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We introduce a definition of finite-time curvature evolution along with our recent study on
shape coherence in nonautonomous dynamical systems. Comparing to slow evolving curvature
preserving the shape, large curvature growth points reveal the dramatic change on shape such
as the folding behaviors in a system. Closed trough curves of low finite-time curvature (FTC)
evolution field indicate the existence of shape coherent sets, and troughs in the field indicate
the most significant shape coherence. Here, we will demonstrate these properties of the FTC,
as well as contrast to the popular Finite-Time Lyapunov Exponent (FTLE) computation, often
used to indicate hyperbolic material curves as Lagrangian Coherent Structures (LCS). We show
that often the FTC troughs are in close proximity to the FTLE ridges, but in other scenarios,

the FTC indicates entirely different regions.
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1. Introduction

Coherence has clearly become a central concept of
interest in nonautonomous dynamical systems, par-
ticularly in the study of turbulent flows, with many
recent papers designed toward describing, quantify-
ing and constructing such sets [Ma & Bollt, 2014;
Haller & Beron-Vera, 2012; Froyland et al., 2010;
Ma & Bollt, 2013; Froyland & Padberg, 2009; Kel-
ley & Ouellette, 2011a; Tallapragada & Ross, 2013].
There have been a wide range of notions of coher-
ence, from spectral [Holmes et al., 1998], to set
oriented [Dellnitz et al., 2001] and through trans-
fer operators [Froyland & Padberg, 2009; Froyland
et al., 2010] as well as variational principles [Meiss,
1992], and even topological methods [Allshouse &
Thiffeault, 2012; Grover et al., 2012]. Traditionally
there has been an emphasis on vorticity [Hussain,
1986], but generally an understanding that, coher-
ent motions have a role in maintenance (production
and dissipation) of turbulence in a boundary layer
[Robinson, 1991]. A number of theories have been

developed to model and analyze the dynamics in
the Lagrangian perspective (moving frame), such
as the geodesic transport barriers [Haller & Beron-
Vera, 2012] and transfer operators method [Froy-
land et al., 2010]. These have included the analysis
of coherence in important problems such as how
regions of fluids are isolated from each other [All-
shouse & Thiffeault, 2012] including in the predic-
tion of oceanic structures [Froyland et al., 2007] and
atmospheric forecasting [BozorgMagham & Ross,
2015; BozorgMagham et al., 2013], especially for
understanding the movement of pollution includ-
ing such as oil spills [Olascoaga & Haller, 2012;
Mezic et al., 2010; Bollt et al., 2012]. Whatever the
perspectives taken, we generally interpretively sum-
marize that coherent structures can be taken as a
region of simplicity, within the observed time scale
and stated spatial scale, perhaps embedded within
an otherwise possibly turbulent flow [Haller &
Beron-Vera, 2012; Froyland et al., 2010; Froyland &
Padberg, 2009; Ma & Bollt, 2014].
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In particular, the ridges from Finite-Time Lya-
punov Exponents (FTLE) fields have been widely
used [Haller, 2000, 2002; Shadden et al., 2005; Tal-
lapragada & Ross, 2013] to indicate hyperbolic
material curves, often called Lagrangian coherent
structures (LCS). We contrast here the fundamen-
tal nonlinear notions of “stretching” encapsulated
in the FTLE concept to “folding” which is a com-
plementary concept of a nonlinear dynamical sys-
tem which must be present if a material curve can
stretch indefinitely within a compact domain. We
will show that exploring the much-overlooked fold-
ing concepts leads to developing curvature changes
of material curves yielding an elegant description
of coherence that we call shape coherence [Ma &
Bollt, 2013]. We introduce here a method of visu-
alizing propensity of a material curve to change its
curvature, which we call the Finite-Time Curvature
(FTC) field. Contrasting the FTC to the FTLE,
we will illustrate that sometimes the FTC troughs
indicative of shape coherence are often co-mingled
in close proximity to ridges of the FTLE, and in
such cases, they indicate a generally similar story.
However, we show that in many cases, the FTC
troughs occur in locations not near an FTLE ridge,
indicating entirely different regions. Thus, we view
these as complementary concepts, stretch and fold,
as revealed by the traditional FTLE and here intro-
duced FTC.

2. Shape Coherence

We have recently presented a mathematical inter-
pretation of coherence [Ma & Bollt, 2013] in terms
of the definition of shape coherent sets, moti-
vated by a simple observation regarding sets that
“hold together” over finite-time in nonautonomous
dynamical systems. As a general setup, assume an
area preserving system that can be represented,

Z.':g(zat)a (1)

for z(t) € ®?, with enough regularity of g so that a
corresponding flow, ®7(zp) : ® x N2 — N2, exists.
To capture the idea of a set that roughly preserves
its own shape, we define [Ma & Bollt, 2013] the
shape coherence factor o between two sets A and B
under an area preserving flow ®; over a finite time
interval [0, T,

m
a(A,B,T) := su , 2
(4,,1) = sup LS (2

where m(-) here denotes Lebesgue measure, and we
restrict the domain of « to sets such that m(B) # 0
by assumptions to follow that B should be a fun-
damental domain [Ahlfors, 1979]. Here, S(B) is the
group of transformations of rigid body motions of
B, specifically translations and rotations descrip-
tive of frame invariance [do Carmo, 1976], and for
certain problems including mirror translations is
appropriate. We say A is finite time shape coher-
ent to B with shape coherence factor «, under the
flow &7 after time epoch T. We call B the refer-
ence set, and A shall be called the dynamic set. If
we choose B = A, we can verify to what degree a set
A preserves its shape over the time epoch T'. Notice
that the shape of A may vary during the time inter-
val, but for a high shape coherence, the shapes must
be similar at the terminal times. By the area pre-
serving assumption, 0 < o < 1, and values closer
to 1 indicate a set for which the otherwise nonlin-
ear flow restricted to A is much simpler, at least
on the time scale T" and on the spatial scale corre-
sponding to A; that is 7|4, the flow restricted to
A is roughly much simpler than a turbulent system,
as it is much more like a rigid body motion. This
does not preclude on finer scales, that there may be
turbulence within a shape coherent set.

2.1.

Recall that for any material curve, ~(s,t) =
(x1(s,t),x2(s,t)) of initial conditions defining an
initial segment v(s,0) = (z1(s,0),z2(s,0)), a < s <
b where each point on the curve evolves in time ¢
according to the differential equation, the curvature
at time ¢t may be written in terms of the parametric

derivative along the curve segment, d/ds := ’,

Curvature evolution

k(s,t) = W (3)
We will relate the pointwise changes of this curva-
ture function for points on those material curves
that correspond to shape coherence.

The analysis of the geometry of shape coher-
ent sets A depends on the boundary of these sets,
0A, which we restrict in the following to sim-
ply connected sets such that the boundary is a
smooth and simple closed curve, A = ~(s),0 <
s < 1, and these are often called “fundamental
domains” [Ahlfors, 1979]. These B = A are in
the domain of a. We may relate shape coherence
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to the classical differential geometry whereby two
curves are defined to be congruent if their under-
lying curvature functions can be exactly matched,
pointwise [do Carmo, 1976]. Therefore, considering
the Frenet—Serret formula [do Carmo, 1976], it can
be proved [Ma & Bollt, 2014] through a series of
regularity theorems that those sets with a slowly
evolving propensity to change curvature correspond
to boundaries of sets with a significant degree of
shape coherence. That is a(A, &7 (A)) ~ 1.
Furthermore, a sufficient condition theorem
connects geometry that points z where there is a
tangency between finite-time stable and unstable
foliations f%,(2), f%(z) must correspond to slowly
changing curvature. In Fig. 1, we indicate the geom-
etry of stable and unstable foliations that corre-
spond to tangency or near tangency where curves
passing through such points experience slowly
changing curvature, and hence indicative of points
on the boundaries of shape coherent sets [Ma &
Bollt, 2014]. Hence, finding shape coherent sets
leads us to the search for curves of tangency points
as the boundaries of such set which we review below.
Much has been written about the role of how sta-
ble and unstable manifolds can become reversed at
tangency points in that errors can grow transversely
to the unstable manifolds as noted in [Kantz &
Schreiber, 2004; Bollt et al., 2001; Zyczkowski &
Bollt, 1999]. Scaling relationships for frequency of
given curvatures in [Thiffeault, 2004, 2002; Thif-
feault & Allen, 2001; Liu & Muzzio, 1996; Drum-
mond & Munch, 1991; Drummond, 1993; Pope
et al., 1989; Ishihara & Kaneda, 1992], as well as the
propensity of curvature growth in turbulent systems
[Ouellette & Gollub, 2007, 2008; Kelley & Ouellette,
2011a; Xu et al., 2007] have both been studied.

Shape Coherence and Finite-Time Curvature Evolution

2.2. Finite-time stable and unstable
foliations

Recall that finite-time stable foliation f%(z) at
z describes the dominant direction of local
contraction in forward time, and unstable foliation
1t (2) describes dominant direction of contraction in
“backward” time. Traditionally, these particularly
relate to Lyapunov exponents and directions [Geist
et al., 1990; Bollt & Santitissadeekorn, 2013], and
lately in [Haller & Beron-Vera, 2012]. See Fig. 1.
The derivative, D®(z) maps a circle onto an ellipse,
as does any general matrix [Berger, 1987]. The
infinitesimal geometry of a small disc of variations
from ®;(z) is shown in Fig. 1. Likewise, a disc
centered on ®4(z) pulls back under D®_;(P.(2))
to an ellipsoid centered on z. The major axis of
that ellipsoid defines f!(z). Likewise, from ®_(2),
variations push forward under D®;(®_¢(z)), the
major axis of which defines, f!(z). These major
axis can be readily computed by SVD [Golub &
Loan, 1996] of derivative matrices, as noted for Lya-~
punov directions [Geist et al., 1990; Bollt & San-
titissadeekorn, 2013; Oseledets, 1968 and recently
[Karrasch, 2014]. Let,

D®(2) =UXVT (4)

and U and V are orthogonal matrices, V' = [v1, vg],
and U = [u1, uz]. Note that

D®y(z)vy = oqur, (5)

describes the vector vy at z that maps onto the
major axis ou; at ®4(z). Since

q),t e} @t(z) =z

and D(I),t(@t(z))D@t(z) = I,
(6)

Fig. 1.

Tangency points of stable and unstable foliations are highlighted as at such points, infinitesimal curve elements

experience curvature that terminally evolves slowly in the time epoch. Notice that the stable foliation f z(z) is the major axis
of preimage of variations from ®p(z) and correspondingly fZ(z) is the major axis of image of variations from ®_p(z).
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then orthogonally, we get
D®_(9,(2)) =V~ tuT

)

and the dominant axis from ®;(z) follows,

and
1

1
»l= diag(—, —

01 02

1
D®y(2)ug = —wo.
02

9)

Hence,

foz)=v2 and  fi,(2) =7, (10)

where D®y(z) = ULV and likewise, % is the first
left singular vector of D®;(®_4(z)) =U X V*.

2.3. Example: Rossby wave

We choose the Rossby wave [Rypina et al., 2007]
system, an idealized zonal stratospheric flow, for

further presentation. Consider the Hamiltonian
system dx/dt = —0H /0y, dy/dt = OH/0x, where

,!ii;ﬂ EM ‘

ﬂ M\!

i
& lﬂ

e

| i

i
IR

H(z,y,t) =csy — UpL tanh(

N——

<

+ A3UyL sech? cos(k1x)

+ AsUy L sech? cos(kex — o9t)

+ AUy L sech? cos(kix — o1t).

(11)

In Fig. 2(a) we show simultaneously the stable and
unstable foliation fields, f{(z) and f%(z), of this sys-
tem, together with curves of zero-angle [Fig. 2(b)],
0(z,t) = 0, where

—~ —~
Nl Ne N

N—— N

(f5(2), fu(2))
IFSN LN

found by implicit function theorem as described
in [Ma & Bollt, 2014], corresponding to significant
shape coherence. The main work of this paper there-
fore is to show that this detail can be skipped as the
FTC we introduce significantly simplifies the geom-
etry and facilitates the computation.

e

i {IHH'::'_
il {

0(z,t) := arccos (12)

| : .Wlhh

14

Fig. 2.

(a) The finite-time stable and unstable foliation fields f%(z) and fI,(z) for the Rossby wave system. Notice that

for each point, there are two vectors, and therefore an associated angle 6(z,t). (b) Zero-splitting curves corresponding to
boundaries of shape coherent sets corresponding to a significant shape coherence factor, Eq. (2). The parameters are set,
Uy = 44.31, ca = 0.2055U, ¢35 = 0.462Up, Az = 0.3, A2 = 0.12, A} = 0.075 [Rypina et al., 2007], and time epoch T" = 10 days.

(a) Foliation field and (b) nonhyperbolic splitting curves.
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3. Finite-Time Curvature Field

Here we introduce a simplified analysis and con-
struction of shape coherence by direct measurement
and display of fields of maximal rate of change of
any possible curvature, which we call the Finite-
Time Curvature field (FTC). The FTC allows us
to interpret sets of significant shape coherence, by
direct inspection of those points and curves cor-
responding to slowly evolving curvature, with the
interpretation cited above to the theorems connect-
ing shape coherence to the slow evolution of bound-
ary curvature.

3.1. Definition of finite-time
curvature fields

The intuition behind the FTC development is based
on the idea that the folding behaviors involve the
maximal propensity of changing curvature. This
suggests that regions of space corresponding to
slowly changing curvature include boundaries of
significant shape coherence. We define the mazx-
imum finite-time curvature (mazFTC), C’§8+T(z),
and minimum finite-time curvature (minFTC),

c§8+T(z), for a point z in the plane under a flow

<I>§8+T over the time interval [to,to + 7| by,

Shape Coherence and Finite-Time Curvature Evolution

Ciy™7(2) = lim sup w(@77(Leu(2)),  (13)
EV vll=1
ioT(2) = lim inf m(@ () (14)
where,
lew(2) :={2=2z+esv,|s| <1} (15)

and v is a unit vector, and [.,(z) is a small line
segment passing through the point z = (x,y), when
€ < 1. These will always exist, so defined in terms
of sup and inf. When @ is sufficiently smooth, then
x will be continuous and the above formula can be
maximized traditionally, for example, by gradient
descent with respect to the angle of the unit vec-
tor v, and in practice, we estimate the limit by
small e. Also, here we are generally interested in
the maxFTC, and as such, we will often refer to it
simply as the FTC field.

Generally, when the maxFTC has a trough
(curve) of small values, then this suggests that
there is a strong nonhyperbolicity such as an ellip-
tic island boundary or some other form of tan-
gency as displayed in Fig. 1. These are darker blue
“FTC trough curves” as seen in Fig. 3(a), that serve
as boundaries between shape coherent sets. These
curves can approximately maintain their shape for

(]
(=)

T T T T

k
w

log(Curavature)
o
T

N N .
P ‘l' ,_____/'\ijf N __ﬂ/.—.\__'\‘li' V—

20! 1 1 1 | |

1t (
.'\
) \
20 0 20

x 10° log(Curvature)

Fig. 3. (a) Shows the maxFTC fields C”;g"'T(z) of different groups of parameters of the Rossby wave system. Note that in

both figures, the level curves of relatively smaller maxFTC, Cig'” (z) from Eq. (13), indicate that there exist material curves
whose curvature changes slowly (blue curves) and these correspond to the zero-splitting curves in Fig. 2 [Ma & Bollt, 2014].
On the top and sides of (a) and (b) we show a slice of the maxFTC function along the red lines shown respectively. Large
variation indicates boundaries of shape coherent sets. Boundaries are indicated by low values of the maxFTC, small propensity
to grow curvature. Fast variation at boundaries indicates high curvature change is often closely proximal to low curvature
change, indicative within the (hetero)homoclinic tangle where tangencies and hyperbolicity often coexist. Compare to partition
developed in Fig. 4. (a) maxFTC Uy = 44.31, ¢c3 = 0.461Up, A3 = 0.3 and (b) maxFTC Uy = 63.66, c3 = 0.7Up, A3 = 0.2.
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o

Fig. 3.

relatively longer time. However, the largest ridges of
the maxFTC illustrate points where there are both
significant curvature growth along one direction but
small transverse curvature growth, when there is
an area preservation assumption. These level curves
arise in the scenario of the sharply changing cur-
vature developing at the most extreme points in a
(hetero)homoclinic tangle, as illustrated in Fig. 1.
Notice that the FTC trough curves can be used to
estimate shape coherent sets. A particularly inter-
esting feature of these FTC fields is the large vari-
ation in certain regions, indicated at the top and
on the side of Figs. 3(a) and 3(b); this is clearly
due to co-located hyperbolicity and nonhyperbolic-
ity regions of (hetero)homoclinic tangles, discussed
in greater detail in comparison to FTLE in Fig. 5.
The FTC field in Figs. 3(a) and 3(b) clearly sug-
gests boundaries of the shape coherent sets as low

&  (h)ossss o502
7718 \

Fig. 4. The partition of the Rossby wave system from
diffusion-like “seeded region growing” method of the FTC
seen in Fig. 3. Numbers adjacent to each letter a—j indicate
the shape coherence a(A, @1 (A),T') of the set shown.

20 0 20
x 10° log(Curvature)

(Continued)

(blue) troughs, as discussed below and emphasized
by the partition shown in Fig. 4.

3.2. Relationship of FTC to shape
coherence

To construct shape coherent sets from the FTC, we
describe two complementary perspectives. One fol-
lows the idea of curve continuation by the implicit
function theorem, but on the FTC to track level
curves of rigJ“T(z). That is, if a point zy where a
(near) minimal value r°*7(2) = R is found, rep-
resenting a point in the trough, then other values
nearby can be derived by

a(r*")
dy
2 =h(z) = ——F7—(2), (16)
a(ry"")
ox
as an ordinary differential equation with initial con-

dition z(0) = 2, and the derivative ’ = 4 repre-

sents the variation along the s-parameterized arc.
Furthermore, by the above principle of component
analysis, the directions of maximal curvature are
also encoded in the principle vectors of D®y(z).

A direct search for the interiors of sets between
low troughs of the FTC is a problem of defining
regions between boundary curves, and this relates
to a common problem of image processing called
image segmentation [Yoo, 2004].

In particular, we applied the diffusion-like
“seeded region growing” method [Adams & Bischof,
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1994] that begins by selecting a set of seed points.  implementation that can be found in [Kroon, 2008].
Here, we apply 100 uniform grid points as seeds and ~ See Fig. 4 for the partitioning results. Several
use four connected neighborhoods to grow from the  shape coherent sets corresponding to Fig. 3 are
seed points. We slightly improve a well regarded  found. Specifically, the middle yellow band has

leg{FTC)
FTLE

| | -III l:. ,i N :II;.- ; * ‘

WV~ Y o
§ @a '| i e @‘ | =

J P <D o |

| - : |

13 135 14 145,

-

-1 L 1 1 = L L N i
(] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18

Fig. 5. The FTC troughs of the double gyre highlighted in blue, and FTLE ridges highlighted in red, are seen to be sometimes
in close proximity. Thus similar regions are indicated. However, they are often not near each other indicating disparate regions.
In the blow-up insets above, we see labels “2” indicate where the FTLE ridges are in-between FTC troughs, and likewise the
one-dimensional slice along the green curve shows these field values on a log scale repeating this outcome. Lows of the blue
curve are near but offset slightly highs of the red curve, often, highs of the blue field surrounding lows of the red field. At
such locations the two disparate computations reveal similar dynamics. However, regions indicated by “1” reveal FTC-trough
curves which are entirely separated from any FTLE behavior of interest. Thus a different outcome is found at such locations.
Closed curves of FTC-troughs indicate shape coherence. At regions indicated by “3” we see gaps in the FTC curves. At the
bottom we show a slice of the FTC and FTLE curves through the full phase space.
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a(A, ®p(A),T) = 0.8574, and likewise the a-values
of the remaining colored sets are shown in Fig. 4.
Some difference in the otherwise symmetric regions
are due to the region clipping as shown.

3.3. An example of comparison
between FTC and FTLE:
Double gyre

Finally, we contrast results from the FTC field ver-
sus the highly popular FTLE field [Shadden et al.,
2005] since at first glance, the pictures may seem
essentially similar, despite the significantly different
definitions and different perspectives. Recall [Shad-
den et al., 2005] that the FTLE is defined pointwise
over a time epoch-t that

Lo(z) = %log oD@ )De (), (7)

where p is the largest eigenvalue of the Cauchy—
Green strain tensor. In the following, we contrast
FTLE and FTC in the context of what follows the
nonautonomous Hamiltonian,

& = —7mAsin(rf(x,t)) cos(my)

(18)
y=mAcos(nf(x,t)) Sin(ﬂy)%

where f(z,t) = esin(wt)z? + (1 — 2esin(wt))z, € =
0.1, w = 27/10 and A = 0.1, which has become a
benchmark problem [Shadden et al., 2005]. Observe
in Fig. 5 that sometimes an FTC trough indica-
tive of shape coherence may occur spatially in
close proximity to an FTLE ridge indicative of
high finite time hyperbolicity [Haller & Beron-
Vera, 2012; Shadden et al., 2005] and thus suggests
a transport pseudo-barrier [Haller & Beron-Vera,
2012; Shadden et al., 2005]. It is true that folding
often occurs in close proximity to regions of strong
hyperbolic stretching [Thiffeault, 2004, 2002; Thif-
feault & Allen, 2001], as already hinted by the fast
variations of FTC in hyperbolic regions as seen in
the traces on the tops and the sides of Figs. 3(a)
and 3(b). However, in Fig. 5, we directly address
the coincidences and differences, by locating the
troughs of the FTC shown as blue curves, and the
ridges of the FTLE shown as red curves. Clearly
sometimes FTC troughs find curves close to FTLE
ridges, but at times, entirely new curves are found.
When the FTC troughs are closed, shape coherent
sets are indicated, and are not found in any other

way when not near the FTLE. Finally note that as
indicated by “3” in Fig. 5, where the FTLE curves
may have a strong curvature, those FTC may be in
close parallel, but the FTC trough curves may have
breaks as indicated.

4. Conclusion

With these coincidences, and given differences in
definitions, concepts and results, we have offered
here the FTC as a new concept for interpreting
shape coherence in turbulent systems, that results
in a decomposition of chaotic systems into regions of
simplicity, and by complement regions of complex-
ity. There is the promised implications that we plan
to study further, between shape coherence and per-
sistence of energy and enstrophy along Lagrangian
trajectories as was previously studied in the context
of FTLE [Kelley & Ouellette, 2011b].
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