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Assuming a good embedding and additive noise, the traditional approach to time-series em-
bedding prediction has been to predict pointwise by (usually linear) regression of the k-nearest
neighbors; no good mathematics has been previously developed to appropriately select the
model (where to truncate Taylor’s series) to balance the conflict between noise fluctuations
of a small k, and large k£ data needs of fitting many parameters of a high ordered model. We
present a systematic approach to: (1) select the statistically significant neighborhood for a fixed
(usually linear)model, (2) give an unbiased estimate of predicted mean response together with
a statement of quality of the prediction in terms of confidence bands.

1. Introduction

Predicting the future evolution of dynamical sys-
tems has been a main goal of scientific modeling for
centuries. The classic approach has been to build a
global model, based on fundamental laws, yielding a
differential equation which describes the motion of
states. “This requires strong assumptions. A good
fit of the data to the model validates the assump-
tions,” [Weigenbend & Gershenfeld, 1993]. Weigend
and Gershenfeld make a distinction between weak
modeling (data-rich and theory-poor) and strong
modeling (data-poor and theory-rich). This is re-
lated to, “... the distinction between memorization
and generalization ...”. It is always nice to have
a general theory from which we may write down a
global set of equations of motion. However, this is
not always necessary.

If the time-series has been generated by
a “chaotic” dynamical system, data-only based
analysis, using the methods of embedding and
attractor reconstruction, has become routine

[Weigenbend & Gershenfeld, 1993; Abarbanel et al.,

1993; Kantz & Schrieber, 1997; Abarbanel, 1996;
Farmer & Sidorowich, 1987, 1988]. Suppose that
an autonomous dynamical system,

t=F(z), z(t)eR", and z(tp) =z0, (1)
has an invariant attractor A. In general, the ex-
perimentalist who does not know the underlying
global model Eq. (1) does not even know which are
the correct variables to measure. Generally, any
single-channel data collected can be considered to
be a scalar measurement function hlz(t)] : R — R.
Given a set of measurements {h[x(t;)]})¥,, taken at
uniformly spaced times t;, the method of time-delay
embedding is to form the vector,

y(t) = (hlz(t)], hlz(t — 7)), Alz(t —27)],..., @)

hlz(t — dr)]),
and one generally chooses 7 to be some multiple of
the sampling rate At = ¢;,; —t;. Takens proved
[Takens, 1980] that, for topologically generic mea-
surement function A, if the attractor A is a smooth
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m-dimensional manifold, then if one chooses the de-
lay dimension to be d > 2m + 1, then Eq. (2) is an
embedding, meaning there exists a one-to-one func-
tion G : A — R%, and G is a diffeomorphism. Sauer
et al. [1991] proved an extension to allow for non-
smooth A, and even fractal A. To reconstruct the
attractor, both of these results assume that the data
is clean, and the data set is arbitrarily long. Neither
assumption is physically realizable, but nonethe-
less, time-delay reconstruction has found many ap-
plications to nonlinear modeling and to prediction.
See [Abarbanel, 1996; Kantz & Schrieber, 1997;
Abarbanel et al., 1993; Farmer & Sidorowich, 1987;
Eckmann & Ruelle, 1985].

Local linear regression of the observed evolu-
tion of k-nearest neighbors {y;(¢) ;‘?:1, to their im-
ages {y;(t +7)}5_;, has emerged as the most pop-
ular method to predict “the next y(¢).” The idea
is that a Taylor’s series of the (unknown) function
fr, which evolves (flows) initial conditions y(t), ac-
cording to the differential equation, Eq. (1), is well
approximated by the linear truncation, if the near
neighbors are “near enough.” Error analysis, such
as that found in [Farmer & Sidorowich, 1988], is
based on this local-truncation error, and therefore
considers the Luyapunov exponents. However, lit-
tle attention has been paid to the delicate balance
of competing needs of accurate local regression pre-
dictions based on “nearby” observations:

1. Small local truncation error demands that neigh-
borhoods be small, and therefore k£ must not be
chosen too large, using a fixed (linear) model.

2. Statistical fluctuations demand that k£ be chosen
large enough to infer a degree of smoothing.

3. Since a local polynomial model regresses the
first several terms of a Taylor approximation, at-
tempting to improve local truncation error by in-
creasing the model degree (say to the quadratic
term) comes at a cost of an explosion in the
number k necessary to fit the many new param-
eters, and hence likely a decrease in the resulting
smoothing.

A popular method [Walker, 1998; Lichtenberg
& Lieberman, 1983] is to choose k equal to twice the
number of parameters that is fitting, but we argue
that this is no more than a “rule-of-the-thumb,” as
it does not adequately address issues 1-3. While
some authors have noted only moderate success us-
ing local ordinary least squares to predict a noise-
corrupted dynamical system (see [Kugiumtzis et al.,
1998] where the deterioration of local predictions for

ill-chosen neighborhoods size k was recognized), we
argue in this article that the failure of “OLS” is
only a matter of choosing the correct scale, a mat-
ter which we aim to remedy. Sauer [1992] has rec-
ommended roughly choosing k£ to make the neigh-
borhood, “... around the noise size of the data.”
A systematic method to choose k, due to Smith
[1994], recognizes the delicate balance between lo-
cal truncation errors, versus minimum data needs
for statistical smoothing. Smith chose “optimal k”
which minimizes observed prediction error, based
on trials using a comparison of predictions of the
data set divided into training and comparison sets.
The technique we introduce in this article is philo-
sophically different, in that we choose k£ to make a
“statistically significant model” in the appropriate
window.

A main purpose of this article is to present a
systematic statistical analysis to choose, pointwise,
the appropriate value of k near neighbors, to make
unbiased predictions based on a statistically signif-
icant but unbiased polynomial regression. We will
locally apply an hypothesis test to determine the
critically last significant k. Then, using this op-
timal neighborhood size k to make predictions, in
which the polynomial model is statistically signif-
icant, and hence unbiased, it is valid to complete
the regression analysis with an analysis of variance
(ANOVA) on the prediction. Prediction confidence
is the most interesting application of the ANOVA
when predicting nonlinear time-series. Giving the
prediction, together with the, say 95%, confi-
dence bands, is the second purpose of this article.
We validate our analysis with real and simulated
data sets.

2. Locality Analysis of Variance

For the sake of specificity to demonstrate the prob-
lem of scales when choosing k, we show a one-
dimensional case of a noisy logistic map, z,41 =
4z,(1 — x,), and x; — x; + €;, where g; are in-
dependent normal random variable with standard
deviation ¢ = 0.1. See Fig. 1, where in three suc-
cessive window sizes (three values of k), the linear
model is [Fig. 1(b)] biased, [Fig. 1(c)] significant
and unbiased, [Fig. 1(d)] insignificant. Making the
problem of scales particularly obvious, we can see
that in the smallest window [Fig. 1(d)], the slope of
the regressed line even has the wrong sign, and like-
wise the concavity of the regressed quadratic has the
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Four progressively smaller windows of logistic map.
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(a) Full unit interval, (b) linear model is biased by strong

quadratic curvature, (c) best window for a linear model since a quadratic adds no “significant” modeling contribution to a
linear prediction, (d) window is too small for a linear or a quadratic model, as we see that these regressed models even have
the wrong slope and concavity. The significant model in window (d) would be the constant model f(z) = c.

wrong sign. We stress that this is only an acci-
dent of the given sample of random variables, and in
the small window, regression is overly sensitive to
the noise. It can be said that the box is so thin,
that the vertical dimension of the box is dominated
by noise volume, o, which does not diminish as
we zoom. In this smallest window, only a con-
stant term model, the mean value, is statistically
significant. On the other hand, in the big win-
dow, [Fig. 1(b)], the regressed line becomes biased
by curvature.

We rename the embedded data vector, Eq. (2),
y(t) at time ¢ to be z;, and the flow which advances
y(t) to y(t+7) can be identified as a map T on the

embedded manifold,
Zi+1 = T(ZZ) . (3)

Hence, we have discrete orbit data {z; }j-\]:_ld. There
are two kinds of noise which we consider. Additive
measurement noise is added to the data generated
by the deterministic rule Eq. (3), z; — z; + ;.
On the other hand, modeling error is described by
a stochastic model in which noise is added before
each next iterations, z;+1 = T'(z;) + &;.

Suppose we wish to predict the next state of
an initial condition w. A window is defined by the
k-nearest neighbors to w, this region U(w, k) can
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be taken to be the convex-hull of the closest points
from the data-set {zj}j»v: %, We will assume that
in a fixed-sized window, U(w, k), that there is a
“statistically significant” and unbiased polynomial
model of a truncated Taylor’s series of T'|,,. Note
that to respect the topological embedding described
by Egs. (2) and (3), we maintain the multivariate
description of the map z;,1 = T(z;) € N9, even
though statistically, this is not necessary. Inspec-
tion of Eq. (2) reveals that in terms of regression,
only the first position of the vector, [z;y1]1, re-
quires prediction. The rest of the “new” delay vec-
tor is simply a shifted image of the previous state,
{[zix1]; = [zi] j—1}§l:2- Therefore, the regression
Eq. (4) amounts to a linear solve in those corre-
sponding parameters, and hence their solution has
zero variance.

Since a general multivariate polynomial of de-
gree s, in d-dimensional space has, d(s + d)!/sld!,
coefficients, which grows quickly with s and d,
we describe the following only for comparison of
linear (affine) models versus quadratic models,
which already requires that & > 60 for our d =
four-dimensional examples, but the algorithm gen-
eralizes with essentially no modification. An affine
model of T|y, is z = Ty + DT - h, where Ty
is the average of {zkj};‘?:1 over U(w, k), DT is
related to the Jacobian derivative averaged over
U(w, k), and h = w — z. (We index the k points
in U(w, k) by k;.) A quadratic model of T, is
z=To+DT -h+(1/2)h!-H-h, where H is related
to the Hessian matrix of second derivatives. The d
parameters of T and the d? parameters of DT may
be found by least squares according to the normal
equations [Neter et al., 1996],

Y=X -B+c¢, (4)

which is the convenient matrix form of linear regres-
sion, and maintains the same vector form regardless
of the degree of the fitted polynomial. For an unbi-
ased model, expectation of the RV is E(e) = 0. The
word “linear” refers to the linearity of coefficients
which combine multiple linearly independent terms
in combinations. For the affine model, one chooses,

t Lot

Zy, 11 1 Zy,

t t

Z 1 : =z
Y=|""" | and X=X;= 2

t Lt

Zy, 1 1 zZy,

while for the quadratic model,

X = [Xl . Xg], (6)
and,
Z Zt Z Zt Z Zt
klal k1 k172 k1 klad k1
t t t
Zky 1%y Zko,2Z, 0 ZkpdZp,
X2 = ’

t t t
(7)
is the convenient way to write quadratic terms, and
not including the self-terms zj, ;zy, ; in order not
to overestimate. Now formally, in this matrix nota-

tion, the fitted parameters are,
b=X" X! XY, (8)

but since normal equations from linear regression
are often highly ill-conditioned, the more numeri-
cally stable way to solve Eq. (4) is by Pensrose—
Pseudo Inverse, or SVD [Press et al., 1992; Golub
& Van Loan, 1989].

Nothing mechanical will stop a scientist from
performing the above regression for any data set
size, as long as k is chosen large enough so that
Eq. (4) is over-determined, k£ > d(d + 1) for the lin-
ear case, or k > (d + 2)!/2!(d — 1)! for quadratic.
But as we already discussed, an ill-chosen k gives
bad results. Consider the case that k is too big. We
wish that Eq. (4) is not ill-conditioned. In terms of
expectation,

E(b) =8. (9)

However, if the true model is,

Full Model: Y =X - 81 + X2 - 32, (10)
but we omit some vector of terms Xs - B2 by only
assuming the submodel,

Submodel: Y = X - 81, (11)
then it can be shown [Draper & Smith, 1981] that
there is an introduced “bias”,

E(b1) =p1+ A B2,
(12)
where A=X X))t XX,
is the so-called alias or bias matrix. For the lin-
ear submodel, take X; to be given in Eq. (5). For
the quadratic full model, take X5 to be all of the



quadratic terms in Eq. (6). In our setting, bias cor-
responds to choosing k too large, in which case the
nontrivial local curvature is too large and the varied
Xs in A, Eq. (12), is a nontrivial bias. See Fig. 1(c)
for the 1-D illustration.

On the other hand, k to small is just as danger-
ous, as statistical flucations in observed responses
y will cause significant fluctuations in observed val-
ues of the random variables b; see Fig. 1(d) for ex-
ample. Each random sample of y will in principle
lead to a different sampled by, which upon repeated
sampling, fills-out a typically elliptical cloud in 8-
parameter space, with ellipse center at the (Full
model, or unbiased) mean 8. More data sampled
gives a better point-estimate of b to 3.

Balancing these concerns of large versus small
scales, we are thus motivated to make the following
statement of goal when choosing k:

Statement of Goal: Choose k as large as possible so
that the submodel, Eq. (11), is “significant,” but the
full model, Eq. (10), is insignificant.

To well-define “significant,” we resort to a sta-

tistical hypothesis test [Neter et al., 1996],
H() . b2 == 0, (13)

or all k(k + 1)/2 extra coefficients of the full
quadratic model, Eq. (10), are “essentially” zero.
If this is not found to be true, one concludes the
alternative hypothesis,

H, : some [by]; #0,
k(k+1)

2 )
and hence the quadratic part of the model is
required.

Given w, a point to predict, our algorithm to
find the critical k-neighborhood U(w, k), satisfying
the stated goal, is as follows. Choose k so large that
T is obviously not well approximated by an affine
model, say 10% of the data set, and so that Eq. (5)
is highly overdetermined. We sort these k-nearest
neighbors by distance from w. Then one (or several
if the set is large) at a time, we prune this list until
we first conclude Hy, at the critical k¢,, defining the
window U (w, ke ).

All that is left is the discussion of statistically
concluding Hj to a given significance level a. In
practice, one does not find that modeling noisy data
gives exactly bo = 0. Rather, one asks that an
1 — a confidence region (ellipsoid) around the sam-
pled by, given by Eq. (8) in the bs projection in

for some j =1, 2,..., (14)
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coefficient space, includes the origin. The statisti-
cal F-test for multiple regression [Neter et al., 1996]
decides whether the proposed full model is statisti-
cally significant relative to a proposed submodel, to
significance a. If,

_ ASSE | SSEtu
~ A(DF) ~ DFyu

< F(1 - «a; ADF), DFg), (15)

F'x

then one concludes Hy. Here, SSEqy = (Y —
X1+ Xp] - [by ¢ bAJY) - (¥ — [Xy : Xp] - [bf :
bi]t)t, SSEgw = (Y — Xy - by) - (Y — X, - b)Y,
ASSE = SSEg — SSEgub, DFn = [# degrees
of freedom of Eq. (6)] = #rows —#columns of X; :
Xs|, DFgup, = [# degrees of freedom of Eq. (5)] =
#rows — #columns of X; DF = DFgp — DFgup,
and F(1 — a; A(DF), DFy,) is percentiles of the
F-distribution; see [Neter et al., 1996; Draper &
Smith, 1981].

Said in terms of a local Principal Component
Analysis (PCA) [Hediger et al., 1990], using the Sin-
gular Value Decomposition (SVD) of the full model
Eq. (10), there are d+d? +d?(d+1)/2 singular val-
ues w;, but if the d?(d + 1)/2 singular values [Press
et al., 1992; Golub & Van Loan, 1989] correspond-
ing to the augmentation term Xs - B9 are “small”
then one accepts the null hypothesis Hy, and small
is defined to be “statistically insignificant to level-
a,” according to Eq. (15).

Finally, once one has determined that the sub-
model Eq. (5) is statistically significant relative to
the full model Eq. (6) then the ANOVA on the sub-
model is unbiased by the full model. In particular,
we are interested in the predicted mean response,
Y = X; - by, together with the corresponding 1 — «
confidence bands.

We are now in the position to write [Neter
et al., 1996],

Var(Y) = w' - o?{b} - w. (16)

In practice, one uses the unbiased point esti-
mator of the variance-covariance matrix o?{b};
s?2{b} = MSEg;,(X! - X;)~!, where mean square
error is in terms of sum square of error, MSEq,;, =
SSEsub/DFgup.  So the estimator of Eq. (16) is
s {Y} = w' - s*{b} - w. Finally, for a single re-
sponse, one can write the predicted mean new ob-
served response in terms of confidence bands,

Y + (1 — a/2; DFgy)y/1 +s2{b}, (17)
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which is in terms of the “student-t” distribution. In
this paper, we choose o = 0.05, a standard confi-
dence level of 95%.

3. Forecasting

We validate our results with real and simulated
data. Also, we check that the confidence bands
reported by Eq. (17) do in fact contain the true
responses close to the predicted (95%) percentage
of the predictions.

Example 1. First we numerically simulate a
“noisy” dynamical system by adding white noise
to the Mackey—Glass differential delay equations
[Mackey & Glass, 1977],

_ ax(t —tq)
1+ [z(t —tg)]°

7' (t) —bx(t) + ¢, (18)
which has become a standard example in time-series
analysis [Farmer, 1982; Lichtenberg & Lieberman,
1983] of a high (infinite) dimensional dynamical sys-
tem with a low-dimensional attractor. This type
of stochastic perturbation models “dynamic” noise.
We have chosen parameters t; = 17, a = 0.2,
b = 0.1, ¢ = 10.0 which give an embedding di-
mension of d = 4. We use integration steps of
At = tq/100 throughout. In Fig. 2(a) we show
a short segment of a clean, ¢ = 0, two-delay pro-
jection of the delay attractor, and Fig. 2(b) shows

02t

04f

a short segment of the corresponding clean time-
series. We have added the stochastic forcing of a
normal RV e with standard deviation o = 0.1, for
the rest of this study. Figure 3(a) shows this noisy
stochastic attractor. Figure 3(b) shows the corre-
sponding stochastic time-series, using the same ini-
tial condition as was used in Fig. 2(b). The noise
error, however, in Eq. (18) is dynamic. In Fig. 3(c),
we show the full N = 10° data points time-series
used in our forecasting experiment. While we will
vary delay’s 7 as allowed by the embedding theo-
rem, we will choose 7 = 6 to correspond to one
time unit, the first minimum of average mutual in-
formation [Farmer & Sidorowich, 1987].

As is usual benchmarking practice, we split the
full time-series in Fig. 3(c) into halves, a training
set, and a validation set. We then made numer-
ous validations of prediction for multiples of em-
bedding 7 = six — steps ahead. Figure 4 shows a
small segment of one such experiment, predicting
ahead 47, using the methods of model and scale se-
lection of k near neighbors as described above (as
in Fig. 3(c), displaying too long a segment conveys
little information.) Furthermore, using the appro-
priate k-scale, the local-linear model is unbiased, to
significance level o = 0.05, and Eq. (17) is expected
to give a good confidence estimate. The blue bands
are the (locally in embedding space) predicted 95%
confidence bands, and the center of the bands is
also marked blue, signifying the estimated signal
response. The red line is the true response, which

0.5
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Fig. 2. Clean Mackay—Glass, Eq. (18), (a) attractor and (b) short time-series, t4 = 17, a = 0.2, b = 0.1, ¢ = 10.0, and € = 0.

See Example 1.
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Fig. 3.

Noisy Mackay—Glass, Eq. (18), (a) attractor, (b) short time-series, and (c) full N = 105, At = t4/100 time-series for

prediction experiment. tg4 = 17, a = 0.2, b = 0.1, ¢ = 10.0, and € = 0. See Example 1.

we can see is in fact usually between the 95% bands.
We observed in this experiment that the so-called
95% confidence bands, derived by Eq. (17) and the
above procedure, in fact bounded the (red) true re-
sponse 96.12% of the time. Furthermore, as pre-
dicted, we see that the blue bands capture most of
the red’s noise variance, and when it does wander
outside the confidence bands, it usually does not
stray far. Please note that the red line wanders
widely around the predicted mean response center
blue line, thus strengthening the argument that a
prediction is only useful together with a statement
of the prediction’s quality.

Example 2. We now study real infrared NH3 laser
data [Huebner et al., 1989], contributed by U. Hueb-
ner to the Sante-Fe Institute prediction contest
[Weigenbend & Gershenfeld, 1993]. This data set
contains N =~ 10000 points, shown in Fig. 5, for
which we find a good embedding in dimension d =
4, and we choose the delay 7 = 2 to be equal to
one time-unit. Again, for benchmarking, we divide
the set into halves, training and validation sets. In
Fig. 6 we show a short segment of the predicted
mean response (center dashed blue line), 95% con-
fidence bands (outer dashed blue lines) and true
response (solid-red line). Again, the estimated 95%
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Fig. 4. A short segment of predicted mean responses (center blue line) using the first half, N/2 = 50, 000, points in Fig. 3(c),
together with estimated 95% confidence bands (outer blue lines), and the true observed response (red line) from validation

set, data in Fig. 3. See Example 1.
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Fig. 5. The N = 9,093 points NH3 laser data set from the
Sante-Fe Institute prediction contest [Huebner et al., 1989;
Weigenbend & Gershenfeld, 1993]. See Example 2.

confidence bands are close to the observed 97% of
the time bounding of the (red) true responses. Ob-
serve that the confidence bands are usually quite
tight, denoting that this was a very low-noise ex-
periment. Further note that sometimes, particu-
larly at the end of “building segments,” the con-
fidence bands are not as tight, denoting either a

300

e i)
[er)

i
ol
00
2500 |

550 ) G 580 20 0 810
T
Fig. 6. Predicting laser data ahead 7 = 2 time-steps. Pre-

dicted mean response (center blue-dashed line), 95% confi-
dence bands (out dashed blue lines) and true response, the
solid red line. See Example 2.

noisy part of the experiment, and/or low data den-
sity in this region of phase space. This is consistent
either with wide local variations of Luyapunov ex-
ponents as observed in [Farmer & Sidorowich, 1987,
1988], or a region of phase space with a relatively
low invariant measure, which in turn results in few



near neighbors. In such a case, our technique forces
settling on a small value of k, with corresponding
high statistical variation on estimated parameters,
but nonetheless with perhaps large truncation er-
ror. Such would not be a desirable situation, but
we have argued that such a situation is nonetheless
the best estimate of parameters that the noisy and
finite-length data set will support. It is useful to
know the scales of prediction accuracy.

4. Long Term Forecasting

There are two techniques whereby one can make
forecasts over a time-interval 7. These are m short
iterative forecasts over times 7/m, or one direct
forecast over the full time interval 7 [Farmer &
Sidorowich, 1987, 1988; Abarbanel, 1993]. Based on
a local-truncation analysis, Farmer and Sidorovich
found the counter-intuitive result that iterative
forecasts are superior, with rms error scaling as

—_q
NDiemaxT  This contrasts to rms error of direct

forecasts, IV D_Zeq”maxT, due to the extra ¢ in the
exponent, where ¢ — 1 is the degree of the polyno-
mial, N is the fized neighborhood size, oy, is the
largest Luyapunov exponent, and D; is the infor-
mation dimension. Their analysis does not apply
to our approach, since they assume a fixed neigh-
borhood size N, which we consider to be a major
factor in making good long term predictions. In
fact, they typically choose N to be twice the num-
ber of parameters to be fit, which according to our
results, is often low. Likewise, others [Kugiumtzis
et al., 1998] have also found that iterative forecast-
ing is not always superior to direct forecasting, even
for fixed neighborhood size.

We now discuss direct long term forecasting.
Given data from a chaotic dynamical system, it
should be expected that errors grow in time, and
hence our ability to predict should degrade in time.
Equivalently, our confidence in predictions should
degrade with time. We find this reflected by the fact
that our 95% confidence bands tend to get wider
with time. We choose a simple 1-D model to illus-
trate issues of scaling, data density and time.

Example 3. We generate N = 103 data points
with a noisy logistic map, z, 11 = 3.8%,(1—z,)+en,
where ¢, are i.i.d. Gaussian RV’s with ¢ = 0.01.
Notice that this is “dynamic noise.” Again, the data
set is divided into halves, for training and valida-
tion. For data generated by a map, rather than
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a flow, the “natural” delay is 7 = 1, one iterate.
Choosing 7 > 1 shows higher iterates of the map. In
Fig. 7, we show direct forecasts over progressively
longer times. The three dotted-blue lines are the
95% confidence bands (outer) and mean predicted
response (center). The solid-red line is the true re-
sponse. Confidence deteriorates in time, as reflected
by exponentially widening 95% confidence bands,
necessary to contain the (red) true response; note

Fig. 7. Direct forecasts of noisy logistic map, Tn+1 =
3.8zn(1 — ) + €, over progressively longer times, 7. 95%
confidence bands, outer blue-dashed lines, predicted mean re-
sponse, center blue-dashed line, and true response, solid-red
line. See Example 3.

<85\% bandwidth>

T

Fig. 8. The mean bandwidth of the noisy logistic map,
(95% bandwidth(r)), averaged over predicting each of the
500 points of validation set, versus forecast time 7. See
Example 3.
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Fig. 9. Noisy logistic map delay embeddings of data (red points) as pairs (z;, z;4-) for progressively increasing 7. The green
curves show clean versions (¢ = 0, Znt1 = 3.8z, (1 —zy), of iterates of the map. (a)—(e) show progressively increasing iteration
delays, 7 = 1, 2, 3, 6, and hence increasingly fast oscillations of the function, and data. Also shown are the 95% confidence
bands (outer blue curves), and predicted mean response (center blue). By 7 = 6, the data appears stochastic, and hence
prediction is the mean. See Example 3.



also that error (center blue-dotted line versus solid-
red line) increases with time. By the sixth iterate,
the confidence bands have saturated to the entire
attractor. In Fig. 8, we show (95% bandwidth), the
mean bandwidth averaged over predicting each of
the 500 points of validation set, versus forecast time
7. The almost perfect line on the log scale, before
saturation, is a reflection of the positive Luyapunov
exponent.

In Figs. 9(a)-9(d), we show the delay embed-
ding of data (red points) as pairs (x;, z;4,) for
progressively increasing 7, 7 = 1, 2, 3, 6. The
experimentalist has only data points, but to help
guide our eyes, we have drawn in green curves, a
clean version (¢ = 0, x,41 = 3.82,(1 — x,), even
though the data was generated with noise) of iter-
ates of the logistic map which generated the data.
Progressively higher iterates of the quadratic give
progressively higher degree polynomials; the nth-
iterate is a 2™ degree polynomial, which requires
progressively faster oscillations to fit the extra turn-
ing points in the unit interval. This was essen-
tially accounted for by Farmer and Sidorowich’s lo-
cal truncation analysis, though the interpretation
was different, as reflected by their use of a fixed
number N of near neighbors. Also in Figs. 9(a)-
9(d), we show our calculated 95% confidence bands;
correctly calculating these bands required that at
each iteration, a progressively smaller neighborhood
was chosen so that a line significantly fits the in-
creasingly faster oscillating function. This is true
until saturation. More data would be necessary to
resolve the map in a smaller interval. Our algo-
rithm suffers this forecasting horizon, as seen by
the fact that when 7 = 6, the predicted mean re-
sponse is approximately the mean value line of the
data, x ~ 0.5, which is the center blue line, and
the 95% confidence bands are at the extreme of the
unit interval. Consider Fig. 10, which shows (k(7)),
the mean number of near neighbors selected to pre-
dict the validation set. Neighborhood sizes decrease
with increasing iteration, due to faster oscillations
and more turning points of a higher degree poly-
nomial, until the minimum at 7 = 5. This is due
to the data density limit of a fixed training set size
of N = 500 points. For 7 > 5, the noise satu-
rated models have more significance as horizontal
lines (the constant model is the lowest degree pos-
sible submodel), which automatically tends to select
larger neighborhoods.

Finally, we discuss a symmetry issue, involv-
ing the significance level, which we found only in
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Fig. 10. Mean number of near neighbors selected to predict
the validation set, (k(7)). Neighborhood sizes decrease with
increasing iteration, until the minimum at 7 = 5. For 7 > 5,
the noise saturates. See Example 3.

one-dimensional modeling. Consider Figs. 11(a)—
11(c). In Fig. 11(a), we show as red dots, the
k = 36-near neighbors to predict the pink-star at
x = 0.18; these are the data points which regress
a linear model better than a quadratic model, to
significance level a = 0.05. In Fig 11(b), we show
the £ = 120 data points in red for the fourth iter-
ate 7 = 4, which our (starting from k too large and
then decreasing) algorithm selected as more signifi-
cant than the quadratic model, to significance level
a = 0.05. A fairly horizontal line was found to
be more significant than any improvement due to
adding a quadratic term. The reason for this “obvi-
ously” too big a neighborhood is due to the fact that
we are comparing a linear submodel y = by + by,
to a quadratic full model y = bg + b1z + byx?, even
though the full model is truly a 16th degree poly-
nomial y = E%ﬁobmi. Rejecting the null-hypothesis
Hj that by = 0 does not imply that we are in a small
enough neighborhood that a linear approximation
is sufficient; it is possible that we are still in a rel-
atively large cubic (or higher) degree region, but
ba = 0. In other words, rejecting Hy, and hence con-
cluding H,, that the quadratic term is not needed
does not necessarily imply that a linear submodel is
better than a full model which includes the rest of
the truncated Taylor’s series: y = bg+b; +Z§’23b¢mi.

Rather than running an F-test of a linear sub-
model versus the extra coefficients of a very high
degree polynomial, which is generally the safer as-
sumption when truncating a Taylor’s series, we have
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(a) Given the noisy logistic map, the k = k¢;; = 36-near neighbors (red) to predict the pink-star at = 0.18, which

regress a linear model better than a quadratic model, to significance level a = 0.05. (b) The k = ker, = 120 data points in
red, for the 4th iterate selected to significance o = 0.05, due to nonquadratic nonlinearity, y = bo + b1 + X23b;x°. (c) The
k = (kerg + kery)/2 = 32 points selected with o = 0.1. See Example 3.

found the following “hack” gives good results. First,
we increase our willingness to make a Type I error,
a = P(Type I error), where a Type I error means
that Hy is true, but we incorrectly reject Hy. By
adjusting o up slightly from a = 0.05 when 7 =1
linearly to @ = 0.1 when 7 > 4, we make allowance
that the function is likely to be curvier, and we be-

come more pessimistic about evidence that by = 0,
that the function is not curvy (even though the non-
linearity may in fact be cubic or higher). This tends
to push the k.;, down. Second, we find another £,
which we define to be the point when the constant
submodel y = by (i.e. the average) is just as signifi-
cant as a linear full-model, y = by + b1xz. Then we



average these two k¢, which gives the effect of plac-
ing k in the center of neighborhood sizes which we
would call significantly linear. In Fig. 11(c) we show
the k = 32 points which were selected when predict-
ing the same point, the pink star, with o = 0.1 and
k = (kcro +ker, /2). We have found this technique to
be unnecessary for higher dimensional predictions,
whence the symmetry issue is extremely unlikely
since it is an uncommon point for all coefficients of
the Hessian matrix in the quadratic form of the lo-
cal Taylor’s expansion to be zero; when d > 1, we
always choose fixed a = 0.05 and k = k¢, .

Example 4. We return to the numerically gener-
ated noisy Mackey—Glass data set, Example 1, and
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the laser data set, Example 2, with all of the same
parameters as previously discussed. We now make
long-term direct forecasts in higher dimensions. In
Fig. 12, we see a long-term forecast of the Mackey—
Glass data, with 95% confidence bands, and like-
wise, we see forecasts of the laser data in Fig. 13,
both for increasing delay time 7. In both cases,
the confidence bands increase on average with time
but not monotonically, as seen in Fig. 14 for MG
and laser data respectively. There are two factors
which lend to nonmonotonicity: (1) Luyapunov ex-
ponents measure asymptotic growth rate averages;
a positive exponent does not contradict short-time
negative exponents, (2) prediction confidence also
depends on data density which varies significantly
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Long-term prediction of noisy Mackey—Glass data. Prediction (center blue), 95% confidence bands (outer blue), and

true response (red) versus time 7. Note that confidence bands get wider with time, as the effect of noise grows.
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Long-term prediction of infrared NH3 laser data. Prediction (center blue), 95% confidence bands (outer blue), and

true response (red) versus time 7. Note that confidence bands get wider with time, as the effect of noise grows. Laser intensity

is never negative, which further restricts these confidence bands.

over the attractor, according to a typically nonuni-
form invariant measure. Note that confidence bands
can often be further restricted on physical grounds.
For example, the laser intensity data can never be
negative.

As with any statistical analysis, we have made
implicit assumptions when making use of the
F-statistc in Eq. (15) and ¢-distribution in Eq. (17).
There is the usual assumption that ¢ is identi-
cally independently distributed (i.i.d.) [Neter et al.,
1996; Draper & Smith, 1981]. More likely, there is
a complicated relationship between external noise
and modeling “noise” of an unknown invariant mea-
sure, with resulting unknown multiple-step condi-

tional probabilities on the noise-term. While, the
assumptions are at best approximations even in the
sense of averaging over the attractor, we observe
excellent results with our methods. Even in more
benign examples, such as linear regression of height
versus weight data in human population samples,
i.i.d. is the common assumption in ANOVA, even
though short people tend to have smaller weight
standard deviations than do tall people; validation
of the assumptions of the model is in terms of good
results.

In conclusion, we wish to emphasize that any
nonlinear forecasting of noisy data is incomplete
without an ANOVA. As far as we know, this is
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Fig. 14. Long-term prediction error of (a) noisy Mackey—
Glass data, (b) infrared NH3 laser data. Average widths of
the 95% confidence bands, shown in Figs. 12 and 13 respec-
tively, grow exponentially until saturation.

the only presentation that gives ANOVA, with val-
idation of the predicted confidences, for predicting
chaotic time-series. A prediction without analysis
describing its quality is, at best, no more than a
shot in the dark at a (hopefully) unbiased estimator.
In contrast, predictions together with a statement
like “the 95% confidence bands are very narrow,”
show that the prediction is very likely to be of high
quality. On the other hand, a prediction together
with a qualifying statement that the 95% confi-
dence band is very wide, shows that the prediction
is of (known) questionable quality and variability. If
the data does not support an accurate prediction,
that is important to know. Often, regression results
are reported without discussion as to how well the
predicted response will describe the true response.
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We have given a systematic analysis to choose ap-
propriate models, together with the appropriate
scale for the model, and then to report the result
with expected confidence. Finally, we have shown
that a widely used value to select k-near neigh-
bors as twice the number of parameters being fit-
ted leads to typically either biased, or stochasti-
cally variable results, and the best k£ must scale with
both 7, data density, and data set size. Hence, im-
plicit with these techniques is an assumption that
there is enough data available, that pruning neigh-
borhood sizes is an option. If the inherent noise
of the data set, and curvature of the map, requires
a very small neighborhood, but the data set is so
short that typically there are no k-enough close
neighbors, then our algorithm “bottoms-out”; the
suggested k becomes close to the minimum num-
ber of parameters being fitted, and therefore, their
estimation becomes questionable. This becomes
particularly prevalent for high-dimensional attrac-
tors; we have had no problem predicting real one-
dimensional chemical reaction data with only 78
data points, but 1000 data points of laser data is
difficult in d = 4 dimensions. We consider this to
be an unavoidable, but now known, local feature of
a short data set.
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