On: Tue, 16 Feb

2016 17:23:35



inside the barrier is still highly turbulent. For macroscopic

areas where the fsFTC is small throughout, we expect that

the internal flow is not only distinguished from the external

flow but is also evolving simply and not in a turbulent or

chaotic fashion. Of additional note are the thin lines of low

fsFTC values; these minimal curves of the fsFTC behave as

they are nearly rigid, and so they can rotate as time evolves

but cannot bend.

V. SUMMARY

Chaotic mixing can be described schematically as a

repeated process of the stretching and folding of material

volumes; both of these processes are required to produce ef-

ficient mixing in a volume-preserving flow. By explicitly

considering the effects of finite resolution on the finite-time

curvature, we have shown here that this fsFTC naturally con-

tains information about both stretching and folding. Thus,

we have demonstrated that the FTC can be used to indicate

more than the shape coherence it was designed for. We illus-

trated the utility of the fsFTC by computing both it and the

more common FTLE on experimental data from a laboratory

flow, showing that the fsFTC is simply computable and that

it tends to reveal sharp features more rapidly than the FTLE.

Thus, the fsFTC we have introduced is a valuable addition to

the growing collection of Lagrangian methods that can be

used to explore and characterize mixing and transport in

complex flows.
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APPENDIX

Here, we prove the statement in Eqs. (3.9) and (3.10)

regarding the ratio of singular values. It is well known that the

image of a circle (that is, the set of all unit vectors) is an ellipse

under the action of a general 2 by 2 matrix D. Curvature at a

point is defined as the inverse of the radius of the osculating

(tangent) circle to a curve at the point. Thus, a unit circle has

curvature j¼ 1 by definition. Now, we will show that the

growth of curvature of the circle will be related to the ratio of

singular values according to Eqs. (3.9) and (3.10) and also that

the computed Menger curvature of “line segments” will give

the same under the condition of (1) small line segments and

(2) small enough that in general configuration that a small

amount of numerical imprecision will creep into the estimate.

FIG. 6. A (a) FTC field and a (b)

FTLE field computed for the same data

from the quasi-two-dimensional labo-

ratory flow. Integration time for both

fields is 5s� 3TL, where TL¼Lm/U is

the eddy turnover time. Note that in

the FTLE and FTC, many of the same

features are seen in both methods of

analysis (cohabitating of the high

FTLE ridges and FTC ridges), but if

we look closely, there are many places

where the two are telling different sto-

ries. Separately, since the FTC was

designed to reveal shape coherence in

the troughs of the FTC, then this figure

is highlighting several such regions—

boxed and blown up. So as initial, and

after evolution, (blue then red), those

troughs clearly reveal that the shape is

mostly the same. This is a sensitive

property in that even very nearby

same-shaped starting curves (black)

become highly deformed after the

same time epoch shown (green). (c)-(f)

demonstrate that low FTC troughs

maintain high shape coherence but not

general curves.
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This second part is both always present in real computations,

and necessary for the result, since in exact arithmetic, the

image of a line is a line under a linear transformation.

Let the image of the circles shown in Fig. 7 be the ellip-

ses shown, where without loss of generality, the body axes

are aligned with the coordinate axes for convenience as

shown, and the major axes v1 and v2 have lengths r1 and r2

from the SVD D¼URV*. The inner ellipse shown can be

written implicitly as x2

r2
1

þ y2

r2
2

¼ 1, or parametrically as

cðsÞ ¼ hr1 cos s; r2 sin si: (A1)

By a standard computation of the curvature in terms of a

parametrically represented curve, it follows that

j sð Þ ¼ jc
0 sð Þ � c00 sð Þj
jc0 sð Þj

¼ r1r2

jr2
1 sin2 sð Þ þ r2

2 cos2 sð Þj3=2
: (A2)

Solving j0ðŝÞ ¼ 0 for the critical points ŝ yields ŝ ¼ 0; p
2
, and

hence the extrema of curvature are found by substitution into

Eq. (A2) to be

j ŝð Þ ¼ r1

r2
2

;
r2

r2
1

� 	
: (A3)

Likewise, the curvatures of the inner and outer ellipses at w

and �w, respectively, are jðwÞ ¼ r1

r2
2

and jð�wÞ ¼ r1

rr2
2

. The limit

in Eq. (3.9) follows immediately since the cosine and sine

functions in the parametric equation of an ellipse (Eq. (A1))

are continuous.

Alternatively, now consider the computation of the

growth ratio of Menger curvature of the slightly bent line

segment shown in Fig. 7. Let us label the three points as

P1¼ (1, 0), P2¼ (1 � �, d), and P3¼ (1 � �, �d). For an

exactly straight line, �¼ 0; however, due to finite precision

arithmetic, we are considering 0<�� 1, and further, discus-

sing a small line segment, we choose d � 1, but not nearly

as small as the arithmetic precision so that � � d. First, we

compute the Menger curvature of the (left) line segment

shown by Eq. (3.6). Let us define the vectors

a ¼ ~P1 � P2 ¼ hP1:x� P2:x; P1:y� P2:yi ¼ h�;�di;
b ¼ ~P1 � P3 ¼ hP1:x� P3:x; P1:y� P3:yi ¼ h�; di;
c ¼ ~P2 � P3 ¼ hP2:x� P3:x; P2:y� P3:yi ¼ h0;�2di:

(A4)

Note that for simplicity of presentation, we have chosen the

same computational “error” in both the points P2 and P3,

rather than separate errors �1 and �2. Our conclusions and

results do not change, however, if �1 6¼ �2 6¼ �, as can be read-

ily checked. Now, let c ¼ ]P2P1P3. By the standard defini-

tion of the cross product, jðsinðcÞj ¼ ka� b=kakkbkÞk
(interpreting a and b as three-dimensional vectors with zero

in the third component, as usual), and

ka� bk ¼ ja; bj ¼




 � �d

� d





 ¼ 2�d;

kak2 ¼ kbk2 ¼ �2 þ d2; (A5)

we have

sin cð Þ ¼
2�d

�2 þ d2
: (A6)

Then, from the Menger formula (Eq. (3.6)) and substitution,

we have

jM P2;P1;P3ð Þ ¼ c

2 sin cð Þ
¼ kakkbkkck

2ja; bj

¼ �2 þ d2ð Þ
2�d

2d
2
¼ �

2 þ d2

2�
: (A7)

Remembering our assumptions that � � d � 1, jM(P2, P1,

P3)	 0, consistent with a small (almost) straight line. Under

the linear transformation D¼ diag(r1, r2) shown in Fig. 7,

the three the points in Eq. (A4) map to

a0 ¼ ~P01�P02 ¼ hP1:x
0 �P2:x

0; P01:y�P2:y
0i ¼ hr1�;�r2di;

b0 ¼ ~P01�P03 ¼ hP1:x
0 �P3:x

0; P1:y
0 �P3:y

0i ¼ hr1�;r2di;

c0 ¼ ~P02�P03 ¼ hP2:x
0 �P3:x

0; P2:y
0 �P3:y

0i ¼ h0;�2r2di
(A8)

and the angle at the image is c0 ¼ ]P02P01P03. Correspondingly

ka0 � b0k ¼ ja0; b0j ¼



r1� �r2d

r1� r2d




 ¼ 2r1r2�d;

ka0k2 ¼ kb0k2 ¼ r2
1�

2 þ r2
2d

2;

sin c0ð Þ ¼ 2r1r2�d

r2
1�

2 þ r2
2d

2
; (A9)

from which the Menger curvature of the image points

becomes

jM P02;P
0
1;P

0
3

� �
¼ c0

2 sin c0ð Þ ¼
ka0kkb0kkc0k

2ja0; b0j

¼ r2
1�

2 þ r2
2d

2
� �

2r1r2�d
2d
2
¼ r2

1�
2 þ r2

2d
2

2r1�
: (A10)

FIG. 7. Two concentric circles of radius 1 and r> 1, each parameterized by angle s, and correspondingly the right triangle shown with sides, 1, d, and r. The

center is shown as (0, 0). In the Appendix, we follow the curvature growth of a “slightly perturbed” straight line (left shown in red) chosen perpendicular to the

pre image of the dominant singular vector as shown, with coordinates (1 � �,d), (1, 0), and (1 � �, �d) and the image under a linear transformation

D¼ diag(r1, r2).
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Finally, we compute the ratio of the growth of the Menger

curvature using Eqs. (A7) and (A10)

jM P2;P1;P3ð Þ
jM P02;P

0
1;P

0
3

� � ¼ �2 þ d2

2�

. r2
1�

2 þ r2
2d

2

2r1�
	 d2

2�

. r2
2d

2

2�r1

¼ r1

r2
2

:

(A11)

This last estimate in Eq. (A11) again follows from the

assumption �� d� 1, and hence we see that for small line

segments, under finite precision, the limiting behavior of true

curvatures of the circle evolving into the ellipse Eq. (A3) is

related to ratios of singular values.

In the case that �1 6¼ �2, it is straightforward to check, modify-

ing the position of the points in Eqs. (A4)–(A8) slightly, that the

resulting curvature of the almost collinear points and its image are

jM P2;P1;P3ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ d2
� �

�2
2 þ d2

� �
�1 � �2ð Þ2 þ d2


 �r

2 �1 þ �2ð Þd

jM P02;P
0
1;P

0
3

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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11A. C. Poje, G. Haller, and I. Mezić, “The geometry and statistics of mixing

in aperiodic flows,” Phys. Fluids 11, 2963–2968 (1999).
12J. A. Jim�enez Madrid and A. M. Mancho, “Distinguished trajectories in

time dependent vector fields,” Chaos 19, 013111 (2009).
13M. R. Allshouse and J.-L. Thiffeault, “Detecting coherent structures using

braids,” Physica D 241, 95–105 (2012).
14F. J. Beron-Vera, Y. Wang, M. J. Olascoaga, G. J. Goni, and G. Haller,

“Objective detection of oceanic eddies and the Agulhas leakage,” J. Phys.

Oceanogr. 43, 1426–1438 (2013).
15D. H. Kelley, M. R. Allshouse, and N. T. Ouellette, “Lagrangian coherent

structures separate dynamically distinct regions in fluid flows,” Phys. Rev.

E 88, 013017 (2013).
16G. Haller, “Lagrangian coherent structures,” Annu. Rev. Fluid Mech. 47,

137–161 (2015).
17G. Froyland and K. Padberg, “Almost-invariant sets and invariant mani-

folds–connecting probabilistic and geometric descriptions of coherent

structures in flows,” Physica D 238, 1507–1523 (2009).
18G. Froyland, N. Santitissadeekorn, and A. Monahan, “Transport in time-

dependent dynamical systems: Finite-time coherent sets,” Chaos 20,

043116 (2010).
19E. M. Bollt and N. Santitissadeekorn, Applied and Computational

Measurable Dynamics (SIAM, 2013).
20T. Ma and E. M. Bollt, “Relatively coherent sets as a hierarchical partition

method,” Int. J. Bifurcation Chaos 23, 1330026 (2013).

21P. Tallapragada and S. D. Ross, “A set oriented definition of finite-time

lyapunov exponents and coherent sets,” Commun. Nonlinear Sci. Numer.

Simul. 18, 1106–1126 (2013).
22G. Froyland and K. Padberg-Gehle, “Finite-time entropy: A probabilistic

approach for measuring nonlinear stretching,” Physica D 241, 1612–1628

(2012).
23T. Ma and E. Bollt, “Differential geometry perspective of shape coherence

and curvature evolution by finite-time nonhyperbolic splitting,” Int. J.

Bifurcations Chaos (to be published).
24T. Ma and E. Bollt, “Differential geometry perspective of shape coherence

and curvature evolution by finite-time nonhyperbolic splitting,” SIAM J.

Appl. Dyn. Syst. 13, 1106–1136 (2014).
25R. L. Devaney, L. Devaney, and L. Devaney, An introduction to Chaotic

Dynamical Systems (Addison-Wesley, Reading, 1989), Vol. 6.
26R. C. Robinson, An Introduction To Dynamical Systems: Continuous and

Discrete (American Mathematical Society, 2012), Vol. 19.
27K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos (Springer, 1996).
28S. Smale, “Differentiable dynamical systems,” Bull. Am. Math. Soc. 73,

747–817 (1967).
29B. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable

State Markov Shifts (Springer Science & Business Media, 1998).
30C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and

Chaos (CRC Press, 1995).
31E. M. Bollt, T. Stanford, Y.-C. Lai, and K. _Zyczkowski, “What symbolic

dynamics do we get with a misplaced partition? On the validity of thresh-

old crossings analysis of chaotic time-series,” Physica D 154, 259–286

(2001).
32R. Scorer, Natural Aerodynamics: International Series of Monographs on

Aeronautical Sciences and Space Flight: Aerodynamics (Elsevier, 2014),

Vol. 1.
33P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers

(Oxford University Press, 2004).
34L. Sirovich, “Chaotic dynamics of coherent structures,” Physica D 37,

126–145 (1989).
35T. Theodorsen, “Mechanism of turbulence,” in Proceedings of the

Midwestern Conference on Fluid Mechanics (Ohio State University,

Columbus, OH, 1952).
36T. Theodorsen, “The structure of turbulence,” in 50 Jahre

Grenzschictforschung, edited by H. Gortler and W. Tollmein (1955).
37E. M. Bollt, “Stability of order: An example of horseshoes ‘near’ a linear

map,” Int. J. Bifurcation Chaos 9, 2081–2090 (1999).
38T. Peacock and J. Dabiri, “Introduction to focus issue: Lagrangian coher-

ent structures,” Chaos 20, 017501 (2010).
39G. Haller, “Lagrangian coherent structures from approximate velocity

data,” Phys. Fluids (1994-present) 14, 1851–1861 (2002).
40S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and properties of

Lagrangian coherent structures from finite-time Lyapunov exponents in

two-dimensional aperiodic flows,” Physica D 212, 271–304 (2005).

023112-10 Ma, Ouellette, and Bollt Chaos 26, 023112 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.153.18.158 On: Tue, 16 Feb

2016 17:23:35

http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1146/annurev.fluid.33.1.289
http://dx.doi.org/10.1063/1.1610471
http://dx.doi.org/10.1038/nphys1941
http://dx.doi.org/10.1016/j.crhy.2012.09.006
http://dx.doi.org/10.1126/science.1194607
http://dx.doi.org/10.1142/S0218127412300121
http://dx.doi.org/10.1016/S0167-2789(98)00091-8
http://dx.doi.org/10.1063/1.870155
http://dx.doi.org/10.1063/1.3056050
http://dx.doi.org/10.1016/j.physd.2011.10.002
http://dx.doi.org/10.1175/JPO-D-12-0171.1
http://dx.doi.org/10.1175/JPO-D-12-0171.1
http://dx.doi.org/10.1103/PhysRevE.88.013017
http://dx.doi.org/10.1103/PhysRevE.88.013017
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
http://dx.doi.org/10.1016/j.physd.2009.03.002
http://dx.doi.org/10.1063/1.3502450
http://dx.doi.org/10.1142/S0218127413300267
http://dx.doi.org/10.1016/j.cnsns.2012.09.017
http://dx.doi.org/10.1016/j.cnsns.2012.09.017
http://dx.doi.org/10.1016/j.physd.2012.06.010
http://dx.doi.org/10.1137/130940633
http://dx.doi.org/10.1137/130940633
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1016/S0167-2789(01)00242-1
http://dx.doi.org/10.1016/0167-2789(89)90123-1
http://dx.doi.org/10.1142/S0218127499001516
http://dx.doi.org/10.1063/1.3278173
http://dx.doi.org/10.1063/1.1477449
http://dx.doi.org/10.1016/j.physd.2005.10.007


41G. H. Golub and C. F. Van Loan, Matrix Computations (JHU Press, 2012),

Vol. 3.
42F. d’Ovidio, V. Fern�andez, E. Hern�andez-Garc�ıa, and C. L�opez, “Mixing

structures in the Mediterranean Sea from finite-size Lyapunov exponents,”

Geophys. Res. Lett. 31, L17203, doi:10.1029/2004GL020328 (2004).
43A. J. Mariano, A. Griffa, T. M. €Ozg€okmen, and E. Zambianchi,

“Lagrangian analysis and predictability of coastal and ocean dynamics

2000,” J. Atmos. Oceanic Technol. 19, 1114–1126 (2002).
44R. Peikert, A. Pobitzer, F. Sadlo, and B. Schindler, “A comparison of finite-

time and finite-size Lyapunov exponents,” in Topological Methods in Data
Analysis and Visualization III, edited by P.-T. Bremer, I. Hotz, V. Pascucci,

and R. Peikert (Springer International Publishing, 2014), pp. 187–200.
45M. do Carmo, Differential Geometry of Curves and Surfaces Prentice-Hall

International (Englewood Cliffs, 1976).
46G. Haller and F. Beron-Vera, “Coherent lagrangian vortices: The black

holes of turbulence,” J. Fluid Mech. 731, R4 (2013).
47G. Froyland, “Dynamic isoperimetry and the geometry of lagrangian

coherent structures,” e-print arXiv.org/pdf/1411.7186.
48K. Menger, “Untersuchungen iber eine allgemeine metrik. vierte untersu-

chung. zur metrik der liurven,” Math. Ann. 103, 467–501 (1932).
49J. Leger, “Menger curvature and rectifiability,” Ann. Math. 149, 831–869

(1999).

50S. F. M. Lambert, M. Surhone, and M. T. Timpledon, Menger Curvature
(VDM Publishing, 2010).

51W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.

(Cambridge University Press, 1992).
52L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and

Surfaces (Ginn, 1909).
53P. G. Tait, “Note on the circles of curvature of a plane curve,” Proc.

Edinburgh Math. Soc. 14, 403 (1896).
54D. H. Kelley and N. T. Ouellette, “Onset of three-dimensionality in elec-

tromagnetically forced thin-layer flows,” Phys. Fluids 23, 045103

(2011).
55Y. Liao, D. H. Kelley, and N. T. Ouellette, “Effects of forcing geometry

on two-dimensional weak turbulence,” Phys. Rev. E 86, 036306 (2012).
56Y. Liao and N. T. Ouellette, “Spatial structure of spectral transport in two-

dimensional flow,” J. Fluid Mech. 725, 281–298 (2013).
57N. T. Ouellette, H. Xu, and E. Bodenschatz, “A quantitative study of

three-dimensional Lagrangian particle tracking algorithms,” Exp. Fluids

40, 301–313 (2006).
58N. Mordant, A. M. Crawford, and E. Bodenschatz, “Experimental

Lagrangian probability density function measurement,” Physica D 193,

245–251 (2004).

023112-11 Ma, Ouellette, and Bollt Chaos 26, 023112 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.153.18.158 On: Tue, 16 Feb

2016 17:23:35

http://dx.doi.org/10.1029/2004GL020328
http://dx.doi.org/10.1175/1520-0426(2002)019<1114:LAAPOC>2.0.CO;2
http://dx.doi.org/10.1017/jfm.2013.391
http://arxiv.org/abs/
http://dx.doi.org/10.2307/121074
http://dx.doi.org/10.1063/1.3570685
http://dx.doi.org/10.1103/PhysRevE.86.036306
http://dx.doi.org/10.1017/jfm.2013.187
http://dx.doi.org/10.1007/s00348-005-0068-7
http://dx.doi.org/10.1016/j.physd.2004.01.041

