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Abstract

Transport Analysis and Motion Estimation of Dynamical Systems of Time-Series

Data

by

Naratip Santitissadeekorn

Doctor of Philosophy in Applied Mathematics

Clarkson University

This thesis addresses the global analysis of dynamical systems known only via a sequence

of data, i.e., experimental time-series data, or video data (image sequences). A primary

interest of this thesis is to reconstruct a velocity field from a 2-D image sequence. The

problem of motion estimation has been intensively studied in the last two decades in many

areas of computer vision to perform motion detection and tracking, object segmentation,

time-to-collision estimation, and etc. However, an application of the motion estimation has

not yet been demonstrated in the area of measurable dynamical systems, in particular, to

approximate the Frobenius-Perron transfer operator from a sequential image data. There-

fore, we offer a practical technique to reconstruct a dynamical model from image sequences

from various areas of science. Also, we provide a mathematical formalism in a framework

of the Frobenius-Perron operator to validate our technique. Furthermore, We explore and

apply certain graph theory methods to identify almost invariant sets. These almost invari-

ant set corresponds to the situation of basin-hopping in a multi-stable system under a small

stochastic perturbation. For a general time-dependent vector field, we employ the concept

of the finite-time Lyapunov exponent (FTLE) to define the time-varying Lagrangian coher-

ent structure. We demonstrate some applications of the combination of the above tools to

a study of transport and mixing for certain real-world mixing devices.
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Chapter 1

Introduction

1.1 Motivation and Background

Informally, dynamical systems are mathematical models that describe the evolution of a

point in its ambient space. The definition of a dynamical system in the semigroup formalism

is given by the definition 3.1. In many cases, a physical system can be appropriately modeled

by a differential equation

ẋ = F (x, t), (1.1)

where F (x, t) is the vector field, x ∈ Rn “particle” positions, and t ∈ R the time. When

the velocity field F (x, t) does not depend on time, that is F (x, t) ≡ F (x), the model of

a system is called an autonomous system. For such a system, a number of methods have

been developed to analyze its transport behaviors. In particular, separatrices can exist for

autonomous systems, which can divide the phase space into regions of qualitatively different

motion. These separated regions can be either basin of attractions, basin cells, or trapping

regions. Although different in their definitions, these regions share the same property that

for a 2-D space trajectories of particles inside these regions remain inside the regions for all

time. Thus, a separatrix is also known as a transport barrier since no particles can transverse

across them. These transport barriers are often formed by the stable and unstable manifolds

of certain homoclinic or heteroclinic points of the system. Roughly speaking, what we mean
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by “transport” in this thesis is the transitions of particles between the regions separated

by a geometrical structure such as the separatrices. Our main interest is to characterize

phase space regions with qualitatively different dynamics and the transitions between these

regions instead of individual phase space trajectories.

To illustrate the aforementioned concept of the separatrix, let consider as an example the

unforced and dissipation-free system of the Duffing oscillator, which describes the motion

of a particle in a potential well as shown in Figure 1.1(a), whose its corresponding vector

field and homoclinic orbit are shown in Figure 1.1(b). In the finite-volume regions bounded

inside the homoclinic orbit, all trajectories are periodic evolving around the center c (or

c′) whereas outside the homoclinic orbit, the particles move periodically in the phase space

about the hyperbolic point. The first case corresponds to the particle in the potential

released from the level below the dot line in Figure 1.1(a) and the latter describes the

motion of particles above the dot line that visits both wells alternately during that motion.

Note that the homoclinic orbit itself is an invariant manifold, i.e., all trajectories of particles

in the set of homoclinic orbit will always be in the set. Hence, the problem of extracting

separatrices is related to that of detecting the invariant manifolds of the system. It will be

explained later that when a system with an invariant manifold is perturbed by a random

noise, it is still possible to statistically identify an “almost invariant” set.

An analysis of the transition between the qualitatively different regions gives rise to a

notion of mixing or chaotic mixing. However, for a deterministic autonomous system, the

notion of mixing is quite transparent since each point in a phase space has a unique tra-

jectory passing through it. Also, many real-world applications are autonomous dynamical

systems stochastically perturbed by noise instead of the deterministic one. For these cases,

the analysis of mixing becomes more important.

Noise in deterministic dynamical systems can play an important role in a global change

in the system. The stochastic dynamics, can be dramatically different from the unperturbed

deterministic analogue, even under small noise inputs. For example, additive noise in a

multi-stable system can cause basin hopping between two states [1, 2, 3, 4, 5, 6]. The

questions of when noise induces chaos, phase space chaotic transport, and mean escape
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Figure 1.1. (a) Potential wells of the Duffing oscillator. (b) Vector fields and the homoclinic
orbits of the hyperbolic point o. The homoclinic orbit separates the motion of points starting
below the dash line (e.g. points a or a′) in (a) from those initially located above the line
(e.g. points b or b′).
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times from certain basins of attractions are pressing for a given stochastic dynamical system.

These questions lead us to find a way to determine basin boundaries of stochastic systems.

Bollt et al. [2] developed a technique to compute phase space transport without a priori

knowledge of the basin boundaries based on the Ulam’s method coupled with graph theory.

In a different approach, recent efforts have focused to identify the number and location

of almost invariant sets; those subsets of a state space where trajectories tend to stay for

comparatively long period of time before they escape to other regions. Particularly, the Set

oriented method was developed to numerically study the problem of identifying the almost

invariant regions [7, 8, 9, 10]. In this language, we can say that a basin in a multi-stable

system subject to stochastic noise can be considered as an almost invariant set.

Other special cases of Eq. (1.1) are those of periodic and quasi-periodic vector fields.

These types of problem can be studied by using the Poincaré map. The transport and mix-

ing is characterized by the lobe dynamics and its relationship to flux. In such an analysis,

the phase space is divided into regions with boundaries consisting of segments of stable and

unstable manifolds of hyperbolic periodic points and the crossing of the boundaries between

these regions are allowed only via the turnstiles defined by the lobe dynamics. These lobes

are the result of the homoclinic or heteroclinic (transverse) intersection of the stable and

unstable manifolds of hyperbolic periodic points; regularly, it is called the homoclinic (or

heteroclinic) tangle. Precise definitions of lobes, boundaries, and turnstiles are introduced

by Mackay, Meiss, and Percival [11]. In addition, when the system are time-periodic pertur-

bation of two-dimensional Hamiltonian systems, there exists a global perturbation method,

Melnikov’s method, that provides necessary conditions for an occurrence of the intersection

of the stable and unstable manifold of such systems [12, 13]

Generally, dynamical systems in practice are aperiodic. Hence, recent research trends

emphasize analysis of the phase space transport of a general time-dependent dynamical

system Eq. (1.1). Several techniques and criteria have been developed to approximate

time-varying geometrical structures analogous to those separatrices of autonomous systems,

which prevent the transitions of particles between regions with different dynamics. The

notion of stable and unstable manifolds for a general time-dependent system is that of an
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exponential dichotomy, which is used to define the hyperbolic trajectory (see Wiggins [13]).

With this notion in hand one can locate hyperbolic trajectories of certain dynamical systems

by the persistence theorem. That is, if F (x, t) in Eq. 1.1 is in the form of a deterministic

time-dependent perturbation of an autonomous vector field;

F (x, t) = f(x) + εg(x, t), (1.2)

the hyperbolic fixed point of the vector field f(x) becomes a time varying hyperbolic trajec-

tory with (local) stable and unstable manifolds “attached” along the trajectory. Neverthe-

less, such techniques require a knowledge of vector field for all time whereas most practical

vector fields are known only in a finite-time interval. One approach to circumvent this

problem is to use the so-called Lagrangian coherent structure (LCS) developed in a series of

papers by Haller and coworkers [14, 15, 16]. Instead of directly detecting hyperbolic fixed

points at frozen time slices, Haller and coworkers defined the finite-time hyperbolic struc-

ture, referred to as the LCS, via the local maximum of the finite-time Lyapunov exponent

(FTLE) field. Other works by Shadden [17, 18] define the LCS as the second-derivative

ridge of the FTLE field and proved that particle fluxes crossing the ridge are small and

approach zero for a sufficiently large integrating time.

1.2 Purposes

As seen from the preceding section, it is important to detect the geometrical struc-

tures in a phase space of a general time-dependent vector field that minimally allow the

transitions between regions separated by this structure such as separatrices and LCSs. In

many applications of science such as meteorology, climatology, oceanography, fluid dynamic

experiments, etc., camera and satellite platforms provide a large amount of information of

continuous time spatial-temporal data in a form of a time-series data or an image sequence.

In the latter case, if we would like to study a dynamic of a data observed in the form of

video, the first task we have to do is to approximate the dynamical model from the image

sequence since a sequence of images does not provide a direct access to the trajectory of

a point in phase space. Instead, Successive images only describe an evolution in time of a
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distribution of brightness of image pixels.

For this reason, a primary interest of this thesis is to reconstruct a velocity field from

a two-dimensional image sequence that transforms the intensity pattern from one image to

the next image in a sequence, which is called optical flow computation [19]. The problem of

determining the optical flow has been intensively studied in the last two decades in many

areas of computer vision to perform motion detection and tracking, object segmentation,

time-to-collision estimation, etc. Recently, the analysis of the optical flow has been applied

to many other science areas such as meteorology, oceanography, climatology, where image

sequences from satellite platforms are the main source of their information [20, 21, 22,

23, 24, 25, 26, 27]. However, the application of this optical flow analysis has not yet been

demonstrated in the area of the measurable dynamical system, in particular, to approximate

the Frobenius-Perron transfer operator from a sequential image data.

In this thesis we assume that the desired velocity field between two consecutive image

frames is autonomous throughout the image region and so the trajectory of a point in the

image region is governed by the following equation:

dx

dt
= v1(x, y)

dy

dt
= v2(x, y),

(1.3)

where (x, y) ∈M for some compact M ⊂ R2 and v1(x, y), v2(x, y) are two unknown velocity

fields to be approximated from a sequence of images, which provides to us only a temporal

variation of the brightness pattern. We describe this temporal variation in a framework of

the Frobenius-Perron operator in chapter 3 and its implementation in chapter 6.

We summarize here the goals of this thesis:

1. Data Assimilation and Dynamics Recovering: First, we offer a practical tech-

nique to reconstruct a dynamical model from movies (image sequences) from various areas

of science such as fluid experiments, satellite data, climatology, etc. Also, we provide a

mathematical formalism to validate our technique to estimate vector fields from an image

sequence.
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2. Global Analysis of Autonomous Systems: We explore and apply certain graph

theory methods to identify almost invariant sets, when they exist, in a phase space defined

in the sense that the particles that initially belong to a particular set will stay, with a

high probability, in that set for a comparatively long time before escaping to other regions.

These almost invariant sets correspond to the situation of basin-hopping in a multi-stable

system under a small stochastic perturbation. We perform several numerical experiments

to investigate the validity of the method. However, the notion of the almost invariant set

for a general time-dependent vector field is itself at odds. The graph method is therefore

restricted only to autonomous systems both with and without stochastic perturbations.

3. Global Analysis of Non-Autonomous Systems: For a general time-dependent

vector field, we employ the concept of the finite-time Lyapunov exponent (FTLE) to define

the time-varying Lagrangian coherent structure, which prevents a flux from traversing across

the structure.

4. Real-world Modeling: We demonstrate some applications of the combination of

the above tools to a study of transport and mixing for certain real-world problems.

1.3 Organization

The organization of this dissertation can be summarized as follows:

Chapter 2: Some basic terminologies and backgrounds in dynamical systems are reviewed.

Particularly, we will review the notions of the hyperbolicity and hyperbolic trajectory.

Although they will not be used in our analysis, they can be regarded as alternative

techniques to understand transport and mixing in dynamical system. Therefore, we

also review some research literature related to the global analysis of dynamical systems

using these notions and the view point of measurable dynamical systems.

Chapter 3 This chapter begins by reviewing the background of the Frobenius-Perron op-

erator and its infinitesimal generator. We then explore the relationship between the

evolution of density by the Frobenius-Perron operator and the motion estimation from
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image sequences. This serves as an introduction to Chapter 6 where the implemen-

tation of motion estimation in the framework of the Frobenius-Perron operators is

presented. In addition, this chapter shows the construction of the Ulam-Galerkin

matrix (or transition matrix) as a finite-rank approximation of the Frobenius-Perron

operator. Furthermore, we review the notion of the almost invariant set and its rela-

tion to the transition matrix.

Chapter 4 In this chapter, we introduce an application of a novel graph theory method

to the global analysis of autonomous systems (with/without stochastic perturbation)

known only through time-series data. In particular, we show how to use the concept

of graph modularity to discover a phase space partition that reveals some meaning-

ful global structures of a given time-series data. Several examples are presented as

benchmarks to demonstrate that global structures can still exist under stochastic per-

turbation if the amplitude of noise is sufficiently small. Most of the results in this

chapter are from my contribution to the paper by Santitissadeekorn and Bollt [28].

Chapter 5 This chapter reviews the concept of the Lagrangian coherent structure (LCS)

and its computation based on the finite-time Lyapunov exponent (FTLE). We then

employ this concept to transport and mixing analysis of some real-world mixing

devices. The results in this chapter are published under collaboration of Santitis-

sadeekorn, Bohl, and Bollt [29].

Chapter 6 In this chapter, we present a numerical implementation of the idea introduced

in Chapter 3. We review some pervious work in optical flow, which is traditionally

used in the image processing community. We then point out the reasons for using the

smoothness constraint in our work, instead of the discontinuity preserving constraints.

Then we review a coarse-to-fine strategy and use it to deal with the problem of large

motions. Finally, we present several examples to benchmark and contrast our results

obtained from our model with the correlation-based PIV, which is widely used in fluid

mechanics. Most materials and examples in this Chapter are from my contribution

to the paper by Santitissadeekorn and Bollt [30].
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Chapter 7 This chapter gives a summary of my contributions and concludes with open

questions to point to future directions of research in global analysis of dynamical

system and motion estimation of image sequences.
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Chapter 2

Dynamical systems terminology

and definitions

For completeness, we present in this chapter some standard dynamical system terminolo-

gies and concepts, which are needed in our research described in the subsequent chapters.

We have made every effort to draw these definitions from several standard and well-accepted

texts, respecting to the usual notations, but translated to the notations we will use consis-

tently in this thesis. Some general references for the following materials are Guckenheimer

and Holmes [31], Robinson [32], and Wiggins [13].

2.1 Linearization

In this section, we summarize the notion of derivative as a linear map, which we will

use to study and classify the local behavior “near” the fixed or periodic points of nonlinear

differential equations. Loosely speaking, the Hartman-Grobman theorem, see [31], shows

that the local behavior near the hyperbolic fixed point, which will be defined in the next

section, is “similar” to that of the associated linearized system.

Consider maps f : U ⊂ Rk → Rn, where U is an open subset of Rm. The first partial
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derivative of f at a point p can be expressed in a n× k matrix form

Dfp =
[
∂fi

∂xj

]
. (2.1)

We consider this matrix as a linear map from Rm to Rn, that is Dfp ∈ L(Rm,Rn), and

recall that L(Rm,Rn) is isomorphic to Rmn. With this in mind we may define the (Fréchet)

derivative in the following way.

Definition 2.1. A map f : U ⊂ Rm → Rn is said to be Fréchet differentiable at x ∈ Rm if

and only if there exists Dfx ∈ L(Rm,Rn), called the Fréchet derivative of f at x, for which

f(x+ h) = f(x) +Dfxh+ o(‖h‖) as ‖h‖ → 0. (2.2)

The derivative is called continuous provided the mapDf : U → L(Rm,Rn) is continuous

with respect to the Euclidean norm on the domain and the operator norm on L(Rm,Rn).

If the first partial derivatives at all points in U exist and are continuous, the derivative is

also continuous and the map f is called continuously differentiable or f ∈ C1. Higher order

derivative can be defined recursively, e.g.,

Df(x+ k) = Df(x) +D2fxk + o(‖k‖) (2.3)

defines the second derivative, D2fx ∈ L(Rm, L(Rm,Rn)). We again note that L(Rm,Rn)

is isomorphic to bilinear maps in L(Rm × Rm,Rn). The mapping (h, k) 7→ (D2fxk)h is

bounded and bilinear from Rm × Rn into Rn. If v, w ∈ Rm are expressed in terms of the

standard basis as v =
∑

i viei and w =
∑

iwiei, then we have

(D2fxv)w =
∑
i,j

(
∂2f

∂xi∂xj

)
x

viwj (2.4)

Since the mixed cross derivatives are equal, D2fx is a symmetric bilinear form. Generally,

if all the derivatives of order 1 ≤ j ≤ r exist and are continuous, then f is said to be

r−continuously differentiable, or f ∈ Cr. If f : Rm → Rm is Cr, Dfx is a linear isomorphism

at each point x ∈ Rk, and f is 1-to-1 and onto, then f is called a Cr−diffeomorphism.

Now, consider a dynamical system

ẋ = f(x, t) (2.5)
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and assume that f : M →M is at least C2 in the domain M of x and C1 in time, t. Then,

it is possible to linearize a dynamical system about a point x̃ ∈M . Suppose an initial point

x̃ is advected to x(t) = x̃ + δx(t) after time t by a vector field. Then, the linearization of

ẋ = f(x, t) is
dδx

dt
= Dfx̃δx+ o(‖δx‖). (2.6)

Note that Dfx̃ is generally time-dependent along the trajectory and it is also non-singular

at each time t by the existence and uniqueness of the solution. If γ(t) is a trajectory of the

vector field, we write the associated linearized system of ẋ = f(x, t) as

ξ̇ = Df(γ(t), t)ξ. (2.7)

In the next section, we review some main concepts of the hyperbolicity of a map. The

definitions and theorems still hold for a flow γ(t) of an autonomous vector field with small

differences (See Robinson [32]). In such a case, the coefficient function Df in (2.7) is time-

independent. However, the notion of hyperbolicity of a nonautonomous system becomes

more complicated and will be discussed later in this chapter.

2.2 Hyperbolicity

The intention of this section is to provide a sufficient background of hyperbolic dynamics.

The importance of hyperbolicity in applied dynamical system is that it gives a complex and

chaotic dynamics despite its mathematical simplicity. We will limit ourselves to the notion

of uniform hyperbolicity but note that a thorough treatment of hyperbolic dynamics and

non-uniform hyperbolicity and its relation to ergodic theory can be found in Pollicott and

Yuri [33].

In this section, we are interested in the map f : M → M where M is a compact n-

dimensional Riemannian C∞ manifold. Here, the Riemannian manifold can be viewed as

a differentiable topological space with an inner product on tangent spaces which is locally

isomorphic to a Euclidean metric space.
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Definition 2.2. (Anosov diffeomorphism [13]) A diffeomorphism f : M → M is Anosov

if there exist constants c > 0, 0 < λ < 1 and a decomposition of continuous tangent space

TxM = Es
x ⊕ Eu

x at each x ∈M satisfying the following properties:

(a) Es
x and Eu

x are invariant with respect to the derivative Dfx:

DfxE
s
x = Es

f(x)

DfxE
u
x = Eu

f(x)

(2.8)

(b) The expansion rate under the forward and backward iteration are uniformly bounded:

‖Dfn
x vs‖ = cλn ‖vs‖ for vs ∈ Es

x∥∥Df−n
x vu

∥∥ = cλn ‖vu‖ for vu ∈ Eu
x

(2.9)

Since the constants c and λ given in the above definition are the same for each point x ∈

M , Anosov systems are also called uniformly hyperbolic systems and these two terminologies

will be used interchangeably in the course of this thesis. In the following, we call a closed

set A ⊂ M an invariant set if f(A) ⊆ A. If f is uniformly hyperbolic at each point

x ∈ A, then A is called a hyperbolic invariant set. If A = {x̄}, that is f(x̄) = x̄, then x̄ is

called a hyperbolic fixed point. Hyperbolic periodic points can also be defined in a similar

manner. The importance of hyperbolicity is that the dynamics in a small neighborhood of

the hyperbolic points exhibits both expanding and contracting behavior and the dynamics

are homeomorphic to the associated linearized system, which is stated more precisely by

the Hartman-Grobmann theorem [13, 32, 31].

Definition 2.3. (local stable and unstable manifold [32]) Let A ⊂ M be a hyperbolic

invariant set, x ∈ A and a neighborhood N(x, ε) for ε > 0 sufficiently small. The local

stable manifold, W s
ε (x), and the local unstable manifold, W u

ε (x), are given by

W s
ε (x) = {y ∈ N(x, ε)|d(fn(y), x)→ 0 as n→∞}

W u
ε (x) = {y ∈ N(x, ε)|d(f−n(y), x)→ 0 as n→∞}

(2.10)

Note that the local unstable manifold can still be defined even if f is not invertible by

abusing the notation f−n(x) as the preimage of x.
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Theorem 2.1. (Stable manifold theorem [13]) Let f : M →M , A be a hyperbolic invariant

set with respect to f , and x ∈ A. Then, there exist local stable and unstable manifolds

W s
ε (x) and W u

ε (x) that satisfy the following properties:

(i) W s
ε (x) and W u

ε (x) are differentiable submanifolds and depend continuously on x.

(ii) TW s
ε (x) = Es

x and TW u
ε (x) = Eu

x , i.e., W s
ε (x) and W u

ε (x) are of the same dimension

and tangent to the subspace Es
x and Eu

x , respectively.

The previous result can be extended to the entire domain M by the well-known

Hadamard-Perron Manifold Theorem (See Wiggins [13]). Therefore, we can discuss the

local stable and unstable manifold at each point in the domain of an Anosov diffeomor-

phism. Now, we can determine the global stable and unstable manifolds by taking union of

backward and forward iterates of local stable and unstable manifolds.

Definition 2.4. (global stable and unstable manifolds [32]) The global stable and unstable

manifolds at each x ∈M , W s(x) and W u(x) respectively, are given by

W s(x) ≡ {y ∈M |d(f j(y), f j(x))→ 0 as j →∞}

W s(x) =
⋃
n≥0

f−n(W s
ε (fn(x))) and

W u(x) ≡ {y ∈M |d(f−j(y), f−j(x))→ 0 as j →∞}

W u(x) =
⋃
n≥0

fn(W u
ε (f−n(x))).

(2.11)

It is clear from the above definition that the stable and unstable manifolds are invariant

since they are a union of trajectories. Also, it is worth mentioning that a stable (unstable)

manifold cannot neither cross itself nor other stable (unstable) manifolds of another point;

otherwise, the crossing point must be iterated to two different points by definition but this

is not permitted.

The following definitions are some types of specific orbits that are often mentioned in

the course of this thesis and indeed important to transport and mixing since they usually

form the transport barrier between regions of qualitatively different dynamics.

Definition 2.5. (Homoclinic orbit [32]) Let p be a hyperbolic periodic point of period n
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for a diffeomorphism f and O(p) be the orbit of p. Let

W s,u(O(p)) =
n−1⋃
j=0

W s,u(f j(p)) and

Ŵ s,u(O(p)) = W s,u(O(p)) \ O(p).

(2.12)

A point q ∈ Ŵ s(O(p)) ∩ Ŵ u(O(p)), if it exists, is called a homoclinic point for p. The

orbit of q is then called the homoclinic orbit for p, see Figure 2.1.

It follows from the above definition that a point in the homoclinic orbit will asymptot-

ically approach the same hyperbolic periodic point p both in forward and backward time.

The Smale-Birkhoff homoclinic theorem proves that the existence of a transverse homoclinic

point induces a Smale horseshoe in the homoclinic tangle [13, 32, 34].

Figure 2.1. An example of a homoclinic orbit of a hyperbolic fixed point p. Here q is the
homoclinic point and the map f is assumed to be an orientation-preserving map, in which
there must be at least one homoclinic point between f and f(q)

Definition 2.6. (Heteroclinic orbit [32]) Let {pi},i=1. . . n, be a collection of hyperbolic

periodic orbits for a diffeomorphism f . A point q ∈ Ŵ s(O(pi))∩Ŵ u(O(pj)) for some i 6= j,

if it exists, is called a heteroclinic point. Similarly, the orbit of q is called the heteroclinic

orbit.

Therefore, a point in a heteroclinic orbit asymptotically approaches a hyperbolic peri-
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odic orbit forward in time and a different periodic orbit backward in time, see Figure 2.2.

Figure 2.2. An example of a heteroclinic orbit connecting two hyperbolic fixed points p1 and
p2. Here q is the heteroclinic point and the map f is assumed to be an orientation-preserving
map as in Figure 2.1

2.3 Hyperbolicity: Nonautonomous vector fields

In the preceding section, the linearization of a fixed point or an invariant set was used

to determine the hyperbolicity property. However, for a general time-dependent system, we

have to define the notion of the hyperbolicity for the time-dependent trajectory for which

the linearization along the trajectory does not give rise to a constant matrix associated

with the linearized vector field. The standard notion to characterize the hyperbolicity of a

time-dependent trajectory is that of the exponential dichotomy described below. We also

summarize below the concept of stable and unstable manifolds of the hyperbolic trajectory

and their significance and relation to the Lagrangian coherent structure (LCS), which will

be discussed in Chapter 5.

As in the case of an autonomous system, we begin by defining an appropriate decom-

position into stable and unstable subspaces along a trajectory of a nonautonomous system.

This is a general extension of the hyperbolicity of the autonomous vector field. Thus, we

first consider the linearized vector field of the form (2.7) and keep in mind that the coefficient

matrix is now time-dependent.

Definition 2.7. (Exponential Dichotomy [13]) Consider a time-dependent linear differential
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equation

ξ̇ = A(t)ξ ξ ∈ Rn, (2.13)

where A(t) ∈ Rn×n is a time-dependent coefficient and continuous in time, t ∈ R. Let

X(t) ∈ Rn×n be the solution matrix such that ξ(t) = X(t)ξ(0) and X(0) = I. Then (2.13)

is said to possess an exponential dichotomy if there exists a projection operator P , P 2 = P ,

and constants K1,K2, λ1, λ2 > 0 such that

∥∥X(t)PX−1(t)
∥∥ ≤ K1 exp(−λ1(t− τ)), t ≥ τ∥∥X(t)(I − P )X−1(t)
∥∥ ≤ K2 exp(λ2(t− τ)), t ≤ τ

(2.14)

Examples illustrating a comparison between the hyperbolicity of linear autonomous sys-

tems and the exponential dichotomy of nonautonomous system can be found in Wiggins [13].

A generalization of a hyperbolic fixed point in autonomous systems is that of the hyper-

bolic trajectory of a time-dependent vector field, which can be defined via the exponential

dichotomy.

Definition 2.8. (Hyperbolic trajectory [13]) Let γ(t) be a trajectory of the vector field

ẋ = f(x, t). Then γ(t) is called a hyperbolic trajectory if the associated linearized system

ξ̇ = Dx(f(γ(t), t))ξ has an exponential dichotomy.

The geometry of a hyperbolic trajectory can be understood in the extended phase space:

E ≡ {(x, t) ∈ Rn × R|x ∈ U}. (2.15)

The nonautonomous vector field can then be viewed as an autonomous one as follows

ẋ = f(x, t)

ṫ = 1.
(2.16)

In the extended phase space E , we denote the hyperbolic trajectory by Γ(t) = (γ(t), t) and

define a time slice of the extended phase space E by

Στ ≡ {(x, t) ∈ E|t = τ}. (2.17)
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Then the condition (2.14) requires that there exists a projection onto a subspace of Στ ,

called Es(τ), so that a trajectory of an initial vector at time t = 0 projected onto Es(τ) by

the associated linearized vector field (2.13) will have to decay to zero at an exponential rate,

determined by λ1 as t→∞. Similarly, the complimentary projection (I−P ) onto a subspace

of Στ , called Eu(τ), exists so that the initial vector projected onto Eu(τ) will decay at

exponential rate, determined by λ2 as t→ −∞. Moreover, Στ = Es(τ)⊕Eu(τ). Therefore,

the exponential dichotomy guarantees the existence of a stable (unstable) subspace for which

the initial conditions on these spaces asymptotically approach a hyperbolic trajectory at

an exponential rate at a forward (backward) time, see Figure 2.3. This is analogous to

that of the autonomous vector field where the initial conditions on the stable (unstable)

manifold converge to some critical points, e.g., fixed points or periodic orbits, forward

(backward) in time. However, the difference is that the stable (unstable) manifolds for an

autonomous system are time-independent whereas those of a nonautnomous case vary in

time. In particular, for a 2-D vector field, the stable (unstable) manifolds in the autonomous

case is an invariant curve, but the stable (unstable) manifold in the nonautonomous case

become a time-varying curve or an invariant surface in the extended space E. With the

Figure 2.3. The time slice Στ = Es(τ) ⊕ Eu(τ). A trajectory of an initial segment pro-
jected onto Es(τ) by the associated linearized vector field (2.13) approaches the hyperbolic
trajectory Γ(t) at an exponential rate as t→∞. Similarly, the initial vector projected onto
Eu(τ) approaches Γ(t) at an exponential rate as t→ −∞.

geometrical explanation of the exponential dichotomy in mind, we can now state the theorem

that describes the existence of local stable and unstable manifolds of a hyperbolic trajectory.
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Theorem 2.2. (Local stable and unstable manifolds [13]) Let Dρ(τ)Στ denote the ball of

radius ρ centered at γ(τ) and define the tubular neighborhood of Γ(t) in E by Nρ(Γ(t)) ≡

∪τ∈R(Dρ(τ), τ). There exists (k + 1) dimensional Cr manifold W s
loc(Γ(t)) ⊂ E , and an

(n− k + 1) dimensional Cr manifold W u
loc(Γ(t)) ⊂ E and ρ0 sufficiently small such that for

ρ ∈ (0, ρ0)

(i) W s
loc(Γ(t)), the local stable manifold of Γ(t), is invariant under the forward time

evolution generated by (2.16); W u
loc(Γ(t)), the local unstable manifold of Γ(t), is invariant

under the backward time evolution generated by (2.16).

(ii) W s
loc(Γ(t)) and W u

loc(Γ(t)) intersect along Γ(t), and the angle between the manifolds

is bounded away from zero uniformly for all t ∈ R.

(iii) Every trajectory on W u
loc(Γ(t)) can be continued to the boundary of Nρ(Γ(t)) back-

ward in time, and every trajectory on W u
loc(Γ(t)) can be continued to the boundary of

Nρ(Γ(t)) forward in time.

(iv) Trajectories starting on W s
loc(Γ(t)) at time t = τ approach Γ(t) at an exponential

rate e−λ′(t−τ) as t→∞ and trajectories starting on W u
loc(Γ(t)) at time t = τ approach Γ(t)

at an exponential rate e−λ′|t−τ | as t→∞, for some constant λ′ > 0.

(v) Any trajectory in Nρ(Γ(t)) not on either W s
loc(Γ(t)) or W u

loc(Γ(t)) will leave Nρ(Γ(t))

in both forward and backward in time.

The above theorem suggests a way to determine global stable and unstable manifolds

of a hyperbolic trajectory [35, 36, 37]. In short, it allows us to extend an initial segment

of a local unstable manifold, W u(γ(t1)), of a hyperbolic trajectory γ(t1) on the time slice

Σt1 for some t1 < τ by evolving this segment forward in time. Similarly, evolving the initial

segment of a stable manifold W s(γ(t2)) of a hyperbolic trajectory γ(t2) on the time slice

Σt2 for some t2 > τ backward in time yields a global stable manifold. Figure 2.4 illustrates

this concept. One rigorous method to determine a meaningful hyperbolic trajectory, called

distinguished hyperbolic trajectory (DHT), and its stable and unstable manifolds will not

be discussed in this thesis, but it can be found in [35, 36, 37]. Since a dynamical system can

possess infinitely many hyperbolic trajectories, e.g., all trajectories in the stable or unstable

manifolds, the bounded hyperbolic trajectory with the special properties is used as the
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reference hyperbolic trajectory for “growing” the stable and unstable manifolds [35, 36].

It is demanded in [38] that a DHT has to remain in a bounded region for all time and

that there exists a neighborhood N of the DHT such that all other hyperbolic trajectories

within N have to leave N in a finite time, either by forward or backward time manner. If

one attempts to grow the stable or unstable manifold from a hyperbolic trajectory different

from the DHT, it is possible to observe a “drifting” phenomenon in the flow due to a slow

expansion rate as demonstrated in a number of numerical examples in [37].

Figure 2.4. The forward-time evolution of a segment of W u(γ(t1)) from the time slice Σt1

to the time slice Στ yields the unstable manifold of W u(γ(τ)). Similarly, the backward-time
evolution of a small segment of W s(γ(t2)) from the time slice Σt2 to the time slice Στ yields
the unstable manifold W s(γ(τ)).

A rigorous method to determine the DHT in general is still an active research area.

In most cases, DHT has to be selected with a careful observation and knowledge of the

system. In another approach, Haller and Poje [14] determined a finite-time uniformly

hyperbolic trajectory based on the local maxima of the time duration in which an initial

point remains hyperbolic. The contour plot of such hyperbolicity time for each grid point

of initial conditions reveals the uniformly hyperbolic invariant set, which can be used as
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a “seed” to gradually construct the corresponding global stable and unstable manifolds

by a traditional technique, e.g., the straddling technique of You, Kostelich and Yorke [39].

Nevertheless, this technique demands the deformation of the uniformly hyperbolic trajectory

to be at a slower speed than the speed of individual particles.

In a recent approach, following the work in a series of papers by Haller [14, 15? , 16], the

search of DHT or hyperbolic invariant sets can be circumvented by computing the finite-time

Lyapunov exponent field [17, 18], which directly captures the region of a large expansion

rate, see Chapter 5. These regions corresponds to the stable (unstable) manifold of the

hyperbolic trajectory when computing in forward (backward) time manner. This technique

is based on the fact that the stable (unstable) manifold of a hyperbolic trajectory is repelling

(attracting) in the normal direction to the manifold and hence initial points straddling the

stable (unstable) manifold will eventually be separated from (attracted to) each other at

some exponential rate. However, this approach gives us merely a scalar field indicating

the expansion rate of the grid point in a domain of a nonautonomous system whereas

the preceding techniques yield the parameterized curve representing invariant manifolds.

Nevertheless, the second-derivative ridge of the finite-time Lyapunov exponent field can be

used as a curve that represents the global stable (or unstable) manifold of a nonautonomous

dynamical system by using our proposed ridge detection technique (See Appendix A).
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Chapter 3

Frobenius-Perron Operator and

Infinitesimal Generator

In many areas of science, main sources of data are given in a form of image sequences or

movies, which capture the underlying dynamics. To understand the transport behavior of

these dynamical systems, it is mandatory to extract the velocity fields from image sequences.

Thus, we apply the well-known optical flow technique to estimate the velocity fields from

image sequences and we verify the validity of the optical flow model in the framework of

the Frobenius-Perron operator. Therefore, this chapter is devoted to a review of some

classical tools and techniques for studying the evolution of density under a continuous time

process. Specifically, we concentrate on the concept of the Frobenius-Perron operator and

its infinitesimal generator, which is a necessary prelude to the optical flow problem in a

subsequent chapter.

3.1 Frobenius-Perron Operator

We define a continuous process in a topological Hausdorff space X by a family of map-

pings

St : X→ X, t ≥ 0. (3.1)
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In particular, we focus on a continuous time process generated by an autonomous d-

dimensional system of differential equations

dx

dt
= F (x) (3.2)

or
dxi

dt
= Fi(x), i = 1, . . . , d, (3.3)

where x = (x1, . . . , xd) and F : Rd → Rd is sufficiently smooth to guarantee the existence

and uniqueness of solutions. Then, Eq. (3.2) defines a transformation St(x0) = x(t) where

x(t) is the solution of Eq. (3.2) at time t starting from the initial condition x0 at time 0.

Definition 3.1. A semidynamical system {St}t≥0 on X is a family of transformations

St : X→ X, t ∈ R, satisfying

(a) S0(x) = x for all x ∈ X;

(b) St(St′(x)) = St+t′(x) for all x ∈ X with t, t′ ∈ R+; and

(c) The mapping (x, t)→ St(x) from X× R+ into R is continuous

Remark 3.1. The reason to call {St}t≥0 in the above definition a semidynamical system

instead of a dynamical system is its invertibility. By restricting t ∈ R+ a family of transfor-

mation satisfied the above conditions possesses an Abelian semigroup properties and hence

it may be called a semigroup of transformations as well. Also, the condition (b) can be

interpreted to mean that dynamics of a semigroup of transformation are the same on time

interval [0, t′] and [t′, t].

Now we present an important tool for studying a propagation of densities, known as

the Frobenius-Perron operator. Let (X,A, µ) be a measure space, where A is the σ−algebra

of Borel sets. Assume that each transformation of a semidynamical system {St}t≥0 is a

non-singular measurable transformation on (X,A, µ),that is,

µ(S−1
t (A)) = 0 for each A ∈ A such that µ(A) = 0. (3.4)

The Frobenius Perron operator, Pt : L1(X)→ L1(X) with respect to the transformation
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St is defined [40] by the condition∫
S−1

t (A)
f(x)dx =

∫
A
Ptf(x)dx, for each A ∈ A. (3.5)

In the sequel, we will consider only the action of Pt on the space D(X,A, µ) defined by

D(X,A, µ) = {f ∈ L1(X,A, µ) : f ≥ 0 and ‖f‖ = 1}. A function f(x) ∈ D(X,A, µ) is

called a probability density function (PDF). Thus Ptf(x) gives us a new probability density

function, which is unique a.e., and depend on the transformation St and the probability

density function f(x). It is simple to show that Pt satisfies the following properties:

(a) Pt(λ1f1 + λ2f2) = λ1Ptf1 + λ2Ptf2, for all f1, f2 ∈ L1, λ1, λ2 ∈ R;

(b) Ptf ≥ 0 if f ≥ 0;

(c)
∫

X
f(x)dx =

∫
X
Ptf(x)dx, for all f ∈ L1.

(3.6)

By using the above properties, one may prove that Pt satisfies properties (a) and (b) of the

definition of a semidynamical system.

Consider in addition to the differential equation (3.2) an observable Ktf defined by

Ktf(x) = f(St(x)), (3.7)

where f,Ktf ∈ L∞(X). Hence, the operator Kt : L∞ → L∞ as defined in Eq. (3.7), for

every t ≥ 0, can be interpreted as the operator that evolves an observable f(St(x)) of a

semidynamical system {St}t≥0 given by Eq. (3.2). The operator Kt is known as the Koop-

man operator associated with the transformation St. It is easy to check that {Kt}t≥0

is a semigroup. An important mathematical relation between the Frobenius-Perron and

Koopman operators is that they are adjoints, that is,

〈Ptf, g〉 = 〈f,Ktg〉 (3.8)

for all f ∈ L1(X), g ∈ L∞(X), and t ≥ 0. Note that although the Frobenius-Perron operator

preserves the L1-norm ‖ · ‖L1 , the Koopman operator satisfies the inequality

‖Ktf‖L∞ ≤ ‖f‖L∞ . (3.9)
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In a subsequent section we will derive the infinitesimal operators of the Frobenius-Perron

and Koopman operators. Therefore, we will concentrate only a semigroup of contracting

linear operators defined in the following.

Definition 3.2. For L = Lp, 1 ≥ p ≤ 1, a family {Tt}t≥0 of operators, Tt : L→ L is called

a semigroup of contracting operators if Tt has the following properties:

(a) Tt(λ1f1 + λ2f2) = λ1Ttf1 + λ2Ttf2;

(b) ‖Ttf‖L ≤ ‖f‖L;

(c) T0f = f ; and

(d) Tt+t′f = Tt(Tt′f),

for f, f1, f2 ∈ L and λ1, λ2 ∈ R.

Also, the semigroup is called a continuous semigroup, if it satisfies

lim
t→t0
‖Ttf − Tt0f‖L = 0 for f ∈ L, t0 ≥ 0. (3.10)

3.2 Infinitesimal Operators

For a continuous semigroup of contractions {Tt}t≥0 we define D(A) by the set of all

f(x) ∈ Lp(X), 1 ≤ p ≤ ∞, such that the limit

Af = lim
t→0

Ttf − f
t

, (3.11)

exists in the sense of strong convergence, that is,

lim
t→0

∥∥∥∥Af − Ttf − f
t

∥∥∥∥
Lp

= 0. (3.12)

The operator A : D(A) → L, for L ≡ Lp, is called the infinitesimal generator. Let

I(t) ≡ I(x, t) = Ttf(x) for fixed f(x) ∈ D(A). The function I ′(t) ≡ I ′(t)(x) ∈ L is said to

be the strong derivative of I(t) if it satisfies the following condition:

lim
t→0

∥∥∥∥I ′(t)− I(t)− f(x)
t

∥∥∥∥
L

= 0. (3.13)

In this sense, I ′(t) describes the derivative of the ensemble of points with respect to time

t. The following theorem demonstrates an important relation between the infinitesimal

generator and the strong derivative
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Theorem 3.1. (See [40] ) Let {Tt}t≥0 be a continuous semigroup of contractions and

A : D(A) → L the corresponding infinitesimal generator. Then for each fixed f ∈ D(A)

and t ≥ 0, the function I(t) = Tf t has the properties:

(a) I(t) ∈ D(A);

(b) I ′(t) exists; and

(c) I(t) satisfies

I ′(t) = AI(t) (3.14)

with the initial condition I(0) = f(x).

Example 3.1. Consider the family of operators {Tt}t≥0 defined by

Ttf = f(x− ct) for x ∈ R, t ≥ 0. (3.15)

Under this operation a function f(x) is translated in a positive direction of x by the length

of ct. By using the “change of variable” formula we can see that the Lp norm is preserved

for 1 ≤ p ≤ ∞. The conditions (a),(c), and (d) of the definition 3.10 straightforwardly

follow from Eq. (3.15). Thus, {Tt} is a semigroup of contracting operators. It is slightly

more complicated to show that {Tt} is also continuous, see [40]. Now assume that f is

bounded and at least C1(R), then by the mean value theorem we have

f(x− ct)− f(x)
t

= −cf ′(x− θct), (3.16)

where |θ| ≤ 1. This implies that

Af = lim
t→0

Ttf − f
t

= −cf ′ (3.17)

and the limit is strong in Lp, 1 ≤ p ≤ ∞ if f has compact support. Therefore, it follows

from Eq. (3.14) that at each point in the (x, t)−plane u(t, x) satisfies the partial differential

equation
∂u

∂t
+ c

∂u

∂x
= 0 with u(0, x) = f(x), (3.18)

where u(t, x) is in D(A) for each fixed t ≥ 0.

Remark 3.2. This example offers some insight of a relation between semigroup of contin-

uous operators, strong derivative, and partial differential equations. It is well-known that

the solution of Eq. (3.18) at time t is Ttf as defined in Eq. (3.15).
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Now consider a calculation of the infinitesimal generator of the semigroup of the

Frobenius-Perron operators {Pt}t≥0 as defined in Eq. (3.5) and the evolution of time-

dependent density function I(x, t) under an action of the Frobenius-Perron operator. This

will be done indirectly through the adjoint property of the Frobenius-Perron and Koopman

operators.

It follows directly from the definition of the Koopman operator Eq. (3.7) that the

infinitesimal of the Koopman operator denoted by AK is

AKg(x) = lim
t→0

g(St(x0))− g(x0)
t

= lim
t→0

g(x(t))− g(x0)
t

. (3.19)

If g is continuously differentiable with compact support, we can apply the mean value

theorem to obtain

AKg(x) = lim
t→0

d∑
i=1

∂g

∂xi
(x(θt))x′i(θt) =

d∑
i=1

∂g

∂xi
Fi(x), (3.20)

where 0 < θ < 1. Combining equations (3.14) and (3.20) we conclude that the function

I(x, t) = Ktf(x) (3.21)

satisfies the first-order partial differential equation

∂I

∂t
−

d∑
i=1

∂I

∂xi
Fi(x) = 0. (3.22)

This leads to a derivation of the infinitesimal generator for the semigroup of Frobenius-

Perron operators generated by the family {St}t≥0 defined in Eq. (3.1).

Let f ∈ D(AFP ) and g ∈ D(AK), where AFP and AK denote the infinitesimal operators

of the semigroups of the Frobenius-Perron and Koopman operators, respectively. Using the

adjoint property of the two operators it can be shown that

〈(Ptf − f)/t, g〉 = 〈f, (Ktg − g)/t〉. (3.23)

Taking the limit as t→ 0 we obtain

〈AFP f, g〉 = 〈f,AKg〉. (3.24)
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Provided that g and f are continuously differentiable, and g has compact support we can

show that [40]

〈AFP f, g〉 = 〈−
d∑

i=1

∂fFi

∂xi
, g〉. (3.25)

Hence, we can conclude that

AFP f = −
d∑

i=1

∂fFi

∂xi
. (3.26)

Again, we can use Eqs. (3.14) and (3.26) to conclude that the function

I(x, t) = Ptf(x) (3.27)

satisfies the partial differential equation (continuity equation)

∂I

∂t
+

d∑
i=1

∂IFi

∂xi
= 0, (3.28)

or symbolically,
∂I

∂t
+ F · ∇I + I∇ · F = 0. (3.29)

Note that this equation is actually the same as the well-known continuity equation in fluid

mechanics and many fields, but now it is a statement of conservation of density function of

ensembles of trajectories. In the case when F is a divergence-free vector field, i.e. ∇·F = 0,

Eq. (3.28) corresponds to incompressible fluids such as water and it can be simplified to

dI

dt
=
∂I

∂t
+ F · ∇I = 0. (3.30)

A comparison of Eqs. (3.28) and (3.30) to the classical optical flow problem will be discussed

in a subsequent chapter.

Example 3.2. Now consider a Duffing’s oscillator in the domain [0, 1]× [0, 1] given by the

following differential equation:

dx

dt
= 4y − 2

dy

dt
= 4x− 2− 8(2x− 1)3.

(3.31)

According to Eq. (3.28), given the initial density u(x, 0) = f(x) the flow of the

density(u(x, t) = Ptf(x)) under the Duffing’s oscillator is given by

∂u

∂t
+ (4y − 2)

∂u

∂x
+ (4x− 2− 8(2x− 1)3)

∂u

∂y
= 0. (3.32)
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A numerical simulation of the density propagation by Eq. (3.32) along with the vector field

of Eq. (3.31) is shown in Figure 3.1 with an initial density u(x, 0) illustrated in Figure 3.1(a).

Notice that the density is stretched and folded due to the hyperbolic structure of the system.

3.3 Finite-rank approximation of the Frobenius-Perron op-

erator

Now we would like to extend the well-established technique of the deterministic

Frobenius-Perron operator in the preceding section to study the phase space transport of a

stochastically perturbed dynamical system. The central theme of this section is to present

the background of the Frobenius-Perron operator perturbed by any noise distribution with

compact support and its finite-rank approximation, known as the Ulam-Galerkin matrix or

the transition matrix. The results will allow us to develop a tool to characterize the mass

transport between one phase space region to another.

Let F be a (non-singular) discrete time dynamical system acting on initial conditions

z ∈ M (say, M ⊂ Rn). That is,

F : M→ M, x 7→ F (x). (3.33)

The Frobenius-Perron operator PF : L1(M)→ L1(M) associated with the map F is defined

by [40],

PF [ρ(x)] =
∫

M
δ(x− F (y))ρ(y)dy, (3.34)

where ρ(x) is a probability density function (PDF) defined in L1(M). Thus PF [ρ(x)] gives

us a new probability density function, which is unique a.e., and depends on F and ρ(x).

Alternatively, the Frobenius-Perron can also be defined by

PF [ρ(x)] =
∑

y∈F−1(x)

ρ(x)∣∣ detDyF
∣∣ . (3.35)

Note that for all measurable sets A ⊂ M, we have a continuity equation [40]∫
F−1(A)

ρ(x)dx =
∫

A
PF (ρ(x))dx. (3.36)
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Figure 3.1. A simulation of the flow of a density function according to the continuity
equation (3.32) with the velocity field given by Eq. (3.31). The time increment between
each snapshot is t = 0.08.
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Next, we consider a stochastic process defined by

xn+1 = νnS(xn) + T (xn) (3.37)

where νn are independent random vectors each having the same density g and a relatively

small magnitude compared to the deterministic part S and T . Note that if we set T ≡ 0,

we would have a process with a multiplicative perturbation, whereas when S ≡ 1, we have

a process with an additive stochastic perturbation. Suppose the density of xn given by ρn.

We desire to show a relation of ρn and ρn+1 of the above stochastic process analogous to

Eq. (3.34) using a similar approach employed in [40]. We assume that S(xn), T (xn), and νn

are independent. We let h : M → M be an arbitrary, bounded, measurable function, and

recall that the expectation of h(xn+1) is given by

E[h(xn+1)] =
∫

M
h(x)ρn+1(x)dx. (3.38)

Then, using Eq. (3.37) we also obtain

E[h(xn+1)] =
∫

M

∫
M
h(zS(y) + T (y))ρn(y)g(z)dydz. (3.39)

By a change of variable, it follows that

E[h(xn+1)] =
∫

M

∫
M
h(x)ρn(y)g

(
(x− T (y))S−1(y)

)
|J |dxdy, (3.40)

where |J | is the absolute value of the Jacobian of the transformation x = zS(y) + T (y).

Since h was an arbitrary, bounded, measurable function, we can equate Eqs. 3.38 and 3.40

to conclude that

ρn+1(x) =
∫

M
ρn(y)g

(
(x− T (y))S−1(y)

)
|J |dy. (3.41)

The Frobenius-Perron operator for this general form of a stochastic system with both para-

metric and additive terms can then be expressed similarly to the deterministic case as

PFν (ρ(x)) =
∫

M
ρ(y)g

(
(x− T (y))S−1(y)

)
|J |dy. (3.42)

Notice that the original deterministic kernel δ now becomes a stochastic kernel g|J |. Specif-

ically, for the case of the multiplicative perturbation, where T (x) ≡ 0, we have

PFν (ρ(x)) =
∫

M
ρ(y)g

(
xS−1(y)

)
S−1(y)dy. (3.43)
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Similarly, the stochastic Frobenius-Perron operator for the additive perturbation, where

S(x) ≡ 1, is

PFν (ρ(x)) =
∫

M
ρ(y)g

(
x− T (y)

)
dy. (3.44)

We use the Ulam-Galerkin method (a particular case of the Galerkin method [41]) to

approximate the (stochastic) Frobenius-Perron operator (3.42). The approximation by this

approach is based on the projection of the infinite dimensional linear space L1(M) with

basis functions {φi(x)∞i=1} ⊂ L1(M) onto a finite-dimensional linear subspace with a subset

of the basis functions,

4N = span{φi(x)}Ni=1. (3.45)

For the Galerkin method, the projection

Π : L1(M)→4N , (3.46)

maps an operator from the infinite-dimensional space to an operator of finite rank N ×N

matrix by using the inner product

Ai,j = 〈PFν (φi), φj〉 =
∫
M
PFν (φi(x))φj(x)dx. (3.47)

The quality of this approximation is discussed in Bollt, et al. [2] and similar references can

also be found in [42, 43, 44, 45, 46, 47]. For the Ulam method the basis functions are a

family of characteristic functions

φi(x) = χBi(x) = 1 for x ∈ Bi and zero otherwise. (3.48)

In the deterministic case, using the inner product Eq. (3.47) the matrix approximation of

the Frobenius-Perron operator has the form of

Ai,j =
m(Bi ∩ F−1(Bj))

m(Bi)
. (3.49)

where m denotes the normalized Lebesgue measure on M and {Bi}Ni=1 is a finite family of

connected sets with nonempty and disjoint interiors that covers M, that is M = ∪N
i=1Bi =

M , and indexed in terms of nested refinements [48]. These Ai,j can be interpreted as the

ratio of the fraction of the box Bi that will be mapped inside the box Bj after one iteration

of a map to the measure of Bi.
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Note that one may consider this matrix approximation of the Frobenius-Perron operator

as a finite Markov chain, where the partition set {Bi}Ni=1 represents a set of “states” and

Aij characterizes transitions between states. It is well-known that the matrix A in (3.49) is

stochastic and has a left eigenvector with the eigenvalue one. Simply put, this eigenvector

characterizes the equilibrium distribution of the Frobenius-Perron operator. In fact, it was

proved in [49] that if the partition {Bi}Ni=1 is a Markov partition, then the (unique) left

eigenvector of the matrix A defines a good approximation of the equilibrium distribution.

A key observation is that the kernel form of the operator in Eq.(3.42) allows us to

generally approximate the action of the operator with test orbits as follows. If we only have

a test orbit {xj}Nj=1, which is actually the main interest of this work, the Lebesgue measure

can be approximated by

Ai,j =
#({xk|xk ∈ Bi and F (xk) ∈ Bj})

#({xk ∈ Bi})
. (3.50)

3.4 Almost invariant set

As explained earlier in Chapter 1, one of the main goals of this research is to quantify

almost-invariant sets. Now, we would like to formally define a notion of the almost-invariant

set based on the Markov model (3.49).

Definition 3.3. A Borel measurable set A ⊂ M is called almost invariant [7] if

µ(A ∩ F−1(A))
µ(A)

≈ 1, (3.51)

where µ is a probability measure.

A common choice of a probability measure in the above definition is the so-called nat-

ural measure, which will be denoted by µ from here on unless otherwise stated. Roughly

speaking, the natural measure µ(B) of a measurable set B is high if the amount of time the

orbit of Lebesgue almost-all points x ∈ M spending in B is large, and µ(B)=0 if no orbits

enter B or revisit B after a certain sequence of iterations. Hence, we assume that there
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exists a unique probability measure µ of a map F that satisfies

µ(B) = lim
k→∞

#{F ix ∈ B : 0 ≤ i ≤ k − 1}
k

. (3.52)

When the above measure is used to define the almost invariant set, as expressed in (3.55),

we have that if A is an almost invariant set then the probability of a point in A to remain in

A after one iteration is close to 1. Generally, the definition of the natural measure is based

on the Birkhoff ergodic theorem and given as follows.

Definition 3.4. An ergodic invariant probability measure is called a natural measure if

lim
N→∞

1
N

N∑
i=0

f(F ix)→
∫
M
fdµ (3.53)

for all integrable f : M→ R almost everywhere.

Remark 3.3. Recall that a measure is called invariant under F if µ(F−1(A)) = A for all

measurable sets A and an invariant measure is ergodic if µ(A) = 0 or µ(A) = 1 for all

measurable sets A such that F (A) = A. This notion of ergodicity emphasizes indecomposi-

bility of a space to be studied. In short, if a space comprises of more than one invariant

set of positive measure, then one could study them separately. Several variant definitions

of ergodicity and its relation to the notion of topological transitivity can be found in [50].

Unfortunately, for many dynamical systems this asymptotic notion of the natural mea-

sure in Eq. (3.53) can be difficult to compute. First, it is possible that a dynamical system

has a very long transient state. Thus, we need to compute a long sequence of iterations to

observe eventual behavior of such a system. Therefore, one may not be able to observe the

equilibrium distribution unless N in the above definition is sufficiently large. Furthermore,

in an extreme case, the round-off problem can prevent us from discovering the equilibrium

distribution; for example, a sequence of iterations of the tent map will send any initial point

to 0 in finite time. A way to circumvent these problems is to find the invariant measure

based on the left eigenvector with the eigenvalue one of the matrix A defined in (3.49) as

explained above. More precisely, the invariant measure of the transition matrix (3.50) is

a good approximation of the natural measure of the Frobenius-Perron operator PF . Note
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that a deterministic chaotic dynamical system can have more than one invariant measure,

but it always has only one natural measure. In general, there is no guarantee that the

invariant density we discovered is the natural measure. However, it was shown [51, 52]

that the supports of the approximate invariant measures contain the support of the natural

measure, and so we at least capture all the regions with the positive natural measure.

Thus, let p be the left eigenvector of A with eigenvalue one. After normalizing p so that∑n
i=1 pi = 1, one may approximate the natural measure µN for {Bi}Ni=1 by µN (Bi) = pi.

Then the approximate invariant measure of a measurable set B can be defined by

µN (B) :=
N∑

i=1

µN (Bi)
m(Bi ∩ B)
m(Bi)

. (3.54)

Note that the quality of this approximation depends upon the number of partition sets

N through refinement. The results concerning the convergence of this approximation can

be found in [7]. By combining Eqs. (3.49) and (3.54), one can alternatively define almost

invariance based on the estimated invariant density p and the transition matrix A, as in the

following lemma [53].

Lemma 3.1. Given a box partition set {Bi}Ni=1 with µN (Bi) = pi, a Borel measurable set

A = ∪i∈IBi for some set of box indices I is called almost invariant if∑
i,j∈I

piAij∑
i∈I

pi
≈ 1. (3.55)

Proof. It is easy to see from (3.54) that µN (Bi) = pi and hence we have

µN (A) =
∑
i∈I

pi. (3.56)

Now observe that for each fixed i ∈ I, we have

µN (Bi ∩ F−1Bj) =
∑
j∈I

m(Bi ∩ F−1Bj)
m(Bi)

pi

=
∑
j∈I

Aijpi.

(3.57)

The desired result follows after summing the above equation over all i.
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Chapter 4

Graph Community Structure

In the preceding chapter we presented a matrix approximation of the Frobenius-Perron

operator, which can be considered as a Markov model (a transition matrix) of the underlying

dynamical system. In applying this Markov model, in this chapter we now have occasion to

quantify the almost invariant sets of a dynamical system. We will relate the notion of the

almost invariant set to that of the graph community structure, which is widely used in the

study of social networks. In particular, we will optimize the modularity measure of a graph

network to discover the community structure and relate that to the dynamical system. In

a short section, we will show a series of examples to demonstrate how this technique can be

used in the autonomous case.

4.1 Graph Theory and Reducible Matrices

In this section we briefly review some basic concepts of reducible matrices and corre-

sponding relationships to the graph induced by the matrices due to discrete approximations

of a Frobenius-Perron operator. In particular, we introduce the question of how to discover

a permutation of the transition matrix (3.50) that reveals the basin structure of a dynamical

system given to us in the form of a test orbit {xj}Nj=1.

A graph GA associated to a matrix A consists of a set of vertices V and a set of edges
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E ⊂ V 2. The entry Aij is nonzero when there exists an edge (i, j) ∈ E that connects

the vertices i and j. If a disjoint collection {Si}ki=1 of subsets Si ⊂ V consists of vertices

such that there is a higher density of edges within each Si than between them, then we say

roughly that {Si}ki=1 forms a community structure for GA [54, 55].

Let I = {1 . . . N} be an index set. For our specific application to the transition matrix

A generated by the Ulam-Galerkin method, we define the set of vertices, V = {υi}i∈I to

label the original boxes {Bi}i∈I used to generate the matrix A, and define the edges to be

the set of ordered pairs of integers E = {(i, j) : i, j ∈ I} which label the vertices as their

starting and ending points.

Definition 4.1. A graph is said to be reducible if there exists a subset Io ⊂ I such that

there are no edges (i, j) for i ∈ Io and j ∈ I \Io, otherwise it is said to be irreducible [56, 57].

This condition implies that the graph is irreducible if and only if there exists only one

connected component of a graph, which is GA itself. In term of the transition matrix A,

GA is reducible if and only if there exist a subset Io ⊂ I such that Aij = 0 whenever i ∈ Io

and j ∈ I \ Io. Furthermore, A is said to be a reducible matrix if and only if there exists

some permutation matrix P such that the result of the similarity transformation,

R = P−1AP (4.1)

is block upper triangular

R =
 R1,1 R1,2

0 R2,2

. (4.2)

This means that GA has a decomposition V = V1
⋃
V2, such that V1 connects with V1

and V2, but V2 connects only with itself. When R1,2 = 0, A is said to be “completely

reducible” [57]. A key observation is that in the case that GA is generated from a bi-stable

dynamical system the transition matrix A is completely reducible, where R1,1 and R1,2

corresponds to the two basins of attractions of the system. Also, in a general multi-stable

dynamical systems the transition matrix A has a similarity transformation into a block

(upper) triangular form.
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(a) A transition matrix before sorting (b) The same transition matrix after sorting

Figure 4.1. The matrix in this figure is irreducible. Members of the original transition
matrix before sorting are placed haphazardly and the structure is not obvious. After using
the modularity method discussed in Section 4.2 the “almost” block diagonal form is revealed.
In this case, the sorted matrix indicates the existence of three communities and the few off
block diagonal elements correspond to intra-basin diffusion.

A key point to this work is that most (randomly or arbitrarily realized) indexing of the

configuration makes it difficult to observe even simple structures like community structure

or reducibility of the graph and corresponding transition matrix. In particular, a very rea-

sonable partitioning of the phase space, and a reasonable indexing of the boxes or triangles

is not likely to reveal dynamic organization like reducibility or a community structure. In

Figures 4.1(a) and 4.1(b) we show an example of a transition matrix for a 30-vertex random

community-structured graph with three communities of which members are placed haphaz-

ardly, but after a proper permutation this matrix is transformed into an “almost” block

diagonal form. Figures 4.2(a) and 4.2(b) illustrate the associated graph of the matrix in

the above example. Before sorting the vertices into three separate communities the graph

looks like a random graph that has no community structure. However, after sorting we can

see a community structure of the graph.

There are several techniques to find an appropriate permutation if the matrix is re-

ducible. In the language of graph theory, we would like to discover all connected components

of a graph. The betweeness methods in [55] and the local method in [58] are examples of
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(a) The original graph. Embedding vertices into

the plane in a random configuration conceals sim-

ple structure

(b) Sorted graph. The same graph subject to

appropriate permutation reveals “almost” block-

diagonal structure community between compo-

nents

Figure 4.2. An undirected graph before and after sorting. The arrows point at the inter-
community edges.

numerous methods as reviewed in [59, 55] that can be successfully used to uncover various

kinds of community structures.

In the more general case in which noise is added to a multi-stable dynamical system, we

do not expect a reducible transition matrix because noise can cause basin hopping, which in

turn adds the connections (edges) between each original connected components representing

each basin in the noiseless system. The larger the magnitude of the noise, the larger the

number of the inter-community edges. Therefore, there will be no similarity transformation

of the transition matrix into a block diagonal form for a noisy system. However, GA still

has a community structure if noise is small enough. Note that in a case that a magnitude

of noise is large a number of inter-community edges may become so large that a community

structure is destroyed. In other words, one might be able to discover only one community,

which represents the entire phase space of the time-series data, or one may obtain a large

number of very small communities that have no meaningful community structure. Bollt, et

al. [2] developed a technique to discover an appropriate permutation based on a convergence

property of elements in Bi. However, such a technique could not be applied to the case
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that we merely have a test orbit {xi}Ni=1 of a real world dynamical systems, i.e., the data

collected from experiments.

The question of how to discover a proper community structure of a noisy multi-stable

dynamical system without a priori knowledge of a mathematical model of the system is

the main interest of this chapter. The edge betweeness method [54], based on computing

shortest paths, is a good robust candidate algorithm for detecting communities, but its run

time is of the order O(m2n) for a graph with m edges and n vertices, or O(n3) for a sparse

graph(m ∼ n). Such expensive demands on computational resources make it infeasible for

a large graph. Furthermore, a d-dimensional dynamical system with an hd-element box (for

box of order length h on a side) or triangle covering of the invariant set makes therefore

an O(h3d) algorithm, which is quite expensive for a fine grid, h � 1, in high dimension-

d. In the next section we will describe a method based on a modularity measure of a

graph partition developed by Newmann [60]. This method is far less expensive than the

betweeness method and gives useful results in many applications. In the last section of this

chapter we demonstrate examples of how to apply this method to our specific applications

in dynamical systems.

4.2 Modularity Method

As discussed in the previous section our main purpose is to discover community structure

in a network derived from an orbit of a dynamical system through a grid partitioning of the

phase space; such structure indicates the dynamical basin structure. Thus, our point of view

is to map the problem of phase space partition of the dynamical system (approximately) into

a problem of partitioning a digraph. Many methods have been proposed in recent years [60,

58, 55, 54] to appropriately partition a digraph. Simply put, the community structure is

a partition of the digraph into subgraphs such that there are relatively more connections

within each defined component than between components, a sort of self clustering.

First we discuss the concept of the modularity as a measure of quality of a proposed

community structure found by any graph partition algorithm. The modularity is a cost
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function associated with a partitioning of a given graph G

Q : PG → R, (4.3)

where PG is the set of all subpartitions P , of a given graph G. Given a graph G and a

(test) partition, P ∈ PG, P = ∪kPk, each P is a set of subsets Pk, and Pk is a collection

of vertices of G. P includes all of the vertices of G. We will refer to Pk as “community”-

k. The modularity of the partition P is meant to reflect the quality of the split into self

clustered elements Pk. Newman [60] proposed that a good division of a graph network

into communities could be justified only if the number of the within-communities edges is

significantly larger than the expected number of such edges when edges are randomly placed

into a network, see also Eq. (4.18). Let us denote by ci the community that the vertex i

belongs to and Aij be an element of the adjacency matrix of the network:

Aij =


1 if (i, j) ∈ E

0 otherwise
(4.4)

The modularity Q can be expressed by

Q =
1

2m

∑
ij

(
Aij −Rij

)
δ(ci, cj), (4.5)

where m is the total number of edges, Rij is the so-called “null” model to be discussed below

and the delta-function δ(ci, cj) = 1 if ci = cj and 0 otherwise. Hence, the large value of Q

reflects a strong community structure of a test partition and a good division of a network

into communities can then be achieved by an optimization of Q over all possible candidates.

Now observe that in Eq. (4.5) the first term of the summation is the fraction of within-

communities edges, i.e., those edges that connect vertices belonging to the same community.

The second term is the null model Rij that is used to compare against our network and

describes the expected number of the within-community edges when edges are placed in

certain equivalent randomized network regardless to the community structure hidden in

the actual network. Thus Rij is the expected number of edges between vertices i and j.

One may assume a different null model according to each application in which a particular

density of edges may become more important to define a community than the others. In [60]

Newman used the following constraints to define the null model.
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Let ki denote the degree of vertex i, which is defined to be the number of edges incident

upon it:

ki =
∑

j

Aij (4.6)

The first constraint is that the expected degree of each vertex within a null model is equal

to that of the corresponding vertex in the actual network. Hence, for each vertex i within

the null model, we have ∑
j

Rij = ki. (4.7)

Consequently, summing over all the vertex in the null model yields∑
ij

Rij =
∑
ij

Aij = 2m. (4.8)

The above expression implies that Q = 0 when there is solely one community in the entire

network; one may derive this directly from the definition of Q by setting Q = 0, and that

the expected number of edges within the null model is equal to the number of edges in the

actual network.

The second constraint requires that the probability that a vertex i is attached by an

end of a randomly chosen edge depends only on the degree ki of the vertex i regardless of

the probability of the other vertex attached by the other end of the same edge. Therefore,

we assume that Pij has a form of

Rij = f(ki)f(kj), (4.9)

where f is a (discrete) probability function. Note that the symmetry of Rij is automatically

obtained from the above constraint. Substituting Eq. (4.9) to Eq. (4.7) yields∑
j

Rij = f(ki)
∑

j

f(kj) = ki for all i. (4.10)

Hence, we must have that f(ki) = Cki for some constant C. It then follows from Eq. (4.8)

that

2m =
∑
ij

Rij = C2
∑
ij

kikj = (2mC)2, (4.11)

or

C =
1√
2m

. (4.12)
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Therefore, the expected number of edges between vertices i and j is

Rij =
kikj

2m
. (4.13)

Using the above probability we can rewrite the modularity Q in Eq. (4.5) as

Q =
1

2m

∑
ij

(
Aij −

kikj

2m
)
δ(ci, cj). (4.14)

Since δ(ci, cj) =
∑

k δ(ci, k)δ(cj , k), the above expression can be rewritten as

Q =
1

2m

∑
ij

(
Aij −Rij

) ∑
k

δ(ci, k)δ(cj , k)

=
∑

k

(
1

2m

∑
ij

Aijδ(ci, k)δ(cj , k)−
1

2m

∑
i

kiδ(ci, k)
1

2m

∑
j

kjδ(cj , k)
)
.

(4.15)

Now we define ek to be the fraction of edges that connect vertices within the community

Pk,

ek =
1

2m

∑
ij

Aijδ(ci, k)δ(cj , k), (4.16)

and ak to be the fraction of ends of edges that are attached to vertices in community Pk,

ak =
1

2m

∑
i

kiδ(ci, k). (4.17)

Therefore, an alternative expression of Eq. (4.14) is

Q =
∑

k

(
ek − a2

k

)
. (4.18)

Example 4.1. Consider a graph network consisting of K identical communities without

any inter-communities edges. Let m be the total number of edges within the graph network.

If we choose a test partition to be a collection of these K communities, it is simple to see

that ek = ak = 1
K . So, we have Q = 1− 1

K .

Example 4.2. Consider again the graph network in the preceding example but allow an

edge to connect between community i and i + 1. Thus we now have 2m +K − 1 edges in

the network. Again, we choose the test partition to be the K communities. It follows that

Q ≤ K(
1
K
−

( 2m
K + 1

2m+K − 1

)2

= 1− 1
K

( 2m
K + 1

2m
K + 1− 1

K

)2

< 1− 1
K
.

(4.19)
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We see that Q is decreased when edges connected between communities are added to the

network.

Now we generalize the notion of modularity to a weighted, directed network. An equiv-

alent definition to Eq. (4.14) of the modularity for this network is given by

Q =
1
m

∑
ij

(
Pij −

kout
i kin

j

m

)
δ(ci, cj), (4.20)

where m now becomes the total weight, Pij is the weight of the edge between the vertices

i and j and kout
i and kin

j are the out- and in- degree of the vertices, respectively. More

precisely, we have m =
∑
ij

Pij k
out
i =

∑
j Pij and kin

j =
∑

i Pij . Note that the factor of

2 in the denominator is eliminated since the edges are not counted twice as in the case of

Eq. (4.5) for the undirected network. If the weight of the matrix is given according to the

matrix approximation of a Frobenius-Perron operator as described in Eq. (3.50), then the

total weight m is equal to the number of vertices in the network and kout
i =

∑
j Pij = 1.

Recall that a good partition of a graph network into communities could be found by

optimizing the modularity function Q. The true optimization is, however, very costly to

implement in practice for very large networks. Clauset, Newman, and Moore [61] proposed

an approximate optimization algorithm based on greedy optimization. Suppose that we

have a graph with n vertices and m edges. This algorithm starts with each vertex being

the only member of one of n communities. At each step, the change in Q(P) is computed

after joining a pair of communities together and then choosing the pair that gives the

greatest increase or smallest decrease in Q(P). The algorithm stops after n − 1 such joins

in which a single community is left. This algorithm therefore runs in time O((m + n)n),

or O(n2) on a sparse graph (n ∼ m). Note that using more sophisticated data structure

as introduced in [61] can reduce a run time to O(n log2 n). Furthermore, the algorithm

builds a dendrogram which represents nested hierarchy of all possible community partition

of the network. Then we select the partition corresponding to local peaks of the objective

function Q(P) for our satisfactory community division. Figure 4.3 shows an example of

the dendrogram of the graph network shown in Figure 4.2(a). We can see that the peak in

the modularity corresponds to the correct identification of the community structure and the
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modularity is dropped from the peak when two of the three communities are joined together

at the final step. We note that the quality of the partition can be determined by the value of

Q. A typical value of Q for a good division in many real-world network is around 0.2− 0.3.

If the partition obtained from an optimization scheme shows a considerably smaller value

of Q, say Q < .1, we assume that there is no significant partitions of the given network into

communities.

Figure 4.3. Plot of dendrogram for a graph network in Figure 4.2(a). As we can see the peak
in the modularity (dashed line) occurs where the network is divided into three communities.

Other approaches to optimize Q are spectral method. An idea of optimization schemes

based on spectral methods has been traditionally used to determine a division of a network

so that the minimum cut is achieved. To those types of problems the eigenvalue spectrum of

the Laplacian matrix is utilized to divide the network. A review of this method as applied

to the minimum cut problem may be found in [62]. For our purpose, we first consider the

partition of a network into two communities. Let a vector s of n elements, where n is the
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number of vertices, be defined as

si =


1 if i is in community 1

−1 if i is in community 2
(4.21)

Then we can rewrite Eq. (4.20) as

Q =
1

2m
sTBs, (4.22)

where B is called the modularity matrix defined by

Bij = Pij −
kout

i kin
j

m
. (4.23)

Therefore, we would like to determine the vector s that maximizes Q under the constraint

that sT s = n. In general, the modularity matrix B for a directed network is not symmetric

and so the spectral method cannot be directly applied. Instead, we consider the modularity

Q of the following form:

Q =
1

4m
sT (B + BT )s. (4.24)

Note that the matrix B+BT is not the same as the modularity matrix of the same network

but ignores the directions. The idea of the spectral scheme is to write s as a linear combi-

nation of the eigenvectors vi of B+BT . Then we can express Q in term of the eigenvectors

vi and their corresponding eigenvalues λi as

Q =
∑

i

λi(vT
i s)2. (4.25)

Then we can choose s to be as close to parallel with the leading eigenvector, say v1, of the

largest eigenvalue to maximize Q, i.e., maximizing the quantity

|vT
1 s| = |

∑
i

siv
(i)
1 | ≤ |

∑
i

v
(i)
1 |. (4.26)

Under the constraint si = ±1, this can be achieved by choosing the sign of si to be the

same as that of v(i)
1 .

We have only determined the optimal partition of the network into two communities.

If the network comprises of more than two communities, we have to further divide these

two communities. Thus we repeat the bisection process to each community of the network
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using the spectral partitioning as described above and continue dividing the result further

until the modularity of the network cannot be increased. In the course of this procedure,

we have to compute the change in modularity denoted by ∆Q to decide whether or not

the community k can be subdivided further. We define a vector s as before except that

only vertices within the community g are taken into account and note that ∆Q has to be

computed based on the entire network. Then we have

∆Q =
1

2m

[ ∑
i,j∈cg

(Bij +Bji)
sisj + 1

2
−

∑
i,j∈cg

(Bij +Bji)
]

=
1

4m

∑
i,j∈cg

[
(Bij +Bji)− δij

∑
k∈cg

(Bik +Bki)
]
sisj

=
1

4m
sT (B(g) + B(g)T

)s,

(4.27)

where we set

B
(k)
ij = Bij − δij

∑
k∈g

Bik. (4.28)

To obtain the first line in the above derivation we subtract the modularity Q after subdi-

vision from Q before subdivision and notice that the term concerning vertices outside the

community g can be canceled out. Then we use the fact that s2i = 1 to derive the second

line. Now, we can apply the spectral bisection scheme to determine the partition of the

community g that maximizes ∆Q of the entire network. If ∆Q happens to be negative or

smaller than some threshold value of ∆Q, it means that the community k should not be

subdivided further.

4.3 Markov Clustering

Another interesting method to detect communities structure in a network is the Markov

clustering (MCL) introduced by Stijn Van Dongen [63]. We will see that this method

strongly relates with the notion of the almost invariant set and random walks on the network.

The basic idea of the MCL is that when a random walk on a network falls into a dense cluster

or community, it will not likely to leave the cluster until many of the vertices have been

visited. Therefore, this observation of a random walk has a strong relation to the almost

invariant set where a random walk has a high probability to stay inside the community for
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a long period of time before escaping to another community. To apply the idea of a random

walk on a weighted graph, we first have to normalize the matrix associated to a weighted

graph to obtain a stochastic matrix of which the weight sum of all outgoing edges for each

vertex equals to one. Therefore, the random walk in this section can be viewed as a finite

Markov chain. Note that in the case of undirected graphs, we can readily see that the

stochastic matrix obtained from the normalization of the outgoing edges will be diagonally

similar to a symmetric matrix; the finite Markov chain is time-reversible. Note also that we

will see below that the stochastic matrix will be nonlinearly “inflated” and so most results

from the finite Markov chain theory are not valid for the analysis of the MCL. So, suppose

that we have a stochastic matrix P such as the transition matrix defined in (3.49). The

MCL algorithm is the following.

Algorithm: MCL

Choose the parameter r > 1 and the number of iterations n

begin iterations

Multiplication step: P = P 2

Inflation step: Pij = P r
ij

Normalize each column so that P becomes stochastic

n:=n+1

end iterations

In the multiplication step, we compute the probability P 2
ij that a random walk starting

from vertex i will go to vertex j in two steps. In the inflation step, the random walk with
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a high probability is favored by taking the rth power of the matrix P componentwise. The

matrix then has to be normalized for the next iteration. Indeed, we we will refer to the

combination of inflation and normalization steps as the inflation step. Therefore, the most

probable path of the random walk starting from i will become more probable, whereas

the path connected vertices from different communities will be less probable in the next

iteration of the random walk. This implies that a random walk will eventually end up at

some most probable path. In most cases, the matrix P will converge to the equilibrium

state of the MCL process in which P is invariant under multiplication and inflation. As a

consequence, if two random walks based on the MCL algorithm starting at two different

vertices eventually end up at the same vertex, they are regarded as the members of the

same community. Note that the inflation step is necessary to detect a cluster or community

structure since without the inflation the random walks will end up leaving the community

and converge to the stationary state as the number of iteration increases.

Due to the multiplication step, the computational time of the algorithm is O(n3), where

n is the number of vertices. Nevertheless, most real-world networks realizing a dynamical

system are sparse and so the method can still be useful. In fact, Gfeller [64] has demon-

strated an application of MCL for the community detection of a large network withN ∼ 104,

which is done in a reasonable time. Note that as far as our knowledge is concerned, the

convergence of this method has not yet been developed.

Figure 4.4. A graph network of 20 vertices.
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Figure 4.5. The change in matrix P at different iterations of MCL with r = 2.0. (a) The
original stochastic matrix P . From (b)-(d) we show the matrix P at steps 10,20 and 30
respectively. Notice that the matrix in (d) reveals three communities in the network, that
is {1− 5, 18, 20}, {6− 14, 19} and {15− 17}.

Figure 4.6. The effect of the scale of r is shown at three different scales. (a) For r = 1.2
two communities, {15− 17} and {1− 20} \ {15− 17}, are detected by MCL. (b) For r = 1.5
MCL discovers three communities (c) At r = 2 MCL detects four communities. Note that
for r > 2 MCL gives the same result as the case of r = 2.
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Now we consider as a toy example a weighted, directed network of 20 vertices shown in

Figure 4.4. In this network, there are four complete subgraphs; {1− 5}, {6− 10},{11− 14}

and {15−17}, and they are connected via the vertices {18−20}. Heuristically, each of these

four subgraphs should structure a community and the vertices 18 and 20 should also belong

to the community consisting of {1− 5}. Also, the vertex 19 should combine with {6− 10}

to form a community. The results of MCL with r = 2.0 at different iterative steps are

demonstrated in Figure 4.5. The rows with nonzero entries reveal the community structure

of the network and all the nonzero entries in Figure 4.5(d) are equal to one. Figure 4.6

shows how the result changes as the parameter r is varied. We can see that the number

and size of communities depend on the parameter r. Fewer but larger communities are

detected for a small value of r whereas for a larger values of r MCL detects a larger number

of communities but smaller in size. Note that the result shown in Figure 4.6(a) is obtained

after 500 iterations and the nonzero entries related to the community {15−17} are all equal

to 0.5 instead of 1.

Finally, we remark there are some interesting cases in which a periodic limit occurs in

the MCL [63] and that the idea of the random walk used in the MCL algorithm has a strong

similarity to the simulated annealing method as explained in [64].

4.4 Examples

In this section we first for benchmarking purpose demonstrate an application of the

modularity method to the double-well Duffing oscillator, where the solution is the expected

double wells. Then we apply the method to a gearbox model from mechanical engineering

[65, 1] and then finally to a many basin system which is known only through data. We will

observe changing basin structure with the standard deviation of the noise.

For each model, we simulate a long test orbit. Recall that we are interested in the

case that we only have a given orbit, but lack a mathematical model of the map that

generates the test orbit. Then as explained above, we develop a digraph transition model of

the Frobenius-Perron operator, discretized on a fine triangulation grid of the phase space.
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Then our goal becomes the determination of an appropriate partition of the phase space

using the modularity method explained in the previous section.

4.4.1 Duffing Oscillator

Our first example is chosen for sake of simplicity to benchmark and clarify our method.

Consider the the double-well Duffing oscillator given by.

ẋ = y

ẏ = x− x3 − δy + F0 cos(2πωt),
(4.29)

where δ = 0.25, F0 = 0.25, and ω = 1. To obtain a stochastic version of this model noise is

added to the above equations periodically at the same phase having mean zero and standard

deviation σ. Thus this model may be viewed as a stochastic map,

F : R2 → R2, (x, y)(t+ 1) = F [(x, y)(t)] + ν(t), (4.30)

where ν(t) is a discrete noise term. This additive noise induces chaos-like oscillations since

it causes noise-induced basin hopping between two basins of the noise-free system. In order

to study where in the phase space these basin hoppings are most likely to occur we should

first determine the basin boundaries.

For the particular experiment shown below, we randomly choose an initial condition

and iterate it 50, 000 times using the time-T map, T = 1, of the Duffing model with normal

noise of zero mean and standard deviation σ = 0.01, which is added after each iteration of

the map. Note that in the noiseless case, for the particular chosen parameter values of the

deterministic system, if the initial point belongs to one of the wells it will converge to the

bottom of the well (x = −1 or x = 1). However, when noise is added, hopping between the

two basins may occur sporadically, depending on the nature of the noise. Of course, given

just the data of a sampled orbit, it is not immediately obvious where are the basins and

where the jumping between the basins occurs. Of course, we only know this information

since we have chosen a particularly simple benchmark example. We will now demonstrate

that our algorithms defined in the previous sections can automatically discover what we

already know for this problem.
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With the test orbit in hand we choose a bounded phase space that covers every point

in the orbit and divide it into small triangular regions (3200 triangles are used in this

example). After (arbitrarily) indexing each triangle we then generate a graph whose edges

and vertices correspond to the transition of points in the orbit and the index of these

triangles, respectively. Then we can apply the modularity method to find a partition of this

graph.

The results of the digraph partitioning are shown in Figure 4.7, and the correspond-

ingly indexed triangles are embedded back in their native phase space positions, and colored

according to the partition results. We can see from 4.7 that there are two basins colored

by magenta and yellow in accordance with left and right wells, as expected. Furthermore,

hopping between the two basins occurs many times. The triangles are automatically colored

according to the partition by the modularity method, which agrees very well with a priori

known behavior described in the above paragraph. We see that the two basins are each

automatically colored as their own connected components in the phase space. Figure 4.8(a)

and 4.8(b) shows the Galerkin matrices before and after the sorting by using the partition

due to the modularity method. Of particular interest when inspecting the transitions ma-

trices in their almost canonical reducible form is the elements in the off-diagonal blocks.

These off block-diagonal elements indicate the hopping between two the basins, which is

approximately in agreement with (4.2). Accordingly, the corresponding triangles are the

more active transport regions in the phase space.

4.4.2 Gearbox Model

Our second example is a model for rattling in a single-stage gearbox system with a

backlash, comprised of two wheels with a sinusoidal driving (See Figure 4.9) [1, 65] and this

development is featured in our work [28]. The relative displacement between the gears due

to the backlash is

s =
ARe

ν
sinωt− R

ν
ϕ, (4.31)

where A and ω are angular amplitude and frequency of the driving gear, respectively, R

and Re are the radii of two gears with a backlash ν, and ϕ is the angular displacement
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Figure 4.7. A partition of an orbit generated from the Duffing model with δ = 0.095
and normal noise, σ = 0.01. The colors, magenta and yellow, are according to the two
communities found by the modularity method applied to the transition matrix, and we see
that the colors of these corresponding triangles agree well with the a priori known basins
of the deterministic system. The blue dots shown are the test orbit used in the process.
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(a) (b)

Figure 4.8. Galerkin matrices before and after sorting of the Duffing oscillator. (a) The
Ulam-Galerkin matrix from the Duffing oscillator before sorting. No obvious basin structure
or transport in this operator. (b) The Ulam-Galerkin matrix from the Duffing oscillator
after sorting into into approximate reducible form. We see the basin structure of off-diagonal
elements showing relative transport between basins.

of the second gear. The s variable varies from -1 to 0 and the impact occurs when s = 0

or −1. Let sn, ṡn, and τn represent the displacement, velocity, and time (modulo 2π) just

before the nth impact. Then the dynamical variable for (n+ 1)th impact can be derived as

a function of the nth impact [6];

sn+1 = sn + α(sin τn+1 − sin τn) +
γ

β
(τn+1 − τn)

− 1
β

(1− exp[−β(τn+1 − τn)])(rṡn + α cos τn +
γ

β
),

(4.32)

ṡn+1 = α cos τn+1 +
γ

β
− exp[−β(τn+1 − τn)])(rṡn + α cos τn +

γ

β
). (4.33)

Pictures showing the physical meaning of these variables in more detail can be found in [65,

1].

We fix values, s0 = −0.5, β = 0.1, γ = 0.1, and r = 0.95. The bifurcation diagram

shown in Figure 4.10 shows that two attractors co-exist near α = 2 and these attractors

appear as the successive time of five impacts. Following Souza et. al. [1], we add noise to

the control parameter α. That is,

αn = α+ η(n), (4.34)
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Figure 4.9. Schematic view of the gearbox system [1]

where η(n) is a discrete noise term, with a normal distribution with zero mean and with stan-

dard deviation σ. Note that in this example we have the case of the stochastic Frobernius-

Perron operator Eq. (3.42), in which the perturbation is neither additive nor multiplicative

but a combination of both. We simulate a time series using 60, 000 iterations for α = 1.985

and set the noise standard deviation at σ = 0.0018. A time series for this case is shown in

Figure 4.11, where the basin hopping can be noticed.

Following the same procedures as described in the preceding example we can generate

a graph associated to the orbit of the gearbox model. The result from the modularity

method for this case is shown in Figure 4.12, where the large squares and dots indicate each

attractor for the noiseless case. The transition matrices before and after sorting according

to the partition from the modularity method are shown in Figure 4.13(a) and 4.13(b).

4.4.3 A Stochastic Model with many basins

Consider the following Hamiltonian system with a stochastic white noise:

dx

dt
=
∂ψ

∂y
+ ηx(t)

dx

dt
= −∂ψ

∂x
+ ηy(t)

(4.35)
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Figure 4.10. Bifurcation diagram for the time of impact.

Figure 4.11. A time series of the τn for α = 1.985 at noise level σ = 0.0018.
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Figure 4.12. A partition of an orbit generated from the gearbox model with normal noise,
σ = 0.0018.
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(a) before (b) after

Figure 4.13. Transition matrix before and after sorting of the gearbox model. Notice in the
sorted matrix that two distinct basins become clear as those triangles indexed to associate
to the diagonal blocks, and the regions causing hopping are clear as those few off diagonal
elements. Each of the two basins, the smaller and larger blocks, are the pink and yellow
colored regions in Figure 4.12.

where the stream function ψ is given numerically as shown in Figure 4.14 and ηx and ηy are

the normal noises with zero mean. We then generate a time-series data based on the time-T

map of Eq. (4.35) for a normal noise with zero mean and standard deviation σ = 0.001 as

shown in Figure 4.15. One may notice bursting in the time series, which suggests transitions

between the almost invariant sets.

To investigate how the basin structure changes as the standard variation of noise is

varied, we compare the result obtained from the modularity method for four cases of σ =

0.001, 0.005, 0.01, and 0.05 as shown in Figure 4.16 and 4.17. In all four cases we start with

an initial point (x, y) = (−0.2, 0.6). Note that the regions with no color do not contain

any point in a test orbit and so they are not used in a process of generating a graph.

One may observe from Figure 4.16 that the bandwidth of the Ulam-Galerkin matrix before

sorting becomes larger as σ increases. Moreover, the modularity measure as defined in

Eq. (4.5) becomes lower when noise becomes larger (Q = 0.7267, 0.7183, 0.6968, and 0.6361

for σ = 0.001, 0.005, 0.01, and 0.05, respectively). Recall that the higher the value of the

59



Figure 4.14. The velocity field for the noiseless case of Eq. (4.35) is computed from the
above streamfunction by the relation (dx/dt, dy/dt) = ∇× ψ.

Figure 4.15. A test orbit of the time-T map of Eq. (4.35) for a normal noise with standard
deviation σ = 0.001.
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modularity measure, the stronger the community structure (the lower value of the ratio of

the inter-community edges and the within-community edges).

4.5 On Computational Complexity

As featured in our work [30], we briefly discuss the computational complexity of the

methods described in this chapter. Although increasing the number of boxe coverings, and

hence the number of vertices in the graph, can make a graph partition that reveal more

refined structure of basin, there exists a necessary number of box coverings to discover a

basin structure. This minimum requirement can be related to the Lyapunov exponent of a

given dynamical system from which the data comes. This means that refining a covering of

a phase space beyond the necessary requirement will not reveal more structure of basins,

but any over-refinement still requires more computer storage and more computer work.

The following analysis assumes the zero noise, and so this would seem to imply it may be

relevant at best for only small noise profiles. We remind however that there does exist a

concept of stretching and Lyapunov exponent for a stochastic system [66], and so we offer

the following as a heuristic model which is suggestive of the necessary refinement of the grid

to gain a given knowledge of the system’s evolution. We find that these considerations give

a useful starting point when the noise profile is not overwhelming.

We use the Baker’s map as an example to describe the trade-off between the number of

box coverings and the Lyapunov exponent. Recall that a Baker’s map on the unit square

[0, 1]× [0, 1] maybe defined by [67],

xn+1 =


λ1xn if yn < α,

(1− λ2) + λ2xn if yn > α,

yn+1 =


yn/α if yn < α,

(yn − α)/(1− α) if yn > α,

(4.36)

where λ1 + λ2 < 1 and 0 < α < 1. The forward-time invariant set of this map is a Cantor

set of parallel vertical lines. Consider learning these structures with box covering methods,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.16. Transition matrix before and after sorting of the model Eq. (4.35). Notice
decreasing the number of basins as the noise increases.
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(a) (b)

(c) (d)

Figure 4.17. The phase space partition of the duffing-like model with various values of σ
using the graph modularity method. The values of the modularity measure as defined in
Eq. (4.5) in each case are Q = 0.7267, 0.7183, 0.6968, and 0.631 for σ = 0.001, 0.005, 0.01
and 0.05, respectively. Similarly, the basin structure is changing with σ.
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(a) (b)

Figure 4.18. Two iterations of the Baker map with λ1 = λ2. (a) All stripes after n = 2.
A square box of size ε1 cannot resolve a structure finer than ε1. But we see that a smaller
square box of size ε2 is able to resolve a stripe of width up to ε2. (b) Here,however,the box
of size ε2 cannot resolve the stripe left in the unit box after n = 3.

and what can be discovered by such finite computations. Suppose that we want to cover

all parallel stripes left in the unit box after n iterations by square boxes of size ε so that

two stripes are not contained in the same box, see Figure 4.18. The size of the square box

required to do this is

ε(n) = min {λn
1 , λ

n
2}. (4.37)

Therefore, the required number of boxes to reveal the fractal structure of these parallel

stripes is

N(ε) ≥ ε(n)−2, (4.38)

and d = 2 is the dimension of the embedding phase space. Using more boxes than the

minimum requirement (4.38) would only increase required storage and work but does not

give us a better knowledge of the stripes left in the unit box. Thus we see that there is

a trade-off between Lyapunov exponents, λi, time, n, box size, ε, the size of the memory

requirements and size of the resulting digraph, N(ε), and the dimension of the underlying

space, d.

64



Chapter 5

LCS in 2-D dynamical systems

This chapter is dedicated to the analysis and applications of the finite-time Lyapunov

exponents, which are used to determine their associated Lagrangian coherent structure

(LCS). It was demonstrated by Haller [15, 16] that the finite-time Lyapunov exponent can

be used to capture the material lines advected as a set by the flow. Thus, these material

lines approximate the hyperbolic invariant manifolds of the system and form a building

block to understand the global geometry of transport and mixing of the flow.

5.1 Lyapunov exponents

Before we discuss the notion of the finite-time Lyapunov exponent in the subsequent

section, we review here the traditional asymptotic notion of the Lyapunov exponent, which

provides a long-term rate of expansion or contraction of tangent vectors. We first review

the definitions for a diffeomorphism and then we will turn to those for the flow later in this

section.

Definition 5.1. Let f : M → M be a C2 diffeomorphism (that is, a twice differentiable

function with continuous second derivative) on a smooth manifold M with an invariant

measure µ. Let ‖·‖ be the norm on the collection of tangent vectors at x ∈ M, denoted by

TxM. For each x ∈M and v ∈ TxM, the Lyapunov exponent χ(x, v) at point x in direction
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of v is given by

χ(x, v) = lim
k→∞

1
k

log
∥∥∥Dfk

xv
∥∥∥ (5.1)

whenever the limit exists.

Note that for an arbitrary choice of x the limit may not exist, but the supremum limit

always exists since the norm
∥∥Dfk

xv
∥∥ is bounded for a C2 diffeomorphism. Since the largest

growth is often of interest, it would be possible to use the limsup to define the Lyapunov

exponent as:

χ(x, v) = lim sup
k→∞

1
k

log
∥∥∥Dfk

xv
∥∥∥ . (5.2)

However, we will assume that the limit exists and restrict to the definition given in Eq. (5.1),

which is often used in most applied dynamical system literature. Nevertheless, the Multi-

plicative Ergodic Theorem of Oseledec gives conditions under which the limit in Eq. (5.1)

exists for all tangent vectors v ∈ TxM at almost all points x ∈M.

Theorem 5.1. (Multiplicative Ergodic Theorem, See Robinson [32]) Let f : M → M be

a C2 diffeomorphism on a compact manifold M of dimension m with an invariant measure

µ defined on a Borel σ−algebra B. Then there is an invariant set Bf ∈ B of full measure,

µ(Bf ) = 1, such that the following properties are satisfied:

(a) For each x ∈ Bf , there exists l(x) distinct values χ1(x) < · · ·χl(x)(x) such that the

tangent space at x, TxM , can be decomposed by the bundle subspaces TxM = V 1
x ⊕· · ·V

l(x)
x

with
∑l(x)

j=1 dim(V j
x ) = m. Then, for v ∈ (V j

x ⊕· · ·V l(x)
x )\(V j−1

x ⊕· · ·V l(x)
x ), the limit defining

χ(x, v) exists and χj(x) = χ(x, v) for all such v, that is,

χj(x) = lim
k→∞

1
k

log
∥∥∥Dfk

xv
∥∥∥ . (5.3)

In addition, the bundle subspaces are invariant in the sense that DfxV
j
x = V j

x for all

1 ≤ j ≤ l(x).

(b) If x ∈ Bf , the exponents satisfy −∞ ≤ χ1(x) < · · · < χl(x)(x). For 1 ≤ j ≤ m, the

function χj(·) is measurable for each x ∈ Bf and invariant, χj ◦ f = χj .

Note that the real numbers χj(x) in the above theorem are the Lyapunov exponents at x,

which are the same for all tangent vectors under the above conditions. As a consequence of
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the condition (a), there are at most m distinct values of χ(x, v) for each point x ∈M ⊂ Rm

and if one arbitrarily choose the initial tangent vector so that it is a mixture of all Lyapunov

basis components (i.e., vl(x)
x ), we will have χ(x, v) = χl(x)(x). Also, the second property

in the theorem gives that the lyapunov exponents at x are constant along an orbit, which

can also be seen directly from the definition of the Lyapunov exponent (5.1). Therefore, if

the diffeomorphism f is ergodic for an invariant measure µ, the Lyapunov exponents χj(x)

for each x are the same for µ−almost everywhere. Hence, there is no need to specify the

initial point x for the Lyapunov exponent of an ergodic diffeomorphism that satisfies the

conditions in the Multiplicative Ergodic Theorem.

As an example of an ergodic measure, consider the natural measure on a basin of

attraction. Therefore, one may refer to the Lyapunov exponent of an attractor without

specifying an initial condition. In addition, the attractor is normally defined to be chaotic

if its Lyapunov exponent is positive since it implies sensitivity of initial conditions for

the attractor. Nonetheless, the positive Lyapunov exponent does not always imply the

sensitivity of initial conditions for an arbitrary invariant set. For example, the separatrix,

homoclinic loop of the Hamiltonian system with H(x1, x2) = 0.5(x2
2 − x2

1) + ax3 for some

a > 0 has one negative Lyapunov exponent in the tangent direction to the separatrix and

one positive Lyapunov exponent in the transverse direction. However, the separatrix does

not have sensitive dependence on initial conditions despite of the existence of a positive

Lyapunov exponent. Despite this contradictory example, one has to keep in mind that

the homoclinic loop is non-generic, and it has a Lebesgue measure of zero. In general, the

Lyapunov exponent is a useful tool to measure chaos.

Another alternative definition of the Lyapunov exponent directly relates to the change

in length of the tangent vectors and it will be used to define the finite-time Lyapunov

exponent in the following section. Remember that Dfx is the linearization of the map f at

point x and since Df ∈ L(M,M) we may consider Dfx as a square matrix on the manifold.

Therefore, the length of the tangent vector v after one iteration by the linear map Dfk
x is∥∥∥Dfk

xv
∥∥∥ =

(
vT Λk(x)v

)1/2
, (5.4)

where Λk(x) = (Dfk
x )TDfk

x is symmetric and positive definite. Λk(x) measures how much
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the lengths of v are changed by Dfk
x . It can be shown that for almost all x, the limit

Λx = lim
k→∞

[
Λk(x)

]1/2k
, (5.5)

exists. Then, the Lyapunov exponent χj(x) is

χj(x) = λj(Λx), (5.6)

where λj(Λx) denotes the j−th smallest eigenvalue of the matrix Λx with the multiplicity

of dim(V j
x ) as defined in the Multiplicative Ergodic Theorem.

5.2 Finite-time Lyapunov exponents and LCS

We have discussed in the preceding section the asymptotic notions of the Lyapunov

exponent. In the past decade, a number of research studies have focused on the notion of

the Lyapunov exponent when the vector field is known only in a finite-time interval. For

examples, the finite-time vector fields, which are also discrete in space, might be numerically

constructed from a numerical solution of the Navier-Stokes equation, a particle image ve-

locimetry (PIV) data or motion estimation from a satellite image sequence (See Chapter 6).

Therefore, several asymptotic notions such as Lyapunov exponent, hyperbolic trajectory

and stable/unstable manifold, as described in Chapter 2 become questionable. A number

of concepts and methods in hundreds of papers have been developed for this purpose in the

last two decades [36, 14, 15, 17, 18, 10, 37, 38]. However, in the context of the finite-time,

discrete velocity fields, an approximation of the (finite-time) hyperbolic or distinguished

hyperbolic trajectories becomes difficult and demanding in terms of computational effort.

A different concept is to directly resort to the behavior of the flow of the invariant

manifolds. In particular, the finite-time stable (unstable) manifold of a hyperbolic trajectory

behaves like a repelling (attracting) material surface in an extended phase space [15, 68].

Therefore, we may directly detect the finite-time stable (unstable) invariant structure by

computing the expansion rate in a forward (backward) time. Normally, these invariant

structures have one dimension less than the dimension of the phase space and they form

the boundary between regions of different dynamical or statistical properties. Note that
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in fluid dynamics, coherent structures can be viewed as sets of fluid regions with different

statistical properties. Hence, these structures are also called the Largrangian coherent

structure.

Since we will focus on only the case of 2-D velocity fields and hence we consider a

nonautonomous velocity field of the form

ẋ(t, t0, x0) = v(x(t0, t, x0), t)

x(t0, t0, x0) = x0

(5.7)

where x ∈ M ⊂ R2 × R and v(x, t) : R2 × R → R2 is C2 in space M and C1 in time.

Here, we write the vector field in the extended phase space by redefining time as a new

dependent variable. For brevity, we shorten the notation x(t0, t0, x0) by using x(t0) instead

for the rest of this chapter. In this extended phase space, we can assume the existence and

uniqueness of the solution of (5.7) and hence the solution of (5.7) satisfies the so-called

cocycle property :

x(t2, t1, x0) = x(t2, t1, x(t1, t0, x0)), ∀x0 ∈ Rn, and t0 ≤ t1 ≤ t2. (5.8)

Then, we can integrate the velocity field to obtain the semigroup of transformation

φτ : x(t0, x0) 7→ x(t0 + τ, t0, x0). (5.9)

We have seen from (5.4) that the Lyapunov exponent measures the expansion rate of

a tangent vector at a point x. Now, we would like to describe its finite time version for

the semigroup of transformation (5.9) associated to the nonautonomous system (5.7). In

analogy to (5.4) we can define a symmetric matrix

Λτ ≡ Λτ (x(t0)) = (Dφτ (x(t0)))TDφτ (x(t0)) (5.10)

as a finite-time version of (5.4), which measures the change in length of the small tangent

vector at the initial condition x(t0) in a finite time interval [t0, t0+τ ]. For an nonautonomous

velocity field, this matrix depends upon the initial point x(t0), the initial time t0, and the

integrating of the flow map τ . Note that in the language of fluid dynamics, the matrix
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Λτ is called the Cauchy-Green deformation tensor. Therefore, we can define the finite-time

Lyapunov exponent (FTLE) of the initial condition x(t0) as

στ (x(t)) =
1
|2τ |

ln
√
λmax(τ), (5.11)

where λmax(τ) is the largest eigenvalue of Λτ (the largest singular value of Dφτ (x(t0))).

When computing in forward time (τ > 0), the ridge of the FTLE field reveals the so-

called repelling Lagrangian coherent structure (LCS), which has a similar feature to the

stable manifold of a hyperbolic trajectory, see Shadden [17, 18]. Similarly, the second-

derivative ridge of the FTLE computed with negative integrating time (τ < 0) locates the

attracting Lagrangian coherent structure. It was analytically and experimentally verified

by Shadden [17, 18] that the LCS defined as the second-derivative ridge of the FTLE field

is nearly Lagrangian in a sense that the particle flux across the LCS becomes negligible as

the integrating time τ increases provided that the “true” LCS associated with the vector

field is hyperbolic for all time. However, the LCS obtained from a finite-time data set

is likely to be hyperbolic only for a finite time and so if the integrating time τ increases

beyond the hyperbolic time of the trajectory, which is not known a priori ,the resulting LCS

may not exhibit the Lagrangian property. Here, the second-derivative ridge is defined as a

parameterized curve c : (a, b)→M that satisfies two conditions. First, the derivative of the

curve c′(s) has to be parallel to the vector ∇στ (c(s)). This is to force the tangent line of the

curve to be oriented in the direction of the largest variation of the FTLE field. Secondly,

the direction of the steepest descent is that of the normal vector to the curve c(s), which

can be expressed by

nTH(στ )n = min
‖v‖=1

vTH(στ )v < 0, (5.12)

where n is the unit normal vector to the ridge curve c(s) and H(στ ) is the Hessian matrix

of the FTLE field:

H(στ ) =
 ∂2στ

∂x2
∂2στ
∂x∂y

∂2στ
∂y∂x

∂2στ
∂y2

. (5.13)
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5.3 LCS analysis of a mixing device

5.3.1 Experimental setup

Details of the experimental methods can be found in Bohl [69]. Figure 1 shows a

schematic of the experimental apparatus. A clear acrylic cylindrical flat bottomed container

was constructed with an inside radius of rw=6.93 cm. A flat stainless steel blade was placed

in the cylinder such that the long axis of the blade was parallel to the z-axis of the container.

The blade had a width of rb = 2.99 cm (0.43rw), a thickness of 0.14 cm (0.02rw) and could

be placed at various locations (i.e. offsets) with respect to the wall. The blade was rotated

about its long axis by a DC motor to drive the fluid motion. The data presented in this

paper used glycerin as the working fluid. The Reynolds number was Re = 9, with the

Reynolds number defined as Re = 2fr2w/ν where f is the rotational frequency of the mixing

blade. The geometry was chosen as a simplified first order model of a batch mixer to provide

simple, well defined boundary conditions that could be used to aid model development and

provide validation data for the developed computational tools.

Figure 5.1. Experimental mixing apparatus.

The 2-D velocity fields were measured using Particle Image Velocimetry (PIV). Briefly,

PIV relies on seed particles in a fluid that scatter light from a thin laser sheet created

in the plane of interest. These particles may exist within the fluid naturally or be added

to the fluid before measurements are made. The particles in the flow are imaged twice
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with a short, known delay between images. The displacement of the particles, or groups

of particles, is determined via pattern matching techniques and a local velocity vector is

calculated by dividing the displacement by the time between images. The velocity can be

determined at discrete points over the entire image and the 2-D velocity field in the plane

of the laser sheet can be assembled. Other kinematic quantities, such as vorticity, strain

and stress, can then be calculated using the planar velocity field. A detailed discussion of

PIV can be found in Adrian [70].

In the current work, the working fluid was seeded with 10 micron silver coated glass

spheres. Light was provided by a 4 Watt Spectra Physics Argon Ion laser. The mixing

blades were painted with flat black paint to reduce the reflection of the laser sheet in the

measurement region. The laser light was pulsed using a NM Laser Products fast mechanical

shutter. This shutter had a minimum closed-open-closed cycle time of 1 msec. This was

short enough that the imaged particles did not experience blurring during the exposure

time. Images were capture using a Cooke Corporation Sensicam-QE CCD camera (8 bit,

1376×1040 pixels). The flow was viewed up through the clear bottom of the container to

provide data in a plane perpendicular to the long axis of the mixing blade (i.e. the r − θ

plane).

The displacement of groups of particles was determined using the direct correlation

technique described in Gendrich and Koochesfahani [71]. Each FOV was approximately

8.7 cm × 12 cm in size (0.0087 cm/pixel). Delay times between the images were chosen to

give maximum displacements of nominally 10 pixels and the source windows used in the

correlation technique were 45 × 45 pixels with a 50% overlap. The error in the velocity

measurements is limited by the ability to measure the displacement of the particles between

images. The correlation technique used to process the data in this work is well documented

and has a 95% uncertainly level of 0.1 pixel which corresponds to an uncertainty in the

instantaneous velocity measurements of 0.08 cm/sec.

The flow field under investigation was periodic in nature, with the periodicity linked to

the motion of the mixing blade, which allowed the data to be phase averaged with respect

to the motion of the blade. The blade phase, was defined such that 1/2 rotation was given
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for φ = 0 to 1 (i.e. φ ranged from 0 to 2 for a complete blade rotation). This allowed data

from multiple experiments and multiple Fields of View (FOV) to be combined to form a

single data set. Phase averaging and the combining of multiple data sets allowed multiple

individual measurements to be averaged for a single measurement location which reduces

the estimated error in the presented data by a factor of 2 to 0.04 cm/sec. Local vorticity

was calculated using a second order finite difference method using the spatially nearest

velocity measurements. Vorticity error values were estimated to be 0.38 and 0.16 sec−1 for

the high and low frequency cases respectively. All data presented in this work are from PIV

measurements taken at the mid-height of the fluid column. Data not shown here indicated

that the flow field was independent of the z-location over the middle half of the mixing

blade.

Representative phase averaged velocity and corresponding vorticity fields from the PIV

data are shown in Figure 5.2 for the centered blade case. Of note in this figure is the strong

vortex that forms near the tip of the blade and travels with the blade as it sweeps through

the fluid. A second region of vorticity forms along the blade surface and along the container

bounding wall. A region of reverse flow is observed between the tip vortex and the bounding

wall. Detailed discussion of this flow field can be found in Bohl [69].

Figure 5.2. Representative phase averaged velocity and vorticity fields from PIV data.
Case shown is from the centered data.
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5.3.2 Transport and Mixing in the Mixers

In this section we demonstrate an analysis of transport and mixing for our rotating

flat plate mixer by approximating the Lagrangian coherent structure (LCS) based on the

FTLE. The PIV output provides discrete measurements of the velocity field over a plane

at finite times which can be used to compute the FTLE based on Eq. (5.11). However, an

interpolation is needed to integrate points where the velocity field is not given in the PIV

data. Furthermore, if the time step for the integration is smaller than the duration of two

consecutive experimental time steps, we have to assume that the variation of velocity fields

between two consecutive velocity data is small so that an interpolation in the time domain

is also suitable. Conditions for the existence of finite-time hyperbolic trajectory can be

found in Haller and Poje [14].

Figure 5.3 shows snapshots of the forward-time FTLE of the mixer with the blade

positioned at the center. We set the integrating time to half of a full rotation, τ = 2.1342

seconds. Note that one period of the vector field here is half of a full revolution of the blade

since there is no distinction between the two tips of the blade. Numerically, at each time

t, we integrate samples of grid points by a fourth-order Runge-Kutta method to find their

positions at time t+τ . The cubic method is used for an interpolation during the integration.

Then, we compute the spatial gradient of the flow by a central-difference scheme at each

initial grid points. The FTLE at time t for each initial point can be evaluated according to

Eq. (5.11). The SVD is used to compute the eigenvalues of Eq. (5.10).

The LCS of the flow can be defined as ridges of the FTLE field as shown in Figures 5.3

and 5.4. We observe the Lagrangian property of the LCS by tracing the trajectory of

particles straddling the LCS. One can see that these particles do not transverse the LCS.

In order to understand the motion differences between the two regions separated by the

LCS, we use the particle tracers shown in Figure 5.5 to visualize the geometry of the flow.

This further suggests that the repelling LCS divide the space mainly into two regions; the

region surrounded by the repelling LCSs experiences a very low degree of mixing whereas

a higher degree of mixing occurs in the “outside” region. Furthermore, we compute the
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Figure 5.3. The forward-time FTLE field of the mixer with the centered blade is computed
at different time t with the integrating time τ = 644t, where 4t = 0.033 seconds. From
(a) to (f), the FTLE is computed at time t = 4t, t = 104t, t = 204t, t = 304t, t = 404t
and t = 604t, respectively. The initial particles are placed to straddle the LCS and they
are advected to demonstrate that the resulted LCSs serve as the transport barrier.
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backward-time FTLE of the flow of the same mixer. Recall that the backward-time FTLE

reveals to us the attracting LCSs, which is a finite-time version of an unstable manifold of

a steady flow. Therefore, the particles tend to accumulate along the attracting LCSs as

observed in Figure 5.4. With the aid of these forward and backward time FTLE, we see

that the stable and unstable of periodic points forms a trapping region (Figure 5.6) that

traps fluid particles inside itself and hence mixing has a potential to occur only between

the particles in the trapping region. Notice that the boundary of the trapping region moves

along with the rotation of the blade tips and also that the center point of the mixer is a

hyperbolic fixed point that is responsible for mixing inside the trapping region.

Figure 5.4. The backward-time FTLE field of the mixer with the centered blade is computed
at different time t with the integrating time τ = 644t as in Figure 5.3. From (a) to (c),
the FTLE is computed at time t = 4t, t = 604t and t = τ + 604t, respectively. Here
we observe that the initial particles colored by the magenta accumulated along the ridge of
the FTLE field. Thus the ridge of the backward-time FTLE field may be regarded as an
unstable manifold.

We point out that the velocity field of our mixer may be considered as a periodically

perturbed Hamiltonian system. For such a system, it is well-known that the stable and

unstable manifolds have an infinite length in general [13]. Therefore, we should expect the

resulting LCS to be revealed more as the integrating time increases. However, this requires

higher resolutions of sample points and hence a longer computational time, see Figure 5.7.

One can see stretching and folding of “stripes” in the mixer, which suggests a need of a

larger number of grid points to compute the FTLE as the integrating time is increased.

We observe that FTLE fields for the mixer with the offset blade, Figure 5.8, reflects
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Figure 5.5. Snapshots of particle tracers for the mixer with the centered blade. Two sets are
particles, A (green) and B (magenta) are initially separated to occupy half of the physical
space as shown (a). The initial particle distribution is then allowed to change as dictated
by the flow field for 1,2,3,4, and 5 periods, (b)-(f), respectively.

Figure 5.6. A heuristic rendering of a stable and unstable heteroclinic tangle made of the
mixing system inferred from the observed time-dependent LCS structures. The periodic
points P1 and P2 correspond to the blade tips. The forward and backward time FTLE fields
in Figure 5.3 and 5.4 suggest that the transverse intersection by the stable and unstable
manifolds of P1 and P2 generate a trapping region that bounds the trajectories of particles
within this cell. Note that the mixing inside the trapping region is a result of the hyperbolic
fixed point at the center of the mixer.
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Figure 5.7. Computed the FTLE fields with different integrating times, τ = T , τ = 2T and
τ = 4T , respectively, where T is the time for one period.

a high degree of stretch near the wall where the tips of the blade rotate. Again, the LCS

occurs on the boundary that separates strong and weak mixing as observed from the tracer

plot in Figure. However, the mixed region in this case is smaller than the that of the

centered-blade mixer and it is the mixed region that is almost enclosed by the LCS instead

of the region with a weak mixing as in the case of the centered blade. Also, we notice a

vanishing of the LCS as one of the blade tips rotates away from the wall and its reappearance

when the other tip rotates toward the wall. Again, we observe the numerical displacement

of the tracers to further our understanding of the transport. It is shown in Figure 5.9 that

the LCSs in Figure 5.8 separate the region of a relatively higher degree mixing within the

sweep of the blade from that of a lower degree of mixing. This is different from the case

of the centered-blade mixer in which the region bounded inside by the LCSs experience a

lower degree of mixing than the other region. Furthermore, the particle striation in this case

occurs in a more intricate fashion with a faster mixing rate than the case of the centered-

blade mixer. However, in this case the amount of particles that are mixed together is clearly

less than that of the centered-blade mixer. We verify these mixing behaviors again using

the definition of mixing in Section 5.4.
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Figure 5.8. The forward-time FTLE field of the mixer with the offset blade is computed at
different times t with the integrating time τ = 644t. From (a) to (f), the FTLE is computed
at time t = 4t, t = 104t, t = 204t, t = 304t, t = 404t and t = 504t, respectively.
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Figure 5.9. Snapshots of particle tracers for the mixer with the centered blade. Two sets are
particles, A (green) and B (magenta) are initially separated to occupy half of the physical
space as shown (a). The initial particle distribution is then allowed to change as dictated
by the flow field for 1,2,3,4, and 5 periods, (b)-(f), respectively.

5.3.3 Mathematical model of the mixers

This section is aimed to define a mathematical model of our mixing devices and use it

to investigate certain salient features of the FTLE fields of the mixing devices. We suppose

that at time t = 0 the velocity field is constructed from a vorticity field under assumption of

two-dimensional flow that the vorticity field is given by a vertical vorticity, ω = ωz. Hence,

we solve the Poisson’s equation of the stream-function:

∆H = −ωz on Ω, u = 0 on Ω. (5.14)

Here Ω is the circular boundary of the mixer (radius=7.0)and H is the Hamiltonian of the

velocity field, that is,

dx

dt
= −∂H(x, y)

∂y

dy

dt
=
∂H(x, y)

∂x

(5.15)
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We then recast the above time-independent system to a time-dependent system in a rotating

frame using the change of coordinate x

y

 =
 cos t − sin t

sin t cos t


 x′

y′

. (5.16)

Now that we develop a mathematical model for the mixer, we have to determine the

vorticity ωz that is well-suited to replicate the important feature of the FTLE field of our

mixing devices; that is the pseudo-barrier observed in the preceding section. We assume

that the vorticity field ωz is given by

ωz = G0 − C(G1 +G2), (5.17)

where

G0 = exp(−σ0(σ0,xx
2 + σ0,yy

2))2m and (5.18)

and

G1,2 = exp(−σ1,2(σ1x,2x(x− s1,2)2 + σ1y,2yy
2))2. (5.19)

Here C determines the relative magnitude of the vortices at the tips of the blade repre-

sented by the bivariate Gaussian function G1 and G2. The super-Gaussian function is used

to replicate the vorticity due to the blade. Note the G0 becomes a bivariate Gaussian

function when m = 1. We vary the parameter C to observe changes in the FTLE and

fix the other parameters to m = 2, σ0 = 100, σ0,x = 0.4, , σ0,y = 2.5, σ1 = σ2 = 400, s1 =

0.5, s2 = −0.5, σ1x = σ2x = 1.0 and σ1y = σ2y = 0.5. Our specific choice of the form of

Eqs. (5.18) and (5.19) and the values of the parameters is justified in Figures 5.10 and 5.11,

remembering that our goal here is to develop a model that contains the main topological

features of the true system, which is simplifying but not necessarily predictive. Figures 5.10

and 5.11 show a comparison between the vorticity and velocity field of the given data and

those numerically computed by Eq. (5.15).

Figure 5.12 illustrates the change in FTLE field at time t = 0 as C varied. First, We

notice that the FTLE fields of our model has a similar LCS, or a transport pseudo-barrier,

to that of the experimental data presented in the preceding section. Note that the FTLE
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Figure 5.10. The vertical vorticity field, ωz, of the a) experimental data and b) analytic
model using Eq. (9) with C=2.0.

Figure 5.11. The in-plane velocity field and representative streamlines for the a) experi-
mental data and b) analytical model with C=2.0. Note the spatial dimensions have been
normalized by the radius of the cylinder.
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fields of our numerical model also rotate in the same fashion as observed in the simulation

of the real data and so we show here only the FTLE field at time t = 0. It is clear that the

magnitude of the vortices near the tips of the blade are responsible for the strong barrier,

which is the region with large FTLE. Now, we observe the backward-time FTLE field of

the model illustrated in Figure 5.13. Again, as the magnitude of the vortices increased,

the region with a large backward-time FTLE becomes more evident. Recall that the the

backward-time LCS signifies a generalization of an unstable manifold.

Figure 5.12. The forward-time FTLE field at time t = of the model Eq. (5.15) in a rotating
frame. The parameter C in the vorticity field Eq. (5.17) is varied to observed the change
of the FTLE field. (a) C = 0.5, (b) C = 1.0, (c) C = 1.5, (d) C = 2.0, (e) C = 2.5 and (f)
C = 3.0

5.4 Mixing notions

This section deals with some mixing notions used to measure the degree of mixing in

term of homogeneity of two initial sets (or fluid) A and B after some time. For our mixing

devices, the mixing notion we will use is preferable to the notions of mixing defined in

ergodic theory. Indeed, there are a variety of mixing notions used in the ergodic theory
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Figure 5.13. The backward-time FTLE field at time t = of the model Eq. (5.15) in a rotating
frame. The parameter C in the vorticity field Eq. (5.17) is varied to observed the change
of the FTLE field. (a) C = 0.5, (b) C = 1.0, (c) C = 1.5, (d) C = 2.0, (e) C = 2.5 and (f)
C = 3.0

literature and they describe different views of degrees of mixing. Nevertheless, the standard

notion of mixing in the ergodic theory is given below.

Definition 5.2. A measure-preserving transformation f : M → M is said to be mixing if

for any two measurable sets A and B in M we have

lim
n→∞

µ(f−n(A) ∩B) = µ(A)µ(B). (5.20)

In fact, the above definition of mixing is originally called strong mixing, but we will

refer to it simply as mixing since we will not use the notion of weak mixing (see [50]) in

this thesis. To aid the interpretation, we rewrite the above mixing defintion, provided that

µ(B) > 0, as

lim
n→∞

µ(f−n(A) ∩B)
µ(B)

= µ(A). (5.21)

This can be interpreted to mean that under some iterations by T the proportion of A found

in B will approach the proportion of A in M. Note that this notion of mixing should be

compared with the definition of the transition matrix (3.49). As a consequence, if each Bi

in the finite collection {Bi} used to generate the transition has the same measure, the limit

distribution (invariant distribution) of the transition matrix of the transformation f will be

a uniform distribution. In a probabilistic manner (when µ is the probability measure), this
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means that if f is mixing, f−n(A) will eventually become independent from B for any two

subsets A and B in M. Another useful and intuitive notion of mixing is called topological

mixing, which is defined in a language of topological dynamics.

Definition 5.3. (See Sturman [50]) A (topological) dynamical system f : X → X is topo-

logically mixing if for any two open sets U, V ∈ X there exists an integer N > 0 such that

fn(U) ∩ V 6= ∅ for all n ≤ N .

Interestingly, it can be proved that the measure-theoretic notion of mixing in (5.2)

implies topological mixing, but not the converse [50, 72]. However, although the notion of

mixing in ergodic theory provides a useful concept, it involves infinite time limits, which

is not suitable for quantifying mixing in a real-world application. Nonetheless, the decay

of correlations of a scalar function have been used to quantify mixing in various areas of

applications and it is defined as.

Cn(φ, ψ) =
∣∣∫ φ(ψ ◦ f−n)dµ−

∫
φdµ

∫
ψdµ

∣∣. (5.22)

Here φ and ψ are scalar functions, which can be regarded as observables, e.g., the fluid

concentration. If the transformation f is mixing, Cn(φ, ψ) will decay to zero and the rate

of decaying is usually used to quantify the speed of mixing. This concept of mixing is,

indeed, motivated by the measure-theoretic notion of mixing by observing that the integral

expression of the mixing condition (5.2) can be written as∫
χB(χA ◦ fn)dµ−

∫
χAdµ

∫
ψBdµ→ 0 as n→∞. (5.23)

Now, we can see that the notion of mixing in (5.2) describes transport from the initial

set A into B and vice versa since the sets A and B are initialized as the reference sets.

However, we would like to observe the mixing in terms of homogeneity instead of how much

transport occurs between two fixed sets. Therefore, for our study of mixing, we will use

the following mixing ratio. First, we consider a measure of regions with mixing of the

centered-blade mixer. We initially divide the phase space into two distinct regions A and

B as seen in Figure 5.5(a). We will then proceed in a fashion closely motivated by the

definition of the mixing (5.21), which demands relative measures become asymptotically
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distributed. We identify the particles initially located in A species Sa, and similarly Sb for

those particles in B. We then partition the space M into disjoint regions Ri, i = 1, . . . , NR,

such that M ⊆
⋃NR

i=1Ri. Let S = {Ri : Ri contains both species Sa and Sb}. Finally, we

define the ratio of the regions including both Sa and Sb by

R =

∑
Ri∈S µ(Ri)∑

i µ(Ri)
, (5.24)

where the measure µ can be a Lebesgue(volume) measure. Clearly, the quality of mixing

depends on the initial topology of sets A and B. For the sets A and B initialized as in

Figure 5.5(a), the ratio R at each period is given in Figure 5.14 for different scales of NR.

These results agree with the behavior observed from the LCSs and tracers of the mixers

in section 5.3.2. Although the mixing rate of the offset-blade mixer is faster than that of

the centered-blade, which can be observed by comparing the slope of the ratio R between

Figures 5.14(a) and (b) at the early periods, the ratio R become saturated since only the

small region surrounded by the LCS, see Figure 5.8 and 5.9, experiences a high degree

of mixing. Since the homogeneity depends on the scale of the partition, the mixing ratio

becomes smaller as the partition scale decreases. In fact, the mixing ratio as defined above

will asymptotically approach to zero as the size of the partition goes to zero.

Figure 5.14. The plot of the ratio R in Eq. (5.24) at each period using different scales of
NR. (a) the mixer with a centered blade. (b) the mixer with an offset blade
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Chapter 6

Inverse Problem of Motion

Estimation

We present in this chapter an approach to approximate the Frobenius-Perron transfer

operator from a sequence of time-ordered images, that is, a movie data set. Unlike time-

series data, successive images do not provide a direct access to a trajectory of a point in

phase space; more precisely, a pixel in an image plane. Therefore, we need to reconstruct the

velocity field from image sequences based on the infinitesimal generator of the Frobenius-

Perron operator. Moreover, we relate this problem to the well-known optical flow problem

from the computer vision community.

6.1 Inverse Problem of Motion Estimation

This section describes an approach to extract the velocity field that transforms an

intensity pattern of one image into the next image in a sequence. This problem is referred

to as the optical flow problem in image processing. Based on the framework of the Frobenius-

Perron operator reviewed in Chapter 3, this problem is inherently an inverse problem and

it is also ill-posed. There are numerous methods to the optical flow problem which can be

developed to emphasize different aspects of the expected solution. We will review some of
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these below in order to better understand how to apply optical flow methods to measurable

dynamics.

We assume that the desired velocity field is autonomous throughout the image region

and so the trajectory of a point in the image region is governed by the following equation:

dx1

dt
= u(x1, x2)

dx2

dt
= v(x1, x2),

(6.1)

where u(x1, x2) and v(x1, x2) are two unknown velocity fields to be approximated from

a sequence of images, which provides to us only a temporal variation of the brightness

pattern. Let I(x1, x2, t) represent a gray-scale intensity function of an image, a function of

brightness of a pixel at point x = (x1, x2) and (discrete) time t. Since the aim of this work

is to approximate the Frobenius-Perron operator from a sequence of images, the optical flow

constraint for this matter, which will be called the Frobenius-Perron constraint (FPC), is

the continuity equation (3.28) derived in Chapter 3. Therefore, the temporal variation of

the image intensity function I(x1, x2, t) is given by

∂I

∂t
+ div(Iv) = 0, (6.2)

Recall that this equation is derived from the infinitesimal generator of the Frobenius-Perron

operator [40], and so it describes the temporal variation of the distribution of brightness

under [u(x1, x2), v(x1, x2)]. In the language of fluid mechanics, this equation also describes

the temporal variation of the brightness within an infinitesimal volume as evolved by the

flux of the brightness through the boundary surface of the volume. As a special case of

this constraint when div(v) is zero throughout the image plane, we arrive at the classical

brightness constancy constraint [19], which can be expressed by

I(x + d(x), t+ δt)− I(x, t) = 0, (6.3)

where d(x) is the displacement from time t to t+ δt and δt is the temporal sampling rate.

This constraint can be regarded as the integrated form of the following PDE:

dI

dt
=

∂I

∂x1
u+

∂I

∂x2
v +

∂I

∂t
= 0. (6.4)
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Figure 6.1. The illustration of the assumption implied by Eq. (6.4)

The above PDE assumes that the intensity pattern of local-time varying image regions are

constant under a motion in a short time duration, which follows from the first-order Taylor

series expansion about I(x1, x2, t):

I(x+ δx1, x2 + δx2, t+ δt) = I(x1, x2, t) +
∂I

∂x1
δx1 +

∂I

∂x2
δx2 +

∂I

∂t
δt+ O2, (6.5)

where O2 denotes the second order δx1, δx2, and δt. This implies that the PDE (6.4)

describes the rigid motion in which the brightness at each pixel is kept constant along its

trajectory, if the displacement is sufficiently small. The illustration of this assumption is

shown in Figure 6.1. However, this assumption is usually violated by most natural images

obtained from meteorology, oceanography, climatology, fluid experiment, etc. For such

image data, it is common to have a gain or loss of the brightness of a given image pixel

due to the non-zero diverging motion. Hence, the constraint equation (6.2) would be better

suited to capture the physics underlying these natural images.

In contrast to the brightness conservation (6.3), the integrated form of the FPC (6.2)

is:

I(x+ d(x), t+ δt)− I(x, t) exp(−divd(x)) = 0. (6.6)

This can be seen by rewriting Eq. (6.6) as

I(x+ d(x), t+ δt) = I(x, t)(1− divd(x) + O2). (6.7)

Thus, if we assume that the velocity is constant along the displacement d(x) from time t to

t + δt, then we have d(x) = v(x, t)/δt, which combining with (6.7) implies the FPC (6.2)
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as desired. When the divergence is zero, this constraint reduces exactly to the brightness

constancy constraint (6.3). However, with a non-zero divergence, the constraint (6.7) allows

the brightness to be scaled by a factor exp(−divd(x)). This model dictates the diverging

nature of compressible fluids that causes the apperance/disapperance of fluid particles.

Another key theoretical importance of using the constraint (6.2) is that in the case of 2D

transmittance imagery of a 3D fluid flow, the conservation of mass satisfied by 3D flow also

hold in its corresponding 2D flow captured by the image sequence as well, see Fitzpatrick [73]

and Wildes [27]. A sufficient condition for this to be true is the null normal flow condition

along the image boundary, see Appendix C.

The challenge is that the optical flow computation based only either on the constraint

equation (6.2) or (6.4) is an ill-posed problem because on each location and each time, we

have to solve a single scalar equation for two scalar unknowns u and v. In the case of the

brightness constancy assumption, this is called the aperture problem, where only the normal

component of the velocity field, given in the direction of the gradient ∇v can be solved from

the constraint equation (6.4), but not the tangential component. Numerous methods have

been proposed to overcome this ill-posed problem, which can be categorized into two general

classifications. The local methods such as the Lucas-Kanade method [74] and the structure

of tensor method [75] employ the optimization of some local energy-like expression, whereas

the global approaches attempt to minimize a global energy functional [19]. Survey and

comparison of various methods was demonstrated by Barron [76], and Galvin [77].

We resort to the Tikhonov regularization technique [78], which belongs to the class of

global methods, to cope with the ill-posed problem. The idea is to approximate the solution

of the constraint equation by solving a minimization problem of the form

inf
v

∫
Ω
(F (v) + S(v))dΩ, (6.8)

where F (v) is the data fidelity term based either on the constraint equation (6.2) or (6.4)

and S(v) is an additional regularization term to stabilize the solution and to relax the

assumption of invariance of the flow used in the data fidelity term. Thus it allows materials

to leave the image domain although it may not satisfy the flow invariant assumption. The

classical regularization term proposed by Horn and Schunck [19] is the so-called smoothness
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constraint:

S(v) = α

(
‖∇u(x1, x2)‖2 + ‖∇v(x1, x2‖2

)
, (6.9)

where α is a constant and the norm is the standard L2 norm. This constraint claims that

neighboring pixels of a point in a sequence of images are likely to move in a similar way, i.e.

the motion vectors are spatially varying in a smooth way. Thus, it encourages the isotropic

smoothness of the recovered optical flow without taking into account the discontinuities at

the edges where the gradient of intensity is large. It also have an advantage of ameliorating

the effects of noise commonly occurring in imperfect data. Another alternative to the

smoothness regularizer is the so-called div-curl regularizer [79]

S(v) = α‖divv‖2 + β‖curlv‖2, (6.10)

which reduces to the smoothness constraint when α = β.

6.2 Euler-Lagrange Equation

For the sake of readers’ convenience, we summarize some essential theorems from the

classical calculus of variation used to study the problem presented in Eq. (6.8). Partic-

ularly, we review the theorems, without proof, for the existence of the solution and the

conditions in which the solution of the associated Euler-Lagrange equation is also the solu-

tion of the minimization problem; if these conditions are not satisfied, the solution of the

Euler-Lagrange equation might be merely the stationary point of the minimization prob-

lem. There are a number of excellent books for this subject and we refer to some of them,

e.g. Dacorogna [80, 81], Gelfand and Fomin [82], Attouch, Buttazzo and Michaille [83] or

Aubert [84]. In this section, we will use the following notations concerning the space of the

continuous and differentiable functions and the Sobolev space:

• Let Ω ⊂ Rn be an open set. Ck(Ω) is the set of continuous functions f : Ω → R of

which partial derivatives up to the order k exists. If f : Ω→ RN , we write Ck(Ω; RN )

• Ck(Ω) is the set of continuous functions in Ck(Ω) which can be extended continuously

to Ω.
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• W 1,p(Ω) is the set of functions f : Ω → R, for f ∈ Lp(Ω), of whose the weak partial

derivatives fxi ∈ Lp(Ω) for every i = 1, . . . , n.

• If 1 ≤ p < ∞, We denote by W 1,p
0 (Ω) the closure of C∞0 (Ω) functions in W 1,p(Ω).

This is equivalent to say that, if Ω is bounded, f ∈W 1,p
0 (Ω) is such that f ∈W 1,p(Ω)

and f = 0 on ∂Ω.

• By abuse of language, we write f ∈ f0 +W 1,p
0 (Ω) when f, f0 ∈W 1,p(Ω) and f − f0 ∈

W 1,p
0 (Ω).

First, we consider the problem of the following form:

inf
f

∫
Ω
(h(x, f(x),∇f(x))dΩ (6.11)

where

• Ω ⊂ Rn is a bounded open set;

• h : Ω× R× Rn −→ R, h = h(x, f, ξ);

• f ∈ f0 +W 1,p
0 (Ω).

The problem of this form is different from our minimization stated in Eq. (6.8) in that we

have, instead, S, F : Ω ∈ R2 → R2, vectorial cases. However, the theorems concerning the

scalar case as in (6.11) are simpler to understand and so we present them first and defer

the theorems relating to the vectorial case to the end of this section.

Theorem 6.1. (See Dacorogna [81]) Let Ω ⊂ Rn be a bounded open set with Lipschitz

boundary. Let h0(Ω× R× Rn), h = h(x, f, ξ), satisfy

• Convexity: ξ → h(x, f, ξ) is convex for every (x, f) ∈ Ω× R;

• Coercivity: there exist p > q ≥ 1 and α1 > 0, α2, α3 ∈ R such that

h(x, f, ξ) ≥ α1|ξ|p + α2|f |q + α3, ∀(x, f, ξ) ∈ Ω× R× Rn.
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Let

m = inf
f

{
J(f) =

∫
Ω
(h(x, f(x),∇f(x))dΩ : f ∈ f0 +W 1,p

0 (Ω)
}

where f0 ∈ W 1,p(Ω) with J(f0) < ∞. Then there exists f ∈ f0 +W 1,p
0 (Ω) a minimizer of

which the infimum m is obtained.

As shown in [80, 81, 84], the hypotheses of the above theorem are nearly necessary, that

is when any of them, except the continuity of h, are weakened, a counterexample to the

existence of the minima can be found. Note that in the above theorem the coercivity is

assumed to guarantee the boundness of the minimizing sequences and the convexity implies

the lower semicontinuity of the minimizing sequence, which is sufficent to pass to the limit,

if it exists J(f) < ∞, on the sequence. In the following theorem, we assume the existence

of the minimizer f ∈ W 1,p and state the weak form of the Euler-Lagrange equation. With

an additional condition to the minimizer, i.e., f2, we will be able to write the standard

optimality condition, i.e., the Euler-Lagrange equation.

Theorem 6.2. (See Dacorogna [81]) Let Ω ⊂ Rn be a bounded open set with Lipschitz

boundary. Let p ≥ 1 and h ∈ C1(Ω× R× Rn, h=h(x,f,ξ), satisfy

• there exists β ≥ 0 so that for every (x, f, ξ) ∈ Ω× R× Rn

|hf (x, f, ξ)|, |hξ(x, f, ξ)| ≤ β(1 + |f |p−1 + |ξ|p−1)

where hξ = (hξ1 , . . . , hξn).

Let f ∈ f0 +W 1,p
0 (Ω) be a minimizer of

m = inf
f

{
J(f) =

∫
Ω
(h(x, f(x),∇f(x))dΩ : f ∈ f0 +W 1,p

0 (Ω)
}

(6.12)

where f0 ∈W 1,p(Ω), then f satisfies the weak form of the Euler-Lagrange equation∫
Ω
[hf (x, f,∇f)ϕ+ 〈hξ(x, f,∇f),∇ϕ〉]dx = 0, ∀ϕ ∈W 1,p

0 (Ω). (6.13)

Furthermore, if h ∈ (C2(Ω) × R × Rn) and f ∈ C2(Ω) then f satisfies the Euler-Lagrange

equation
n∑

i=1

∂

∂xi
[hξi

(x, f, f)] = hf (x, f,∇f), ∀x ∈ Ω. (6.14)
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Conversely, if (f, ξ) → h(x, f, ξ) is convex for every x ∈ Ω and if f is a solution of (6.13)

or (6.14) then it is a minimizer in which m is obtained.

Next, we consider the case where the unknown function f(x) is a vector, that is f :

Ω ∈ Rn → RN with n,N > 1. In dealing with a gray-scale image we will consider only the

case of the two-dimensional vector field, i.e. n = N = 2. We summarize the existence of

the minimizer only for this case. However, the following theorem still holds for the higher

dimensional case.

Theorem 6.3. (See Darcorogna [81]) Let n = N = 2 and Ω ⊂ R2 be a bounded open set

with Lipschitz boundary. Let h : Ω × R2 × R2×2 → R, h = h(x, f, ξ), and H : Ω × R2 ×

R2×2 × R→ R, H = H(x, f, ξ, δ), be continuous and satisfying

h(x, f, ξ) = H(x, f, ξ,det ξ), ∀(x, f, ξ) ∈ Ω× R2 × R2×2

where det ξ denotes the determinant of the 2× 2 matrix ξ. Let

m = inf
f

{
J(f) =

∫
Ω
(h(x, f(x),∇f(x))dΩ : f ∈ f0 +W 1,p

0 (Ω)
}

(6.15)

Assume also that

• Quasi-convexity: (ξ, δ)→ H(x, f, ξ, δ) is convex for every (x, f) ∈ Ω× R2;

• Coercivity: there exists p > max[q, 2] and α1 > 0, α2, α3 ∈ R such that

H(x, f, ξ, δ) ≥ α1|ξ|p + α2|f |q + α3, ∀(x, f, ξ, δ) ∈ Ω× R2 × R2×2 × R.

Let f0 ∈W 1,p
0 (Ω) be such that J(f0) <∞, then the problem (6.15) has at least one solution.

We note that the quasi-convexity condition in the above theorem is a weaker definition

of convexity. If ξ → h(x, f, ξ) is convex then one can choose H(x, f, ξ, δ) = h(x, f, ξ), and

the convexity and quasi-convexity is equivalent in this case. However, if ξ → h(x, f, ξ) is

non-convex (w.r.t. ξ), it is still possible to choose H(x, f, ξ, δ) as a convex function of(ξ, δ).

Similar to the theorem 6.2, the associated Euler-Lagrange of the problem (6.15) becomes

a pair of partial differential equations:
n∑

i=1

∂

∂xi
[hξi,j

(x, f, f)] = hfj
(x, f,∇f), ∀x ∈ Ω, j = 1, 2. (6.16)
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The above partial differential equation is the optimality condition of the minimization prob-

lem. In the subsequent sections, we will present some techniques to solve the Euler-Lagrange

equation associated to the problem of velocity field estimation of certain types of real-world

images. We end this section by mentioning that in most computer-vision problems the

discontinuities of velocity fields and in the images are important to the analysis. In such

cases, the mathematical formalism based on the Sobolev space, as presented in this section,

becomes inappropriate since it cannot take into account the gradient of a discontinuous

function f . Instead, one has to regard the gradient of f as a measure and the analysis

based on the space of the functions of bounded variation BV (Ω) is widely used for this

purpose. The mathematical analysis, however, becomes somewhat involved and will not

be included in this thesis. We refer the interested readers to [84, 85, 86]. Nonetheless, we

would like to remind that in this thesis the dynamical systems are assumed to be at least C1
0

as mentioned in the preceding section. Therefore, it is appropriate here to use the classical

results stated in this section.

Now consider the variational problem (6.8) with the data fidelity term given by either

Eqs. (6.2) or (6.4) and the smoothness constraint as described by Eq. (6.9). First, con-

sider the case of the brightness constancy hypothesis of which the (Horn-Schunck) energy

functional is given by

E(u, v) =
∫

Ω
(Ix1u+ Ix2v + It)2dΩ +

∫
Ω
α(‖∇u(x1, x2)‖2 + ‖∇v(x1, x2)‖2)dΩ (6.17)

Thus we can apply a classical variational principle, see Theorem 6.3, to this problem, i.e, if

(u(x1, x2), v(x1, x2)) is a minimizer of the functional (6.17), then it necessarily satisfies the

associated Euler-Lagrange equations:

∆u = αIx1(Ix1u+ Ix2v + It)

∆v = αIx2(Ix1u+ Ix2v + It),
(6.18)

where ∆ := ∂xx + ∂yy denotes the Laplace operator. At the image boundary we enforce the

Neumann boundary condition (a null normal flow at the boundary) to the above equations;

that is

n · v = 0 on ∂I, (6.19)
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where n specifies the normals to the image boundary, denoted by ∂I. This boundary

condition allows the flow to run across the image boundary. However, if the flow is bounded

within the image, one may consider using the zero boundary condition, instead. The above

equations can be regarded as the steady state (θ →∞) of the diffusion-reaction equation

∂θu = ∆u− αIx1(Ix1u+ Ix2v + It)

∂θv = ∆v − αIx2(Ix1u+ Ix2v + It),
(6.20)

where θ denotes an artificial evolution parameter in this case. Recall that ∆u = div(g∇u)

with g ≡ 1, i.e., the diffusion term of the above equation can be regarded as the linear

diffusion with the diffusivity g ≡ 1. Hence, the diffusion process of the above diffusion-

reaction affect the solution in a similar fashion to the convolution by the Gaussian kernel.

As a consequence, it “blurs” across the flow discontinuity. We will resume this discussion

again in the next section, where the discontinuity-preserving optical flow is discussed.

Now we consider the Euler-Lagrange equation of the optimization problem (6.8) with

the data fidelity term given by the FPC (6.2):

E(u, v) =
∫

Ω
(
∂I

∂t
+ div(Iv))2dΩ + α

∫
Ω
(‖∇u(x1, x2)‖2 + ‖∇v(x1, x2)‖2)dΩ (6.21)

In this case, the pair of the associated Euler-Lagrange equations is

∆u = −αI(Itx1 + Ix1x1u+ Ix1x2v + 2Ix1ux1 + Ix2vx1 + Ix1vx2 + Ivx1x2 + Iux1x1)

∆v = −αI(Itx2 + Ix1x2u+ Ix2x2v + Ix2ux1 + Ix1vx2 + 2Ix2vx2 + Iux1x2 + Ivx2x2).
(6.22)

The implementation of PDEs (6.22) and (6.18) via finite differences is given in Appendix B.

6.3 Discontinuity-Preserving Regularization

In this section, we overview a variational technique for a discontinuity-preserving mo-

tion detection. In many applications, such as vehicle tracking and motion detection, the

discontinuities of the motion at the boundary of moving objects are very important for an

analysis of image sequences. However, as mentioned earlier in this chapter, the regulariza-

tion using the smoothness constraint (See Eq. (6.17)) does not preserve the discontinuity of
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the optical flow; instead, it isotropically smooths the discontinuity of the flow. Numerous

methods were proposed to resolve this problem [87, 88, 89, 90, 91, 85]. Although different in

details, these methods shared the same idea; that is changing the smoothness regularization

term into ∫
Ω

[
φ(‖∇u‖) + φ(‖∇v‖)

]
dΩ, (6.23)

where the function φ is tailored so that it encourages isotropic smoothing where the mag-

nitude of the velocity field is small but attenuates the diffusion by smoothing kernel across

the edge presented by a strong gradient. We give an example of the energy functional for

this purpose used in [84, 85].

Given an image sequence I(x, t) we want to compute the velocity field v = (u(x), v(x))

that minimizes the energy functional:

E(v) =
∫

Ω
|Ix1u+ Ix2v + It|dΩ + α

∫
Ω
φ(‖∇u‖) + φ(‖∇v‖)dΩ + β

∫
Ω
c(∇I)|v|2dΩ, (6.24)

where α and β are positive constants. The first term of the energy functional (6.24) is the

L1 norm of the OFC (6.4). The second term is the smoothing regularizer. The last term in

the energy functional (6.24) forces the flow field to be zero in homogeneous regions where

there is no texture. To guarantee the well-posedness of the problem, the function φ in this

term must satisfy the following hypotheses:

• φ is strictly convex, nondecreasing function from R+ to R+, with φ(0) = 0

• lim
s→∞

φ(s) =∞

• There exist two constants c > 0 and b ≥ 0 such that cs− b ≤ φ(s) ≤ cs+ b, ∀s ≥ 0.

To clearly see how to choose the function φ, we observe that the Euler-Lagrange equation

associated with the second term of the energy functional (6.24) gives the diffusion operator

of the form

div

(
φ′(‖∇s‖)
‖∇s‖

∇s
)
. (6.25)

Here the function s represents either u or v in the second term of the functional (6.24). As

done in Aubert [84, 85], we can decompose the action of this operator into the tangent and
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normal directions to the isophote line, that is the normal direction at point x is defined by

N(x) = ∇s
‖∇s‖ and the tangent direction is in the orthogonal direction to N(x). Then we

can rewrite Eq. (6.25) as

div

(
φ′(‖∇s‖)
‖∇s‖

∇s
)

=
(
φ′(‖∇s‖)
‖∇s‖

sTT + φ′′‖∇s‖sNN

)
, (6.26)

where sTT and sNN denote the second derivatives of s in the tangential and normal direction,

respectively. Therefore, if we would like to promote isotropic smoothing in the region of a

low variation, we may require that

φ′(0) = 0, lim
s→0

φ′(s)
s

= lim
s→0

φ′′(s) = φ′′(0) > 0. (6.27)

On the other hand, in a neighborhood of a region with a strong gradient, which represents

the edge, we encourage smoothing only in the tangential direction and attempt to nullify

the smoothing in the normal direction. We can achieve this by imposing the following

conditions:

lim
s→∞

φ′′(s) = lim
s→∞

φ′(s)
s

= 0 and lim
s→∞

φ′′(s)
φ′(s)/s

= 0. (6.28)

6.4 PIV Approach

A different approach for the velocity field estimation by image technique is the particle

image velocimetry (PIV) technique. PIV is an important research area and widely used in

fluid mechanics to quantitatively extract relevant instantaneous velocity field from image

pairs. In this technique, illuminated particles (or passive tracers) are sowed on the plane

under investigation. The image is then visualized via a laser sheet pulse associated with

a camera. Then the cross-correlation technique of local interrogation window is used to

estimate the motion from the observed particles. Specifically, the m×n pairs of subregions

of two consecutive images, I1(x), I2(x), are interrogated by the spatial cross-correlation

window W (x) of size m× n as

C(u(x), v(x)) =
1

‖W (x)‖
∑

y∈W (x)

I1(y, t)× I2(y + d(x)). (6.29)

98



Here, W (x) is the interrogation window centered at the point x on image plane and v(x)

is the velocity vector at x. The peak of the cross-correlation C(u(x), v(x)) is then used as

the estimation of the velocity field. Roughly speaking, the cross correlation function is used

to determine the displacement (or velocity) vector that results in the best “match” of the

image pair within the interrogation region. Therefore, as opposed to the global nature of

variational methods, the PIV approach is considered as a local method. In practice, the

computation of the above cross-correlation is performed by the Fourier method based on

FFT or the spectral method, which allows the real-time computation. However, as a conse-

quence of using the Fourier method, the aliasing problem may arise if the Nyquist criteria is

not satisfied, that is, if the particles in the interrogation region move a distance larger than

half the size of the interrogation region (d > min{m,n}). Therefore, a larger interrogation

region or a higher sampling rate of image sequence may be necessary to avoid the aliasing

problem. Although there have been numerous researches leading to improvement of the

PIV based on the cross-correlation method, all those techniques suffer from some common

limitations (see Corpetti, Loureneo and Krothpalli [? 21]) due to the local nature of the

cross-correlation method.

First, the finite size of the interrogation areas restricts a spatial scale where the motion

variation is assumed negligible. Also, if there is a loss of particles in some interrogation

windows, the correlation becomes inaccurate due to the loss of pairing. In addition, choosing

a size of interrogation areas can be problematic since it must not be too small to detect

correlation peak reliably. However, a large interrogation size reduces the resolution of the

estimated velocity vector since the cross correlation results in only one velocity field in each

interrogation areas, and it also presents a bias toward the subregion with higher seeds due

to more possibilities of pairing. Nevertheless, this problem can be partially ameliorated by

using iterative deformable grids.

The above problems will be experimentally demonstrated in Section 6.6 and compared

with the variational method. Due to the global nature of variational methods, all of the

aforementioned problems of the correlation-based PIV approach can be (at least partially)

overcome.
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Figure 6.2. The process of the backwards warping.

6.5 Coarse-to-Fine Approach

When large displacements occur between two consecutive images, the motion estimation

based on the energy functional (6.17) or (6.34) may not be suitable due to its differential

nature. To overcome this problem we resort to the so-called “multiresolution” or “coarse-

to-fine” strategies, which were introduced by Black [92] and has been widely used in several

tasks of image processing to remedy the aliasing problems.

The basic idea is to use the pyramid representation of the image sequence. Starting from

a coarse scale (low spatial frequency resolution) at the top of the pyramid we compute a

coarse displacement field and use it to “backwards warp” the original second image toward

the first image. By backwards warping, we mean that the velocity field at each pixel is

treated as the incoming velocity field to each pixel in the second image, and so the tail of

velocity field tells us where the pixel image comes from (see Figure 6.2). This process can

be expressed by

I(x1, x2, t)← I(x1 − u∆t, x2 − u∆t, t+ ∆t). (6.30)

Then, we can use a bilinear (or bi-cubic spline) interpolation to construct the backwards

warped image. The “forwards warping” scheme can also be performed in a similar fashion.

However, we will use the backwards warp as our choice for this work.

At the next finer level we compute the “correction” field between the first image at
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Figure 6.3. The original image is at the bottom of the pyramid (the highest level). Each
lower level are the subsample version of the previous level. Starting from the lowest level
the velocity is approximated and then upsampled to the next level. The second image is
then warped toward the first image based on the upsampled version of the velocity filed.
The incremental velocity field is then computed. The process is repeated until the highest
level is reached.

this level and the warped version of the second image based on the previously computed

velocity field. Therefore, we only compute small displacement fields at this level. Then we

use the correction field to update the velocity field computed from the previous level. This

correction process, sometimes called “motion increment”, is repeated for each level until

the finest level (original images) is reached.

Let us now discuss the pyramid representation of image and the computation of the

velocity field based on this pyramid representation. We denote the size of a generic image, I,

by nx×ny. Let L be the number of level of the pyramid representation. For i = 0, 1, . . . , L−1

we denote by ni
x and ni

y the number of pixel columns and rows of the image at level i, Ii,

respectively. Here we use the 0th level image to represent the original image, i.e. I0 = I,

n0
x = nx and n0

y = ny. Then the image I1 in the next lower resolution level is subsampled

by a bilinear interpolation. The new image pixel is located in the middle of four neighbor

pixels as illustrated in Figure. This is called dyadic pyramid structure.

Consider the model problem (6.17). The coarse-to-fine procedure starts from the lowest

resolution level where we compute the velocity field between image IL−1
1 and IL−1

2 based

on the Euler-Lagrange equation (6.18). The resulting velocity field are then upsampled to
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Figure 6.4. A sample image at different level of the pyramid. The original image is shown
in (d).

the next higher resolution level using the bilinear interpolation. Then the image IL−2
2 is

warped toward the first image based the upsampled velocity field, i.e.,

WL−2
2 (x1, x2, t) = IL−2

2 (x1 − uL−1δt, x2 − vL−1δt, t+ δt), (6.31)

where (uL−1, vL−1) is the upsampled version of the velocity fields computed from the previ-

ous pyramid level. This warped image allows us to compute the small increment of velocity

field, denoted by δvL−2 ≡ (δuL−2, δvL−2, between the images IL−2
1 and WL−2

2 ). Therefore,

the complete velocity at this level is obtained by

vL−2(x1, x2) = vL−1(x1, x2) + δvL−2, (6.32)

where δuL−2 and δvL−2 are computed by minimizing the energy functional:

E(δuL−2, δvL−2) =
∫

Ω
(Ix1δu

L−2+Ix2δv
L−2+It)2dΩ+α

∫
Ω
(‖∇uL−1+δuL−2‖2+‖∇vL−1+δvL−2‖2)dΩ.

(6.33)

Notice that we minimize uL−1 + δuL−2 instead of δuL−2 in the smoothness regularization

since the smoothness assumption is required for the complete velocity field. This motion

increment process is then repeated for each level of the pyramid until the level of original

resolution is reached.
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Similarly, when applying the coarse-to-fine procedure to the energy functional (6.34),

the complete velocity field at each level of the pyramid can be computed by minimizing the

energy functional:

E(δuL−k, δvL−k) =
∫

Ω
(
∂I

∂t
+div(IvL−k))2dΩ+α

∫
Ω
(‖∇uL−k−1+δuL−k‖2+‖∇vL−k−1+δuL−k‖2)dΩ,

(6.34)

where k = 2, . . . , L.

6.6 Experimental Evaluation

First, we consider cases of computer-generated image sequences, which are obtained

from solving some PDEs, in the first two examples of this section. For these examples,

image pixels in consecutive images do not present a very strong loss or gain of luminance

due to a large divergence of velocity field, which is true in a video sequence with a high

frame rate, and so the classical brightness constancy equation is our prefered choice. Next

we consider some real-world image sequences of fluid imagery. It should be noted that

for these sequences of fluid imagery, fluid may exhibit a high temporal deformation and

large displacement between two consecutive frames, and the brightness constancy cannot

be nearly satisfied. Also, the motion between two consecutive frames could be large and the

coarse-to-fine approach may be necessary. Hence, for these cases, the development of the

minimization technique embedded by Eq. (3.28) with the coarse-to-fine strategy becomes

more attractive [20, 21, 27].

In the first two examples, we will solve the minimization problem Eq. (6.8) using the

brightness constancy constraint Eq. (6.4) for the data fidelity term and the div-curl regu-

larizer Eq. (6.10) for the regularization term:

inf
v

∫
Ω
(Ixu+ Iyv + It)dΩ +

∫
Ω
α‖∇divv‖2 + β‖∇curlv‖2dΩ, (6.35)

The associate Euler-Lagrange equation for minimization of the problem Eq. (6.35) is the
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following pair of PDEs:

αuxx + βuyy + (α− β)vxy = Ix(Ixu+ Iyv + It)

βvxx + αvyy + (α− β)uxy = Iy(Ixu+ Iyv + It)
(6.36)

with homogeneous Neumann boundary conditions:

∂u

∂N
= 0 on ∂Ω

∂v

∂N
= 0 on ∂Ω.

(6.37)

Herein, N is an outward vector normal to the image boundary ∂Ω. We will see in the first

example (our benchmarking example) that the velocity field obtained from the smoothness

condition (α = β) is more accurate than general cases where α 6= β.

6.6.1 Example 1

Consider the following differential equation as the first example:

dx

dt
= − sin(2πx) cos(2πy)

dy

dt
= cos(2πx) sin(2πy).

(6.38)

Now we may use the flow continuity equation (3.28) to numerically translate an initial

distribution in time to generate a synthetic movie data set I(x, y, t) representing a time

evolving spatial density function. Figure 6.5 illustrates the velocity field of this system and

a given initial distribution function and Figure 6.6 shows a sequence of some images that

are captured from our numerical simulation of Eq. (3.28). We compute this simulation by

using the Fourier spectral method [93, 94] for the differentiation in space and the Jameson-

Schmidt-Turkel Runge-Kutta time integrator [95].

Based on this sequence of images we benchmark our approach by comparing the approx-

imated optical flow field extracted from the images by the regularization method described

in the previous sections and the exact velocity field in Eq. (6.38). First, let us investigate

the sensitivity of the method with respect to variation of the parameters α and β defined

in Eq. (6.10). We quantitatively evaluate our result via the average angular error (AAE):

eang = arccos
(

uexue + vexve + 1√
(u2

ex + v2
ex + 1)(u2

e + v2
e + 1)

)
, (6.39)
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Figure 6.5. (a) The velocity field of the dynamical system (6.38) defined on the unit box
[0, 1] × [0, 1]. It can be seen that there are four basins separated by two nullclines x = 0.5
and y = 0.5. (b) The initial distribution at time t = 0.

where (uex, vex) denotes the exact velocity field and (ue, ve) is the estimated velocity. Note

that we do not evaluate the error via a norm because in general we would lack information

about the physical domain of the image plane and we can only recover the velocity field

whose dynamics is in some representative of the true dynamical system, perhaps in the

sense of “almost conjugacy” [96]. Observe that for the image sequence in this example the

smoothness regularizer performs better than the div-curl regularizer at the experimentally

optimal value β = 0.01, see Figure 6.7. Nevertheless, the div-curl regularizer produces

better results for other values of β. To evaluate the results qualitatively we lay the exact

velocity field on the estimated velocity fields for α = β = 0.01 and α = 1, β = 0.01 as

illustrated in Figure 6.6.1. We notice that the div-curl regularizer does not isotropically

smooth the velocity field; hence we obtain only a velocity field where the motion take places

meaning that there is a nontrivial support of the dataset I(x, y, t). However, the smoothness

regularizer produces the velocity field throughout the whole image region, notwithstanding

an absence of motion in some regions, see also Figure 6.5. Moreover, we observe that the

approximated velocity field from the smoothness constraint maintains qualitative qualities

of the exact velocity fields. Therefore, we want to investigate the topological structure of

the result. Note that the phase portrait of the exact velocity field has four centers with

105



Figure 6.6. A sequence of some images captured from the numerical simulation of the flow
continuity equation Eq. (3.28) with the velocity field given by the ode Eq. (6.38). The time
increment between each snapshot is t = 32.
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Figure 6.7. A plot of the average angular error with respect to parameters α and β. The
sensitivity of the parameter α and β is observed in this plot. The thick line represents the
case of the smoothness constraint Eq. (6.9) where α = β. Although it is not conclusive that
the smoothness constraint performs better than the div-curl regularizer in this experiment,
our experimental result demonstrates that the optimal value is obtained when using the
smoothness regularizer with α = β = 0.01

eigenvalues ±2πi at points {(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75)}and a saddle

point with eigenvalue ±2π at the central point (0.5, 0.5) of the phase space. We compute

the eigenvalues of the points in the image region corresponding to those points for the

velocity field approximated from the smoothness constraint with α = 0.01 and plot the

result in Figure 6.10. The result shows that we recover the saddle node at the central point

of the image region, but we obtain four spiral sinks at those points instead of center nodes;

however, the real part of their eigenvalues are much smaller than the imaginary parts, which

indicates that they are suggestive of a type of center node.

Now let us discuss how to apply the optical flow result to approximate the Ulam-Galerkin

approximation of the Frobenius-Perron transfer operator. We use the approximated velocity

field to advance randomly distributed points in time to generate a finite-rank approximation

of the Frobenius-Perron operator as described in Section 3.3. Figure 6.13 shows the Ulam-

Galerkin matrix generated by the exact velocity fields in Eq. (6.38) and by the approximated

optical flow field. As seen in Figure 6.5 there exist four basins and hence we may expect

the Ulam-Galerkin matrix to be diagonalizable to four diagonal blocks. To reveal this
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Figure 6.8. (a) Exact velocity field (in green arrows) and the optical flow field for α =
1, β = 0.01 shown in black arrows. (b) Exact velocity field (in green arrows) and the optical
flow field for α = β = 0.01 shown in black arrows.

108



Figure 6.9. Comparison between the exact and approximated velocity fields from the image
sequence using the smoothness parameter α = β = 0.01. The transparent solid lines
illustrate the exact velocity field and the colored plots represent the approximation.

Figure 6.10. The plot shows the eigenvalues of the centers and the saddle node in the phase
space of the exact velocity field in cross markers. The square markers locate the eigenvalues
of those points computed from the estimated velocity field with the smoothness constraint
α = 0.01.
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correct block-diagonal form based on the modularity method we first partition the phase

space into small triangles and index them to generate a graph network that represents the

transport between these triangles. However, to obtain a meaningful graph network we need

to determine the time duration of the trajectory of the initial points. If the time duration

is too short, some initial points may remain in the same grid in which they initially reside,

see Figure 6.11. This circumstance induces some self-connected edges in the graph network

that do not provide useful information for a graph partition method. Nevertheless, a self-

connected edge generated by a grid that contains a fix point cannot be avoided. A useful

criteria to choose the time duration can be formulated using the well-known Gronwall’s

inequality [97].

Figure 6.11. When solving Equation (6.1) the time duration has to be chosen in a way that
the (triangular) grid is expanded far enough so that it lie across itself as less as possible.
Then the solution of the majority of randomly chosen points will not remain inside the initial
grid. This prevents us from generating a graph network with inapplicable self-connected
edges.

Now our purpose is to discover community structure in the graph network to identify

the existing basin structure in the phase space. Therefore, our point of view is to map the

problem of phase space partition of the dynamical system captured through a sequence of

image into a problem of partitioning a graph network representing the action of the transfer

operator. Note that although points in the phase space may not travel across from one basin

to another, it is possible to have edges in the graph that connect between each community;
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this represents a basin in the phase space, due to the grids that lie across the basin boundary

as seen in Figure 6.12. However, this is only a small boundary effect. Likewise, there can

be a small amount of spurious basin leakage due to finite grid effects.

Figure 6.12. The phase space in this figure are partitioned by triangular grids. The edges
that connect the nodes corresponding to the triangles that lie across the basin boundary
are the intergroup edges, which connect between each community in the graph network.

After generating a graph network corresponding to the dynamical system, we can apply

the modularity method to discover the community structure of the graph network and use

this structure to reorder the Ulam-Galerkin matrix. The results of the Ulam-Galerkin after

reordering are shown in Figures 6.14. They reveal to us the four basins and the sorted

Ulam-Galerkin matrix generated by the exact velocity is now in the correct block-diagonal

form, whereas the sorted matrix generated by the optical flow is in the “almost” block-

diagonal form due to the imperfection of the approximated velocity field that causes the

transport between the basins.

6.6.2 Example 2

Our next example is a simulation result obtained from a numerical solution of the

complex Ginzburg-Landau eqaution(CGLE). Figure 6.15 illustrates the initial distribution

and a time series of brightness patterns. By a careful observation one may expect that there

exists two sinks in the phase space located by the arrows in Figure 6.15. Since the ana-
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Figure 6.13. The Ulam-Galerkin matrix generated by the exact velocity fields expressed in
Equation 6.38 and by the approximated optical flow field using 200000 randomly chosen
points.

Figure 6.14. The Ulam-Galerkin matrix after sorting using the modularity method.
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lytic solution for this example is not priory known, we ascertain our result only qualitatively.

The estimated velocity fields with different values of parameters β but fixed α = 1 are

shown in Figure 6.16. We observe that when β is small, the velocity field at the region where

occlusion occurs is strongly emphasized compared to other regions in the image whereas

the magnitude of the velocity field is distributed more isotropically throughout the image

region while increasing the values of β. To have a better view of this phenomenon, we

plot in Figure 6.17 the contour line of the magnitude of the velocity onto the image of the

initial distribution. We also notice that the velocity field becomes discontinuous where the

occlusions take place. Nonetheless, we still observe the discontinuity of velocity field in

those regions in the case of large β. Note that similar results can also be obtained when β

is fixed and α is varied.

Next, we compute the matrix approximation of the Frobenius-Perron operator shown

in Figure 6.18. Then we apply the modularity method to the graph generated from the

semigroup of transformation of the ode (6.1) associated with the estimated velocity field. We

obtain two large communities and several trivially small communities from the result. Thus

we group all those small communities together. Subsequently, we use the new ordering based

on the community structure to reordered the Ulam-Galerkin matrix to reveal the “almost”

block diagonal form, see Figure 6.18, and we also paint the phase space according the

community structure discovered by the modularity method as shown in Figure 6.19, where

the two large communities are painted in different colors and those small communities are

not painted. Notice that there are three blocks in sorted matrix, where the middle block

corresponds to those of several small communities that we group them together and the

other two blocks represent the two large communities.

6.6.3 Example 3

In this section, two pairs of successive PIV images published by the Visualization Soci-

ety of Japan (VSJ) are used for the experimental evaluation of our variational method in
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Figure 6.15. A sequence of some images captured from the numerical simulation of the
Complex Ginzburg-Landau equation. The arrows point at the sinks that can be found
through a careful observation and as revealed by the Ulam-Galerkin matrix analysis as in
Figure 6.16- 6.19

114



Figure 6.16. The velocity fields approximated from the div-curl regularization with various
values of parameters α and β are plotted side by side with the corresponding magnitude of
the velocity fields.
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Figure 6.17. (a) For a small β at α = 1, the magnitude of the velocity field is more empha-
sized at the region where occlusion occurs. In this region the velocity become discontinuous.
(b) For a large β at α = 1, we observe that the velocity field is isotropically distributed
throughout the image region. Nonetheless, the discontinuity can still be observed at the
region where occlusion take places.

Figure 6.18. The Ulam-Galerkin matrix before and after sorting. Notice that the “almost”
block diagonal form is unveiled after sorting. The middle block corresponds to those of
several small communities that we group together. The other blocks represent the two large
communities.
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Figure 6.19. The phase space are partitioned into three regions corresponding two basins
of the sinks corresponding to two communities discovered by the modularity method and
the region that an initial point does not converge to neither basin.
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comparison with the cross-correlation and adaptive cross-correlation methods. Note that

both methods are computed using the FFT. Figure 6.20 shows these two pairs of images,

which are computer-generated by the same velocity field and have a size of 256×256 pixels.

These two image pairs are different in the number of particles, the particle diameters and the

standard deviation of particle diameters. The exact velocity field is shown in Figure 6.21.

Figure 6.20. Two pairs of images with differences in the number of particles, the particle
diameter and the standard deviation of particle diameters. The number of particles for the
pair (a)-(b) and (c)-(d) are 4000 and 1000, respectively.

Figure 6.22 compares the results of our variational techniques and the cross-correlation

and adaptive cross-correlation methods. Note that both methods based the cross correla-

tion yield sparse velocity field as previously explained in Section 6.4, whereas our variational

approach gives dense velocity field at every pixel locations. However, for purposes of com-

parison and visualization, the velocity fields resulted from the variational approach are

shown only at every other 8 pixels and those obtained from the cross-correlation techniques

are interpolated to 32 × 32 pixels. Qualitatively, the results from the three methods for

the case of the image pair with dense particles (Figure 6.22(a)-(c)) are similar. In the

case of the image pair with sparse particles, visually comparing the results of the three ap-
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Figure 6.21. Exact velocity field of the two image pairs shown Figure 6.20.

Table 6.1. Average angular error (AAE) and average relative displacement error (ADE) in
the case of dense particle images.

Error Adaptive cross correlation Cross correlation Variational

AAE: Dense 0.0024 0.0038 0.0029

AAE: Sparse 0.0078 0.0445 0.0076

ADE: Dense 0.0017 0.0027 0.0020

ADE: Sparse 0.0030 0.0164 0.0050

proaches shows that the variational and adaptive cross-correlation approaches yield much

better results than the cross-correlation technique without adaptive interrogation windows.

Furthermore, both cross-correlation and adaptive cross-correlation methods fail to provide

the vector fields near the boundary because of their use of a local interrogation window.

Table 6.6.3 summarizes the average angular error (AAE) and average relative displacement

error (ADE), which is computed using the L2 error. Comparing the three methods, we see

that the adaptive cross-correlation method provides slightly better results than the varia-

tional method. Also, both methods yields much better results than the cross-correlation

method. Note that the results of the variational technique reported here are computed by

using 4 pyramid levels and setting the smoothness parameter λ to be the optimal one for

10λ ≤ 15 (See Figures 6.23 and 6.24).
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Figure 6.22. (a)-(c) show the vector fields obtained from the variational, cross-correlation,
adaptive cross-correlation approaches for the image pair with dense particles, respectively.
(d)-(f) compare the resulted obtained from the variational, cross-correlation, adaptive cross-
correlation approaches for the image pair with sparse particles, respectively.
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Figure 6.23. Average angular error (AAE) and average relative displacement error (ADE)
for the image pair with dense particles.

Figure 6.24. Average angular error (AAE) and average relative displacement error (ADE)
for the image pair with dense particles.
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6.6.4 Example 4

The data set to be evaluated in this section are published in the Computer Vision,

Graphics, and Pattern Recognition (CVGPR) website. The sequence of 20 PIV images

are recorded in water with another fluid with a certain fraction of carbonoxy snarf. Three

sets of fluids with three different ratio of carbonoxy snarf show slightly different intensity

pattern, but they all correspond to the same flow field. It is suggested by CVGPR group

that the difference between the three flow fields gives some measure of the computation

errors. Note also that the actual flow is three-dimensional.

First of all, we compare our results with the velocity fields obtained from the direct

correlation-based method conventionally used for the PIV images. Note that the cross-

correlation and adaptive cross-correlation methods in the preceding section fail to provide

reasonable results for comparison. We first consider the first two images of the sequence as

shown in Figure 6.25. A comparison between the velocity fields obtained from a PIV method

Figure 6.25. Raw experimental images: the first two frames of the images recorded from
an experiment. The entire image sequence is published by Wieneke in CVGPR website as
a test data for the PIV method.

and those computed from our variational technique (6.34) with various values of smoothness

parameter is shown in Figure 6.26(d)-(f). As we can see, the variation approach based on the

Frobenius-Perron operator provides a velocity field that is more applicable to a dynamical

system analysis than the velocity field obtained from the cross-correlation-based PIV. We
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also observe the impact of the smoothness parameter to the discontinuity of the velocity

fields. We note that we use the coarse-to-fine strategy to compute the velocity field in this

example with 4 pyramid levels. Figure 6.26(b) shows the velocity filed obtained at the top

of the pyramid level (lowest resolution level), which is to be compared with Figure 6.26(f) to

see the final result at the lowest level (at the original resolution of the image). Particularly,

we see from Figure 6.27 that there is no noticeable vorticity near the left image boundary

of the velocity vector at the highest pyramid level (lowest resolution) whereas the vorticity

become apparent at this location for the next lower pyramid level (higher resolution). In

addition, we also show the velocity field computed from the variation technique with α = 10

but without using the coarse-to-fine strategy in Figure 6.26(c). It is evident that without

the coarse-to-fine strategy the method fail to provide a useful velocity field due to the large

motion between two consecutive frames.

Now we consider three different image sequences of which the first frame of each sequence

has slightly different patterns as shown in Figure 6.28. These three images are recorded

from the experiments as described above, but their difference in the pattern is due to the

differences ratio of carbonoxy snarf. In other word, Figure 6.28 shows three different initial

conditions of the evolution described the Frobenius-Perron operator. However, all these

initial conditions are propagated by the same velocity field. Therefore, the difference of

their velocity field can be used a measure of the accuracy of the method.

We evaluate our results based on the angular errors (6.39) between the velocity fields

obtained from the three image sequences. We use the velocity fields computed from the first

and second images of each sequence. The result is shown in Figure 6.29 and it is evident

that the difference of the velocity fields becomes asymptotically smaller as the smoothness

parameter α increases.

In addition, we observe the Lagrangian coherent structure of the vector field computed

from the above image sequence. Note that unlike the first two examples, the vector file is

neither an autonomous system nor a stochastically perturbed autonomous system. There-

fore the analysis of coherent structure is based on approximating the Lagrangian coherent

structure. The results are shown in Figure 6.30. The FTLE field is computed for frames
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Figure 6.26. (a) correlation-based PIV method. (b) The velocity field obtained from the
lowest resolution level with the smoothness parameter α = 10. (c) Frobenius-Perron based
variational technique without using the coarse-to-fine scheme. From (d)-(f) The velocity
fields are computed by the variational minimization based on the Frobenius-Perron operator
with the coarse-to-fine strategy. (d) α = 1. (e) α = 4. (f) α = 10. Note that the each
velocity field is amplified by a factor of 2 to make it more perceptible.
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Figure 6.27. (a) The velocity vectors obtained at the highest pyramid level (lowest res-
olution). (b) The velocity vectors obtained from the next lower pyramid level (higher
resolution). The location bounded by the red rectangle in (a) and (b) are enlarged and
shown in (c) and (d) to observe the appearance of the vorticity motion when the motion
increment computed at the current level is used to correct the velocity vector obtained from
the previous level.
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Figure 6.28. Three images of three slightly different patterns. However, the evolution of the
pattern is governed by the same velocity filed. (a)-(c) The first images of the three image
sequences. (d)-(e) The final images of the three image sequences.

1 to 5 in Figure 6.30(b)-(f). We show in Figure 6.30(a) the separation rate at the frozen

time of the frame 1, that is, we compute the FTLE field under the assumption that the

vector field at frame 1 is autonomous. It is evident that the Eulerian structure in Fig-

ure 6.30(a)is different from the Lagragin structure inFigure 6.30(b). Since the vector field

is non-autonomous the passive particle could transverse across the Eulerian structure, but

not the Lagrangian structure. Note that the integration time for these results are 15 frames

and we assume that the time interval between two consecutive frames is 0.25 unit. Here,

We choose the time interval based on our experiment to be the time interval, in which the

coherent structures become relatively apparent and there is no new structure emerging to

be observed when increasing the time interval. Also, we assume that the physical space is

the unit box [0, 1]× [0, 1].
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Figure 6.29. The variation of the average angular errors between the velocity fields of the
three image sequences with respect to the smoothness parameter α.
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Figure 6.30. (a) The separation rate of the vector field of the frame 1. (b) The FTLE field
of the frame 1. When comparing (a) and (b), we see that the separation rate computed at
a frozen time can be misleading to indicate the coherent structure of the dynamical system.
(b)-(f) The evolution of the FTLE field from frames 1 to 5. Notice that there are some
small closed-loop coherent structures emerging as time progresses.
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Chapter 7

Conclusion

This thesis can be divided into two main themes. The first is the problem of approxi-

mating the almost invariant set of a dynamical system known only through an experimental

time-series data. Therefore, we only have a discrete-time realization of a dynamical system

with/without stochastic perturbation, and so our data analysis is done in the framework

of the transition matrix, which describes the transition probability of a particle in a given

phase space. In this framework, we employ the modularity method to discover a phase

space partition into almost invariant sets.

The second theme of this thesis is the problem of approximating a vector field from an

image sequence, in which we assume that the dynamical system underlying the motion in

the image sequence is a smooth velocity field, i.e., the velocity field is assumed to be at least

in (C1). We introduced the idea of using the infinitesimal operator of the Frobenius-Perron

operator to develop a model that describes a motion of image sequence. The problems

are interesting inverse problems in their own right. We have chosen the modern theory

based on total variation in image processing methods. With this model in hand, we employ

a variational technique to approximate the velocity field. However, a problem of a large

motion between two consecutive frames may arise when the sampling rate of an image

sequence is small. We utilize the well-known coarse-to fine strategy to resolve this problem

and demonstrate its applicability using various benchmark and real-world examples.
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7.1 Contributions

The first part of this thesis has dealt with an application of clustering techniques used

to extract a meaningful structure organization in a graph network. The clustering problems

have been studied for many years and applied to many areas of engineering and sciences,

but not widely used in the dynamical system paradigm to extract the almost invariant

sets, such as basins of attraction. Unfortunately, definitions of clustering have never been

unified, which has resulted in a large number of definitions and heuristic algorithms to

extract a meaningful clustering of a graph network. Rather than developing a personal

technique to extract the almost invariant sets, we have explored a relation between almost

invariant sets in the dynamical system and community structures in graph theory, which

is defined based on the optimization of the modularity measure. We have used the notion

of the transition matrix (or Ulam-Galerkin matrix) to approximate a dynamical system of

a time-series data and treated it as a Markov process. Then we introduce an application

of the graph modularity method to partition a phase space, which is visited by a given

time-series data, into almost invariant sets. We benchmark and verify the validity of our

methods using a variety of examples. However, our partition method based on the graph

modularity measure is applicable only to autonomous vector fields both with and without

stochastic perturbations. This has led us to explore a generalization of this technique for

general non-autonomous cases.

In the course of developing a technique to generalize the idea of almost invariant sets to

a non-autonomous system, we have found that Haller and coworkers [14, 15, 16, 68] have

already developed a technique of using the Finite-time Lyapunov exponent to approximate

the Lagrangian coherent structure. This method was developed as an empirical generaliza-

tion of the invariant manifold of an autonomous system and it can be used to understand

the invariant sets of a non-autonomous system. Therefore, we have adopted this method

to analyze the real-world experiment of a mixing device to understand the mixing process

and efficiency.

In addition, we have introduced the Frobenius-Perron operator viewpoint to approx-
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imate the dynamical system underlying image sequences. The image intensity has been

regarded as a density function and so an image sequence has been viewed as a temporal

evolution of a density function by the Frobenius-Perron operator. We have pointed out that

the idea of the brightness constancy assumption widely used in the optical flow problem is a

special case of our model based on the infinitesimal operator of the Frobenius-Perron oper-

ator. We have demonstrated the validity of this concept by both benchmark and real-world

examples. Also, we have compared our result with a traditional PIV method based on the

cross-correlation technique and experimentally demonstrated that our method provided su-

perior results. Hopefully, the new idea of motion estimation based on the Frobenius-Perron

operator framework may provide some needed insight to advance a better understanding

and algorithms suitable for users in the dynamical system community.

7.2 Open questions and further research

The problem of dynamical systems estimation for image sequences in a domain of fluid

flows is still an active research area although a number of approaches have been proposed

in the past decade. To advance understanding of the flow obtained from image sequences,

there is a need for a dedicated approach to reveal complex structures of the flow such as

vorticity, divergence, and fixed points. The smoothness regularizer used in our method can

fail to accurately estimate small voritcity/divergence regions. The augmented formulation

of the div-curl regularizer proposed in [21] is used to cope with this problem. However,

it requires prior estimates of vorticity and divergence by a parametric description of these

two quantities in a neighborhood of fixed points. Recently, a low dimensional estimation

of vorticity and divergence from image sequences has been proposed to extract vorticity

and divergence maps from image sequences [98]. Instead of directly estimating the velocity

field, the Helmholtz decomposition is used to define vorticity and divergence maps equipped

with parameters that describe the locations, influenced neighbors, and strength of these two

quantities. Then these parameters are minimized to comply with a constraint equation of

brightness variation. Although this method may locate small vorticity/divergence region
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better than the variational method, the quality of the overall velocity is not generally

better; it may result in a poorer quality of the overall velocity field, indeed. Therefore, it is

very attractive to develop a technique in the same vein as the aforementioned research to

successfully apply it to various domains of image sequences with complex flows.

Furthermore, as we have seen from several examples in this thesis, the quality of the

velocity vector obtained from the regularization method strongly depends on the smoothness

parameter. The issue of how to determine a priori a suitable value of the smoothness

parameter has not been much investigated theoretically. All existing variational methods

using some regularization constraints require that we have to choose the parameter based

on our observation of the estimated velocity field. Any attempt to obtain the “optimal”

value of the smoothness parameter based on some criteria would be worthwhile.
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Appendix A

Ridge detection

Recall that the Lagrangian coherent structure (LCS) at time t is defined as the second-
derivative ridge of the Finite-time Lyapanov exponent (FTLE) field at time t as defined by
Shadden [17]. Therefore, there is a need for us to develop an algorithm to detect the ridge.
The main steps of our method of ridge detection are as follows. First, we estimate the local
structure of the FTLE field based on the gradient structure tensor as shown below. Then,
the ridge orientation at each point of the FTLE field is computed based on the smallest
eigenvector of the structure tensor since its orientation corresponds to the direction of the
smallest variation where as the largest eigenvector orients to the steepest descent/ascent
direction. Thus, in order to trace the ridge, we may “walk” along the direction of the
ridge orientation starting form an initial point, in which the global maximum point of the
FTLE field is our preferred candidate. Remark that our method of the ridge detection is
similar to those of line and edge detections and edge-preserving image restoration, which
are fundamental tasks in image processing.

Given a FTLE field at time t, σt(x, y), we define the 2 × 2 structure tensor S at each
point (x, y) by

S ≡ ∇σt∇σT
t . (A.1)

Then, we can explicitly compute the eigenvalues (λ1 ≥ λ2) of the matrix S by

λ1,2 =
(
s11 + s22 ±

√
(s11 − s22)2 + 4s212

)
/2 (A.2)

where s11 = ∂xσ
2
t , s22 = ∂yσ

2
t , and s12 = s21 = ∂xσt∂yσt. Here, ∂xσt and ∂yσt are the

Gaussian derivative in the x and y direction, respectively. The eigenvector associated with
the smallest eigenvalue λ2 is give by

ν2 =
[
2s12, s22 − s11 ±

√
(s11 − s22)2 + 4s212

]T
. (A.3)

Note that eigenvector ν1corresponding to λ1 is perpendicular to ν2. The eigenvectors ν1

and ν2 corresponds to the directions of maximum and minimum variations, respectively.
The ridge orientation is then defined by

θ = arctan
(
2s12/

(
s22 − s11 ±

√
(s11 − s22)2 + 4s212

))
. (A.4)

Remark that it is also possible to compute the ridge orientation based on the Cauchy-Green
tensor. That is one can correspondingly replace each entry of S by that of the Cauchy-
Green tensor matrix except that the ridge orientation is now the direction of the dominant
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eigenvector instead of the smaller one. This will also give a similar result as observed in
our experiment since points on the LCS have a large stretching rate due to the dominant
eigenvalue. Hence, walking along the direction of the dominant eigenvector of the Cauchy-
Green tensor also trace the ridge line. The algorithm for the ridge detection is summarized
below.

Algorithm: Ridge detection

set the “walking” distance r for each iteration

set the initial point (x0, y0)

S := ∇σt∇σT
t % compute structure tensor

θ = arctan
(
2s12/

(
s22 − s11 ±

√
(s11 − s22)2 + 4s212

))
begin iterations

pn = xn + r cos(θ(xn, yn))

qn = yn + r sin(θ(xn, yn))

(xn+1, yn+1) = argmaxτ I(pn + τ cos(θ + π
2 ), qn + τ cos(θ + π

2 )) % line search

n:=n+1

end iterations

One of the key components in the above algorithm is the line search. This subproblem
ensures that the points (xn, yn) tracing the ridge line is locally the highest point transverse
to the ridge in the FTLE field by searching for the local maximum point in the perpen-
dicular direction to the ridge orientation. This line search subproblem is a minimization
problem in a one-dimensional space and we use the minimization routine in MATLAB for
this subproblem. We use various stopping criterions as follows. The iteration is stopped
when the ridge line is elongated across the boundary or when the ridge length meets a
given upper limit. The iteration is also stopped if the |λ1 − λ2| < δ at a point (xn, yn)
in the iteration for some δ > 0. The later condition characterizes a homogeneous region,
where the difference between λ1 and λ2 becomes small. The illustration of the iterative
algorithm is shown in Figure A.1 for the “volcano” image obtained from the computation
of the FTLE field for the center-blade mixer experiment. Here, the yellow dot is the global
maximum point and also the initial point of the iteration. Points (xn, yn and (pn, qn) in
the algorithm are shown in magenta and blue, respectively. The line in black color aligns
along the direction for the line search procedure and it is oriented in the direction of the
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eigenvector ν1, in which the point (xn+1, yn+1) in the algorithm is the local maximum in
the search direction. The final result is shown in Figure A.2.
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Figure A.1. The image data of a smoothed FTLE field. The yellow dot is the initial point of
the iteration and the magenta dots are the points (xn, yn) in the iterative algorithm. Each
blue dot is the point (pn, qn) in the iteration, which has a distance r from its corresponding
point (xn, yn) pointed in the direction of eigenvector ν2. The line in black color is in the
direction of the line search subproblem and it is oriented according to the eigenvector ν1

perpendicular to ν2
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Figure A.2. The final result of the ridge detection for the FTLE field shown in Figure A.1
The green line plotted on the contour plot of the FTLE field is the ridge detected by the
above algorithm.
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Appendix B

Differentiation of image intensity

One important step of many image processing algorithms is the computation of image
intensity derivatives. In the optical flow problem described in Chapter 6, we need to com-
pute Ix1 , Ix2 , It for a give image intensity function I(x1, x2, t and ∆u and ∆v for the velocity
fields u(x1, x2) and v(x1, x2). We use the Simoncelli’s matched filter method [99] that was
demonstrated to have superior accuracy to the traditional central and backward differences
and preserve the rotationally invariant property of the 2-D derivative and Laplacian op-
erators. Simoncelli formulated a set of matched pair of derivative filters and lower pass
pre-filters as a filter design problem. Below are pairs of matched pre-filters and derivative
kernels of various sizes. To obtain Ix1 we convolve the n-tap smoothing kernel in the x2

dimension and then convolves that result with the differentiation kernel to obtain the final
result, Ix. This procedure can be summarized in the following equation:

Ix1(x1, x2, t) ≈ d1 ∗ pT ∗ (I(x1, x2, t)). (B.1)

Note that the pre-smoothing filter makes the derivative filter become less sensitive to noise.
The implementation of the above procedure in MATLAB can be simple. For example, if
the 3-tap filter pairs is used, the derivative kernel in the x1 dimension can be computed by
the following code:

pp=[0.2298 0.5402 0.2298];
pp=[zeros(1,3); pp; zeros(1,3)];
dd=[0.4252 0.0000 -0.4252];
dd=[zeros(1,3); dd; zeros(1,3)];
dKernel=imfilter(pp’,dd,’replicate’);

Note that the option “replicate” is used to impose the Neumann boundary condition.
If the zero boundary condition is preferred, the option “zero” can be used, instead. The
computation of Ix2 can be done using the transpose of the x1-derivative kernel. To obtain
It we use the forward difference; that is It = I(x, y, t+ 1)− I(x, y, t), since we assume that
the velocity field between two consecutive images is autonomous.

Let us now discuss an algorithm to compute the solution of the PDE (6.18). A numerical
solution of the Euler-Lagrange equation (6.18) via a finite different method, resorting the
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Table B.1. Matched pairs of pre-filter(p) and derivative kernels(di) of the ith order of various
sizes.

3-tap
p: 0.2298 0.5402 0.2298
d1: 0.4252 0.0000 -0.4252
d2: 0.3557 -0.7114 0.3557

5-tap
p: 0.0376 0.2491 0.4263 0.2491 0.0376
d1: 0.1096 0.2766 0.0000 -0.2766 -0.1096
d2: 0.2190 -0.0007 -0.4366 -0.0007 0.2190

7-tap
p: 0.0047 0.0693 0.2454 0.3611 0.2454 0.0693 0.0047
d1: 0.0187 0.1253 0.1930 0.0000 -0.1930 -0.1253 -0.0187
d2: 0.0543 0.1370 -0.0534 -0.2758 -0.0534 0.1370 0.0543

Simoncelli’s derivative kernels, takes the following form:

L ∗ u = αDx1 ∗ I(Dx1 ∗ Iu+Dx2 ∗ Iv + I(x1, x2, t+ 1)− I(x1, x2, t))
L ∗ u = αDx1 ∗ I(Dx1 ∗ Iu+Dx2 ∗ Iv + I(x1, x2, t+ 1)− I(x1, x2, t)),

(B.2)

where “∗” denotes the 2 − D convolution, L is the Laplacian kernel matrix and Dx1 and
Dx2(= DT

x1
) are the derivative kernel matrices in the direction of x1 and x2, respectively.

For convenience, we will denote the finite-difference approximations of derivative, Dx1 ∗ I
and Dx2 ∗ I, by Ix1 and Ix2 , respectively. Then, an iterative method, such as Gauss-Seidel
or SOR, can be used to estimate a new set of solutions (un+1, vn+1) at the nth step by

un+1 = un
(
Ixu

n + Iyv
n + It

)
/
(
α+ I2

x + I2
y

)
vn+1 = vn

(
Ixu

n + Iyv
n + It

)
/
(
α+ I2

x + I2
y

)
,

(B.3)

where u ≡ L̃ ∗ u and L̃ is the Laplacian kernel matrix L with the nullified center.
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Appendix C

Mass conservation in
transmittance imaging

Although the mass conservation is common in 3D fluid flow, it is questionable whether
or not this condition also holds for a corresponding 2D motion captured by a corresponding
image sequence. Fitzpatrick [73] demonstrated that for transmittance imagery such a case
is true, subject to certain constraint on normal flow at the image boundary. In particular,
it required that the flow at opposite boundary points along the path of integration be
equal or that the flow has a compact support within the boundary of integration. The
latter requirement also complies with the assumption of the compact support of the initial
density evolved by the Koopman operator, see Eq. (3.20).

Consider a 3D fluid flow of the fluid density ρ(R, t) subject to a velocity field V(R, t) =
(U(R, t), V (R, t),W (R, t)), where R is an abbreviated notation for the coordinate vector
(x1, x2, x3). For a transmittance imagery, the image is given as

I(x1, x2, t) =
∫ s2(x1,x2)

s1(x1,x2)
ρ(R, t)dx3, (C.1)

where s1(x, y) and s2(x, y) are the bounding surface of the specimen being imaged. Under
an assumption of the mass conservation the fluid density ρ(R, t) and the velocity filed
V(R, t) are related according to

∂ρ

∂t
+ div(ρV) = 0. (C.2)

Integrating the continuity equation (C.2) along the x3 coordinate yields∫ s2(x1,x2)

s1(x1,x2)
div(ρV)dx3 +

∫ s2(x1,x2)

s1(x1,x2)

∂ρ

∂t
dx3 = 0. (C.3)

Then we can rewrite the first term of the above equation as∫ s2(x1,x2)

s1(x1,x2)
div(ρVx1,x2)dx3 +

∫ s2(x1,x2)

s1(x1,x2)

∂ρ

∂W
dx3, (C.4)

146



where Vx1,x2 = (U, V, 0). Applying the Leibniz integral rule to the first term of the above
equation yields∫ s2(x1,x2)

s1(x1,x2)
div(ρV)dx3 = div

∫ s2(x1,x2)

s1(x1,x2)
ρVx1,x2dx3 + ρn ·V

∣∣s2

s1
, (C.5)

where n =
(
−∂x3

x1
,−∂x3

x2
, 1

)
is the outward normal vector to the surface s1 and s2. A new

2D velocity field v = (u(x1, x2), v(x1, x2)) can be defined as the density-weight average of
the original 3D velocity field; that is

v ≡

∫ s2(x1,x2)
s1(x1,x2) ρVx1,x2dx3∫ s2(x1,x2)

s1(x1,x2) ρdx3

. (C.6)

Combing Eqs. (C.1), (C.2), and (C.6) gives

∂ρ

∂t
+ div(ρv) = ρn ·V

∣∣s2

s1
. (C.7)

It is clear from Eq. (C.7) that we obtain the two-dimensional continuity equation when the
normal flow vanish at the boundaries or the normal flows at opposite boundary points along
the path of integration are equal.

147


	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation and Background
	Purposes
	Organization

	Dynamical systems terminology and definitions
	Linearization
	Hyperbolicity
	Hyperbolicity: Nonautonomous vector fields

	Frobenius-Perron Operator and Infinitesimal Generator
	Frobenius-Perron Operator
	Infinitesimal Operators
	Finite-rank approximation of the Frobenius-Perron operator
	Almost invariant set

	Graph Community Structure
	Graph Theory and Reducible Matrices
	Modularity Method
	Markov Clustering
	Examples
	Duffing Oscillator
	Gearbox Model
	A Stochastic Model with many basins

	On Computational Complexity

	LCS in 2-D dynamical systems
	Lyapunov exponents
	Finite-time Lyapunov exponents and LCS
	LCS analysis of a mixing device
	Experimental setup
	Transport and Mixing in the Mixers
	Mathematical model of the mixers

	Mixing notions

	Inverse Problem of Motion Estimation
	Inverse Problem of Motion Estimation
	Euler-Lagrange Equation
	Discontinuity-Preserving Regularization
	PIV Approach
	Coarse-to-Fine Approach
	Experimental Evaluation
	Example 1
	Example 2
	Example 3
	Example 4


	Conclusion
	Contributions
	Open questions and further research

	Bibliography
	Ridge detection
	Differentiation of image intensity
	Mass conservation in transmittance imaging

