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Melnikov Theory for Two-Dimensional Manifolds in Three-Dimensional Flows\ast 
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Abstract. We present a geometric Melnikov method to analyze a two-dimensional stable or unstable mani-
fold associated with a saddle point in three-dimensional nonvolume preserving autonomous flows.
The time-varying perturbed location of such a manifold is obtained under very general, nonvol-
ume preserving and with arbitrary time-dependence, perturbations. We demonstrate the explicit
computability of the leading-order spatio-temporal location of the manifold using our formulas. In
unperturbed situations with a two-dimensional heteroclinic manifold, we adapt our theory to quan-
tify the splitting into a stable and unstable manifold, and thereby obtain an instantaneous flux
quantification in terms of a Melnikov function. The time-varying instantaneous flux theory does not
require any intersections between perturbed manifolds, nor rely on descriptions of lobe dynamics.
Our theory has specific application to transport in fluid mechanics, where the flow is in three dimen-
sions and flow separators in forward/backward time are two-dimensional stable/unstable manifolds.
We demonstrate our theory using both the classical and swirling versions of Hill's spherical vortex.
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1. Introduction. Melnikov methods were originally introduced [45] to analyze how a ho-
moclinic connection (a coincident stable and unstable manifold of a saddle fixed point) splits
when an autonomous continuous dynamical system is perturbed time-periodically. This paper
specifically develops a Melnikov theory for a flow which is not time-periodic, and moreover
principally focusses on a situation which has not been studied before, viz., determining lo-
cations of a perturbed two-dimensional stable (or unstable) manifold in a three-dimensional
flow. This does not require other common aspects usual to Melnikov methods in flows, i.e.,
time-periodicity of the perturbation, homo- or hetero-clinic situations in which a stable and
an unstable manifold coincide, compact manifolds, or Hamiltonian or volume-preserving flows.
As a secondary focus, the theory is adapted to quantifying the instantaneous flux in the situ-
ation of a broken heteroclinic manifold in a lobe-independent fashion (as is necessary because
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TWO-DIMENSIONAL MELNIKOV THEORY 2643

time-periodicity is not imposed). The emphasis on three dimensions (a less-examined situa-
tion in Melnikov methods) is crucial because of fluid mechanical implications: two-dimensional
time-varying stable/unstable manifolds form important flow barriers [7] for fluid transport,
and quantifying transport across a broken barrier as a tool for flux optimization or control.

The time-periodicity of the perturbation in the classical Melnikov approach [45] allows for
an interesting interpretation of phase space transport. Rather than viewing as a flow (i.e.,
a continuous dynamical system), one can view the dynamics in terms of a map (a discrete
dynamical system) which samples the flow at the period T of the perturbation; this is called a
Poincar\'e map [30, 66]. The originally coincident stable and unstable manifold of a fixed point
of a flow can then be viewed as the coincident stable and unstable manifold of a fixed point of
a map. Upon perturbing, these stable and unstable manifolds (in the sense of the map) persist
for a nearby fixed point, but need no longer coincide. The classical Melnikov approach es-
tablishes a function which effectively measures a scaled orthogonal splitting distance between
the manifolds, and the simple zeros of this function guarantee transverse intersection points
[30, 66]. Indeed, one zero guarantees infinitely many, since the intersection point must itself
be mapped to another intersection point because of the invariance of the stable and unstable
manifolds. The presence of such zeros serves as one of the few methods for ``proving chaos,""
in this instance via the Smale--Birkhoff theorem [1, 30, 66]. (The basic Melnikov function
also works for a heteroclinic situation in which the stable and unstable manifolds were from
different fixed points; however, transverse intersections do not automatically imply chaotic
motion in this case except under additional conditions [19, 54].) The intersection regions
between the manifolds---often called lobes---have fundamental importance: the dynamics of
how they transport to one another under iteration of the Poincar\'e map, i.e., lobe dynam-
ics, underlines the chaotic motion. Indeed, lobe dynamics is well studied purely from the
context of maps, without necessarily being generated from a flow [42, 44]. This paper does
not focus on maps or on time-periodic flows, and thus lobe dynamics are mostly not rele-
vant; however, connections to lobe dynamics will be established under suitable time-periodic
restrictions.

Many reinterpretations and extensions of Melnikov theory exist (see the review chapters in
[7]). The Melnikov function has been extended for implicitly defined differential equations [16],
heteroclinic situations [6, 54, 13], for stochastic perturbations [62, 69], singular perturbations
[29, 52], nonhyperbolic situations [65, 72], fixed points at infinity [65], degenerate homoclinics
[64], and discontinuous [25, 20, 15, 35] and impulsive [8] vector fields. The standard develop-
ment is usually extendible to situations in which the heteroclinic manifold is associated with a
compact normally hyperbolic invariant set (rather than just a fixed point), by appealing to the
concept of exponential dichotomies [23, 53, 17] rather than eigenvalues at the fixed point [22].
Higher-dimensional (greater than two) extensions are also available under some restrictions---
usually volume-preserving and/or Hamiltonian flows and/or presence of symmetries [13, 37,
26, 27, 68, 67, 33]---or situations in which the Melnikov function is based on solutions to an
equation which cannot be written explicitly [28, 70, 22]. Higher-order Melnikov methods have
also been developed [25, 22]. It is also possible to couch the transverse intersection problem
in a functional analytic, rather than a geometric, form instead [21, 53, 17, 59, 37, 24, 22]---a
method which transforms naturally to higher dimensions. However, in these and other gen-
eral higher-dimensional cases the kernel of the Melnikov integral contains an abstract function
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2644 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

which is not in general expressible explicitly for actual computation [28, 70, 22, 21, 53, 17,
59, 37, 24]. There have also been Melnikov methods developed purely in the context of maps
[38, 39, 40]; in higher-dimensions, again the issue of explicitly determining relevant functions
within the ``integral"" (an infinite summation in this case [38]) remains [38].

Most applications of Melnikov theory described above relate to defining a Melnikov func-
tion whose simple zeros imply the persistence of a homo-/heteroclinic connection [e.g., 45,
21, 53, 17, 59, 28, 33, 13, 25, 20, 15, 35, 65, 29, 52, 16, 26, 67, 69]. (In higher-dimensional
situations, this generalizes to a Melnikov vector [70, 22] the zeros of whose components rep-
resents intersections along each normal vector at a location on an unperturbed heteroclinic
trajectory.) In these cases, the Melnikov function does not necessarily express exactly the
physical distance between stable and unstable manifolds which separate off the broken homo-
/heteroclinic manifold, but rather a nonuniformly scaled signed distance. In the functional
analytical developments in particular, this scaling is hidden; it is only the function's zeros
which give the pertinent information on where the stable and unstable manifolds intersect. It
is less well known that Melnikov developments can be adapted to characterize the location of
a perturbed stable or unstable manifold, irrespective of whether it is associated with a homo-
/heteroclinic situation [22, 70, 6]. In this paper, we develop the relevant theory to locate
two-dimensional time-varying stable (or unstable) manifolds of a hyperbolic fixed point in a
three-dimensional flow, due to the inclusion of a perturbation whose spatial derivatives are
bounded for all time. Note that we do not require volume preservation in either the unper-
turbed of perturbed flows, nor time-periodicity in the perturbation. We emphasize that this
development does not require a homo- or heteroclinic situation, and indeed the unperturbed
manifold may be noncompact. The theory develops a leading-order computable approxima-
tion for spatio-temporally varying location for the perturbed manifold, which (as is to be
expected) is restricted to finite times and a finite extent. This is the first of the main results
of this paper, presented in Theorems 1 and 2, respectively, an unstable or a stable manifold.

Most typically, Melnikov developments seek an integral expression over \BbbR which is often
called a Melnikov function. Such an integral is well known to play a role when one wishes to
determine intersections in a broken homo-/heteroclinic situation. A similar definite integral,
but with limits not over all of \BbbR , also appears when we locate perturbed stable/unstable
manifolds. In general, such integrals contain as a kernel a particular function, the knowledge
of which is crucial to represent the Melnikov integral. In Hamiltonian [e.g., 33, 26], as well
as in volume-preserving unperturbed situations with a nondegenerate conserved quantity [13,
47], explicit forms for this kernel function can be determined. For more general situations,
the kernel function can be expressed in more abstract terms: it is related to the fundamental
matrix solution to the adjoint of the variational equation along the relevant homo-/heteroclinic
trajectory. Given that this adjoint equation is nonautonomous, its solutions cannot usually
be written down explicitly, unless in special situations such as in two dimensions. Therefore,
while a Melnikov function might be expressible for such situations in an abstract sense [28, 21,
37, 70, 22, 24], it is usually not computable. Put another way, most Melnikov developments in
dimensions greater than two, or which are not Hamiltonian, provide a theoretical result which
is difficult to apply. Knowing an explicit formula for the kernel function in such situations is
therefore valuable. In our development, we are able to provide an explicit expression for it in
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TWO-DIMENSIONAL MELNIKOV THEORY 2645

our three-dimensional setting (this appears in the integrals appearing in Theorems 1, 2, and
3), without additional conditions such as volume-preservation or the presence of a conserved
quantity. The formula is related to a triple scalar product associated with a parametrization
of the two-dimensional manifold. Thus, the Melnikov function that we develop for locating the
perturbed version of such a manifold is computable, unlike that in most higher-dimensional
non-Hamiltonian Melnikov developments.

We have mentioned that Melnikov approaches are more frequently related to determining
intersections between the stable and unstable manifolds resulting from a broken homo/hetero-
clinic manifold. The new theory that we develop specializes to such a situation as well, and
thus we are able to present a computable Meknikov function in a non-Hamiltonian, non-
volume-preserving situation, in a dimension greater than two (see Theorem 1). Moreover,
we are able to quantify transport across the broken heteroclinic in terms of this Melnikov
function, under general time-dependence. This is the second of the main results of this paper,
which we present in Theorem 3.

Quantifying transport when a heteroclinic (a flow-separating curve) in two dimensions
is broken is a well-studied problem. In two dimensions, the interweaving of the stable and
unstable manifolds which split off the heteroclinic generates lobes, and transport can be
characterized via the beautiful theory of lobe dynamics and turnstiles [57, 66], which builds
on similar concepts for maps [42, 44]. This theory is confined to two-dimensional flows, and
for an area of a lobe to be a well-defined characterizer of the transport engendered across
the broken heteroclinic, several other features need to be in place: the flow needs to be area-
preserving, and the perturbation ``harmonic"" in that it can be written as a spatially varying
two-dimensional function multiplied by a sinusoid in time. The area of a lobe then expresses
the amount of fluid transported across the broken heteroclinic during the time-periodicity
of the perturbation, and can be expressed in terms of a definite integral of an appropriate
Melnikov function [57, 66]. More general time-periodic situations generically do not have well-
defined lobe areas because there can be many, differently sized lobes relevant to one iteration
of the time-periodic map, or indeed no lobes at all because the perturbed manifolds do not
intersect [2]. Obtaining a transport characterization in more general time-aperiodic situations
therefore requires a slightly different approach, and has been provided in two-dimensional
flows via a time-dependent flux idea [4, 7, 10]. As befitting any assessment of transport,
this takes into account the Lagrangian motion of trajectories, rather than an Eulerian flux.
(This terminology stems from fluid mechanics in which ``Lagrangian"" refers to following the
flow, while ``Eulerian"" in this context would mean measuring transport across fixed surfaces
in space, without taking into account that these surfaces are themselves moving due to the
flow.)

We are able to extend these broken heteroclinic results to our current three-dimensional
setting. We obtain in Theorem 3 an expression for the instantaneous flux which is valid for
general time-dependence in the perturbation, as well as non-volume-preserving flows. This flux
expression---which establishes a direct relationship with an appropriate Melnikov function---
is valid whether lobes (generated through intersections of the broken stable and unstable
manifolds) exist or not, and is therefore substantially more general than lobe dynamics de-
scriptions. We point out though that in time-harmonic, volume-preserving situations, a nice
analog of lobe dynamics is seen to occur; in this case, it is lobe volumes rather than areas that
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2646 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

is relevant. We specifically obtain an analytic formula for leading-order lobe volume in terms
of an appropriate integral of the Melnikov function (Theorem 2), thereby extending a well-
known two-dimensional result for lobe areas [57, 66]. This expression is indeed valid in the
general situation of time-aperiodicity and non-volume-preservation, but its interpretability to
transport in the sense of lobe dynamics requires time-periodicity and volume-preservation.

We remark that the transport characterization we provide for three-dimensional flows
is motivated strongly by fluid mechanics. Realistic flows in fluids are inherently three-
dimensional, and internal flow separators must therefore be two-dimensional entities. Two-
dimensional stable and unstable manifolds are primary candidates for such flow separators.
Locating them and tracking their motion is therefore fundamental in determining boundaries
between coherently moving regions of fluids; this is related to the field of ``Lagrangian coherent
structures"" [14]. In particular, characterizing a flow rate (a flux, i.e., a volume of fluid per
unit time) across a broken heteroclinic provides a direct assessment of the transport between
two previously separated coherent regions. It is precisely this which we are able to provide
with our flux theory. Similar theory has been used extensively for two-dimensional flows with
one-dimensional flow separators due to the existence of pertinent Melnikov theory [e.g., 57,
58, 2, 4], and can even give insight into how to perturb a flow to optimize mixing [11, 3].
However, genuine fluid flows are three-dimensional, and hence our current theory can extend
these methods to significantly more realistic flows. While there are other works which study
transport in the context of three-dimensional flows, they tend to possess restrictions which we
will not impose: axisymmetry [33], time-periodicity [33, 51], volume-preservation [33, 51, 47,
46, 13], presence of a conserved quantity [51, 47, 46, 13], or a one-step finite-time flow [50].
Our Melnikov development in this paper is purposefully geometric to help provide intuition
in this realistic situation where the phase space is equivalent to three-dimensional physical
space.

This paper is organized as follows. In section 2, we build the general Melnikov theory for
quantifying the spatio-temporal movement of a two-dimensional invariant manifold of a three-
dimensional nonvolume preserving flow. We develop computable expressions for locating such
a manifold under general time-aperiodic perturbation, expressing points on this manifold in
parametric form. This is the first of our main results (Theorems 1 and 2), whose application
we demonstrate via a simple example in section 2.3. This theory is adapted in section 3 for
the particular situation when the unperturbed flow possesses a two-dimensional heteroclinic
manifold. The Melnikov function we formulate can be used to identify transverse intersections
of the perturbed stable and unstable manifolds, as well as to characterize instantaneous flux.
We emphasize that there is no requirement for either time-periodicity or volume preservation,
neither is it necessary for lobes to form. The flux theory still applies if there are no inter-
sections of perturbed stable and unstable manifolds. This development we use to rationalize
the flux explicitly as a time-dependent function, and the accompanying simple formula we
obtain in terms of the Melnikov function, is the second of our main results (Theorem 3).
We also establish connections to more standard situations in two dimensions (perturbations
with separable sinusoidal time-dependence in an overall area-preserving flow) in which lobe
dynamics applies [57, 66]; in this case, a nice method of characterizing lobe boundaries (i.e.,
persistence heteroclinic points) using a Fourier transform procedure is developed. Transport
can be described in terms of a version of lobe dynamics, and might be quantified in terms of
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TWO-DIMENSIONAL MELNIKOV THEORY 2647

lobe volumes, which we express in terms of the Melnikov function as well. In section 4, we
apply the theory to both the classical Hill's spherical vortex [32], and a modification incor-
porating swirl [61], respectively. These choices are motivated by fluid flows in cylinders with
rotating endwalls, which are known to generate such vortices which subsequently breakdown
due to perturbations [36, 63, 41, 33, 13]. We conclude in section 5 with some remarks on
extensions and applications.

2. Spatiotemporal motion of two-dimensional manifolds. In this section, we build a
Melnikov theory for two-dimensional invariant manifolds that are attached to saddle points
in three-dimensional autonomous dynamical systems. We emphasize that the theory does
not require a homo-/heteroclinic framework, which is the focus of most classical Melnikov
approaches. Rather, our theory serves to characterize the location, as it varies with time, of
a perturbed two-dimensional invariant manifold when the flow is subject to a very general
perturbation. We consider the system

\.\bfitx = \bfitf (\bfitx ) + \epsilon \bfitg (\bfitx , t) ,(1)

in which \bfitx \in \Omega \subset \BbbR 3, \bfitf : \Omega \rightarrow \BbbR 3, \bfitg : \Omega \times \BbbR \rightarrow \BbbR 3, and 0 < \epsilon \ll 1. The \epsilon = 0 system of (1)
is considered the unperturbed system.

Hypothesis 1. Conditions on the unperturbed flow and the perturbation.

1. The function \bfitf \in \bfC 2(\Omega ), and \bfitD \bfitf is bounded in \Omega .
2. The point \bfita \in \BbbR 3 is a saddle fixed point of the unperturbed system (i.e., (1) when

\epsilon = 0). Thus, \bfitf (\bfita ) = \bfzero , and the eigenvalues of \bfitD \bfitf (\bfita ) fall into one of the following
categories:
\bullet Case 1: one is negative, and the other two have positive real parts, or
\bullet Case 2: one is positive, and the other two have negative real parts.

3. The eigenvectors associated with the two-dimensional (unstable or stable, correspond-
ing to cases 1 or 2, respectively) subspace of D\bfitf (\bfita ) are linearly independent.

4. The two-dimensional stable or unstable manifold identified above is C2-smooth.
5. For any t \in \BbbR , the perturbing function \bfitg (\bfitx , t) \in \bfC 2(\Omega ). Additionally, both \bfitg and \bfitD \bfitg 

are bounded in \Omega \times \BbbR .

In seeking expressions for the perturbed two-dimensional invariant manifold, we will focus
on the two possibilities for the eigenvalues separately.

Before proceeding, we remark that the results we present here can be extended to the
situation where the unperturbed two-dimensional invariant manifold is of a compact invariant
set A which is normally hyperbolic with the appropriate attraction/repulsion as intimated by
the two cases in the hypothesis. However, we will not develop the theory in this generality
because (i) this will require working via exponential dichotomies [23, 53, 71, 70, 22] with
implied projection operators stated only in an abstract sense, which will interfere with our
quest to provide computable expressions, and (ii) the possible geometries will need to be
catagorized and interpreted on a case-by-case basis. This latter issue is because, for example,
A may be a periodic orbit or a curve of fixed points.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2648 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

2.1. Displacement of two-dimensional unstable manifold. First, consider case 1, when
the system (1) when \epsilon = 0 has one negative eigenvalue and two eigenvalues with positive real
parts at the point \bfita . So the unperturbed system possesses a one-dimensional stable manifold
and a two-dimensional unstable manifold. We are interested in characterizing the impact of
the perturbation (i.e., \epsilon \not = 0 in (1)) on the two-dimensional manifold, \Gamma u(\bfita ). We will identify
different trajectories on \Gamma u(\bfita ) by the parameter \alpha \in S1, that is, \alpha \in [0, 1), periodically
extended with interval 1. To explain this identification, consider the tangent plane to \Gamma u(\bfita )
at \bfita , and consider a small circle of radius \delta centered at \bfita . We can think of \alpha as the angle
going around the circle divided by 2\pi (having chosen an \alpha = 0 location), and at each \alpha value,
the circle will intersect exactly one trajectory which lies on \Gamma u(\bfita ). This is so whether \bfitD \bfitf (\bfita )
has two negative, or two complex with negative real part, eigenvalues; in the former case there
will be nonspiralling trajectories, and in the latter case there will be spiralling trajectories,
going in to \bfita . In either situation \alpha as explained can be used to parametrize the choice of
trajectory. Next, the time-variation along each trajectory will be parametrized by p. Thus, if
\=\bfitx u(p, \alpha ) is such a trajectory indexed by \alpha , we have

\partial \=\bfitx u(p, \alpha )

\partial p
= \bfitf (\=\bfitx u(p, \alpha )) ,

because it is a trajectory of (1) with \epsilon = 0. Now, the trajectory can extend outwards in
various ways (e.g., may be a heteroclinic trajectory and thus approach a different critical
point, or may go to infinity). To account for this, we limit p to be in the set ( - \infty , P ] for any
finite P , and choose the p-parametrization of nearby trajectories continuously. Thus, we can
use (p, \alpha ) \in [ - \infty , P ]\times S1 to parametrize a restricted version of \Gamma u(\bfita ) which avoids having to
specify the limiting behavior of the unstable manifold trajectories \=\bfitx u(p, \alpha ) in the limit p \rightarrow \infty ,
while realizing that

lim
p\rightarrow  - \infty 

\=\bfitx u(p, \alpha ) = \bfita .

Figure 1 demonstrates the two-dimensional unstable manifold attached to the fixed point \bfita ,
and illustrating the roles of (p, \alpha ) in parametrizing the manifold. We assume that the pa-
rametrization by (p, \alpha ) is C1-smooth. This picture corresponds to \bfitD \bfitf (\bfita ) having two positive
eigenvalues; if they are complex with positive real parts instead, the trajectories will spiral
(swirl) away from \bfita instead.

While so far we have described the situation with respect to the system \.\bfitx = \bfitf (\bfitx ), we may
consider instead the behavior within the augmented system where we append the equation
\.t = 1. In this situation, the phase space is now \Omega \times \BbbR , and the saddle fixed point \bfita becomes a
hyperbolic trajectory (\bfita , t). Now, the unstable manifold in the four-dimensional augmented
phase space will be parameterized as (p, \alpha , t) \in ( - \infty , P ] \times S1 \times ( - \infty , T ] for any finite T .
Specifically, the point (\=\bfitx u(p, \alpha ), t), where \alpha and p are spatial parameters and t is time, now
parameterizes the augmented unstable manifold.

Now consider the impact of introducing the perturbation by setting \epsilon \not = 0 in (1). Since \bfitg 
and \bfitD \bfitg are sufficiently smooth and bounded as per Hypothesis 1, the hyperbolic trajectory
(\bfita , t) perturbs to (\bfita \epsilon (t), t) which is \scrO (\epsilon )-close to \bfita for t \in [ - \infty , T ]. We caution that \bfita \epsilon (t)
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TWO-DIMENSIONAL MELNIKOV THEORY 2649

Figure 1. The two-dimensional unperturbed unstable manifold \Gamma u(\bfita ) for case 1, with the red dot represen-
ting the saddle fixed point. The (p, \alpha )-dependence of trajectories (\=\bfitx u(p, \alpha )) can be used to parametrize
\Gamma u(\bfita ).

cannot be obtained by seeking instantaneous fixed points of (1), but instead is defined in terms
of exponential dichotomies [23, 53], and is, in general, difficult to compute (for a perturbative
approximation in two-dimensions; see [9, 34]). Next, persistence results of invariant manifolds
associated with hyperbolic fixed points [71] indicate the presence of a perturbed unstable
manifold, \Gamma u

\epsilon (\bfita \epsilon , t) that is \scrO (\epsilon )-close to \Gamma u(\bfita ) at finite times t. More specifically, suppose
that t \in ( - \infty , T ] is fixed, and we view the projections of the relevant manifolds on this
time-slice t. See Figure 2, where the unperturbed manifold is in black, and the perturbed
manifold is indicated in red. There is a point \bfitx u (p, \alpha , \epsilon , t) on the perturbed manifold which is
\scrO (\epsilon )-close to \=\bfitx u (p, \alpha ). Our aim is to quantify the distance du(p, \alpha , \epsilon , t) obtained by projecting
the vector \bfitx u (p, \alpha , \epsilon , t)  - \=\bfitx u (p, \alpha ) on to the normal vector drawn to \Gamma u(\bfita ) at the point
\=\bfitx u (p, \alpha ). By doing so, we will be able to give the location of the perturbed manifold \Gamma u

\epsilon (\bfita \epsilon , t)
parametrized by time t and the spatial variables (p, \alpha ), to leading-order in \epsilon .

We note that the vector \bfitf (\=\bfitx u(p, \alpha )) lies along a unstable manifold trajectory, since this is
the velocity field at the point \=\bfitx u(p, \alpha ). Moreover, \=\bfitx u

\alpha (p, \alpha ), where the subscript \alpha represents
the partial derivative in this instance, is another vector which is tangential to \Gamma u(\bfita ). This
vector must be transverse to \bfitf (\=\bfitx u(p, \alpha )); if tangential at any value (p, \alpha ) \in ( - \infty , P ] \times S1,
that would relate to a failure of the trajectories (labelled by \alpha ) to foliate \Gamma u(\bfita ). Thus, the
standard cross product between these two vectors is nonzero, and normal to \Gamma u(\bfita ) at \=\bfitx u(p, \alpha ).
We will use the wedge notation for the cross product. Hence at time t \in ( - \infty , T ], the distance
between \bfitx u(p, \alpha , \epsilon , t) and \=\bfitx u(p, \alpha ) is measured perpendicular to original unperturbed manifold
can be represented as

du(p, \alpha , \epsilon , t) =
\bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u

\alpha (p, \alpha )

| \bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u
\alpha (p, \alpha )| 

\cdot [\bfitx u(p, \alpha , \epsilon , t) - \=\bfitx u(p, \alpha )] ,

(p, \alpha , t) \in ( - \infty , P ]\times S1 \times ( - \infty , T ] .(2)
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2650 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

Figure 2. The perturbed unstable manifold \Gamma u
\epsilon (\bfita \epsilon , t) (in red) at a general time t \in ( - \infty , T ], with the

unperturbed unstable manifold, \Gamma u(\bfita ), shown in black. The distance between the perturbed and unperturbed
unstable manifold denoted by du(p, \alpha , \epsilon , t) is measured perpendicular to the original manifold.

Theorem 1 (Displacement of unstable manifold). For (p, \alpha , t) \in ( - \infty , P ] \times S1 \times ( - \infty , T ],
the distance du(p, \alpha , \epsilon , t) can be expanded in \epsilon in the form

du(p, \alpha , \epsilon , t) = \epsilon 
Mu(p, \alpha , t)

| \bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u
\alpha (p, \alpha )| 

+\scrO (\epsilon 2),(3)

where the unstable Melnikov function is the convergent improper integral

Mu(p, \alpha , t)=

\int p

 - \infty 
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx u(\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx u(\tau , \alpha )) \wedge \=\bfitx u

\alpha (\tau , \alpha )] \cdot \bfitg (\=\bfitx u(\tau , \alpha ), \tau +t - p) d\tau .

(4)

Proof. This lengthy proof requires many stages, and is therefore given in Appendix A.
Several results which are ingredients in the proof are separated out into additional appendices
for clarity.

For volume-preserving unperturbed flows, the term \nabla \cdot \bfitf (\=\bfitx u(\xi , \alpha )) is zero, and conse-
quently the integrand of Mu loses the exponential term. Additionally, we note that it is only
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TWO-DIMENSIONAL MELNIKOV THEORY 2651

the normal component of the perturbation \bfitg , evaluated in appropriate retarded time, that
contributes to the leading-order normal displacement which is captured by Mu.

Remark 1 (Approximation of \Gamma u
\epsilon ). Theorem 1 enables a natural approximation for \Gamma u

\epsilon ,
with knowledge of the unperturbed flow and the perturbation velocity alone. If (p, \alpha , t) \in 
( - \infty , P ] \times S1 \times ( - \infty , T ] are the parameters for the parametric representation of a general
point \bfitr u on \Gamma u

\epsilon at time t, then

\bfitr u(p, \alpha , \epsilon , t) \approx \=\bfitx u(p, \alpha ) + \epsilon Mu(p, \alpha , t)
\bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u

\alpha (p, \alpha )

| \bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u
\alpha (p, \alpha )| 2

(5)

provides a (leading-order in \epsilon ) parametric representation of \Gamma u
\epsilon . (While each trajectory on

the manifold is known to exhibit a \scrO (\epsilon ) tangential displacement as well; see [6] for a quan-
tification in two dimensions, in a global view of the manifold as a collection of trajectories,
using the normal displacement by itself provides an excellent approximation to the manifold.)
Approximation of a perturbed stable or unstable manifold using a Melnikov approach has also
been performed by Chow and Yamashita [22] in \BbbR n, but---unlike the expression (5)---has the
issue of noncomputability outlined in the next remark.

Remark 2 (Kernel of the Melnikov integral). Melnikov functions in general dimensions
using functional-analytic or allied approaches [21, 53, 17, 59, 37, 24, 22, 70] for determining
persistent heteroclinic intersections usually take the form

M \sim 
\int \infty 

 - \infty 
\bfPsi \top \bfitg d\tau .

Here, the entity \bfPsi is associated with the fundamental matrix solution of the adjoint of the
equation of variations along the heteroclinic trajectory [28, 70, 22, 21, 53, 17, 59, 37, 24],
and is usually not computable except in two dimensions, or else if there is a Hamiltonian
structure in the unperturbed system [26]. The reason for noncomputability in general is that
this is a nonautonomous linear equation, for which generally solutions cannot be explicitly
written down. While the presence of the exponential term is no surprise in instances of non-
volume-preservation [28], the structure of the remaining term is usually not known. Hence in
such instances the Melnikov approach is a interesting theoretical tool which replaces one issue
(finding persistent heteroclinics) with another (finding zeros of a function with a kernel which
satisfies a certain property, but which cannot, in general, be explicitly given by a formula). A
similar issue also occurs when using Melnikov approaches for volume-preserving maps [38] in
which a volume-form related to potentially noncomputable adapted vector fields comes into
play. Our geometric approach in three dimensions, leading to (4), is the first insight into
an explicit form of this kernel function when these conditions are relaxed. (Note, however,
that our limits are not over all of \BbbR , because at this stage we are seeking the location of the
perturbed manifold rather than a persistent heteroclinic connnection.)

2.2. Displacement of the two-dimensional stable manifold. Second, consider case 2,
when \bfitD \bfitf (\bfita ) has one positive eigenvalue and two eigenvalues with negative real parts at
the point \bfita . So the unperturbed system posses a one-dimensional unstable manifold and
a two-dimensional stable manifold associated with the fixed point \bfita . It is once again the
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2652 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

Figure 3. The two-dimensional unperturbed stable manifold \Gamma s(\bfita ) for case 2, with the red dot representing
the saddle fixed point. The (p, \alpha )-dependence of trajectories (\=\bfitx s(p, \alpha )) can be used to parametrize \Gamma s(\bfita ).

displacement of the two-dimensional entity that we capture, in this case, the stable manifold.
Rather than repeat the development in detail, we will rely on Figures 3 and 4 which are exactly
analogous to case 1's Figures 1 and 2. The unperturbed stable manifold \Gamma s(\bfita ) is foliated by
trajectories \=\bfitx s(p, \alpha ) which forward asymptote to \bfita as p \rightarrow \infty (Figure 3). The perturbed
stable manifold \Gamma s

\epsilon (\bfita \epsilon , t) is attached to the hyperbolic trajectory (\bfita \epsilon (t), t) (Figure 4). A time
t \in [T,\infty ) (where T is finite) is chosen, and then the parameters p \in [P,\infty ) (for finite P ) and
\alpha \in S1 parametrize \Gamma s

\epsilon (\bfita \epsilon , t).
As shown in Figure 4, the perpendicular distance between perturbed stable manifold

(\Gamma s
\epsilon (\bfita )) and unperturbed stable manifold (\Gamma s(\bfita )) at the location of \=\bfitx s(p, \alpha ) in the time in-

stance t is given by

ds(p, \alpha , \epsilon , t) =
\bfitf (\=\bfitx s(p, \alpha )) \wedge \=\bfitx s

\alpha (p, \alpha )

| \bfitf (\=\bfitx s(p, \alpha )) \wedge \=\bfitx s
\alpha (p, \alpha )| 

\cdot [\bfitx s(p, \alpha , \epsilon , t) - \=\bfitx s(p, \alpha )] ,

(p, \alpha , t) \in [P,\infty )\times S1 \times [T,\infty ) .(6)

Theorem 2 (Displacement of stable manifold). For (p, \alpha , t) \in [P,\infty ) \times S1 \times [T,\infty ), the
distance ds(p, \alpha , \epsilon , t) can be expanded in \epsilon in the form

ds(p, \alpha , \epsilon , t) = \epsilon 
M s(p, \alpha , t)

| \bfitf (\=\bfitx s(p, \alpha )) \wedge \=\bfitx s
\alpha (p, \alpha )| 

+\scrO (\epsilon 2),(7)

where the stable Melnikov function is the convergent improper integral

M s(p, \alpha , t) =  - 
\int \infty 

p
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx s(\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx s(\tau , \alpha )) \wedge \=\bfitx s

\alpha (\tau , \alpha )] \cdot 

\bfitg (\=\bfitx s(\tau , \alpha ), \tau + t - p) d\tau .(8)
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TWO-DIMENSIONAL MELNIKOV THEORY 2653

Figure 4. The perturbed stable manifold, which is denoted by \Gamma s
\epsilon (\bfita \epsilon , t) (in blue), at a general time t \in [T,\infty ),

with the unperturbed stable manifold, \Gamma s(\bfita ) shown in black. The distance between perturbed and unperturbed
stable manifold denoted by ds(p, \alpha , \epsilon , t) is measured perpendicular to the original manifold.

Proof. The proof is exactly analogous to that for Theorem 1, when we think of simply
reversing time. Thus we think of p \rightarrow  - p (this reverses the time parametrization along an
unperturbed trajectory on the two-dimensional manifold), and t \rightarrow  - t. All the ingredients of
the proof essentially go through with this understanding. For the sake of brevity, no further
details will be given.

Remark 3 (Approximation of \Gamma s
\epsilon ). If (p, \alpha , t) \in [P,\infty ) \times S1 \times [T,\infty ) are the parameters

for the parametric representation of a general point \bfitr s on \Gamma s
\epsilon at time t, then

\bfitr s(p, \alpha , \epsilon , t) \approx \=\bfitx s(p, \alpha ) + \epsilon M s(p, \alpha , t)
\bfitf (\=\bfitx s(p, \alpha )) \wedge \=\bfitx s

\alpha (p, \alpha )

| \bfitf (\=\bfitx s(p, \alpha )) \wedge \=\bfitx s
\alpha (p, \alpha )| 2

(9)

provides a (leading-order in \epsilon ) parametric representation of \Gamma s
\epsilon .

2.3. A simple example. We conclude this section with a simple example in which a
perturbed unstable manifold is approximated in a non-volume-preserving situation with an
aperiodic time-dependence. Consider the unperturbed flow
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2654 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

\.\bfitx =

\left[  2 1 0
 - 1 2 0
0 0  - 3

\right]  \bfitx (10)

for \bfitx = (x1, x2, x3) \in \BbbR 3, for which the fixed point at the origin possesses a stable manifold
(eigenvalue  - 3) along the x3-axis, and an unstable manifold (eigenvalues 2\pm i) on the plane
x3 = 0. The non-compact two-dimensional unstable manifold is parametrizable in terms of
its spiralling trajectories as

\=\bfitx u(p, \alpha ) =

\left[  e2p cos (2\pi \alpha  - p)
e2p sin (2\pi \alpha  - p)

0

\right]  ,

where (p, \alpha ) \in \BbbR \times S1. Here, the unperturbed flow violates volume-preservation because
\bfnabla \cdot \bfitf = 1 \not = 0. If a perturbing vector field \epsilon \bfitg (\bfitx , t) = \epsilon (g1, g2, g3) is added to the right-hand
side of (10), then it is possible to use Remark 1 to directly obtain the approximation

\bfitr u(p, \alpha , \epsilon , t) \approx \=\bfitx u(p, \alpha ) + \epsilon \^\bfite 3 e
 - 3p

\int P

 - \infty 
e3\tau g3 (\=\bfitx 

u(\tau , \alpha ), t+ \tau  - p) d\tau (11)

as a parametric representation of the perturbed unstable manifold of the hyperbolic trajectory
\bfita \epsilon (t) which persists \scrO (\epsilon )-close to the origin. Here, \^\bfite 3 is the unit vector in the x3-direction,
and the limitations of (11) are that (p, \alpha , t) \in ( - \infty , P ]\times S1\times ( - \infty , T ] for finite P and T , and
| \epsilon | \ll 1. As an example, we take

g3(x1, x2, x3, t) = (1 + 3 sech t) sin
\bigl( 
3x1  - t2

\bigr) 
cos (x2t - x3) ,(12)

and note that other components of \bfitg are irrelevant in the leading-order approximation (11).
We show in Figure 5 calculations of the perturbed unstable manifold with \epsilon = 0.1 using (11)
for the vector field (12). While this example distills the essence of the theory for approximating
a two-dimensional stable/unstable manifold, a more complicated example will be presented
in section 4.

3. Melnikov function for heteroclinic manifolds. Quantifying and understanding trans-
port mechanisms in flows has well-established importance, and in this section we focus on a
contribution to the three-dimensional theory. While there are fewer contributions than in two
dimensions, there are still several transport quantifications in three dimensions [33, 13, 24,
47, 46, 50, 51]. These usually rely on additional conditions such as a specific type of time-
periodicity [33, 51], symmetry [33], volume-preservation [33, 13, 47, 46, 50, 51], the presence
of a conserved quantity [13, 47, 46, 51], or a single-step transport over a finite time [50].

Instances where an unperturbed system has a codimension-1 heteroclinic manifold are
interesting in that the manifold forms a flow separator in both forwards and backwards time.
Nearby initial conditions on opposite sides of the manifold separate exponentially in time,
allowing the manifold to be thought of as a flow barrier [7]. Perturbations have the potential
for generating transport across this flow barrier. This setting of a heteroclinic manifold is
also the more ``classical"" setup of Melnikov theory. However, rather than simply seeking a
Melnikov function whose zeros imply persistence of a heteroclinic connection (which we will
obtain), we do more in this section:
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TWO-DIMENSIONAL MELNIKOV THEORY 2655

(a) (b)

(c) (d)

Figure 5. Computed unstable manifold for the system in section 2.3 using the formula (11) for the pertur-
bation (12) with \epsilon = 0.1 at several times t.

\bullet Find ways of characterizing lobes bounded by perturbed stable and unstable manifolds
at each instance in time (under general time-dependent perturbations).

\bullet Obtain a formula in terms of the Melnikov function for the volume of such a lobe.
\bullet In this instance when the perturbation g is harmonic, that is when it can be written

in the form \~\bfitg (x) cos [\omega t+ \phi ], extend the two-dimensional theory of lobe dynamics via
a turnstile [57, 66] to three dimensions.

\bullet In the more general instance in which g has general time-dependence, extend the two-
dimensional theory for instantaneous flux across the broken heteroclinic (formerly a
flow barrier) to three dimensions;

\bullet In the above instance, express the formula in simple terms in terms of the Melnikov
function.

The last two of these issues is particularly important within the context of fluid flows:
these are inevitably three-dimensional, and flow barriers are consequently two-dimensional.
By rationalizing an instantaneous flux across a flow barrier, we are quantifying an easily
computable time-varying transport due to a perturbation which has general (aperiodic) time-
dependence. This is the principal result of this section, and is given in Theorem 3.
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(a) (b)

(c) (d)

Figure 6. Several trajectories \=\bfitx (p, \alpha ) on two-dimensional unperturbed stable and unstable manifolds are
given for four different situations. The case when no complex eigenvalues are present is shown in (a). The
cases in which the complex conjugate eigenvalues are only on the unstable manifold (respectively, only on the
stable manifold), are given in (b) and (c). Finally, if the eigevalues at both \bfita and \bfitb are complex-conjugate, we
get the behavior shown in (d).

We assume that the smoothness hypotheses as stated in section 2 continue to hold. How-
ever, assume now that unperturbed situation of the system (1) when \epsilon = 0 has two distinct
fixed points \bfita and \bfitb , such that \bfita possesses a two-dimensional unstable manifold \Gamma u, and \bfitb a
two-dimensional stable manifold \Gamma s. Moreover, we assume that these two manifolds coincide,
to form a two-dimensional orientable heteroclinic manifold \Gamma as shown in Figure 6. Thus, a
trajectory \=\bfitx u(p, \alpha ) on \bfita 's unstable manifold coincides with a trajectory \=\bfitx s(p, \alpha ) on \bfitb 's stable
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TWO-DIMENSIONAL MELNIKOV THEORY 2657

manifold. We denote this heteroclinic trajectory by \=\bfitx (p, \alpha ), and insist that (p, \alpha ) \in \BbbR \times S1 be
chosen such that (p, \alpha ) provides a C2-smooth parameterization of the heteroclinic manifold.
Once again, p can be thought of as the time-evolution along the trajectory, with \alpha choosing
which trajectory. Thus we have the limiting behavior

lim
p\rightarrow  - \infty 

\=\bfitx (p, \alpha ) = \bfita and lim
p\rightarrow \infty 

\=\bfitx (p, \alpha ) = \bfitb 

for each and every \alpha . We have shown the spiralling situation in Figure 6(d), corresponding
to \lambda u

1(\bfita ) and \lambda u
2(\bfita ) (eigenvalues with the positive real parts obtained at \bfita ) being complex

conjugates of one another, as are \lambda s
1(\bfitb ) and \lambda s

2(\bfitb ) (eigenvalues with the negative real parts
obtained at \bfitb ). However, the heteroclinic trajectories need not be spiralling in general; that
is, these sets of eigenvalues could be purely positive (for \bfita ) and purely negative (for \bfitb ). This
situation is shown in Figure 6(a). Indeed, it is allowable to have complex eigenvalues only at
one of the endpoints \bfita or \bfitb and at the other endpoint, we can have purely positive or negative
eigenvalues appropriately. These are given in Figures 6(b,c).

The unperturbed heterclinic manifold \Gamma is a closed surface, separating phase space into a
part which is inside \Gamma , and another which is outside. To distinguish between the two, we will
assume that the \alpha -labelling in the (p, \alpha ) parametrization of \Gamma is chosen such that

\partial \=\bfitx (p, \alpha )

\partial p
\wedge \partial \=\bfitx (p, \alpha )

\partial \alpha 
= \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )

(which we know is normal to \Gamma ) points in the outwards direction to \Gamma at each point \bfitx (p, \alpha )
on \Gamma . Thus, the unit outwards-pointing normal vector to \Gamma at a point parametrized by (p, \alpha )
is given by

\^\bfitn (p, \alpha ) :=
\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
.(13)

Now, when \epsilon \not = 0 but is small in size, we know that \bfita becomes a heteroclinic trajectory, and its
unstable manifold persists as a time-parameterized entity \Gamma u

\epsilon (\bfita \epsilon , t). This can be parameterized
by (p, \alpha , t) \in ( - \infty , P u]\times S1\times ( - \infty , T u] for any finite P u and T u. We note that we can take P u

as large as we like (but remaining finite), indicating that we cannot find an approximation to
the manifold globally. Intuitively, this means that a perturbed version of the top-hemisphere
of Figure 6 persists; we may approach the south pole, but begin to lose control as we do so.
The manifold may continue beyond this region, and if so, our theory is not able to approximate
it. Similarly, the stable manifold of \bfitb persists as \Gamma s

\epsilon (\bfitb \epsilon , t), and we can parameterize this by
(p, \alpha , t) \in [P s,\infty ) \times S1 \times [T s,\infty ) for any finite P s and T s, which we can choose to be as
negative as we like.

Take a time t \in [T s, T u]. The unstable manifold of \bfita \epsilon for time in ( - \infty , t] and the stable
manifold of \bfitb \epsilon for time in [t,\infty ) can both be approximated using our previous results. The
manifolds at time t no longer need to coincide, and we show a generic situation in Figure 7.
There is now a perturbed version of \=\bfitx (p, \alpha ) on \Gamma u

\epsilon (\bfita \epsilon , t), which we can call \bfitx u(p, \alpha , \epsilon , t), which
exists for p \in ( - \infty , P u]. Similarly, there exists a perturbed version of \=\bfitx (p, \alpha ) on \Gamma s

\epsilon (\bfitb \epsilon , t),
which we call \bfitx s(p, \alpha , \epsilon , t), which exists for p \in [P s,\infty ).
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2658 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

Figure 7. A generic intersection pattern of the perturbed unstable (\Gamma u
\epsilon (\bfita \epsilon , t), red) and stable (\Gamma s

\epsilon (\bfitb \epsilon , t),
blue) manifolds of the Hill's spherical vortex with no swirl, which is given in (36), at time t = 1 and \epsilon = 0.1.
These perturbed unstable and stable manifolds were computed utilizing (37) and (38).

Given a location (p, \alpha ) on \Gamma , we first want to quantify the displacement of between the
perturbed unstable and stable manifolds, in the direction normal to \Gamma :

d(p, \alpha , \epsilon , t) =
\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
\cdot [\bfitx u(p, \alpha , \epsilon , t) - \bfitx s(p, \alpha , \epsilon , t)] ,

(p, \alpha , t) \in [P s, P u]\times S1 \times [T s, T u] .(14)

Given our choice of labelling of the unperturbed heteroclinic trajectories on \Gamma , we note that
a positive d(p, \alpha , \epsilon , t) implies that the unstable manifold is outside the stable manifold, while
a negative d means that the stable manifold is outside the unstable one at a location \=\bfitx (p, \alpha )
at a time instance t.

Theorem 3 (Heteroclinic splitting). For (p, \alpha , t) \in [P s, P u]\times S1\times [T s, T u], the distance (14)
can be expanded in \epsilon in the form

d(p, \alpha , \epsilon , t) = \epsilon 
M(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
+\scrO (\epsilon 2),(15)

where the Melnikov function is the convergent improper integral

M(p, \alpha , t) =

\int \infty 

 - \infty 
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx (\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx (\tau , \alpha )) \wedge \=\bfitx \alpha (\tau , \alpha )] \cdot \bfitg (\=\bfitx (\tau , \alpha ), \tau + t - p) d\tau .

(16)
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TWO-DIMENSIONAL MELNIKOV THEORY 2659

Proof. See Appendix E for the proof.

Note that the distance function d in (15) at fixed t can be thought of in the sense of
first taking a point on \Gamma parametrized by (p, \alpha ), i.e., the point \=\bfitx (p, \alpha ), drawing an outward-
pointing normal vector to \Gamma at that point, and determining the signed distance along that
normal vector. Thus, we can think of projecting this distance information between perturbed
stable and unstable manifolds on to \Gamma .

Remark 4 (Shifts of heteroclinic points). Each heteroclinic intersection point simply ``shift
along"" the p-location as time t is varied in forward and backward time, because of the limiting
behavior expressed by (18). Indeed, (16) shows that

M(\~p+ t, \~\alpha , \~t+ t) = exp

\biggl[ \int \~p+t

\~p
\nabla \cdot \bfitf (\=\bfitx (\xi , \alpha ))d\xi 

\biggr] 
M(\~p, \~\alpha , \~t)

for any time-shift t, and hence if there is a zero at a time \~t at a location encoded by the
parameter \~p, then there is correspondingly a zero at the shifted time \~t+t at a parameter value
\~p+t, at the same \~\alpha value (i.e., traversing along the same unperturbed heteroclinic trajectory).
Effectively, tracking the location of this point with time gives the location subtended on \Gamma 
of the corresponding perturbed heteroclinic trajectory as a function of time t. This fact is
illustrated most strikingly for the volume-preserving case, since M will depend on (p, t) not
independently, but in terms of the shift (p - t).

Remark 5 (Transverse intersection points). At a fixed value \~t of time, a transverse inter-
section between \Gamma u

\epsilon (\bfita \epsilon ) and \Gamma s
\epsilon (\bfitb \epsilon ) near a point \=\bfitx (p, \alpha ) is guaranteed if M(p, \alpha , t) has a simple

zero with respect to (p, \alpha ); that is, if there exists (\~p, \~\alpha ) such that M(\~p, \~\alpha , \~t) = 0 and\bigm| \bigm| \bigm| \bigm| \partial M\partial p (\~p, \~\alpha , \~t)

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \partial M\partial \alpha (\~p, \~\alpha , \~t)

\bigm| \bigm| \bigm| \bigm| \not = 0 .(17)

This is a standard consequence of implicit function theorem type arguments in this setting
(see [1, 30]). Each such intersection point \bfitx (\~p, \~\alpha , \~t) corresponds to a heteroclinic trajectory,
i.e., the trajectory \bfitx (\~p, \~\alpha , t) passing through \bfitx (\~p, \~\alpha , \~t) at time \~t satisfies

lim
t\rightarrow  - \infty 

| \bfitx (\~p, \~\alpha , t) - \bfita \epsilon (t)| = 0 and lim
t\rightarrow \infty 

| \bfitx (\~p, \~\alpha , t) - \bfitb \epsilon (t)| = 0 .(18)

While this is a generic result in standard Melnikov developments, having an explicit form
within the integral in (16) in a dimension larger than 2 without a Hamiltonian structure is
new.

Remark 6 (Curves of heteroclinic points). Suppose there exists continuously differentiable
functions \~\alpha (s) and \~p(s) for s \in (0, 1) such that at a fixed t

M (\~p(s), \~\alpha (s), t) = 0 and \bfnabla p,\alpha M (\~p(s), \~\alpha (s)) \not = \bfzero for all s \in (0, 1),

where \bfnabla p,\alpha is the two-dimensional gradient with respect to (p, \alpha ). Assume moreover that
there exists a constant H such that

sup
s\in (0,1)

| \bfnabla p,\alpha M (\~p(s), \~\alpha (s))| < H .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2660 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

The parametrization (\~p(s), \~\alpha (s)) represents a nondegenerate curve of points, Q, parametrized
by s \in (0, 1) and at the locations \=\bfitx (\~p(s), \~\alpha (s)), along which M is zero. (This is the generic
expectation for the intersection between the two two-dimensional perturbed manifolds.) Ap-
plying the Banach space version of the implicit function theorem to d(p, \alpha , \epsilon , t)/\epsilon then gives
the persistence of a C1-curve Q \star for small enough | \epsilon | , which is associated with the param-
etrization (p \star (s), \alpha  \star (s)) which is \scrO (\epsilon )-close to (\~p(s), \~\alpha (s)). Note that the same implication
arises if s \in S1, i.e., we think of Q as a closed curve. In other words, these conditions imply
the presence of a curve of heteroclinic points Q \star which is \scrO (\epsilon )-close to that predicted via the
Melnikov function. Thus, each point on Q \star obeys Remark 5, and is an ``initial condition"" for
a heteroclinic trajectory of the time-varying problem which satisfies the conditions (18).

A possible intersection between a perturbed stable manifold \Gamma s
\epsilon (\bfitb \epsilon , t) and perturbed unsta-

ble manifold \Gamma u
\epsilon (\bfita \epsilon , t) at a fixed time t is shown in Figure 7. Here, we have used red and blue

colors to represent the perturbed unstable and stable manifolds, respectively, a convention we
will follow in the remainder of this paper. We recall that in two-dimensional flows in which
a one-dimensional heteroclinic splitting is captured via a Melnikov function, the ``lobe area""
between two adjacent intersections of the split manifolds can be obtained by integrating the
Melnikov function [57, 66]. An analogous result is available in the present three-dimensional
setting. If the Melnikov function M has a closed curve Q on \Gamma along which M has nondegen-
erate zeros as explained in Remark 6, then there is a \scrO (\epsilon )-close closed curve Q \star on \Gamma which
corresponds to the normal projection on to \Gamma of the intersection ring between perturbed stable
and unstable manifolds. If M is sign definite inside Q, the interior of Q \star is the ``shadow"" of
the one lobe which is generated by this intersection, i.e., the projection of the lobe on to \Gamma 
along normal vectors to \Gamma . Then, we can give an expression for the lobe volume in terms of
the Melnikov function.

Theorem 4 (Lobe volume). Let t \in [T s, T u] be fixed, and suppose that there is an open
region R on \Gamma in which M(p, \alpha , t) is sign definite, and such that M = 0 and \bfnabla p,\alpha M \not = \bfzero 
at all points on its boundary Q. Note that Q will generically consist of a finite number of
closed curves. Let R\prime be the region in (p, \alpha )-space corresponding to R. The region between the
perturbed stable and manifolds which is subtended by R is a lobe, whose volume is given by

Lobe volume = \epsilon 

\int \int 
R\prime 

| M(p, \alpha , t)| dp d\alpha +\scrO (\epsilon 2) .(19)

Proof. See Appendix F for the proof.

Remark 7. The fact that a lobe volume can be represented to leading-order by an integral
of the Melnikov function over the p-variable (representing the time-parametrization along a
heteroclinic trajectory) is exactly analogous to a well-known similar result for lobe areas in the
two-dimensional situation [57, 66]. We point out that it is not necessary to impose additional
hypotheses such as volume-preservation or time-periodicity for this result to be true; one just
needs to know the (p, \alpha )-region associated with the particular lobe of interest.

In the unperturbed situation, the stable and unstable manifold coincide to form a het-
eroclinic manifold, which separates the ``inside"" and the ``outside"" flow regimes. However,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO-DIMENSIONAL MELNIKOV THEORY 2661

after perturbation this entity splits into a stable and unstable manifold, and consequently is
no longer a flow separator. Hence, transport will now occur across the previously imperme-
able structure. Understanding the lobe volume would seem to be relevant in quantifying this
transport. It turns out, though, that a lobe volume can only be unambiguously assigned as
a measure of transport under several additional assumptions, including a restrictive type of
time-periodicity of the perturbation \bfitg , and volume preservation of the unperturbed flow. We
show in section 3.3 how the two-dimensional theory of lobe dynamics [57, 66] can be extended
to our situation, to allow for a lobe volume to quantify transport. In more general situa-
tions, a lobe volume cannot be used to quantify transport, because it turns out that there
may be either many different-sized lobes, or no lobes at all (these are possibilities even under
time-periodic perturbations [2]). In this case, an alternative approach, which characterizes
an instantaneous flux as a time-varying quantity, is necessary. This more general approach is
described in section 3.1, which builds on a similar approach in two dimensions [4, 10, 7].

3.1. Instantaneous flux for general time-dependence. Here, we develop a genuinely
time-dependent approach for quantifying transport. We do not require conditions such as
time-periodicity [33, 51], symmetry [33], volume-preservation [33, 13, 47, 46, 50, 51], or the
presence of a conserved quantity [13, 47, 46, 51] present in other three-dimensional transport
quantifications. The theory and quantification is also independent of the concept of lobes [42,
57, 66, 43]. Our approach is analogous to the two-dimensional development of instantaneous
flux [4, 10]. We therefore continue to allow \bfitg (\bfitx , t) to have any general temporal behavior (but
subject to the smoothness/boundedness assumptions detailed in section 2), and both \bfitf and
\bfitg to not be divergence-free. We will in Theorem 3 detail our main result, which quantifies
the transport engendered under general time-variation elegantly in terms of the Melnikov
function.

An ``obvious"" way of quantifying a time-dependent flux across the previously impermeable
\Gamma might be the Eulerian approach

Eulerian flux (t, \epsilon ) =
x

\Gamma 

[\bfitf (\=\bfitx (p, \alpha ) + \epsilon \bfitg (\=\bfitx (p, \alpha ), t)] \cdot \^\bfitn (p, \alpha ) dS

= \epsilon 

\int 1

0

\int \infty 

 - \infty 
\bfitg (\=\bfitx (p, \alpha ), t) \cdot [\bfitf (\=\bfitx (p, \alpha ) \wedge \=\bfitx \alpha (p, \alpha )] dp d\alpha .(20)

The term ``Eulerian"" is used here in the fluid-mechanics context, in relation to the flux across
a fixed surface. The simplification above occurs because \bfitf is tangential to \Gamma , and thus does
not contribute.

However, the Eulerian approach does not take into account transport . The issue is that the
manifolds themselves move, as do trajectories on and adjacent to them. Therefore, a velocity
flux across \Gamma does not capture the Lagrangian (following the flow of particle trajectories)
transport. As a simple example, imagine that the perturbation is such that the manifold \Gamma 
retains its structure as continuing to be heteroclinic, but simply ``puffs out"" to be slightly larger
than the original \Gamma . Then, there should be no predicted transport, because the perturbed
manifold structure persists. On the other hand, there could be a nonzero Eulerian flux because
\bfitg need not be zero on \Gamma , nor perpendicular to \Gamma . It need only satisfy those conditions on the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2662 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

Figure 8. A schematic of the construction of (a) the strip, and (b) the pseudo-separatrix \~\Gamma (p, t, \epsilon ) at time
t, associated with making a choice of p, and consisting of the unstable manifold (red) and stable manfold (blue),
both extending until intersecting the strip S(p, \epsilon , t), as well as the strip S(p, \epsilon , t).

perturbed version of \Gamma . Computing the flux across the fixed unperturbed \Gamma without taking
into account the fact that the invariant manifolds have now perturbed is incorrect. In other
words, in a transport computation the fact that the invariant manifold is itself moving must
be taken into account, and not simply the time-variation of the vector field.

A Lagrangian approach---which takes into account the displacement of the previously
impermeable heteroclinic manifold---is thus necessary. On the unperturbed \Gamma , consider a
fixed-p curve, that is

\bigcup 
\alpha \in \mathrm{S}1 \=\bfitx (p, \alpha ). This goes all the way around \Gamma , and at each point on it

has an outward-pointing normal vector \^\bfitn (p, \alpha ) as given in (13). We form the unperturbed
strip \~S(p) by taking the union of these normal vectors across \alpha \in S1, and extending outwards
in both the positive and negative directions of \^\bfitn (p, \alpha ). At this instance, we will not specify
how far the extension needs to be done; this will be clear shortly. Thus, \~S(p) is an oriented
strip going all the way around \Gamma ; a portion of this is displayed in Figure 8(a).

Now consider the perturbed stable and unstable manifolds at a general time t. Using the
results from section 2, we know that the distance to the perturbed unstable manifold along
the normal vector direction is given by

du(p, \alpha , \epsilon , t) = \^\bfitn (p, \alpha ) \cdot [\bfitx u(p, \alpha , \epsilon , t) - \=\bfitx (p, \alpha )]

and to the perturbed stable manifold

ds(p, \alpha , \epsilon , t) = \^\bfitn (p, \alpha ) \cdot [\bfitx s(p, \alpha , \epsilon , t) - \=\bfitx (p, \alpha )]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TWO-DIMENSIONAL MELNIKOV THEORY 2663

in terms of trajectories \bfitx u and \bfitx s, respectively, on the perturbed manifolds. We now define
the strip S(p, \epsilon , t) \subset \~S(p) by

S(p, \epsilon , t) :=
\bigcup 
\alpha \in \mathrm{S}1

\bigcup 
s\in [0,1]

\{ \=\bfitx (p, \alpha ) + \^\bfitn (p, \alpha ) [sdu(p, \alpha , \epsilon , t) + (1 - s)ds(p, \alpha , \epsilon , t)]\} .(21)

Thus, at each fixed time t and parameter p, the strip S(p, \epsilon , t) is a \scrO (\epsilon )-width ``ribbon"" which
is attached to the closed curve \cup \alpha \in \mathrm{S}1 \=\bfitx (p, \alpha ) on \Gamma . This is illustrated by the shaded segment
in Figure 8(b). At each location \alpha , the strip traverses the normal direction to \Gamma spanning
from the stable to the unstable manifold. When the stable and unstable manifolds intersect,
then the ``ribbon"" has zero width at that point. Therefore, the unperturbed strip \~S(p) needs
to extend out to ensure that S(p, \epsilon , t) \subset \~S(p) for all times t and perturbative parameters \epsilon for
which we want to characterize the flux.

We want to define an instantaneous flux across the broken heteroclinic manifold, taking
into account the Lagrangian nature of the problem. To do so, we now define the pseudo-
separatrix \~\Gamma (p, t, \epsilon ) as the union of the following two-dimensional surfaces:

\bullet the part of the unstable manifold \Gamma u
\epsilon (\bfita \epsilon , t) emanating from \bfita \epsilon (t), until it first hits the

strip S(p, \epsilon , t);
\bullet the strip S(p, \epsilon , t); and
\bullet the part of the stable manifold \Gamma s

\epsilon (\bfitb \epsilon , t) emanating from \bfitb \epsilon (t), until it first hits the
strip S(p, \epsilon , t).

These entities are shown in Figure 8(b) for a typical situation. We note that \~\Gamma (p, \epsilon , t)
is \scrO (\epsilon )-close the the unperturbed \Gamma , which was a genuine flow separator between the its
``inside"" and ``outside."" The pseudo-separatrix \~\Gamma is itself a closed surface for any chosen
p, and at any time t. It is one way of attempting to define a semiseparator between the
inside and the outside of the perturbed version of \Gamma , which is in reality the combination of
the perturbed stable and unstable manifolds which typically will intersect with each other.
Note that the definition takes into account the perturbed versions of both the stable and
unstable manifolds, and is hence Lagrangian. We can determine the instantaneous signed flux
(volume per unit time) exiting \~\Gamma at time t, subject to the choice of the parameter p. Key
to this quantification is the observation that the stable/unstable manifold parts of \~\Gamma (p, \epsilon , t)
are moving as invariant objects, and hence can have no flux crossing them. Transport across
\~\Gamma (p, \epsilon , t) occurs because of the flux across the strip where the stable and unstable manifolds
connect. The instantaneous flux \Phi can be quantified elegantly in terms of the Melnikov
function:

Theorem 5 (Instantaneous flux). The instantaneous (signed) flux exiting the pseudo-
separatrix \~\Gamma (p, t, \epsilon ) is

\Phi (p, t, \epsilon ) = \epsilon 

\int 1

0
M(p, \alpha , t) d\alpha +\scrO (\epsilon 2) .(22)

Proof. See Appendix G for the proof.

We emphasize that this result is for the general form of the Melnikov function, without
having to make assumptions on time-periodicity or volume-preservation. It is even true if the
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2664 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

manifolds do not intersect at all, and hence is independent of the concept of lobes. Theorem
3 is therefore a very general result, for any time-variation of the perturbation (subject to
Hypothesis 1), which states that the leading-order instantaneous flux is given by integrating
the Melnikov function over all \alpha (representing all the unperturbed heteroclinic trajectories).
The instantaneous flux \Phi is, of course, time-dependent; this variation is captured by the t in
the Melnikov function. Moreover, \Phi is also dependent on the choice of p, the location along
which the perturbed stable and unstable manifolds are joined.

The flux is explicitly the volume of phase space which crosses \~\Gamma per unit time. This is
best rationalized in the fluid mechanical context in which \bfitf + \epsilon \bfitg is a fluid velocity. Then, the
flux represents exactly the volume of fluid per unit time exiting \~\Gamma .

It should also be pointed out that the flux \Phi is signed . In parts where the unstable
manifold is outside the stable manifold on the strip S, there will be flux exiting the closed
surface \~\Gamma (see Figure 8(b)). These will be encoded as positive, reflecting also the fact that a
positive Melnikov function implies that du  - ds, when projected on to the outwards-pointing
normal vector direction \^\bfitn (p, \alpha ), is positive. Similarly, parts where the unstable manifold is
inside the stable manifold are associated with flux flowing into \~\Gamma , and thus constitutes negative
flux. The expression \Phi in Theorem 3 sums all these flux contributions to obtain a signed net
flux. If \Phi > 0, that means that there is more volume of fluid instantaneously exiting \~\Gamma than
there is entering it.

Remark 8. The instantaneous flux is dependent on the choice of p; that is, the ring of
locations on the heteroclinic trajectories at which the strip S is drawn. In view of Remark
4, though, it is clear that if the unperturbed flow is volume-preserving, then the flux \Phi 's
p-dependence is equivalently a shift in t.

While the flux expression in Theorem 3 is very general, it will be useful to view its
form under commonly used restrictions---notably a special form of periodicity in \bfitg ---to gain
additional insight into the flux. We do this in the next section.

3.2. Flux and geometry under additional conditions. We first obtain simplifications for
the Melnikov function and the instantaneous flux under a frequently used condition [57, 66,
33]. We call this time-harmonicity or simply harmonicity :

Definition 1. The perturbing function \bfitg shall be called harmonic if it is representible in the
form

\bfitg (\bfitx , t)] = \~g (\bfitx ) cos (\omega t+ \phi ) ,(23)

where \~\bfitg and D\~\bfitg are bounded (as per hypothesis), and the frequency \omega \not = 0 and the phase shift
\phi are constant.

Remark 9. Harmonicity amounts to the perturbation's time-dependence being separable
from the spatial dependence, as well as the time-dependence being sinusoidal. The period of
the perturbation is then T = 2\pi /\omega . We remark that this is a much stronger restriction than
``periodicity in time,"" which would merely require \bfitg (\bfitx , t+ T ) = \bfitg (\bfitx , t) for all relevant (\bfitx , t).
(In this periodic case, the results of this section can be extended by following an approach
developed for two dimensions [2], which we will avoid because we have a theory for general
time-dependence.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

9/
22

 to
 1

36
.5

3.
98

.6
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



TWO-DIMENSIONAL MELNIKOV THEORY 2665

For harmonic \bfitg , we first show that the Melnikov function takes a remarkably simple
form---itself harmonic. To express this, we make the following choice for the definition of the
Fourier transform:

\scrF \{ H(\dotp )\} (\omega ) :=
\int \infty 

 - \infty 
e - i\omega \tau H(\tau ) d\tau 

for functions of time in L1(\BbbR ).

Theorem 6 (Melnikov function for harmonic perturbations). If \bfitg is harmonic as given in
(23), the Melnikov function is itself harmonic, and expressible as

M(p, \alpha , t) = | \scrF \{ h(p, \alpha , \dotp )\} (\omega )| cos [\omega (t - p) + \phi  - arg (\scrF \{ h(p, \alpha , \dotp )\} (\omega ))] ,(24)

where

h(p, \alpha , \tau ) := exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx (\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx (\tau , \alpha )) \wedge \=\bfitx \alpha (\tau , \alpha )] \cdot \~\bfitg (\=\bfitx (\tau , \alpha )) .(25)

Proof. Under the harmonic assumption, the Melnikov function (16) becomes

M(p, \alpha , t) =

\int \infty 

 - \infty 
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx (\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx (\tau , \alpha )) \wedge \=\bfitx \alpha (\tau , \alpha )] \cdot 

\~\bfitg (\=\bfitx (\tau , \alpha )) cos [\omega (\tau + t - p) + \phi ] d\tau 

=

\int \infty 

 - \infty 
h(p, \alpha , \tau ) cos [\omega (\tau + t - p) + \phi ] d\tau .

By treating the other parameters (p, \alpha , t) as constants when taking the Fourier transform of
h with respect to \tau , the result follows from standard trigonometric manipulations (see [2]).

The instantaneous flux \Phi characterized in Theorem 3 itself simplifies to a harmonic form
under the harmonic assumption:

Corollary 1 (Instantaneous flux for time-harmonic perturbations). If the perturbation \bfitg sat-
isfies the time-harmonic assumption (23), then the instantaneous flux of Theorem 3 can be
written as

\Phi (p, t, \epsilon ) = \epsilon 

\bigm| \bigm| \bigm| \bigm| \int 1

0
\scrF \{ h(p, \alpha , \dotp )\} (\omega ) d\alpha 

\bigm| \bigm| \bigm| \bigm| cos \biggl[ \omega (t - p) + \phi  - arg

\biggl( \int 1

0
\scrF \{ h(p, \alpha , \dotp )\} (\omega ) d\alpha 

\biggr) \biggr] 
+\scrO (\epsilon 2) ,(26)

where h is defined in (25).

Proof. See Appendix H for the proof.

The harmonic-in-time nature of the Melnikov function means that, if staying at a location
parametrized by (p, \alpha ) on \Gamma , as time evolves the stable and unstable manifold keep flipping
their relative ordering periodically. That is, at an instance in time the unstable manifold
will be above the stable one when viewing along the normal direction \^\bfitn (p, \alpha ), but as time
evolves the manifolds will get closer, and then the unstable one will be lower than the stable
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2666 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

one. The periodic switching will occur at a frequency \omega . Given the time-sinusoidal variation,
one might quantify an overarching ``size"" of the splitting as the amplitude of the Melnikov
function, which is simply the modulus of a Fourier transform, i.e., | \scrF \{ h(p, \alpha , \dotp )\} (\omega )| .

The leading-order term of the instantaneous flux is also harmonic with frequency \omega . So
the phase space volume per unit time crossing the pseudoseparatrix also exhibits a back-
and-forth behavior, influenced by the stable and unstable manifolds continually interchanging
their relative locations. A time-averaged measure of the flux could be the amplitude of the
harmonic function in (26), i.e.,

FI :=

\bigm| \bigm| \bigm| \bigm| \int 1

0
\scrF \{ h(p, \alpha , \dotp )\} (\omega ) d\alpha 

\bigm| \bigm| \bigm| \bigm| .(27)

The harmonic format of the Melnikov function in (24) enables a straightforward (though
implicit) characterization of the intersection curves between the stable and unstable manifolds
at each fixed time t:

Remark 10 (Intersection curves under harmonicity). By virtue of (24), at each instance
in time t, there are intersections between the perturbed stable and unstable manifolds along
curves near \Gamma within \scrO (\epsilon ) of the (p, \alpha ) curves defined implicitly by

\scrF \{ h(p, \alpha , \dotp )\} (\omega ) = 0 and(28)

\omega (t - p) + \phi  - arg (\scrF \{ h(p, \alpha , \dotp )\} (\omega )) = \pi (2k + 1)

2
; k \in \BbbZ .(29)

Remark 11 (Fourier transform under volume-preservation). If the unperturbed flow is
volume-preserving, i.e., if \bfnabla \cdot \bfitf = 0, then h in (25) loses its p-dependence, and is

h(\alpha , \tau ) := [\bfitf (\=\bfitx (\tau , \alpha )) \wedge \=\bfitx \alpha (\tau , \alpha )] \cdot \~\bfitg (\=\bfitx (\tau , \alpha )) .(30)

Consequently, the amplitude of the Melnikov function (24) is p-independent, and t and p only
occur in the combination t  - p within the cosine term. Zero level sets of M arising from
the cosine term therefore simply move along in the p-paramatrization direction on \Gamma as time
progresses.

Remark 12 (Intersection curves under harmonicity and volume-preservation in f). If
the unperturbed flow is volume-preserving, the intersection curves defined in Remark 10
specialize to

\scrF \{ h(\alpha , \dotp )\} (\omega ) = 0 and(31)

p = \~pk(\alpha , t) :=
1

\omega 

\biggl[ 
\omega t+ \phi  - arg (\scrF \{ h(\alpha , \dotp )\} (\omega )) - \pi (2k + 1)

2

\biggr] 
; (\alpha , k) \in S1 \times \BbbZ .(32)

Generically, (31) will correspond to a finite number of \alpha = constant lines along \Gamma (i.e., curves
lying along unperturbed trajectories). In general, we may expect these to be at the ordered
set of values \alpha = \alpha i \in S1, where i = 1, 2, . . . , I with I being the number of distinct roots to
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Figure 9. The size of the Melnikov function M(p, \alpha , t) at a fixed time-instance t, with respect to (p, \alpha )-
space, under time-harmonic volume-preserving conditions. Darker colors indicate larger amplitudes of M . The
(infinitely many) heteroclinic ring curves Qk correspond to p = \~pk(\alpha , t) as defined in (32), at which M = 0.
The vertical lines \alpha = \alpha i are defined via (31), and M = 0 along these as well. Each region separated by these
curves is associated with a lobe.

(31). These will generically correspond to transverse intersections since the amplitude can be
expected to cross zero as \alpha is varied. Indeed, given that \alpha \in S1, the expectation then is that
I be even. (We note that there not being any solutions is also a possibility.) It is interesting
that these lines do not change when t is varied; there are therefore a collection of specialized
unperturbed heteroclinic trajectories nearby which a curve of heteroclinic points persists for
all relevant t. These special trajectories are essentially unaffected by the perturbation; any
point on them continues to be a heteroclinic point, and decay in backwards and forwards time
to the hyperbolic trajectories \bfita \epsilon (t) and \bfitb \epsilon (t), respectively, effectively forming a \scrO (\epsilon )-close
heteroclinic trajectory to the original unperturbed one.

The second equation in Remark 12 indicates that for any chosen value of k \in \BbbZ , p = \~pk(\alpha , t)
in (32) defines a curve of heteroclinic points which goes across all the \alpha values in S1. We call
this a heteroclinic ring Qk. These points automatically correspond to transverse intersections
because of the sinusoidal form of the Melnikov function. Each of the Qk, k \in \BbbZ is clearly a
simple shift of one another in the p-direction, defined according to (32). There being infinitely
many heteroclinic rings is the analogous situation to there being infinitely many heteroclinic
points in the two-dimensional case. We can visualize the generic heteroclinic point distribution
most easily in the (\alpha , p) parameter space, at fixed time t!` as shown in Figure 9. We have
drawn this for the situation where I = 6, with the white vertical lines representing the zeros
\alpha i associated with (31). These lines split S2 into I = 6 separate regions. The heteroclinic
rings Qk are given by the white curves p = \~pk(\alpha , t) which form an infinite collection spaced
apart in the p-direction by \pi /\omega , half the period of the perturbation. The Melnikov function M
will switch signs as each of these curves is crossed, and will also switch signs when an \alpha = \alpha i

line is crossed. A positive M indicates that the unstable manifold is outside the stable one,
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2668 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

and vice versa. Each of the regions bounded by these curves in (p, \alpha )-space subtends a lobe
which is bounded by a stable and an unstable manifold, and their intersection at (p, \alpha )-values
which defined the bounding curves. Each lobe Lik(t) for (i, k) \in \{ 1, . . . , I\} \times \BbbZ at fixed time
t therefore has a \scrO (\epsilon )-characterization as

Lik(t) =

\Biggl\{ 
\=\bfitx (p, \alpha ) +

\epsilon [sMu(p, \alpha , t) + (1 - s)M s(p, \alpha , t)] \^\bfitn (p, \alpha )

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
:

\alpha i - 1 < \alpha < \alpha i , \~pk - 1(\alpha , t) \leq p \leq \~pk(\alpha , t) , s \in [0, 1]

\Biggr\} 
,(33)

expressed in terms of the unit normal vector \^\bfitn at locations \=\bfitx (p, \alpha , t) on \Gamma , as defined in
(13), and the unstable and stable Melnikov functions Mu and M s. Given that \alpha \in S1, the
subscripts to \alpha will be considered modulo I in order to make this definition of a lobe work.
We remark that the (p, \alpha )-region demarcating each Lik(t) is not, in general, equal in area;
Figure 9 shows that the \alpha i defined via (31) need not be equally spaced.

Theorem 7 (Lobe volume for time-harmonic volume-preserving flow). Suppose \bfitg is harmonic,
the unperturbed flow is volume-preserving (i.e., \bfnabla \cdot \bfitf = 0), and the lobe structure is examined
at a time t. Then the volume of a lobe Lik(t) for (i, k) \in \{ 1, . . . , I\} \times \BbbZ is

Volume (Lik(t)) =
2\epsilon 

\omega 

\int \alpha i

\alpha i - 1

| \scrF \{ h(\alpha , \dotp )\} (\omega )| d\alpha +\scrO (\epsilon 2) .(34)

Proof. See Appendix I for the proof.

We note that the leading-order lobe volume is independent of k, the indexing associated
with the p = \~pk(\alpha , t) curves bounding the lobe. It is also independent of the time t. However, it
is not , in general, independent of i, which can be see by inspection of Figure 9: the \alpha is defined
via (31) need not be equally spaced, and the maximum size of the Melnikov function within
each (p, \alpha )-region defining a lobe need not be the same. This latter face can, moreover, be see
in (31), given the \alpha -dependence of the amplitude. Consequently, even under time-harmonicity
and volume-preservation, the generated lobe volumes are not equal, in general.

3.3. Connections to the lobe dynamics approach. There is a significant existing litera-
ture on quantifying transport in maps, i.e., in discrete dynamical systems [42, 38, 43], in many
cases with additional conditions such as volume-preservation (see [44] for a review). There
is limited work on three and higher dimensions in this regard [42, 43], and in particular, the
recent article by Maelfeyt [43] provides an interesting extension of the concept of symbolic
dynamics [31] to three dimensions to allow the Smale--Birkhoff theory of establishing chaos [1,
31] to be adapted. Time-periodic flows, i.e., generated from a continuous dynamical system,
can be sampled at equally spaced times (with spacing equal to the period T of the vector field
generating the flow) to generate a Poincar\'e map [1, 31, 66], thereby allowing access to the
theory of transport in maps. While Poincar\'e maps are more restrictive in that they must obey
continuous flow topologies, concepts such as lobes and lobe dynamics remain relevant. Con-
sequently, there is a considerable literature on such time-periodic flows, and our goal in this
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TWO-DIMENSIONAL MELNIKOV THEORY 2669

section is to establish some connections to these works, notably to a popular two-dimensional
approach which quantifies transport via lobe dynamics, and connects to a Melnikov approach
[57, 66]. We emphasize that this section relates to establishing connections to the literature
rather than obtaining important results in and of themselves, because we are able to quan-
tify transport more generally in section 3.1 without the assumptions needed for lobes to be
relevant.

It will help to briefly describe the elegant two-dimensional theory [57, 66] first. Suppose
the perturbation is periodic in time (with period T ). This allows for defining a Poincar\'e map
which samples the flow at time-intervals T , and consequently accesses the relevant theory for
maps (discrete dynamical systems) rather than for flows. Then, there is a point \bfita \epsilon (t) at a time
t which is close to \bfita and is a fixed point under the Poincar\'e map [57, 66]. Alternatively---if
thinking in terms of the flow---the \bfita \epsilon (t) corresponds to the perturbed hyperbolic trajectory's
time-dependence. In either interpretation, there will be perturbed stable and unstable man-
ifolds in this time-slice t, and suppose that the manifold intersection pattern is as given in
Figure 10. This picture is drawn under the assumption that the perturbation is time-harmonic
(see Definition 1; this is stronger than mere time-periodicity), and that there is at least one
transverse intersection point \bfitq between the perturbed manifolds. (Topologically classifying
intersection patterns, as well as cataloging secondary intersections, can lead to important ad-
ditional information on transport [55, 56, 49, 48], but this is not our current focus.) There are
several methods for quantifying transport due to patterns such as these in general dimensions
[60, 43]; these often have specific assumptions such as being generated from maps and/or pre-
serving phase space volume. Our focus is on the perturbative two-dimensional time-periodic
theory due to Rom-Kedar, Leonard, and Wiggins [57, 66] since this is closest to our setting. It
turns out that then the (two-dimensional) Melnikov function which captures intersections is
itself sinusoidal with frequency \omega , and the implication is that the intersection of the perturbed
unstable manifold in relation to the stable one is topologically equivalent to the intersection
of the sinusoidal function with the horizontal axis. Thus there are infinitely many isolated
transverse intersections.

Next, the idea is to define a ``pseudo-separatrix"" [57, 66] at a chosen time t as follows: join
the unstable manifold (\Gamma u

\epsilon (\bfita \epsilon , t), red) emanating from \bfita \epsilon (t) up to a transverse intersection
point, \bfitq , to the stable manifold (\Gamma s

\epsilon (\bfitb \epsilon , t), blue) emanating from \bfitb \epsilon (t) (shown by the heavy
curve in Figure 10). The intersection point \bfitq corresponds to a heteroclinic point, because it
lies on both manifolds. What this means is that if choosing an ``initial"" condition at this point
at time t, and defining \bfitx (\tau ) as being the trajectory going along this point which therefore
obeys \bfitx (t) = \bfitq , then | \bfitx (\tau ) - \bfita \epsilon (\tau )| decays to zero as \tau \rightarrow  - \infty , and moreover, | \bfitx (\tau ) - \bfitb \epsilon (\tau )| 
decays to zero as \tau \rightarrow \infty . Now, one considers a Poincar\'e map P of time T = 2\pi /\omega (the
period of the perturbation) on the phase space at the fixed time t. Given the time-periodicity
of the flow, the phase space curves will be exactly the same at times t+nT , for n \in \BbbZ . Every
intersection point in Figure 10) must map to another under this map, since being on both the
stable and the unstable manifolds is an invariant property with respect to the map. Thus,
the points P - 1(\bfitq ) and P (\bfitq ) are themselves intersection points in Figure 10, and the region
between P - 1(\bfitq and \bfitq , and similarly between \bfitq ) and P (\bfitq ) must possess an intersection pattern
topologically equivalent to that of a sinusoidal curve intersecting the horizontal axis over one
period. The important region consists of the parts of the stable and unstable manifolds lying
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2670 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

Figure 10. The two-dimensional lobe dynamics scenario [57, 66], occurring due to the intersection of the
perturbed unstable manifold of \bfita \epsilon (t) (red) and stable manifold of \bfitb \epsilon (t) (blue) at at a fixed time t. It is only
the turnstile lobes between P - 1(\bfitq ) and P (\bfitq ) which are involved in crossing the pseudo-separatrix (heavy curve)
per iteration of the Poincar\'e map.

between P - 1(\bfitq ) and \bfitq , and also between \bfitq and P (\bfitq ). This region is sometimes called the
``turnstile"" [42, 44]. With respect to the pseudo-separatrix, it is only the lobes in the turnstile
region (i.e., A and B in Figure 10) which are involved in crossing the pseudo-separatrix under
the action of P [57, 66] (or P - 1). Consequently, determining the areas of these lobes gives a
nice assessment of transport.

When is the lobe area a well-defined measure of transport? There are two important
assumptions to make this work. The first is that the perturbation \bfitg is time-harmonic, which
has already been discussed. This assumption is needed to ensure that the intersection pattern
between P - 1(\bfitq ) and \bfitq is topologically that of a sinusoidal function over one period, and also
that the lobes A and B possess the same area to leading-order (this can be shown using the
pleasing connection between the Melnikov function and lobe areas [57, 66]). Simply insisting
on \bfitg being time-periodic is insufficient, because it is possible that then there are many lobes,
of different sizes, between an intersection point \bfitq and its preimage P - 1(\bfitq ) [2]. It is also
possible that there are no intersection points at all, and consequently no lobes to speak of [2].
Thus, lobes are not necessarily the optimal method for quantifying transport in flows with
general periodicity, whereas the instantaneous flux approach continues to be valid. The second
assumption is that at least the unperturbed flow is area-preserving. This ensures that when
a lobe gets mapped, it maps into a lobe of equal area to leading-order. (If the perturbation
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TWO-DIMENSIONAL MELNIKOV THEORY 2671

is also area-preserving, then the lobes must have equal areas, and not just to leading-order.)
Consequently, the lobe area (or its leading-order expression) can be used as a well-defined
measure of the transport that occurs, because all four of the turnstile lobes must have the
same area (at least to leading-order). (We remark that there have been extensions to lobe
dynamics approaches to when the perturbation is quasi-periodic in time [18]. For general time-
aperiodic \bfitg , and general non-area-preserving flows, transport is better quantified in terms of
an instantaneous flux [4, 10, 7], eschewing lobes altogether; it is the three-dimensional version
of this which we presented in section 3.1.)

We now turn to the three-dimensional analog of this process. We have already described
the manifold intersection pattern in the previous section under the time-harmonic and volume-
preserving conditions, with the intersection curves between the manifolds being given where
M is zero. If we go along a constant \alpha -line in Figure 9, M will periodically vary from positive
to negative (and vice versa) as each p = \~pk(\alpha , t) curve is crossed. This means that if going
along an unperturbed heteroclinic trajectory \=\bfitx (p, \alpha ) with fixed \alpha on \Gamma , the perturbed stable
and unstable manifold will periodically be intersecting (nearby the locations \=\bfitx (\~p(\alpha , k), \alpha )),
with the stable and unstable manifolds interchanging relative locations at each crossing of the
curves p = \~pk(\alpha , t). So this picture would be topologically equivalent to the two-dimensional
picture of Figure 10, with infinitely many intersections occurring in approaching the points
\bfita \epsilon (t) and \bfitb \epsilon (t). To understand what happens when \alpha changes, we may imagine rotating
Figure 10 around the axis connecting the points \bfita \epsilon (t) and \bfitb \epsilon (t). However, in doing so, we
must bear in mind that when any \alpha = \alpha i values are crossed, the stable and unstable manifolds
will interchange their relative orientation. This forms a boundary for that lobe, and another
lobe (with stable and unstable manifolds in interchanged locations), then appears for \alpha values
slightly larger.

We can still apply lobe dynamics, but there are some differences to the two-dimensional
situation. Suppose we choose q to be the point associated with the intersection with p =
\~p0(\alpha , t), and when considered over all \alpha \in S1 this forms the ring Q0 of heteroclinic points.
The other intersection points visible in Figure 10 similarly generate heteroclinic rings upon
rotation: P - 1(\bfitq ) would generate Q - 2 (since there is another ring, Q - 1, in between), while
P (\bfitq ) generates Q2. Reviewing Figure 9 may also help in understanding these stuctures and
their relationship to the Melnikov function. In the full three-dimensional geometry, we can
think of the pseudo-separatrix as being the stable manifold emanating from \bfita \epsilon (t) until it hits
Q0, and the unstable manifold emanating from \bfitb \epsilon (t) until it too hits Q0. The turnstile region
consists of the lobes lying between Q - 2 and Q2. Upon iterating the map, it is only lobes in
this region which interchange their relative positioning in regards to being inside or outside
the pseudo-separatrix. However, unlike the simple statement we made in the two-dimensional
case that ``B gets mapped from outside the pseudo-separatrix to P (B) inside it,"" we have the
issue that the three-dimensional version of B, as it gets rotated around, actually has the stable
and unstable manifold interchanging positioning when crossing \alpha = \alpha i (this occurs six times
for the situation pictured in Figure 9), for example. Each and every one of these lobes, when
mapped by P , will swap its location in relation to the pseudo-separatrix. Given the fact that
the lobes do not have to have equal volumes to leading-order even under time-harmonicity
and volume-preservation (see Theorem 5), we cannot assign the volume of a particular lobe as
unequivocally representing the transport occurring across the pseudo-separatrix. We might
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2672 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

instead sum of the volumes of all of the lobes associated with the turnstile region (the analog
of B in Figure 10). Using Theorem 5, this will tell us then that the total transported volume
would be

Birectional transported volume =

I\sum 
i=1

2\epsilon 

\omega 

\int \alpha i

\alpha i - 1

| \scrF \{ h(\alpha , \dotp )\} (\omega )| d\alpha +\scrO (\epsilon 2)

=
2\epsilon 

\omega 

\int 1

0
| \scrF \{ h(\alpha , \dotp )\} (\omega )| d\alpha +\scrO (\epsilon 2) .

This does ``extend"" lobe dynamics in providing a transport measure to the three-dimensional
situation, but is a somewhat unsatisfactory quantification, since this adds together lobe vol-
umes which transport in different directions across the pseudo-separatrix.

Remark 13 (Lobes transported per time). As pointed out by Rom-Kedar and Poje [58],
given the dependence on the time period of the Poincar\'e map, the lobe volume by itself may
not be a good quantifier of the flux in the sense of fluid volume exchanged per unit time.
This is better obtained by dividing the total lobe volume above by the associated time-of-flow
T = 2\pi /\omega of the Poincar\'e map. This yields

Flux (harmonic) =
\epsilon 

\pi 

\int 1

0
| \scrF \{ h(\alpha , \dotp )\} (\omega )| d\alpha +\scrO (\epsilon 2) .(35)

Interesting implications related to the flux as a function of the frequency \omega can now be made,
just as for the two-dimensional case. Generically, the expectation is for the flux to increase at
small \omega and eventually decay as \omega \rightarrow \infty , implying the presence of a flux optimizing frequency
[58]. For a given unperturbed flow for which the heteroclinic structure is known, the Fourier
transform formula in (26) can therefore be employed easily, for example, to find the frequency
resulting in the greatest flux (as has been done in two dimensions [5]). Alternatively, the
formula can be analyzed with different spatial perturbations \~\bfitg at fixed \omega , attempting to find
transport-optimizing perturbations (see [3, 11] for two-dimensional implementations).

Remark 14 (Comparison of flux measures for harmonic situations). When \bfitg is harmonic,
the instantaneous flux description gave us the formula (26), and the amplitude FI of this
harmonic function (27) can therefore be thought of as a time-averaged measure of the leading-
order flux. In contrast, the lobe dynamics description gives a measure of the flux as the \scrO (\epsilon )-
term (call it FL) in (35). The two measures FI (I for instantaneous) and FL (L for lobes)
have some similarities and differences:

\bullet The scaling factor difference of \pi is inconsequential and related to the time-scaling
used in converting the lobe volumes to a flux in (35). If the time-average (rather than
the amplitude) of (26) were used instead, a slightly different scaling factor involving
\omega would result instead.

\bullet The instantaneous flux version FI is p-dependent (via h), unlike FL. The reason for
this is that Corollory 1 does not require a volume-preservation assumption, whereas
for the lobe dynamics approach, one needs this to ensure that the ``volume of a lobe"" is
unambiguous to leading-order. Consequently, in the more general instantaneous flux
framework, there will be dependence on the location p chosen to define the strip. The
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TWO-DIMENSIONAL MELNIKOV THEORY 2673

lack of volume-preservation means that the flux across two strips located at p = p1
and p = p2 \not = p1 are not the same. If volume-preservation of \bfitf was imposed, however,
a straightforward application of the divergence theorem for the region bounded by
the strips S(p1, t, \epsilon ) and S(p2, t, \epsilon ), and the perturbed stable and unstable manifolds
\Gamma u
\epsilon (\bfita \epsilon , t) and \Gamma s

\epsilon (\bfitb \epsilon , t) implies that the flux across the two strips are the same (to
leading-order). Of course, then the Fourier transform

\int 1
0 \scrF \{ h(p, \alpha , \dotp )\} (\omega ) d\alpha reduces

to
\int 1
0 \scrF \{ h(\alpha , \dotp )\} (\omega ) d\alpha where the new h is p-independent as given in (30) as opposed

to (25).
\bullet The modulus signs are inside the \alpha -integral in FL, but outside it in FI . The intuition

for this is subtle. In the lobe dynamics approach, a lobe volume is computed by in-
tegrating over a region in which the Melnikov function were sign definite, Thus, the
amplitude of the harmonic form of the Melnikov function (24) remains the same sign
over all \alpha . This is not necessarily so for the general instantaneous flux scenario, in
which a ring of constant p is chosen to define the strip which forms the connection be-
tween the perturbed stable and unstable manifolds. When going along this, the stable
and unstable manifolds may interchange their locations; consequently, the Melnikov
function will, in general, take on both positive and negative values. The instantaneous
flux takes all this into account, ``adding everything up"" to get a net flux, and this is
accomplished with the modulus being taking after the net impact is computed.

4. Application to Hill's spherical vortex. In this section, our Melnikov theory is applied
to Hill's spherical vortex, in particular in quantifying the splitting of the stable and unstable
manifolds after perturbation. We consider both the classical (no-swirl) and the rotating
(swirl) versions, which correspond, respectively, to the situations of purely real, and complex-
conjugate eigenvalues. Our motivation for using the Hill's vortex is that it is a fundamental
solution to the Euler equations of motion in fluid mechanics, and has the kinematic structure
which appears when fluid is rotated within a cylinder [36, 63, 41, 33, 13, 46]. The key structures
are associated with the saddle fixed points at the ``north pole"" and ``south pole,"" which have,
respectively, a two-dimensional (one-dimensional) unstable manifold and a one-dimensional
(two-dimensional) stable manifold. The two-dimensional time-varying stable manifold may
be considered a flow barrier in forwards time, since it is of codimension-1, and fluid particles
which begin near to it on opposite sides will get pushed exponentially away from each other
due to the eventual influence of the one-dimensional unstable manifold [7, 12]. Similarly, the
two-dimensional time-varying unstable manifold is a flow barrier in backwards time. In the
unperturbed (steady) classical Hill's spherical vortex, these coincide to form a two-dimensional
spherical surface which can then be considered a flow barrier in both forward and backward
time. Under perturbations (arising from instabilities) this separating surface collapses, leading
to so-called ``vortex breakdown"" [36, 63, 41]. In this section, we apply our theory to describe
mathematically the impact of general perturbations on these separating surfaces.

4.1. Classical Hill's spherical vortex. The classical Hill's spherical vortex is a solution of
Euler's equations of motion for an inviscid fluid. In (r, \theta , \phi ) spherical polar coordinates with
r \geq 0 is the radial distance from the origin, \theta \in [0, \pi ] the polar angle and \phi \in [0, 2\pi ) the
azimuthal angle, the (continuous) velocity field is given by [32, 13]
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2674 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

\bfitf (r, \theta , \phi ) =

\left\{     
3 \mathrm{c}\mathrm{o}\mathrm{s}(\theta )

2

\bigl( 
1 - r2

\bigr) 
\^\bfitr  - 3 \mathrm{s}\mathrm{i}\mathrm{n}(\theta )

2

\bigl( 
1 - 2r2

\bigr) 
\^\bfittheta if r \leq 1,

 - \mathrm{c}\mathrm{o}\mathrm{s}(\theta )
r3

\bigl( 
r3  - 1

\bigr) 
\^\bfitr + \mathrm{s}\mathrm{i}\mathrm{n}(\theta )

2r3

\bigl( 
2r3 + 1

\bigr) 
\^\bfittheta if r > 1.

(36)

It is easily verifiable that \bfnabla \cdot \bfitf = 0 here; the flow is volume-preserving. The globe r = 1
is a heteroclinic manifold \Gamma , associated with saddle points located at the north and south
poles. In (r, \theta )-coordinates, these points can be written as \bfita = (1, 0) and \bfitb = (1, \pi ), and
the unstable manifold of \bfita coincides with the stable manifold of \bfitb to form \Gamma . This manifold
is foliated with heteroclinic trajectories which have a constant \phi -value (constant longitude),
and thus the trajectory-identifying parameter is \alpha = \phi /(2\pi ) \in S1. The p-parametrization
along each manifold is thus associated directly with the latitude. The splitting of \Gamma , using
the volume-preserving requirement and a functional-analytic viewpoint, has been previously
pursued [13].

Under the condition that the perturbation vector field \bfitg has components (gr, g\theta , g\phi ) in the
(r, \theta , \phi )-coordinate system, we show how we can use our theory to derive that the perturbed
unstable manifold pf the hyperbolic trajectory near the north pole is given by

\bfitr u(p, \alpha , \epsilon , t) \approx 
\biggl[ 
1+\epsilon cosh2

3p

2

\int p

 - \infty 
sech2 3\tau 

2
gr

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3\tau 

2

\biggr) 
, 2\pi \alpha , \tau +t - p

\biggr) 
d\tau ,

cos - 1

\biggl( 
 - tanh

3p

2

\biggr) 
, 2\pi \alpha 

\biggr] 
(37)

for (p, \alpha , t) \in ( - \infty , P u] \times S1 \times ( - \infty , T u] for finite P u and T u, in (r, \theta , \phi ) component form.
Similarly, the perturbed stable manifold of the hyperbolic trajectory near the south pole is
given by

\bfitr s(p, \alpha , \epsilon , t) \approx 
\biggl[ 
1 - \epsilon cosh2

3p

2

\int \infty 

p
sech2 3\tau 

2
gr

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3\tau 

2

\biggr) 
, 2\pi \alpha , \tau + t - p

\biggr) 
d\tau ,

cos - 1

\biggl( 
 - tanh

3p

2

\biggr) 
, 2\pi \alpha 

\biggr] 
(38)

for (p, \alpha , t) \in [P s,\infty ) \times S1 \times [T s,\infty ) for finite P s and T s. The Melnikov function takes the
form

M (p, \alpha , t) = 3\pi 

\int \infty 

 - \infty 
sech2 3\tau 

2
gr

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3\tau 

2

\biggr) 
, 2\pi \alpha , \tau + t - p

\biggr) 
d\tau (39)

for (p, \alpha , t) \in [P s, P u]\times S1 \times [T s, T u], and the instantaneous flux is

\Phi (p, t, \epsilon ) = 3\pi \epsilon 

\int 1

0

\int \infty 

 - \infty 
sech2 3\tau 

2
gr

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3\tau 

2

\biggr) 
, 2\pi \alpha , \tau + t - p

\biggr) 
d\tau d\alpha +\scrO (\epsilon 2) .

(40)

See Appendix J for a derivation of these results.
To validate the expressions with our intuition, we will now choose a gr for which explicit

analytical expressions can be obtained for M and \Phi , and interpreted. We select

gr (r, \theta , \phi , t) = r2 sin \theta sin (3\phi ) cos (4t) ,(41)
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TWO-DIMENSIONAL MELNIKOV THEORY 2675

(a) (b)

Figure 11. For time t = 1 and \epsilon = 0.1, (a) the perturbed unstable (red) and (b) stable (in blue) manifolds,
in comparison to the unperturbed manifold (in dashed black) for the perturbation (41), illustrated via constant
\alpha and p curves. Computations were performed using (37) and (38).

which we can understand in the context of time-periodic theory. The perturbed manifolds
at t = 1 and perturbation strength \epsilon = 0.1 can be expressed parametrically by the (p, \alpha )-
variables as given in \bfitr u,s. We can visualize the manifolds by evaluating the curves \alpha =
constant (with p-varying along each such curve), and also the curves p = constant (with \alpha 
varying along each curve). We visualize the approximate perturbed manifolds at time t = 1
with \epsilon = 0.1 in Figure 11 by plotting \alpha = constant and p = constant curves, in comparison
to the unperturbed \Gamma (black). These pictures illustrate the fact that we lose control of the
unstable (resp., stable) manifold as we approach the south (resp., north) poles, with infinite
intersections with \Gamma occurring along constant latitudes which accumulate towards the pole.
We illustrate the worsening of this behavior with t in Figure 12, where the intersections
between the manifolds with several constant latitudes are shown at two different t values. The
perturbed unstable trajectory approximated at time t = 2 near the ``Antarctic circle"" and the
perturbed stable trajectory approximated at time t = 2 near the ``Arctic circle"" demonstrate
significant deviation from the unperturbed manifold, an effect which is exacerbated at larger
times.

For the choice (41), the Melnikov function in (39) is explicitly compoutable to be

M(p, \alpha , t) = 6\pi sin(6\pi \alpha ) cos [4(p - t)]

\int \infty 

0
sech3

\biggl( 
3\tau 

2

\biggr) 
cos (4\tau ) d\tau 

=
73\pi 2

9
sech

4\pi 

3
sin (6\pi \alpha ) cos [4(p - t)] ,

which is also consistent with the representation in (24). Consider the perturbed manifolds
at a fixed time t. If p satisfies p  - t \not = (2k + 1)\pi /8 for k \in \BbbZ , M clearly has simple zeros
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(a) (b)

(c) (d)

Figure 12. Behavior of the perturbed unstable (red) and stable (blue) manifolds using (37) and (38) with
\epsilon = 0.1 and the perturbation gr in (41) for the classical Hill's spherical vortex, at \theta = 0.4 (approximate ``Arctic
circle""), \theta = \pi /2 (``equator""), and \theta = \pi  - 0.4 (approximate ``Antarctic circle""), with corresponding trajectories
on the unperturbed \Gamma (green), and the rows being at times t = 0 (top) and t = 2 (bottom).

when \alpha = 0, 1/6, 1/3, 1/2, 2/3, and 5/6, consistent with the condition (31). Thus, the two-
dimensional perturbed manifolds intersect along along curves which are \scrO (\epsilon )-close to these
six constant longitude lines \phi = 0, \pi /3, 2\pi /3, \pi , 4\pi /3, and 5\pi /3 on \Gamma . Moreover, at \alpha -values
not on these curves, M has simple zeros with respect to p when

p = \~pk(\dotp , t) := t+ (2k + 1)\pi /8 ,

i.e., on the latitudes defined by

\theta = \theta k := cos - 1

\biggl[ 
 - tanh

\biggl( 
3t

2
+

3(2k + 1)\pi 

16

\biggr) \biggr] 
; k \in \BbbZ ,(42)
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TWO-DIMENSIONAL MELNIKOV THEORY 2677

Figure 13. The Melnikov function at t = 1 expressed in terms of longitude-latitude coordinates (\phi , \theta ) (a
Mercator representation) for Hill's spherical vortex, computing using (39) for the perturbation (41). Zero values
are indicated by the yellow lines.

which yields infinitely many unique values for \theta \in [0, \pi ], accumulating towards both \theta = 0
and \pi . We illustrate this further in Figure 13, with the Melnikov function computed directly
using (39) for the perturbation (41), rather than appealing to the analytic form above. We
refer to this figure as a Mercator representation of the Melnikov function in keeping with the
fact that it is a representation on the stretched out globe. Figure 13 is indeed a special case
of Figure 9, since \alpha \sim \phi and p \sim \theta . An infinite number of narrower and narrower rows in
between the zero (yellow) horizontal lines will accumulate towards the poles.

We can approximate the volume of a lobe whose boundaries are given by adjacent zeros
of p and \alpha . For example, consider the lobe whose \alpha limits are between 0 and 1/6, and p limits
are between k = 1 and k = 2 as defined in pk. Using (19), we get

Lobe volume = \epsilon 
73\pi 2

9
sech

4\pi 

3

\int 1/6

0
sin (6\pi \alpha ) d\alpha 

\int p2

p1

cos [4(p - t)] dp+\scrO (\epsilon 2)

= \epsilon 
73\pi 

54
sech

4\pi 

3
+\scrO (\epsilon 2) .

In this case, symmetries ensure that the leading-order lobe volumes are identical for all lobes.
They are also equal for all times t. The instantaneous flux is

\Phi (p, t, \epsilon ) =
73 \epsilon \pi 2

9
sech

\biggl( 
4\pi 

3

\biggr) 
cos [4(p - t)]

\int 1

0
sin (6\pi \alpha ) d\alpha +\scrO (\epsilon 2) = \scrO (\epsilon 2).

The reason for the leading-order instantaneous flux to be zero (for any time t and any choice
of gate location p) is because of the symmetry of the splitting of the heteroclinic. Regions
along any constant latitude strip in which the unstable manifold is outside the stable manifold
are complemented by regions in which the opposite occurs, while the leading-order velocity
field along the strip remains constant. The flux across ``in"" and ``out"" regions across the strip
(see Figure 8) cancel each other out by symmetry and thus there is an identical amount of flux
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(a)

-10 -5 0 5 10

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

)

(b)

Figure 14. (a) The Melnikov function at t = 1, and (b) the instantaneous flux \Phi variation with time with
\epsilon = 0.1 and pseudo-separatrix on the equator for Hill's spherical vortex subject to the perturbation (43).

crossing outwards as that crossing inwards. The transport can be explained via lobe dynamics
in this case; three lobes in the turnstile region map from inside to outside, while the other
three do the opposite (this is an alternative insight into the zero leading-order instantaneous
flux). One would get a nonzero flux if the sin(3\phi ) term in gr (which led to the integral\int 1
0 sin (6\pi \alpha ) d\alpha in the above expression for the flux) were replaced by a term which does not
integrate to zero over all \phi .

To demonstrate that our theory is not confined to time-periodic perturbations, we briefly
show computations associated with the alternative choice

gr(r, \theta , \phi , t) = [r cos (\theta t+ 1) + sin (3\pi )] tanh (4rt) cos
\Bigl[ 
4
\Bigl( 
t+ e - 0.01tt

\Bigr) \Bigr] 
.(43)

The left panel of Figure 14 demonstrates the Melnikov function using (39) at time t = 1,
while the right plots the flux (40) variation with time t with pseudo-separatrix chosen on the
equator, with \epsilon = 0.1. The general time-aperiodic theory we have developed gives diverse
results for different perturbations.

4.2. Hill's spherical vortex with swirl. We now consider Hill's spherical vortex with an
additional swirling component in the azimuthal direction, with the far-field flow remaining
in the z-direction as for the classical case. This is kinematically consistent with the vortex
breakdown phenomenon in a rotating cylinder [36, 63, 41]. The steady solution to the Euler
equations in this case corresponds to the continuous velocity field [61]

\bfitf (r, \theta , \phi ) =

\left\{             
3
2(1 - r2) cos(\theta ) \^\bfitr  - 3

2(1 - 2r2) sin(\theta ) \^\bfittheta  - r \mathrm{s}\mathrm{i}\mathrm{n}(\theta )
2R0

\^\bfitphi if r \leq 1,

 - cos(\theta )
\Bigl\{ 
1 - 1

r2 cos
\Bigl( 
r - 1
R0

\Bigr) 
+ R0

r3 sin
\Bigl( 
r - 1
R0

\Bigr) \Bigr\} 
\^\bfitr 

+ \mathrm{s}\mathrm{i}\mathrm{n}(\theta )
2r

\Bigl\{ 
2r + 1

r cos
\Bigl( 
r - 1
R0

\Bigr) 
+
\Bigl[ 

1
R0

 - R0

r2

\Bigr] 
sin

\Bigl( 
r - 1
R0

\Bigr) \Bigr\} 
\^\bfittheta  - r \mathrm{s}\mathrm{i}\mathrm{n}(\theta )

2R0

\^\bfitphi if r > 1,

(44)
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TWO-DIMENSIONAL MELNIKOV THEORY 2679

where R0 > 0 is the Rossby number. This velocity field is also divergence-free consonant with
the incompressibility assumption, and the classical Hill's spherical vortex is a special case in the
limit R0 \rightarrow \infty . The north and south poles (r, \theta ) = (1, 0) and (1, \pi ) are still saddle points, and
r = 1 is the heteroclinic manifold \Gamma connecting them. However, heteroclinic trajectories swirl
around the globe, and spiral from the poles because the linearization at the poles results in
complex conjugate eigenvalues. As before, we parametrize \Gamma by \=\bfitx (p, \alpha ) =

\bigl( 
1, \=\theta (p, \alpha ), \=\phi (p, \alpha )

\bigr) 
in (r, \theta , \phi )-coordinates, and we observe that since the \theta -component of the velocity is identical
to the classical case, \=\theta is given by (60), where we have chosen p = 0 to be on the equator.
Next, since \phi is changing at the constant rate  - 1/(2R0), we have

\=\phi (p, \alpha ) = \=\phi (0, \alpha ) - p

2R0
= 2\pi \alpha  - p

2R0
,

where we choose the parameterization on the equator such that the \phi -coordinate on the equator
divided by 2\pi gives the trajectory-identifying parameter \alpha \in S1. Thus, in (r, \theta , \phi )-component
form, we have

\=\bfitx (p, \alpha ) =

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3p

2

\biggr) 
, 2\pi \alpha  - p

2R0

\biggr) 
,

which serves to parametrize the heteroclinic manifold r = 1. We note that the p-variation
in the \theta -coordinate is equivalent to the time-variation in this steady situation, and changing
\alpha only affects the \phi -component. Thus, despite \=\bfitx having a slight difference, only very slight
adjustments to the results for the classical Hill's vortex are necessary. We will not bother to
rewrite these equations, apart from stating that the \phi -coordinate within the gr function in all
the integrals simply needs to change from 2\pi \alpha to 2\pi \alpha  - \tau /(2R0).

We now show the results of computations using our theory, where we use R0 = 0.2 and
\epsilon = 0.1. The perturbations of the stable and unstable manifolds using the aforementioned (37)
and (38) are shown in Figure 15 for the perturbation (41). We use the Mercator representation,
and the derivation is how the manifold deviations outwards from the unperturbed globe. Thus,
red regions have protruded, while blue regions intrude in comparison to r = 1. The impact of
the swirling nature of the unperturbed trajectories is apparent in this Mercator representation.

The Melnikov function can be numerically computed using the modified version of (39)
for the perturbation (41), and is shown in Figure 16. It turns out that an explicit analytical
form can also be computed, and is given by

M(p, \alpha , t) = 6\pi 

\sqrt{} 
A2 sin2 (6\pi \alpha ) +B2 cos2 (6\pi \alpha ) cos

\biggl[ 
4(t - p) - tan - 1 B cot (6\pi \alpha )

A

\biggr] 
,

where

A =
\pi 
\Bigl[ \bigl( 
73R2

0  - 48R0 + 9
\bigr) 
sech \pi (8R0 - 3)

6R0
+
\bigl( 
73R2

0 + 48R0 + 9
\bigr) 
sech \pi (8R0+3)

6R0

\Bigr] 
108R2

0

and

B =
\pi 
\Bigl[ \bigl( 
73R2

0  - 48R0 + 9
\bigr) 
sech \pi (8R0 - 3)

6R0
 - 
\bigl( 
73R2

0 + 48R0 + 9
\bigr) 
sech \pi (8R0+3)

6R0

\Bigr] 
108R2

0

.
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(a) (b)

Figure 15. Mercator representations of the (a) unstable and (b) stable manifold at t = 1 with \epsilon = 0.1 for
the swirling Hill's spherical vortex subject to the perturbation (41).

Figure 16. Mercator representation of the Melnikov function t = 1 for the swirling Hill's spherical vortex
subject to the perturbation (41), with zeros shown by the yellow curves.

It can then be derived that zeroes of the Melnikov function occur at the (\theta , \phi )-coordinates
defined via

 - cot

\biggl[ 
4

\biggl( 
t+

2

3
tanh - 1 cos \theta 

\biggr) \biggr] 
=

B

A
cot

\biggl( 
3\phi  - 1

R0
tanh - 1 cos \theta 

\biggr) 
.(45)

These are consistent with the six zero contour curves (in yellow) in Figure 16. Finally, the
instantaneous flux \Phi (p, t, \epsilon ) exiting the pseudo-separatrix for the Hill's spherical vortex with
swirl is

\Phi (p, t, \epsilon )=3\pi \epsilon 

\int \infty 

 - \infty 
sech3

\biggl( 
3\tau 

2

\biggr) 
cos [4 (\tau  - t+p)]

\int 1

0
sin

\biggl( 
6\pi \alpha  - 3\tau 

2R0

\biggr) 
d\alpha d\tau +\scrO (\epsilon 2)=\scrO (\epsilon 2) ;
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TWO-DIMENSIONAL MELNIKOV THEORY 2681

again, the leading-order term is zero to leading-order because of the symmetry of the
perturbation.

5. Concluding remarks. In this paper, we have developed a Melnikov theory to examine
two-dimensional stable/unstable manifolds of hyperbolic points in three-dimensional flows.
Our approach is unashamedly geometric, taking advantage of three-dimensional intuition as
is relevant to realistic fluid flows. We require neither volume-preservation (in either the unper-
turbed or perturbed flow), nor time-periodicity. This latter condition in particular precludes
using Melnikov techniques which have been developed for maps [28, 38, 39, 40], since there
are no well-defined times at which to sample flow trajectories. Under fairly general condi-
tions on the perturbation, we derive leading-order expressions for the time-varying location of
the perturbed two-dimensional stable (or unstable) manifold in Theorems 1 and 2. There is
no requirement for the unperturbed manifold to have been homoclinic or heteroclinic in this
development.

The second goal of this paper is to characterize transport due a time-varying perturbation
breaking apart a two-dimensional heteroclinic manifold in a three-dimensional flow. We can
quantify in Theorem 3 the instantaneous flux engendered across the formerly impermeable
heteroclinic manifold, building on a similar idea in two dimensions [4]. If thinking in terms
of three-dimensional fluid flows, we are thus able to characterize, in terms of the Melnikov
function, the leading-order fluid flux, as a volume of fluid per unit time, crossing the bro-
ken heteroclinic manifold. This is in a Lagrangian (as opposed to Eulerian) sense; the flux
quantifies the transport of fluid particles following their flow history. Thus, transport be-
tween the inside and the outside of the unperturbed heteroclinic manifold is captured by this
theory, which allows for both non-volume-preservation and general time-dependence. For the
situation of time-harmonicity in the perturbation (a frequently addressed situation [57, 66]
for which the theory associated with maps is amenable), we describe the three-dimensional
analog of lobe dynamics [57, 66] and develop expressions in terms of the Melnikov function
for the leading-order volumes of lobes which lie between the perturbed stable and unstable
manifolds at a general time. If the unperturbed flow were volume-preserving, we show that
the leading-order volumes of all lobes are identical, thereby allowing for this lobe volume to be
a good quantifier of transport across the broken heteroclinic manifold via a three-dimensional
version of lobe dynamics.

Higher-dimensional Melnikov methods, which develop a Melnikov function whose zeros are
associated with persistent heteroclinic connections, usually have a function inside the integral
which is known only as a fundamental solution to the adjoint of the equation of variations
along an unperturbed heteroclinic trajectory. This is not an explicit representation (except in
the case of Hamiltonian systems, which are, of course, moreover limited to even dimensions),
and therefore the Melnikov function is not computable. Through our formulation in three
dimensions, we derive this function automatically; this is what is inside the integral for both
the general theory of locating two-dimensional manifolds, and in evaluating transport across
a broken heteroclinic. We note that this function we derive is valid even if volume is not
preserved.

The expressions we derive are based on the original manifold being associated with a
saddle fixed point. It would be natural to attempt to extend the theory to two-dimensional
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2682 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

manifolds of normally hyperbolic invariant sets such as periodic orbits of a curve of fixed
points. In this more general situation, there are several qualitatively different geometries
that one would need to consider, and it will not be possible to couch the theory in terms of
eigenvalues as we have done in this paper. Nevertheless, the theory of exponential dichotomies
[23, 53, 17] allows for the development of the theory with only minor modifications, as has
been noted by earlier developments of Melnikov theory [22]. We expect that the formulas will
be essentially unchanged, but that the interpretations regarding separating surfaces and flux
will need reinterpretation depending on the nature of the normally hyperbolic set. We will
study this extension in later work.

The three-dimensional situation, with two-dimensional separating surfaces, is natural to
study in the context of fluid flows. As such, our work is expected to be of value in fluid
transport: notably in quantifying locations of two-dimensional flow separators, and flux across
broken ones. Our formulation in the time-sinusoidal context in particular allows for a tool for
optimizing mixing across separating surfaces, analogously to what has been done in optimizing
mixing across one-dimensional separators in two-dimensional fluid flows [3, 5, 11]. Thus,
applications to either maximizing transport (to empower good mixing of a fluid, or a two-
phase fluid, in industrial applications), or minimizing it (to avoid pollutants contaminating a
fluid) can be examined using the tools that we have developed in this article.

Appendix A. Proof of Theorem 1 (displacement of unstable manifold). Suppose \epsilon \not = 0.
Fix t \in ( - \infty , T ] and (p, \alpha ) \in ( - \infty , P ] \times S1. Let \tau \in ( - \infty , t] be a general time value. If
\bfitx u(p, \alpha , \epsilon , t) (a point on the unstable manifold at time t) is close to the point \=\bfitx u(\alpha , p) on the
unperturbed manifold, then we realize that the appropriate parameterization at a general time
\tau should be chosen such that \bfitx u(p, \alpha , \epsilon , \tau ) is the point on perturbed unstable manifold close
to the point \=\bfitx u(\tau  - t+ p, \alpha ). Since we are thinking of t as fixed, the parameter \tau represents
varying time, and because (p, \alpha ) is also considered fixed, \bfitx u(p, \alpha , \epsilon , \tau ) is a trajectory of the
perturbed equation (1) which is expected to be close to the trajectory \=\bfitx u(\tau  - t+ p, \alpha ) of the
unperturbed equation in which \epsilon = 0. We define

\bfitz u(p, \alpha , \epsilon , \tau ) :=
1

\epsilon 
[\bfitx u(p, \alpha , \epsilon , \tau ) - \=\bfitx u(\tau  - t+ p, \alpha )] , \tau \in ( - \infty , t] .(46)

Since T is finite, the difference between the perturbed and unperturbed trajectories is \scrO (\epsilon ),
and thus \bfitz u = \scrO (1), or more precisely there exists K \in IR, which is independent of \tau and
\epsilon \in [0, \epsilon 0] for some \epsilon 0 and for finite T ,

| \bfitz u(p, \alpha , \epsilon , \tau )| \leq K for \tau \in ( - \infty , T ].(47)

Next, we define \widetilde Mu(p, \alpha , \epsilon , \tau ) as

\widetilde Mu(p, \alpha , \epsilon , \tau ) := [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitz u(p, \alpha , \epsilon , \tau ).(48)

We note that \bfitz u(p, \alpha , \epsilon , t) is the \scrO (\epsilon )-distance between the point \bfitx u(p, \alpha , \epsilon , t) on the per-
turbed unstable manifold \Gamma u

\epsilon (\bfita \epsilon , t) time t, and the unperturbed point \=\bfitx u(p, \alpha ) which serves

to parametrize \Gamma u in terms of the parameters (p, \alpha ). The quantity \widetilde Mu(p, \alpha , \epsilon , t) therefore
projects this distance orthogonal to the original unperturbed manifold \Gamma u(\bfita ) from a position
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TWO-DIMENSIONAL MELNIKOV THEORY 2683

parametrized by (p, \alpha ). If we can determine \widetilde Mu(p, \alpha , \epsilon , t) uniquely in the limit as \epsilon \rightarrow 0,
then this implies that the (p, \alpha )-parametrization (at a time t) of the perturbed manifold is
legitimate; i.e., that \Gamma u

\epsilon (\bfita \epsilon , t) can be realized as a graph of \Gamma u(\bfita ) subject to the restrictions
(p, \alpha , t) \in ( - \infty , P ]\times S1\times ( - \infty , T ]. (Once the perturbed manifold ventures beyond being close
to \Gamma u(\bfita ) which these conditions imply, we will lose control of quantifying it via a the current
approach.) Our method of proof will automatically provide this result, under the conditions
that we have posed in Hypothesis 1.

Now, given that

\widetilde Mu(p, \alpha , \epsilon , t) = [\bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u
\alpha (p, \alpha )] \cdot \bfitz u(p, \alpha , \epsilon , t)

= [\bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u
\alpha (p, \alpha )] \cdot 

1

\epsilon 
[\bfitx u(p, \alpha , \epsilon , t) - \=\bfitx u(p, \alpha )] ,

we note from (3) that

du(p, \alpha , \epsilon , t) = \epsilon 
\widetilde Mu(p, \alpha , \epsilon , t)

| \bfitf (\=\bfitx u(p, \alpha )) \wedge \=\bfitx u
\alpha (p, \alpha )| 

.(49)

Consequently, we will determine du via an evolution equation for \widetilde Mu with respect to the
temporal variable \tau . Using the subscript as the notation for the partial derivative, taking
\tau -partial derivative of (48) yields

\widetilde Mu
\tau (p, \alpha , \epsilon , \tau ) = [D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \=\bfitx u

\tau (\tau  - t+ p, \alpha ) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitz u(p, \alpha , \epsilon , \tau )

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha \tau (\tau  - t+ p, \alpha )] \cdot \bfitz u(p, \alpha , \epsilon , \tau )

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitz u

\tau (p, \alpha , \epsilon , \tau ).

(50)

We will build up simplifications for the many terms in (50). Since \=\bfitx u(\tau  - t+p, \alpha ) is a solution
of unperturbed system \.\bfitx = \bfitf (\bfitx ), we have

\=\bfitx u
\tau (\tau  - t+ p, \alpha ) = \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) .(51)

Furthermore, since \bfitx u(p, \alpha , \epsilon , \tau ) is the solution of perturbed system \.\bfitx = \bfitf (\bfitx ) + \epsilon \bfitg (\bfitx , t), we
can write

\bfitx u
\tau (p, \alpha , \epsilon , \tau ) = \bfitf (\bfitx u(p, \alpha , \epsilon , \tau )) + \epsilon \bfitg (\bfitx u(p, \alpha , \epsilon , \tau ), \tau )

= \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) + \epsilon D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha ))\bfitz u(p, \alpha , \epsilon , \tau )

+
\epsilon 2

2
[\bfitz u(p, \alpha , \epsilon , \tau )]\top D2\bfitf (\bfity 1)\bfitz 

u(p, \alpha , \epsilon , \tau )

+ \epsilon [\bfitg (\=\bfitx u(\tau  - t+ p, \alpha ), \tau ) + \epsilon D\bfitg (\bfity 2, \tau ) \bfitz 
u(p, \alpha , \epsilon , \tau )] ,

where we have applied Taylor's theorem to both \bfitf and \bfitg about the spatial value \=\bfitx u(\tau  - 
t + p, \alpha ) with deviation \epsilon \bfitz u(p, \alpha , \epsilon , \tau ). The notation D2 represents the Hessian matrix, and
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2684 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

the unknown values \bfity i = \bfity i(p, \alpha , \epsilon , \tau ) (i = 1, 2) are located within \epsilon K of \=\bfitx u(\alpha , \tau  - t + p).
Thus

\bfitz u
\tau (p, \alpha , \epsilon , \tau ) =

1

\epsilon 
[\bfitx u

\tau (p, \alpha , \epsilon , \tau ) - \=\bfitx u
\tau (\tau  - t+ p, \alpha )]

= D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha ))\bfitz u(p, \alpha , \epsilon , \tau ) + \bfitg (\=\bfitx u(\tau  - t+ p, \alpha ), \tau )

+ \epsilon 

\biggl[ 
1

2
[\bfitz u(p, \alpha , \epsilon , \tau )]\top D2\bfitf (\bfity 1) +D\bfitg (\bfity 2, \tau )

\biggr] 
[\bfitz u(p, \alpha , \epsilon , \tau )] .

Next, by the chain rule applied to (51),

\=\bfitx u
\alpha \tau (\tau  - t+ p, \alpha ) = D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \=\bfitx u

\alpha (\tau  - t+ p, \alpha ) ,

By substituting all of these into (50), we get by separating out in orders of \epsilon ,

\widetilde Mu
\tau (p, \alpha , \epsilon , \tau ) = [D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u

\alpha (\tau  - t+ p, \alpha )] \cdot \bfitz u(p, \alpha , \epsilon , \tau )

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitz u(p, \alpha , \epsilon , \tau )

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot [D\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \bfitz u(p, \alpha , \epsilon , \tau )]

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitg (\=\bfitx u(\tau  - t+ p, \alpha ), \tau )

+
\epsilon 

2
[\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u

\alpha (\tau  - t+ p, \alpha )] \cdot \Bigl[ 
[\bfitz u(p, \alpha , \epsilon , \tau )]\top D2\bfitf (\bfity 1) [\bfitz 

u(p, \alpha , \epsilon , \tau )]
\Bigr] 

+ \epsilon [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot [D\bfitg (\bfity 2, \tau ) [\bfitz 

u(p, \alpha , \epsilon , \tau )]] .

We now apply the identity given in Lemma 1 (Appendix B) to simplify the first three terms
(given in the first three lines) above. By choosing A = D\bfitf (\=\bfitx u(\alpha , \tau  - t+ p)), \bfitb = \bfitf (\=\bfitx u(\alpha , \tau  - 
t+ p)), \bfitc = \=\bfitx u

\alpha (\alpha , \tau  - t+ p) and \bfitd = \bfitz u(p, \alpha , \epsilon , \tau ), \widetilde Mu
\tau (p, \alpha , \epsilon , \tau ) can be recast as

\partial 

\partial \tau 
\widetilde Mu(p, \alpha , \epsilon , \tau ) = \bfnabla \cdot \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \widetilde Mu(p, \alpha , \epsilon , \tau )

(52)

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitg (\=\bfitx u(\tau  - t+ p, \alpha ), \tau ) + \epsilon H(\tau ) ,

where

H(\tau ) :=
1

2
[\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u

\alpha (\tau  - t+ p, \alpha )] \cdot 
\Bigl[ 
[\bfitz u(p, \alpha , \epsilon , \tau )]\top D2\bfitf (\bfity 1) [\bfitz 

u(p, \alpha , \epsilon , \tau )]
\Bigr] (53)

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot [D\bfitg (\bfity 2, \tau ) [\bfitz 

u(p, \alpha , \epsilon , \tau )]] ,

and we use TrD\bfitf = \bfnabla \cdot \bfitf (i.e., the divergence of \bfitf ). The differential equation (52) is to be
considered with the condition

lim
\tau \rightarrow \infty 

\widetilde Mu(p, \alpha , \epsilon , \tau ) = 0 ,(54)
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TWO-DIMENSIONAL MELNIKOV THEORY 2685

because from (48) we see that \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \rightarrow \bfitf (\bfita ) = \bfzero in this limit, with other terms
in the definition remaining bounded.

We note that H(\tau ) is bounded for \tau \in ( - \infty , t] because of the boundedness of D2\bfitf , D\bfitg ,
\=\bfitx u(\tau  - t+ p, \alpha ) (because this converges to \bfita as \tau \rightarrow  - \infty ) and \bfitz u(p, \alpha , \epsilon , \tau ). Hence it makes
sense to also consider (52) with \epsilon = 0, i.e.,

\partial 

\partial \tau 
Mu(p, \alpha , \tau ) = \bfnabla \cdot \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) Mu(p, \alpha , \tau )

+ [\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )] \cdot \bfitg (\=\bfitx u(\tau  - t+ p, \alpha ), \tau ) ,

(55)

whose solution Mu is also subject to the boundary condition (54). It is easy to verify that
the linear differential equation (55) with condition (54) has a unique solution

Mu(p, \alpha , t) =

\int t

 - \infty 
e
\int t

\tau 
\nabla \cdot \bfitf (\=\bfitx u(\xi  - t+p,\alpha ))d\xi [\bfitf (\=\bfitx u(\tau  - t+p, \alpha )) \wedge \=\bfitx u

\alpha (\tau  - t+p, \alpha )]

\cdot \bfitg (\=\bfitx u(\tau  - t+ p, \alpha ), \tau ) d\tau (56)

by working via the integrating factor

\mu (\tau ) = exp

\biggl[ 
 - 
\int \tau 

0
\nabla \cdot \bfitf (\=\bfitx u(\xi  - t+ p, \alpha )) d\xi 

\biggr] 
.(57)

The quantity Mu in (56) is identical to the unstable Melnikov function as defined in (4) after
a change of integration variable \tau  - t + p \rightarrow \tau . We show in Appendix C that the improper
integral (56) is convergent, and so Mu is a well-defined solution to (52) when \epsilon = 0.

Next, we show in Appendix D that the solution \widetilde Mu(p, \alpha , \epsilon , t) of (52) is within \scrO (\epsilon ) of
Mu(p, \alpha , t). (This is not immediately obvious because integration over the noncompact domain

( - \infty , t] is necessary.) This enables the replacement of \widetilde Mu(p, \alpha , \epsilon , t) with Mu(p, \alpha , t) + \scrO (\epsilon )
in (49), and consequently proves Theorem 1. In view of our previous remarks, this also
establishes the legitimacy of viewing the part of \Gamma u

\epsilon (\bfita \epsilon , t) that is close to \Gamma u(\bfita ) as being a
graph with respect to the parameters (p, \alpha ).

Appendix B. An important identity. We introduce the following elementary identity
which is valid for any 3\times 3 matrix and any 3\times 1 vectors.

Lemma 1. The following identity holds for any 3\times 3 matrix A and any \bfitb , \bfitc and \bfitd which
are 3\times 1 vectors:

[(A\bfitb ) \wedge \bfitc ] \cdot \bfitd + [\bfitb \wedge (A\bfitc )] \cdot \bfitd + [\bfitb \wedge \bfitc ] \cdot (A\bfitd ) = Tr (A)] [(\bfitb \wedge \bfitc ) \cdot \bfitd ] ,(58)

where Tr (\dotp ) represents the trace operator.

Proof. This can be verified by a straightforward though tedious computation,
having defined

A =

\left[  a11 a12 a13
a21 a22 a23
a31 a32 a33

\right]  , \bfitb =

\left[  b1
b2
b3

\right]  , \bfitc =

\left[  c1
c2
c3

\right]  , and \bfitd =

\left[  d1
d2
d3

\right]  .
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2686 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

The term [(A\bfitb ) \wedge \bfitc ] \cdot \bfitd can be written as

[(A\bfitb ) \wedge \bfitc ] \cdot \bfitd = d1 [c3 (a21b1 + a22b2 + a23b3) - c2 (a31b1 + a32b2 + a33b3)]

 - d2 [c3 (a11b1 + a12b2 + a13b3) - c1 (a31b1 + a32b2 + a33b3)]

+ d3 [c2 (a11b1 + a12b2 + a13b3) - c1 (a21b1 + a22b2 + a23b3)] ,

and the term [\bfitb \wedge (A\bfitc )] \cdot \bfitd is simplified to

[\bfitb \wedge (A\bfitc )] \cdot \bfitd = d1 [b2 (a31c1 + a32c2 + a33c3) - b3 (a21c1 + a22c2 + a23c3)]

 - d2 [b1 (a31c1 + a32c2 + a33c3) - b3 (a11c1 + a12c2 + a13c3)]

+ d3 [b1 (a21c1 + a22c2 + a23c3) - b2 (a11c1 + a12c2 + a13c3)] .

Also, the term [\bfitb \wedge \bfitc ] \cdot (A\bfitd ) can be simplified as

[\bfitb \wedge \bfitc ] \cdot (A\bfitd ) = (a11d1 + a12d2 + a13d3) (b2c3  - c2b3)

 - (a21d1 + a22d2 + a23d3) (b1c3  - c1b3)

+ (a31d1 + a32d2 + a33d3) (b1c2  - c1b2) .

So, the left-hand side of the identity can be obtained by adding these three equations together,
resulting in

[(A\bfitb ) \wedge \bfitc ] \cdot \bfitd + [\bfitb \wedge (A\bfitc )] \cdot \bfitd + [\bfitb \wedge \bfitc ] \cdot (A\bfitd )

= (a11 + a22 + a33) [d1 (b2c3  - c2b3) - d2 (b1c3  - c1b3) + d3 (b1c2  - b2c1)] .

The term (a11 + a22 + a33) is Tr (A), and the triple scalar product of [(\bfitb \wedge \bfitc ) \cdot \bfitd ] is equal to

[(\bfitb \wedge \bfitc ) \cdot \bfitd ] = [d1 (b2c3  - c2b3) - d2 (b1c3  - c1b3) + d3 (b1c2  - b2c1)] ,

which establishes the required result.

Appendix C. Convergence of the unstable Melnikov function \bfitM \bfitu . Since \=\bfitx u is a tra-
jectory on the two-dimension unstable manifold of \bfita , we know that we are in case 1, where
D\bfitf (\bfita ) has two eigenvalues \lambda u

1 and \lambda u
2 with positive real part, and one eigenvalue \lambda s < 0.

Let is take the (potentially complex valued) eigenvectors \bfitv u
1 and \bfitv u

2 corresponding to \lambda u
1,2 as

being normalized. By assumption, \bfitv 1 and \bfitv 2 are linearly independent; this also subsumes
the situation of a repeated eigenvalue \lambda u

1 = \lambda u
2 with geometric multiplicity 2. The eigenspace

spanned by \bfitv u
1 and \bfitv u

2 forms the tangent plane to \Gamma u at \bfita . The deviation of a trajectory from
the point \bfita is therefore governed by the linearized flow as \tau \rightarrow  - \infty , i.e.,\bigm| \bigm| \bigm| \=\bfitx u(\tau  - t+ p, \alpha ) - \bfita  - A(\alpha )\bfitv u

1e
\lambda u
1 (\tau  - t+p)  - B(\alpha )\bfitv u

2e
\lambda u
2 (\tau  - t+p)

\bigm| \bigm| \bigm| \rightarrow 0 as \tau \rightarrow  - \infty ,

where A(\alpha ) and B(\alpha ) are (potentially complex-valued) scalars which are differentiable in \alpha .
Thus, as \tau approaches to negative infinity,

\=\bfitx u(\tau  - t+ p, \alpha ) - \bfita \sim A(\alpha )\bfitv u
1e

\lambda u
1 (\tau  - t+p) +B(\alpha )\bfitv u

2e
\lambda u
2 (\tau  - t+p) .
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TWO-DIMENSIONAL MELNIKOV THEORY 2687

Since \=\bfitx u(\tau  - t+ p, \alpha ) satisfies the equation \.\bfitx = \bfitf (\bfitx ), we know that

\=\bfitx u
\tau (\tau  - t+ p, \alpha ) = \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )),

and so

\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \sim A(\alpha )\lambda u
1\bfitv 

u
1e

\lambda u
1 (\tau  - t+p) +B(\alpha )\lambda u

2\bfitv 
u
2e

\lambda u
2 (\tau  - t+p).

Furthermore, the \alpha -partial derivative is then

\=\bfitx u
\alpha (\tau  - t+ p, \alpha ) \sim A\prime (\alpha )\bfitv u

1e
\lambda u
1 (\tau  - t+p) +B\prime (\alpha )\bfitv u

2e
\lambda u
2 (\tau  - t+p).

Lemma 2. There exists a constant K2 such that for all (p, \alpha , \tau ) \in ( - \infty , P ] \times [0, 2\pi ) \times 
( - \infty , t], and for all t \in ( - \infty , T ],

e
\int t

\tau 
\nabla \cdot \bfitf (\=\bfitx u(\xi  - t+p,\alpha ))d\xi 

\bigm| \bigm| \bigm| \bigm| \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )

\bigm| \bigm| \bigm| \bigm| \leq K3e
\lambda s(t - \tau ) .(59)

Proof. Based on the previous estimates, we have

\bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )

\sim 
\Bigl[ 
A(\alpha )\lambda u

1\bfitv 
u
1e

\lambda u
1 (\tau  - t+p) +B(\alpha )\lambda u

2\bfitv 
u
2e

\lambda u
2 (\tau  - t+p)

\Bigr] 
\wedge 
\Bigl[ 
A\prime (\alpha )\bfitv u

1e
\lambda u
1 (\tau  - t+p) +B\prime (\alpha )\bfitv u

2e
\lambda u
2 (\tau  - t+p)

\Bigr] 
= [A(\alpha )B\prime (\alpha )\lambda u

1 +A\prime (\alpha )B(\alpha )\lambda u
2 ] e

(\lambda u
1+\lambda u

2 )(\tau  - t+p) [\bfitv u
1 \wedge \bfitv u

2 ] .

Now, we note that | \bfitv u
1 \wedge \bfitv u

2 | \leq 1 (the eigenvectors are normalized), and the functions A
and B and its derivatives are bounded on the compact set \alpha \in 2\pi S1. Since we must have
Im\lambda u

1 =  - Im\lambda u
2 , we obtain\bigm| \bigm| \bigm| \bigm| \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u

\alpha (\tau  - t+ p, \alpha )

\bigm| \bigm| \bigm| \bigm| \leq K1e
\mathrm{R}\mathrm{e}(\lambda u

1+\lambda u
2 )(\tau  - t+p)

for some constantK1. Moreover, since the trace ofD\bfitf (\=\bfitx u(\alpha , \tau  - t+p)) approaches TrD\bfitf (\bfita ) =
\lambda u
1 + \lambda u

2 + \lambda s = Re (\lambda u
1 + \lambda u

2) + \lambda s as \tau \rightarrow  - \infty , we have

e
\int t

\tau 
\nabla \cdot \bfitf (\=\bfitx u(\xi  - t+p,\alpha ))d\xi \sim e

\int t

\tau 
(\mathrm{R}\mathrm{e}(\lambda u

1+\lambda u
2 )+\lambda s)\mathrm{d}\xi = e(\mathrm{R}\mathrm{e}(\lambda u

1+\lambda u
2 )+\lambda s)(t - \tau ) .

Consequently, the exponential term can be bounded by a constant K2 times the term on the
right. We can now estimate the product by

e
\int t

\tau 
\nabla \cdot \bfitf (\=\bfitx u(\xi  - t+p,\alpha ))d\xi 

\bigm| \bigm| \bigm| \bigm| \bfitf (\=\bfitx u(\tau  - t+ p, \alpha )) \wedge \=\bfitx u
\alpha (\tau  - t+ p, \alpha )

\bigm| \bigm| \bigm| \bigm| \leq K1e
\mathrm{R}\mathrm{e}(\lambda u

1+\lambda u
2 )(\tau  - t+p)

K2e
(\mathrm{R}\mathrm{e}(\lambda u

1+\lambda u
2 )+\lambda s)(t - \tau )

= K1K2e
\mathrm{R}\mathrm{e}(\lambda u

1+\lambda u
2 )pe\lambda 

s(t - \tau )

= K3e
\lambda s(t - \tau )

for a constant K3, as desired.
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2688 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

Using the result of Lemma 2, since \bfitz u(p, \alpha , \tau ) is bounded (say by a constant K4), from
(56), we obtain the bound

| Mu(p, \alpha , t)| \leq K3K4e
\lambda st

\int t

 - \infty 
e - \lambda s\tau d\tau = K3K4e

\lambda st e
 - \lambda s\tau 

 - \lambda s

\bigm| \bigm| \bigm| t
 - \infty 

=
K3K4

 - \lambda s
,

where the limit is convergent because \lambda s < 0.

Appendix D. Proof that \widetilde \bfitM \bfitu and \bfitM \bfitu are \bfscrO (\bfitepsilon )-close. Let m(\tau ) := \widetilde Mu(p, \alpha , \epsilon , \tau )  - 
Mu(p, \alpha , \tau ) be the difference in the two functions at a general time \tau ; we need to show that
m(t) = \scrO (\epsilon ). Subtracting (55) from (52), and multiplying by the integrating factor \mu (\tau ),
we get

\partial 

\partial \tau 
[\mu (\tau )m(\tau )] = \epsilon \mu (\tau )H(\tau )

subject to the condition m( - \infty ) = 0. This has a solution

m(t) = \epsilon 

\int t

 - \infty 

\mu (\tau )

\mu (t)
H(\tau ) d\tau = \epsilon 

\int t

 - \infty 
exp

\biggl[ \int t

\tau 
\nabla \cdot \bfitf (\=\bfitx u(\xi  - t+ p, \alpha ))d\xi 

\biggr] 
H(\tau ) d\tau .

Now, H(\tau ) in (53) can be factored: one term consists of exactly the left-hand side of (59),
whereas the remainder of the terms are bounded because of the boundedness of \bfitz u (as argued
in Appendix A), and of D2\bfitf and D\bfitg (by hypothesis). Applying Lemma 2, we therefore obtain

| m(t)| \leq \epsilon K5

\int t

 - \infty 
e\lambda 

s(t - \tau ) d\tau =
\epsilon K5

 - \lambda s

for some constant K5. Hence, m(t) = \scrO (\epsilon ) as desired.

Appendix E. Proof of Theorem 1 (heteroclinic manifold splitting). For fixed (p, \alpha , t)
in the relevant domains, we know that du in Theorem 1 provides the displacement of \Gamma u

\epsilon (\bfita \epsilon )
from \=\bfitx (p, \alpha ) in the direction normal to \Gamma , and similarly, ds in Theorem 2 the displacement of
\Gamma s
\epsilon (\bfitb \epsilon ) in the same direction. Since \=\bfitx = \=\bfitx u = \=\bfitx s in this instance,

d(p, \alpha , t, \epsilon ) = du(p, \alpha , t, \epsilon ) - ds(p, \alpha , t, \epsilon )

= \epsilon 
Mu(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
 - \epsilon 

M s(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
+\scrO (\epsilon 2)

= \epsilon 
Mu(p, \alpha , t) - M s(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
+\scrO (\epsilon 2)

=: \epsilon 
M(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
+\scrO (\epsilon 2) ,
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TWO-DIMENSIONAL MELNIKOV THEORY 2689

where from (4) and (8), we get

M(p, \alpha , t) = Mu(p, \alpha , t) - M s(p, \alpha , t),

=

\int p

 - \infty 
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx (\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx (\tau , \alpha )) \wedge \=\bfitx \alpha (\tau , \alpha )] \cdot \bfitg (\=\bfitx (\tau , \alpha ), \tau + t - p) d\tau 

 - 
\biggl( 
 - 
\int \infty 

p
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx (\xi , \alpha ))d\xi 

\biggr] 
[\bfitf (\=\bfitx (\tau , \alpha )) \wedge \=\bfitx \alpha (\tau , \alpha )]

\cdot \bfitg (\=\bfitx (\tau , \alpha ), \tau + t - p) d\tau 

\biggr) 
=

\int \infty 

 - \infty 
exp

\biggl[ \int p

\tau 
\nabla \cdot \bfitf (\=\bfitx (\alpha , \xi ))d\xi 

\biggr] 
[\bfitf (\=\bfitx (\alpha , \tau )) \wedge \=\bfitx \alpha (\alpha , \tau )] \cdot \bfitg (\=\bfitx (\alpha , \tau ), \tau + t - p) d\tau ,

as desired.

Appendix F. Proof of Theorem 2 (lobe volume). We note that there is a nearby
region, R \star , such that d(p, \alpha , \epsilon , t) sign-definite on R \star , and moreover, R \star 's boundary is Q \star ,
which consists of closed curves which are \scrO (\epsilon )-close to Q. While the lobe volume should
properly be calculated by integrating d over R \star , the error in integrating \epsilon M over R instead is
of higher-order in \epsilon . Consequently, the leading-order lobe volume only requires leading-order
information.

Since \Gamma is (p, \alpha )-parametrized by \=\bfitx (p, \alpha ), we can write the vector surface element on \Gamma by

\bfitd \bfitS = \=\bfitx p(p, \alpha ) \wedge \=\bfitx \alpha (p, \alpha ) dp d\alpha = \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha ) dp d\alpha .

However, we know that the signed distance between the perturbed stable and unstable man-
ifolds, measured perpendicular to \Gamma at \=\bfitx (p, \alpha ), is given by d in (15). Noting, moreover, that
using R rather than R \star results in a higher-order error, and d itself is \scrO (\epsilon ), we can write the
volume of the lobe lying between the manifolds as

Lobe volume =

\int \int 
R \star 

| d(p, \alpha , \epsilon , t)| | \bfitd \bfitS | 

=

\int \int 
R
| d(p, \alpha , \epsilon , t)| | \bfitd \bfitS | +\scrO (\epsilon 2)

=

\int \int 
R

\bigm| \bigm| \bigm| \bigm| \epsilon M(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
+\scrO (\epsilon 2)

\bigm| \bigm| \bigm| \bigm| | \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| dp d\alpha +\scrO (\epsilon 2) ,

which immediately gives the desired result.

Appendix G. Proof of Theorem 3 (Instantaneous flux). The pseudo-separatrix consists
of three different segments. There is no Lagrangian flux across the stable and unstable man-
ifold parts, because these are invariant objects. They move with time, but remain material
surfaces. The only flux that can occur is that crossing the strip. We note from Figure 8 that
in parts of the strip where the unstable manifold is outside the stable one, the flux will be
outwards, and hence will be positive. Thus, in (p, \alpha , t) regions in which the Melnikov function
is positive, a positive contribution to the flux occurs. Conversely, if the unstable manifold is
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2690 K. G. D. S. PRIYANKARA, S. BALASURIYA, AND E. M. BOLLT

inside the stable one, the flux is into the closed surface and hence negative, again consonant
with the sign of the Melnikov function at such points.

A general point \bfitr on the strip S, as given in (21), is

\bfitr (s, \alpha , \epsilon , t) = \=\bfitx (p, \alpha ) + \^\bfitn (p, \alpha ) [sdu(p, \alpha , \epsilon , t) + (1 - s)ds(p, \alpha , \epsilon , t)] ; (s, \alpha ) \in [0, 1]\times S1

= \=\bfitx (p, \alpha ) + \epsilon 
\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
sMu(p, \alpha , t) + (1 - s)M s(p, \alpha , t)

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 
+\scrO (\epsilon 2) .

The vector surface element on S in terms of the (s, \alpha )-parametrization, chosen so that the
outward normal is positive, is therefore

\bfd \bfitS = \bfitr \alpha (s, \alpha , \epsilon , t) \wedge \bfitr s(s, \alpha , \epsilon , t) ds d\alpha 

= [\=\bfitx \alpha (p, \alpha ) +\scrO (\epsilon )] \wedge \epsilon 
\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2
[Mu(p, \alpha , t) - M s(p, \alpha , t)] ds d\alpha +\scrO (\epsilon 2)

= \epsilon 
M(p, \alpha , t) \=\bfitx \alpha (p, \alpha ) \wedge [\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )]

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2
dsd\alpha +\scrO (\epsilon 2).

Therefore, the Lagrangian flux crossing S is

\Phi (p, t, \epsilon ) =
x

S

[\bfitf (\=\bfitx (p, \alpha )) + \epsilon \bfitg (\=\bfitx (p, \alpha ), t)] \cdot \bfd \bfitS 

=

\int 1

0

\int 1

0

[\bfitf (\=\bfitx (p, \alpha )) + \epsilon \bfitg (\=\bfitx (p, \alpha ), t)] \cdot \epsilon M(p, \alpha , t) \=\bfitx \alpha (p, \alpha ) \wedge [\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )]

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2
dsd\alpha +\scrO (\epsilon 2)

= \epsilon 

\int 1

0

\int 1

0

M(p, \alpha , t)
\bfitf (\=\bfitx (p, \alpha )) \cdot [\=\bfitx \alpha (p, \alpha ) \wedge [\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )]]

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2
dsd\alpha +\scrO (\epsilon 2)

= \epsilon 

\int 1

0

\int 1

0

M(p, \alpha , t)
\bfitf (\=\bfitx (p, \alpha )) \cdot [\bfitf (\=\bfitx (p, \alpha )) [\=\bfitx \alpha (p, \alpha ) \cdot \=\bfitx \alpha (p, \alpha )] - \=\bfitx \alpha (p, \alpha ) [\bfitf (\=x(p, \alpha )) \cdot \=\bfitx \alpha (p, \alpha )]]

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2

dsd\alpha +\scrO (\epsilon 2)

= \epsilon 

\int 1

0

\int 1

0

M(p, \alpha , t)
| \bfitf (\=\bfitx (p, \alpha ))| 2 | \=\bfitx \alpha (p, \alpha )| 2  - | \bfitf (\=\bfitx (p, \alpha )) \cdot \=\bfitx \alpha (p, \alpha )| 2

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2
dsd\alpha +\scrO (\epsilon 2)

= \epsilon 

\int 1

0

\int 1

0

M(p, \alpha , t) dsd\alpha +\scrO (\epsilon 2)

= \epsilon 

\int 1

0

M(p, \alpha , t) d\alpha +\scrO (\epsilon 2) ,

as required. In this derivation, we have used standard vector identities in three-dimensions:
the ``bac-cab"" rule and Lagrange's identity.

Appendix H. Proof of Corollary 1 (instantaneous flux for harmonic perturbations). In
this proof, we will use the shorthand notation

F (p, \alpha ) := \scrF \{ h (p, \alpha , \dotp )\} (\omega ) .
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TWO-DIMENSIONAL MELNIKOV THEORY 2691

Inserting the expression for the time-harmonic Melnikov function (24) into the instantaneous
flux formula (22), and performing standard trigonometric manipulations, we get

\Phi (p, t, \epsilon )

= \epsilon 

\int 1

0
| F (p, \alpha )| cos [\omega (t - p) + \phi  - arg (F (p, \alpha ))] d\alpha +\scrO (\epsilon 2)

= \epsilon 

\biggl\{ 
cos [\omega (t - p) + \phi ]

\int 1

0
| F (p, \alpha )| cos [arg (F (p, \alpha ))] d\alpha 

+sin [\omega (t - p) + \phi ]

\int 1

0
| F (p, \alpha )| sin [arg (F (p, \alpha ))] d\alpha 

\biggr\} 
+\scrO (\epsilon 2)

= \epsilon 

\biggl\{ 
cos [\omega (t - p) + \phi ]

\int 1

0
Re (F (p, \alpha )) d\alpha +sin [\omega (t - p) + \phi ]

\int 1

0
Im (F (p, \alpha )) d\alpha 

\biggr\} 
+\scrO (\epsilon 2)

= \epsilon 

\sqrt{} \biggl( \int 1

0
Re (F (p, \alpha )) d\alpha 

\biggr) 2

+

\biggl( \int 1

0
Im (F (p, \alpha )) d\alpha 

\biggr) 2

\left\{       
cos [\omega (t - p) + \phi ]

\int 1
0 Re (F (p, \alpha )) d\alpha \sqrt{} \Bigl( \int 1

0 Re (F (p, \alpha )) d\alpha 
\Bigr) 2

+
\Bigl( \int 1

0 Im (F (p, \alpha )) d\alpha 
\Bigr) 2

+
sin [\omega (t - p) + \phi ]

\int 1
0 Im (F (p, \alpha )) d\alpha \sqrt{} \Bigl( \int 1

0 Re (F (p, \alpha )) d\alpha 
\Bigr) 2

+
\Bigl( \int 1

0 Im (F (p, \alpha )) d\alpha 
\Bigr) 2

\right\}       +\scrO (\epsilon 2)

= \epsilon 

\bigm| \bigm| \bigm| \bigm| \int 1

0
F (p, \alpha ) d\alpha 

\bigm| \bigm| \bigm| \bigm| 
\left\{   cos [\omega (t - p) + \phi ]

Re
\Bigl( \int 1

0 F (p, \alpha ) d\alpha 
\Bigr) 

\bigm| \bigm| \bigm| \int 1
0 F (p, \alpha ) d\alpha 

\bigm| \bigm| \bigm| 
+sin [\omega (t - p) + \phi ]

Im
\Bigl( \int 1

0 F (p, \alpha ) d\alpha 
\Bigr) 

\bigm| \bigm| \bigm| \int 1
0 F (p, \alpha ) d\alpha 

\bigm| \bigm| \bigm| 
\right\}   +\scrO (\epsilon 2)

= \epsilon 

\bigm| \bigm| \bigm| \bigm| \int 1

0
F (p, \alpha ) d\alpha 

\bigm| \bigm| \bigm| \bigm| \biggl\{ cos [\omega (t - p) + \phi ] cos

\biggl[ 
arg

\biggl( \int 1

0
F (p, \alpha ) d\alpha 

\biggr) \biggr] 
+sin [\omega (t - p) + \phi ] sin

\biggl[ 
arg

\biggl( \int 1

0
F (p, \alpha )d\alpha 

\biggr) \biggr] \biggr\} 
+\scrO (\epsilon 2)

= \epsilon 

\bigm| \bigm| \bigm| \bigm| \int 1

0
F (p, \alpha ) d\alpha 

\bigm| \bigm| \bigm| \bigm| cos \biggl[ \omega (t - p) + \phi  - arg

\biggl( \int 1

0
F (p, \alpha ) d\alpha 

\biggr) \biggr] 
+\scrO (\epsilon 2) ,

as required.

Appendix I. Proof of Theorem 5 (lobe volume for harmonic perturbations in the
volume-preserving situation). Consider any one of the lobes Lik(t). By Theorem 2, its volume
to leading-order in \epsilon is given by
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Volume (Lik(t)) = \epsilon 

\int \alpha i

\alpha i - 1

\int \~p(\alpha ,k)

\~p(\alpha ,k - 1)
| M(p, \alpha , t)| dp d\alpha +\scrO (\epsilon 2) .

Employing (24), and under the harmonic assumption in which h is independent of p, we get

Volume (Lik(t)) = \epsilon 

\int \alpha i

\alpha i - 1

\int \~p(\alpha ,k)

\~p(\alpha ,k - 1)
| \scrF \{ h(\alpha , \dotp )\} (\omega )| | cos [\omega (t - p) + \phi  - arg (\scrF \{ h(\alpha , \dotp )\} (\omega ))]| 

dp d\alpha +\scrO (\epsilon 2)

= \epsilon 

\int \alpha i

\alpha i - 1

| \scrF \{ h(\alpha , \dotp )\} (\omega )| 
\int \~p(\alpha ,k)

\~p(\alpha ,k - 1)
| cos [\omega (t - p) + \phi  - arg (\scrF \{ h(\alpha , \dotp )\} (\omega ))]| 

dp d\alpha +\scrO (\epsilon 2).

The inner p-integral is between adjacent zeros of the cosine function, specifically as given by
the functions \~p. Note that this is of the absolute value of the cosine function of  - \omega p plus a
phase shift. The phase shift does not affect the integral because it is between adjacent zeros
of p. Thus, we can simply shift the integral to be between any two adjacent zeros, and discard
the entire phase shift \omega t + \phi  - arg (\scrF \{ h(\alpha , \dotp )\} (\omega )). We choose \omega p to be between  - \pi /2 and
\pi /2, i.e., p between  - \pi /(2\omega ) and \pi /(2\omega ). Thus,

Volume (Lik(t)) = \epsilon 

\int \alpha i

\alpha i - 1

| \scrF \{ h(\alpha , \dotp )\} (\omega )| 
\int \pi /(2\omega )

 - \pi /(2\omega )
cos [ - \omega p] dp d\alpha +\scrO (\epsilon 2)

=
2\epsilon 

\omega 

\int \alpha i

\alpha i - 1

| \scrF \{ h(\alpha , \dotp )\} (\omega )| d\alpha +\scrO (\epsilon 2) ,

whose leading-order term in \epsilon is independent of k.

Appendix J. Derivations related to Hill's spherical vortex. This section outlines the
derivation of the results on the manifold displacements, Melnikov function and instantaneous
flux for the Hill's spherical vortex outlined in section 4.1. We note that p represents the
time-variation along a heteroclinic trajectory \=\bfitx (p, \alpha ), and is thus functionally related to \theta , the
latitude coordinate. Each heteroclinic trajectory is given in (r, \theta , \phi )-coordinates as (1, \=\theta (p), \phi ),
where \=\theta can be found via the velocity along a longitude:

d\=\theta 

dp
=

3

2
sin(\=\theta ), and so \=\theta (p) = cos - 1

\biggl( 
 - tanh

3p

2

\biggr) 
,(60)

where we have chosen \=\theta (0) = \pi /2, i.e., p = 0 at the equator for every heteroclinic trajectory,
and this form of inverse trigonometric function gives the principal branch \theta \in [0, \pi ] as required.
The general heteroclinic-trajectory parameterization of \Gamma (in (r, \theta , \phi ) form) is therefore

\=\bfitx (p, \alpha ) =

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3p

2

\biggr) 
, 2\pi \alpha 

\biggr) 
in (r, \theta , \phi ) components. Given that sin(\=\theta (p)) = sech

\Bigl( 
3p
2

\Bigr) 
, we note that

\bfitf (1, \=\theta (p), \phi ) =
3

2
sin(\=\theta (p))\^\bfittheta =

3

2
sech

3p

2
\^\bfittheta .
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Next, the derivative of \=\bfitx with respect to \alpha is quantified by

\=\bfitx \alpha (p, \alpha ) = (1 sin \=\theta (p))
\partial (2\pi \alpha )

\partial \alpha 
\^\bfitphi = 2\pi sech

3p

2
\^\bfitphi ,

and so

\bfitf (1, \=\theta (p), \phi ) \wedge \=\bfitx \alpha (p, \alpha ) = 3\pi sech2 3p

2
\^\bfitr .

A general perturbation \bfitg in (1) would be expressible in (r, \theta , \phi )-coordinates as

\bfitg (r, \theta , \phi , t) = gr(r, \theta , \phi , t)\^\bfitr + g\theta (r, \theta , \phi , t)\^\bfittheta + g\phi (r, \theta , \phi , t)\^\bfitphi .

We need neither specify that \bfitg be volume-preserving, nor time-periodic; only that the compo-
nents of \bfitg have bounded derivatives. When \epsilon \not = 0 but is small, \bfita perturbs to a time-varying
hyperbolic trajectory \bfita \epsilon (t), retaining its unstable manifold \Gamma u

\epsilon (\bfita \epsilon , t) which remains close to
\Gamma . Now, its location is associated with the unstable Melnikov function, which using Theorem
1 depends only on one component of \bfitg :

Mu (p, \alpha , t) = 3\pi 

\int p

 - \infty 
sech2 3\tau 

2
gr

\biggl( 
1, cos - 1

\biggl( 
 - tanh

3\tau 

2

\biggr) 
, 2\pi \alpha , \tau + t - p

\biggr) 
d\tau .

By virtue of Remark 1, this means that the part of \Gamma u
\epsilon close to \Gamma can be approximately

parameterized by

\bfitr u(p, \alpha , \epsilon , t) \approx \=\bfitx (p, \alpha ) + \epsilon Mu(p, \alpha , t)
\bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )

| \bfitf (\=\bfitx (p, \alpha )) \wedge \=\bfitx \alpha (p, \alpha )| 2
,

whence (37) results. We highlight that is only the r-component of \bfitg which contributes to the
leading-order displacement of \Gamma in the direction normal to it. An analogous approach can
be used to obtain that \bfitb \epsilon (t)'s stable manifold \Gamma s

\epsilon (\bfitb \epsilon , t) is approximately parameterizable via
(38). The Melnikov function (39) arises as a simple consequence of (16) in Thoerem 1. The
instantaneous flux (from the inside to the outside of the sphere) generated by the perturbation
is then (40), computed from (22).
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