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Causal Network Inference by Optimal Causation Entropy∗
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Abstract. The broad abundance of time series data, which is in sharp contrast to limited knowledge of the
underlying network dynamic processes that produce such observations, calls for a rigorous and
efficient method of causal network inference. Here we develop mathematical theory of causation
entropy, an information-theoretic statistic designed for model-free causality inference. For stationary
Markov processes, we prove that for a given node in the network, its causal parents form the minimal
set of nodes that maximizes causation entropy, a result we refer to as the optimal causation entropy
principle. Furthermore, this principle guides us in developing computational and data efficient
algorithms for causal network inference based on a two-step discovery and removal algorithm for
time series data for a network-coupled dynamical system. Validation in terms of analytical and
numerical results for Gaussian processes on large random networks highlights that inference by
our algorithm outperforms previous leading methods, including conditional Granger causality and
transfer entropy. Interestingly, our numerical results suggest that the number of samples required
for accurate inference depends strongly on network characteristics such as the density of links and
information diffusion rate and not necessarily on the number of nodes.
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1. Introduction. Research of dynamic processes on large-scale complex networks has at-
tracted considerable interest in recent years with exciting developments in a wide range of
disciplines in social, scientific, engineering, and medical fields [48, 49, 74]. One important
line of research focuses on exploring the role of network structure in determining the dynamic
properties of a system [6, 17, 18, 19, 27, 55, 67, 79] and utilizing such knowledge in con-
trolling network dynamics [15, 70] and optimizing network performance [13, 38, 50, 56, 72].
In applications such as the study of neuronal connectivity or gene interactions, it is nearly
impossible to directly identify the network structure without severely interfering with the
underlying system, whereas time series measurements of the individual node states are often
more accessible [68]. From this perspective, it is crucial to reliably infer the network structure
that shapes the dynamics of a system from time series data. It is essential to account for
directed “cause and effect” relationships, which often offer deeper insight than nondirected
relationships (e.g., correlations) [53, 62, 66]. In particular, causal network inference is consid-
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Figure 1. Network dynamics, time series, and the causal network inference problem. Modern scientific
approaches such as simulation, experiments, and data mining have produced an abundance of high-dimensional
time series data describing dynamic processes on complex networks (a→b). Given empirical observations, an
important problem is to infer the causal network structure that underlies the observed time series. As shown in
(c), for each node i, the goal is to identify its “causal parents,” the nodes that directly influence its dynamics
(nodes in shaded region), while pruning away the nodes that do not (nodes outside the shaded region), thus
recovering the direct links to node i in the causal network. The key to efficiently and accurately differentiating
direct causal links from noncausal links is to follow an algorithm involving tests for independence via judiciously
selected conditioning sets. The main goal of this paper is to develop and validate such algorithms for stationary
Markov processes.

ered a central problem in the research of social perception [35], epidemiological factors [57],
neural connectivity [11, 12], economic impacts [34], and basic physical relationships of cli-
matological events [60, 61]. Evidently, understanding causality is a necessary and important
precursory step toward the goal of effectively controlling and optimizing system dynamics
(e.g., medical intervention of biological processes and policy design for economic growth and
social development).

In a network dynamic process involving a large number of nodes, causal relationships
are inherently difficult to infer. For example, the fact that a single node can potentially be
influenced by many (if not all) others through network interactions makes it challenging to
untangle the direct causal links from indirect and erroneous links (see Figure 1 for illustration).
Granger recognized the crucial role played by conditioning and defines a causal relationship
based on two basic principles [29, 30]:

(i) The cause should occur before the effect.
(ii) The cause should contain information about the caused that is not available otherwise.

A relationship that fulfills both requirements is unambiguously defined as causal. In practice,
although the first requirement is straightforward to examine when temporal ordering of the
data is available, it is difficult to check the second as it involves the consideration of all
available information (time series data from all variables). Tradeoffs are often made, by either
restricting to small-scale networks with no time delay and just a handful of variables [32, 71],
or partially removing the second requirement and therefore reducing the accuracy of network
inference [76]. Inferring large-scale networks from time series data remains a relatively open
problem [41, 68].

The classical Granger causality test was designed for linear regression models [29, 30],
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although several extensions have been proposed to nonlinear models, including local linear ap-
proximations [14] and partial functional expansion via radial basis functions [2]. Information-
based causality inference measures represent a systematic way of overcoming the model-
dependent limitation in the linear Granger causality test. In particular, Schreiber proposed
transfer entropy as a measure of information flow, or effective coupling, between two processes
regardless of the actual functional relationship between them [63]. The transfer entropy from
process Y to process X measures the uncertainty reduction of the future states of X as a
result of knowing the past of Y given that the past of X is already known, and it is essentially
the mutual information between the future of X and history of Y conditioning on the history
of X [37, 51]. Because of its ability to associate temporal and spatial directionality with cou-
pling, transfer entropy has quickly started to gain popularity in a broad range of disciplines,
including bioinformatics, neuroscience, and climatology, as a tool to infer effective pairwise
coupling that underlies complex dynamic processes [9, 76]. However, transfer entropy, which
was introduced specifically for detecting the directionality of information flow between two
processes, has fundamental limitations when applied in a multivariate setting to the inference
of networks [65, 71]. In particular, without proper conditioning, inference based on transfer
entropy tends to produce systematic errors due to, for example, the effects of indirect influ-
ences and dominance of neighbors [71]. As shown in Figure 1(c), the main purpose of this
work is to identify for each node i its “causal parents” that directly influence node i, while
not falsely inferring indirect (i.e., noncausal) nodes.

Proper conditioning can distinguish between direct and indirect causal relationships, and
it is thus unsurprising that conditioning is widely adopted as a key ingredient in many network
inference methods [21, 32, 37, 51, 60, 61, 65, 66, 71]; however, even within such a general theme,
the inference of networks requires a theoretically sound approach that is also algorithmically
reliable and efficient. For example, one must develop a strategy for choosing which potential
links to examine and which nodes to condition on. Thus we note two essential steps in causal
network inference: (1) adopting a statistic for the inference of a causal relationship, and
(2) developing an algorithm that iteratively employs step (1) to learn the causal network.
Whereas accuracy, tractability, and generality of the chosen statistic are often the priority for
(1), various challenges arise regarding (2). In particular, these often include minimizing the
computational cost by reducing the number of statistics that needs to be computed, as well as
reducing the error incurred by finite-sized data by keeping the size of the conditioning sets (i.e.,
the dimension of the estimation problem) as small as possible. In general, the inaccuracy when
estimating statistical measures from finite data grows rapidly with dimensionality, making the
dimensionality of the problem a priority for any networks containing more than a couple nodes.

One approach for network inference is to test each candidate causal link conditioned on
all other variables [32]. That is, a directed link j → i is inferred if such a relationship
remains effective when conditioning on all other variables in the system. Although intuitive
and correct in theory, this method requires computing a statistic in a sample space as high
dimensional as the entire system and therefore falls short when applied to a large network. The
PC algorithm [66] overcomes this difficulty by repeated testing of the candidate causal link
conditioned on subsets of the remaining variables [60, 61]. To be more specific, a link j → i is
disqualified as a candidate causal relationship if it is insignificant when conditioned on some
subset of the nodes. The advantage of the PC algorithm is that it reduces the dimensionality of
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the sample space in the test of independence to be proportional to the size of the conditioning
set (which in some cases can be much smaller than the system size). However, unless the
maximum degree of the nodes is known a priori, the algorithm in principle needs to search
over combinations of subsets (as conditioning sets) up to the size of the entire network. In
this respect, regardless of the dimensionality of the sample space, the combinatorial search
itself can be computationally infeasible for moderate to large networks. In practice, a tradeoff
needs to be made between an algorithm’s computational cost and data efficiency (in terms of
the estimation of the test statistic).

In this paper we develop theory of causation entropy—a type of conditional mutual infor-
mation designed for causal network inference. In particular, we prove the optimal causation
entropy principle for Markov processes: the set of nodes that directly cause a given node
is the unique minimal set of nodes that maximizes causation entropy. This principle allows
us to convert the problem of causality inference into the optimization of causation entropy.
We further show that this optimization problem, which appears to be combinatorial, can in
fact be solved by simple greedy algorithms, which are both computational efficient and data
efficient. We verify the effectiveness of the proposed algorithms through analytical and nu-
merical investigations of Gaussian processes on various network types, including trees, loops,
and random networks. Somewhat surprisingly, our results suggest that it is the density of
links and the information diffusion rate rather than the number of nodes in a network that
determine the minimal sample size required for accurate inference.

2. Stochastic process and causal network inference. We begin by introducing a the-
oretical framework for inferring causal networks from high dimensional time series. This
framework is general in that it is applicable to both linear and nonlinear systems.

Consider a network (graph) G = (V, E), with V = {1, 2, . . . , n} being the set of nodes and
E ⊂ V ×V ×R being the set of weighted links (or edges). The adjacency matrix A = [Aij ]n×n

is defined as

(2.1) Aij =

{
weight of the link j → i if j → i in the network,

0 otherwise.

We use χ0(A) to denote the corresponding unweighted adjacency matrix defined entrywise by
χ0(A)ij = 1 iff Aij �= 0 and χ0(A)ij = 0 iff Aij = 0. We define the set of causal parents of i as

(2.2) Ni = {j|Aij �= 0} = {j|χ0(A)ij = 1}.

For a subset of nodes I ⊂ V, we similarly define its set of causal parents as

(2.3) NI = ∪i∈INi.

We consider stochastic network dynamics in the following form (for each node i):

(2.4) X
(i)
t = fi

(
Ai1X

(1)
t−1, Ai2X

(2)
t−1, . . . , AijX

(j)
t−1, . . . , AinX

(n)
t−1, ξ

(i)
t

)
,

where X
(i)
t ∈ R

d is a random variable representing the state of node i at time t, ξ
(i)
t ∈ R

d

is the random fluctuation (noise) on node i at time t, and fi : R
d×(n+1) → R

d models the
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functional dependence of the state of node i on the past states of nodes j with Aij �= 0. Note

that other than the noise term ξ
(i)
t , the state X

(i)
t only depends (stochastically) on the past

states of its causal parents, X
(j)
t−1 (j ∈ Ni).

For a subset K = {k1, k2, . . . , kq} ⊂ V, we define

(2.5) X
(K)
t ≡ [X

(k1)
t ,X

(k2)
t , . . . ,X

(kq)
t ]�.

If K = V, we simplify the notation and denote

(2.6) Xt ≡ X
(V)
t = [X

(1)
t ,X

(2)
t , . . . ,X

(n)
t ]�.

2.1. Problem of causal network inference and challenges. Given quantitative observa-
tions of the dynamic states of individual nodes, often in the form of time series, a central
problem is to infer its (causal) system dynamics, which involves the inference of (1) the causal
network topology, χ0(A); (2) the link weights, {Aij}; and (3) the specific forms of functional
dependence between nodes, {fi}. These problems are interrelated and all challenging. We
focus on the first problem: inferring the causal network topology χ0(A), which serves as
the skeleton of the actual network dynamics. See Figure 1 as a schematic illustration. In
particular, the problem of causal network inference can be cast mathematically as

(2.7)

⎧⎪⎨
⎪⎩
Given: Samples of the node states x

(i)
t (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

Goal: Infer the structure of the underlying causal network,

i.e., find argminÂ ‖χ0(A)− Â‖0, where ‖M‖0 ≡
∑

i,j |Mij |0.

One key challenge is that in many applications, the number of nodes n is often large
(usually hundreds at least), but the sample size T is much smaller than needed for reliable
estimation of the (n×d)-dimensional joint distribution. We propose that a practical causation
inference method should fulfill the following three requirements:

1. Model-free. The method should not rely on assumptions about either the form or
parameters of a model that underlie the process.

2. Computational efficient. The method should be computationally efficient.
3. Data efficient. The method should achieve high accuracy with a relatively small num-

ber of samples (i.e., convergence in probability needs to be fast).
In this paper we address the model-free requirement by utilizing information-theoretic mea-
sures and, in particular, by using causation entropy. On the other hand, our theoretical
development of the optimal causation entropy principle enables us to develop algorithms that
are both computationally efficient and data efficient.

2.2. Markov assumptions. We study the system in a probabilistic framework assuming
stationarity and existence of a continuous distribution. We further make the following as-
sumptions regarding the conditional distributions p(·|·) arising from the stationary process
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given by (2.4). For every node i ∈ V and time indices t, t′,

(2.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) Temporally Markov :

p(Xt|Xt−1,Xt−2, . . . ) = p(Xt|Xt−1) = p(Xt′ |Xt′−1).

(2) Spatially Markov :

p(X
(i)
t |Xt−1) = p(X

(i)
t |X(Ni)

t−1 ).

(3) Faithfully Markov :

p(X
(i)
t |X(K)

t−1 ) �= p(X
(i)
t |X(L)

t−1) whenever (K ∩Ni) �= (L ∩Ni).

Throughout the paper, the relationship between two probability density functions p1 and p2
is denoted as “p1 = p2” iff they equal almost everywhere and “p1 �= p2” iff there is a set of
positive measure on which the two functions do not equal.

In (2.8), condition (1) states that the underlying dynamics is a time-invariant Markov
process.1 Condition (2) is often referred to as the (local) Markov property [44], which we call
spatially Markov here to differ from temporally Markov. This condition guarantees that in
determining the future state of a node, if knowledge about the past states of all its causal
parents Ni (as defined in (2.2)) is given, information about the past of any other node becomes
irrelevant. Finally, condition (3) ensures that the set of causal parents is unique and that every
causal parent presents an observable effect regardless of the information about other causal
parents.2

The conditional independence between two random variables X and Y given Z is denoted
by (X ⊥⊥ Y | Z), i.e.,

(2.9) (X ⊥⊥ Y | Z) ⇐⇒ p(X|Y,Z) = p(X|Z).

The following results regarding conditional independence will be useful in later sections and
are direct consequences of the basic axioms of probability theory [31, 44, 53]:

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Symmetry: (X ⊥⊥ Y | Z) ⇐⇒ (Y ⊥⊥ X | Z).

Decomposition: (X ⊥⊥ YW | Z) =⇒ (X ⊥⊥ Y | Z).

Weak union: (X ⊥⊥ YW | Z) =⇒ (X ⊥⊥ Y | ZW ).

Contraction: (X ⊥⊥ Y | Z) ∧ (X ⊥⊥W | ZY ) =⇒ (X ⊥⊥ YW | Z).

Intersection: (X ⊥⊥ Y | ZW ) ∧ (X ⊥⊥W | ZY ) =⇒ (X ⊥⊥ YW | Z).

Here “∧” denotes the logical operation “and” (the symbol “∨” is used later for “or”), and
YW denotes a joint random variable of Y and W .

1If the process is Markov but with higher order, our approach is to convert it into a first-order process as
illustrated in Appendix A and then apply the theory and algorithms in the main body of the paper to the
resulting first-order process.

2Note that without condition (3), the “true positive” statement in Theorem 2.2 is no longer valid. One
simple example is given in Appendix B to illustrate this point.
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2.3. Causation entropy as an information-theoretic measure. We review several funda-
mental concepts in information theory, leading to causation entropy, a model-free information-
theoretic statistic that can be used to infer direct causal relationships [71].

Originally proposed by Shannon as a measure of uncertainty and complexity, the (differ-
ential) entropy of a continuous random variable X ∈ R

n is defined as [16, 64]3

(2.11) h(X) = −
∫

p(x) log p(x)dx,

where p(x) is the probability density function of X. The joint and conditional entropies
between two random variables X and Y are defined as (also see Figure 2(a))

(2.12)

⎧⎪⎨
⎪⎩
Joint entropy: h(X,Y ) ≡ h(Y,X) ≡ − ∫ p(x, y) log p(x, y)dxdy.

Conditional entropies:

{
h(X|Y ) ≡ − ∫ p(x, y) log p(x|y)dxdy,
h(Y |X) ≡ − ∫ p(x, y) log p(y|x)dxdy.

For more than two random variables, the entropies are similarly defined (as above) by grouping
the variables into two classes, one acting as X and the other as Y .

The mutual information between two random variables X and Y (conditioning on Z) can
be interpreted as a measure of the deviation from independence between X and Y (condition-
ing on Z). The corresponding unconditioned and conditional mutual information are defined
respectively as

(2.13)

⎧⎪⎨
⎪⎩
Mutual information: I(X;Y ) ≡ h(X) − h(X|Y ) ≡ h(Y )− h(Y |X).

Conditional mutual information:

I(X;Y |Z) ≡ h(X|Z)− h(X|Y,Z) ≡ h(Y |Z)− h(Y |X,Z).

The mutual information among three variables X, Y , and Z is defined as4

(2.14) I(X;Y ;Z) ≡ I(X;Y )− I(X;Y |Z) ≡ I(Y ;Z)− I(Y ;Z|X) ≡ I(X;Z)− I(X;Z|Y ).

The mutual information between two variables is always nonnegative; I(X;Y ) ≥ 0 with
equality iff X and Y are independent. Similarly, I(X;Y |Z) ≥ 0 with equality iff X and Y
are independent when conditioned on Z. Interestingly, for three or more variables, such an
inequality does not hold: the mutual information I(X;Y ;Z) can be either positive, negative,
or zero [47]. Figure 2(a) visualizes the relationships between entropy, conditional entropy, and
mutual information.

To measure the directionality of information flow between two random processes, Schreiber
proposed a specific type of conditional mutual information called transfer entropy [63]. For a

3We follow the convention in [16] to use h(·) for the entropy of a continuous random variable and reserve
H(·) for the entropy of a discrete random variable. In the discrete case, we need to replace the integral by
summation and probability density by probability mass function in the definition.

4This quantity is often referred to as interaction information [47] or co-information [7]. Another multivariate
generalization of mutual information is total correlation [78] (also known as multivariate constraint [24] or
multi-information [69]).
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Figure 2. Venn-like diagrams for information-theoretic measures. (a) Visualization of the relationships
between entropy, conditional entropy, and mutual information. (b) Visualization of the relationships between
conditional entropy, causation entropy, and transfer entropy. In (b), letters I, J, and K are used to denote
X(I), X(J), and X(K), respectively.

stationary first-order Markov process such as that given by (2.4), the transfer entropy from j
to i can be expressed as

(2.15) Tj→i ≡ h(X
(i)
t+1|X(i)

t )− h(X
(i)
t+1|X(i)

t ,X
(j)
t ),

where h(·|·) denotes conditional entropy [16]. Since h(X
(i)
t+1|X(i)

t ) measures the uncertainty of

X
(i)
t+1 given information about X

(i)
t and h(X

(i)
t+1|X(i)

t ,X
(j)
t ) measures the uncertainty of X

(i)
t+1

given information about both X
(i)
t and X

(j)
t , the transfer entropy Tj→i can be interpreted as

the reduction of uncertainty about future states of X(i) when the current state of X(j) is
provided in addition to that of X(i).

Networks of practical interest inevitably contain (many) more than two nodes. As we will
show later, without appropriate conditioning, transfer entropy fails to distinguish between
direct and indirect causality in networks. To overcome the pairwise limitation of transfer
entropy, we define causation entropy. The relationships between entropy, transfer entropy,
and causation entropy are illustrated in Figure 2(b).

Definition 2.1 (causation entropy [71]). The causation entropy from the set of nodes J to
the set of nodes I conditioning on the set of nodes K is defined as5

(2.16) CJ→I|K = h(X
(I)
t+1|X(K)

t )− h(X
(I)
t+1|X(K)

t ,X
(J)
t ),

where I, J,K are all subsets of V = {1, 2, . . . , n}. In particular, if J = {j} and I = {i}, we
simplify the notation as Cj→i|K. If the conditioning set K = ∅, we often omit it and simply
write CJ→I .

Remark 2.1. Causation entropy is a natural generalization of transfer entropy from mea-
suring pairwise causal relationships to network relationships of many variables. In particular,
if j ∈ K, then the causation entropy Cj→i|K = 0 as j does not carry extra information (com-
pared to that of K). On the other hand, if K = {i}, causation entropy recovers transfer

5Note that the definitions in (2.15) and (2.16) can be extended for asymptotically stationary processes by
taking the limit of t → ∞, although the proofs in this paper do not directly apply to such a general scenario.
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entropy; i.e.,

(2.17) Cj→i|i = Tj→i.

Interestingly, in this framework we see that transfer entropy assumes that nodes are self-causal,
whereas causation entropy relaxes this assumption. Preliminary exploration of the differences
between the two measures can be found in [71].

Remark 2.2. We note that in addition to [71], the conditional mutual information between
time-lagged variables has been proposed as a statistic for network inference in a few previous
studies [21, 60, 61, 75] (although not referred to as transfer or causation entropy).

Remark 2.3. It seems plausible to conjecture that if two subsets of the nodes satisfy
K1 ⊂ K2, then Cj→i|K1

would be no less than Cj→i|K2
. We remark that this statement about

monotonicity is false (see the two examples below).
Example 1. Consider the stochastic process

(2.18) X
(1)
t = X

(2)
t−1 +X

(3)
t−1,

where X
(k)
t are independent and identically distributed (i.i.d.) Bernoulli variables: P (X

(k)
t =

0) = P (X
(k)
t = 1) = 0.5 (k = 2, 3). Let i = 1, j = 2, K1 = ∅, and K2 = {3}. It follows that

(2.19)

{
C2→1|∅ = 3

2 log 2− log 2 = 1
2 log 2

C2→1|{3} = log 2− 0 = log 2
⇒ C2→1|∅ < C2→1|{3}.

Example 2. Consider the stochastic process

(2.20) X
(1)
t+1 = X

(3)
t , X

(2)
t+1 = X

(3)
t ,

where X
(3)
t are Bernoulli variables with P (X

(3)
t = 0) = P (X

(3)
t = 1) = 0.5. Let i = 1, j = 2,

K1 = ∅, and K2 = {3}. It follows that

(2.21)

{
C2→1|∅ = log 2− 0 = log 2

C2→1|{3} = 0− 0 = 0
⇒ C2→1|∅ > C2→1|{3}.

The seemingly paradoxical observation that Cj→i|K1
can be either larger or smaller than

Cj→i|K2
despite the fact that K1 ⊂ K2 can be understood as follows: When K1 ⊂ K2,

Cj→i|K1
−Cj→i|K2

corresponds to the mutual information among the three variablesX
(i)
t+1|X(K1)

t ,

X
(i)
t+1|X(j)

t , and X
(i)
t+1|X(K2−K1)

t (see Figure 2). Contrary to the two-variable case, where mu-
tual information is always nonnegative, the mutual information among three (or more) vari-
ables can either be positive, negative, or zero [47].

2.4. Theoretical properties of causation entropy and the optimal causation entropy
principle. In the following we show that analysis of causation entropy leads to exact network
inference for the network stochastic process given by (2.4) subject to the Markov assumptions
in (2.8).

We start by exploring basic analytical properties of causation entropy, which is presented
in Theorem 2.2 and also summarized in Figure 3.
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(a) (b) (c)

J K

I

J

N

K

JN

K

I I

I I

C      = 0J   I |K C      = 0 J   I |K C      > 0  J   I |K 

Figure 3. Basic analytical properties of causation entropy (Theorem 2.2) allowing for the inference of the
causal parents NI of a set of nodes I. (a) Redundancy: If J is a subset of the conditioning set K (J ⊂ K),
then the causation entropy CJ→I|K = 0. (b) No false positive: If NI is already included in the conditioning set
K (NI ⊂ K), then CJ→I|K = 0. (c) True positive: If a set J contains at least one causal parent of I that does
not belong to the conditioning set K, i.e., (J ⊂ NI) ∧ (J �⊂ K), then CJ→I|K > 0.

Theorem 2.2 (basic analytical properties of causation entropy). Suppose that the network
stochastic process given by (2.4) satisfies the Markov assumptions in (2.8). Let I ⊂ V be a
set of nodes and NI be its causal parents. Consider two sets of nodes J ⊂ V and K ⊂ V. The
following results hold:

(a) (Redundancy) If J ⊂ K, then CJ→I|K = 0.
(b) (No false positive) If NI ⊂ K, then CJ→I|K = 0 for any set of nodes J .
(c) (True positive) If J ⊂ NI and J �⊂ K, then CJ→I|K > 0.
(d) (Decomposition) CJ→I|K = C(K∪J)→I − CK→I .
Proof. Under the temporal Markov condition in (2.8), there is no time dependence of the

distributions. For notational simplicity we denote the joint distribution p(X
(I)
t+1 = i,X

(J)
t =

j,X
(K)
t = k) by p(i, j, k) and use similar notation for the marginal and conditional distribu-

tions. It follows that

CJ→I|K = h(X
(I)
t+1|X(K)

t )− h(X
(I)
t+1|X(K)

t ,X
(J)
t ) = −

∫
p(i, j, k) log

[ p(i|k)
p(i|j, k)

]
didjdk

≥ − log

∫
p(i, j, k)

p(i|k)
p(i|j, k)didjdk (by Jensen’s inequality [58])

= − log

∫
p(j, k)

p(i, k)

p(k)
didjdk = − log(1) = 0,(2.22)

where equality holds iff p(i|k) = p(i|j, k) almost everywhere. The above inequality is also
known as the Gibbs inequality in statistical physics [26].

To prove (a), we note that J ⊂ K implies that p(i|k) = p(i|j, k), and therefore equality
holds (rather than inequality) in (2.22).

To prove (b), it suffices to show that for J �⊂ K, CJ→I|K = 0. Since J �⊂ K and NI ⊂ K,
based on the spatial Markov condition in (2.8), we have

(2.23) p(X
(I)
t+1|Xt) = p(X

(I)
t+1|X(K∪J)

t ) = p(X
(I)
t+1|X(K)

t ) = p(X
(I)
t+1|X(NI )

t ).
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Therefore, p(i|j, k) = p(i|k), and equality holds in (2.22).
To prove (c), we use the faithfully Markov condition in (2.8). Since J ⊂ NI and J �⊂ K,

it follows that

(2.24) p(X
(I)
t+1|X(K)

t ) = p(X
(I)
t+1|X(K∩NI)

t ) �= p(X
(I)
t+1|X(K)

t ,X
(J)
t ).

Thus, p(i|j, k) �= p(i|k), and strict inequality holds in (2.22).
Finally, part (d) follows directly from the definition of C.
Theorem 2.2 allows us to convert the problem of causal network inference into the problem

of estimating causation entropy among nodes. In particular, for a given set of nodes I, each
node j can in principle be checked independently to determine whether or not it is a causal
parent of I via either of the following two equivalent criteria (proved in Theorem 2.3(a) below):

(2.25)

{
(1) node j ∈ NI iff there is a set K ⊃ NI , such that Cj→I|(K−{j}) > 0;

(2) node j ∈ NI iff for any set K ⊂ V, Cj→I|(K−{j}) > 0.

Practical application of either criterion to infer large networks is challenging. Criterion (1)
requires a conditioning set K that contains NI as its subset. Since NI is generally unknown,
one often must use K = V. When the network is large (n � 1), this requires the estimation
of causation entropy for very high dimensional random variables from limited data, which
is inherently unreliable [60, 61]. Criterion (2), on the other hand, requires a combinatorial
search over all subsets, making it computationally infeasible.

In the following we prove the two inference criteria in (2.25). Furthermore, we show that
the set of causal parents is the minimal set of nodes that maximizes causation entropy, which
we refer to as the optimal causation entropy principle.

Theorem 2.3 (optimal causation entropy principle for causal network inference). Suppose that
the network stochastic process given by (2.4) satisfies the Markov properties in (2.8). Let
I ⊂ V be a given set of nodes and NI be the set of I’s causal parents, as defined in (2.3). It
follows that

(a) (Direct inference) Node j ∈ NI iff ⇔ ∃K ⊃ NI such that Cj→I|(K−{j}) > 0 ⇔ ∀K ⊂
V, Cj→I|(K−{j}) > 0.

(b) (Partial conditioning removal) If there exists K ⊂ V such that Cj→I|(K−{j}) = 0, then
j /∈ NI .

(c) (Optimal causation entropy principle) The set of causal parents is the minimal set of
nodes with maximal causation entropy.
Define the family of sets with maximal causation entropy as

(2.26) K = {K|∀K ′ ⊂ V, CK ′→I ≤ CK→I}.

Then the set of causal parents is given by

(2.27) NI = ∩K∈KK = argminK∈KK.

Proof. First we prove part (a). If j ∈ NI , then for every K ⊂ V, Cj→I|(K−{j}) > 0
following Theorem 2.2(c). This proves both ⇒’s. On the other hand, suppose that ∀K ⊂
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V, Cj→I|(K−{j}) > 0; then for K = V ⊃ NI , it follows that Cj→i|(V−{j}) > 0. Node j ∈ NI since
otherwise (V − {j}) ⊃ NI , which would imply that Cj→i|(V−{j}) = 0 from Theorem 2.2(b).
Therefore, the two ⇐’s are also proven.

Next, part (b) follows directly from the contrapositive of Theorem 2.2(c).
Finally, we prove part (c). Note that if NI �⊂ K, then J = NI − K �= ∅, and so

C(K∪J)→I −CK→I = CJ→I|K > 0. Therefore, K ∈ K ⇒ NI ⊂ K. This implies NI ⊂ ∩K∈KK.
On the other hand, if ∃j ∈ ∩K∈KK with j /∈ NI , let K ∈ K and L = K − {j}. Since
j /∈ NI , we have NI ⊂ L ⊂ K, and therefore CK→I − CL→I = Cj→I|L = 0, where the second
equality follows from Theorem 2.2(c). This shows that L ∈ K, contradicting j ∈ ∩K∈KK. So
j ∈ ∩K∈KK ⇒ j ∈ NI , which implies that ∩K∈KK ⊂ NI . Since K is finite, it follows that
∩K∈KK = argminK∈KK.

Based on the optimal causation entropy principle, it seems straightforward to solve the
minimax optimization for the inference of NI by enumerating all subsets of V with increas-
ing cardinality (starting from ∅) and terminating when a set K is found to have maximal
causation entropy among all subsets of cardinality |K| + 1 (i.e., adding any node j to set K
does not increase the causation entropy CK→I). Based on Theorem 2.3, the set K = NI .
However, this brute-force approach requires O(n|NI |) causation entropy evaluations, which is
computationally inefficient and therefore infeasible for the inference of real-world networks,
which often contain large numbers of nodes (n � 1). Such limitation is removed only when
the number of causal parents is moderately small, |NI | = O(1). In the following section we de-
velop additional theory and algorithms to efficiently solve this minimax optimization problem
for causal network inference.

2.5. Computational causal network inference. Algorithmically, causal network inference
via the optimal causation entropy principle should require as few computations as necessary
(computational efficiency) and as few data samples as possible while retaining accuracy (data
efficiency). We introduce two such algorithms that jointly infer the causal network. For a
given node i, the goal is to infer its causal parents, as illustrated by nodes in the shaded region
of Figure 4(a). Algorithm 2.1 aggregatively identifies nodes that form a superset of the causal
parents, K ⊃ Ni (proven by Lemma 2.4 and illustrated in Figure 4(b)). Starting from a set
K ⊃ Ni, Algorithm 2.2 prunes away noncausal nodes from K, leaving only the causal parents
Ni (proven by Lemma 2.5 and illustrated in Figure 4(c)).

Lemma 2.4 (aggregative discovery of causal nodes). Suppose that the network stochastic
process given by (2.4) satisfies the Markov properties in (2.8). Let I ⊂ V and NI be its causal
parents. Define the sequences of numbers {x1, x2, . . . }, nodes {p1, p2, . . . }, and nested sets
{K0,K1,K2, . . . } as K0 = ∅, and

(2.28)

⎧⎪⎨
⎪⎩
xi = maxx∈(V−Ki−1) Cx→I|Ki−1

,

pi = argmaxx∈(V−Ki−1)Cx→I|Ki−1
,

Ki = {p1, p2, . . . , pi}

for every i ≥ 1. There exists a number q, with |NI | ≤ q ≤ n, such that the following hold:
(a) The numbers xi > 0 for 1 ≤ i ≤ q and xi = 0 for i > q.
(b) The set of causal parents NI ⊂ Kq = {x1, x2, . . . , xq}.
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(b) (c) Divisive removal
of non-causal nodes

True network structure(a) Aggregative discovery 
of causal nodes
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j   i |K if C          = 0
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Figure 4. Causal network inference by optimal causation entropy. (a) Causal parents and noncausal nodes
of a node i. Causal network inference corresponds to identifying the causal parents Ni (nodes in shaded region)
for every node i ∈ V. (b) Nodes are added to the set K in an aggregative fashion, maximizing causation entropy
at each step (see Algorithm 2.1). (c) Starting from a set K ⊃ Ni (K obtained by Algorithm 2.1), noncausal
nodes are progressively removed from K if their causation entropy to node i conditioned on the rest of K is
zero (see Algorithm 2.2).

Algorithm 2.1. Aggregative discovery of causal nodes.

Input: Set of nodes I ⊂ V
Output: K (which will include NI as its subset)
1: Initialize: K ← ∅, x←∞, p← ∅.
2: while x > 0 do
3: K ← K ∪ {p}
4: for every j ∈ (V −K) do
5: xj ← Cj→I|K
6: end for
7: x← maxj∈(V−K) xj , p← argmaxj∈(V−K)xj
8: end while

Proof. If NI = ∅, the lemma holds trivially. Suppose that |NI | ≥ 1 and so x1 > 0.
To prove (a), we define q ≡ minxi=0(i− 1) (if all xi > 0, define q ≡ n). By construction,

xi > 0 when i ≤ q and xq+1 = 0. This implies that NI ⊂ Kq since otherwise there is a node j
with Cj→I|Kq

> 0 ⇒ xq+1 > 0. For any i > q, NI ⊂ Kq ⊂ Ki−1, and thus Cj→I|Ki−1
= 0 for

all j ∈ (V −Ki−1), which implies that xi = 0.
To prove (b), we note that if there is a node j ∈ NI such that j /∈ Kq, then by the definition

of xi and Theorem 2.2(c), it follows that xq+1 ≥ Cj→I|Kq
> 0. This is in contradiction with

the fact that xi = 0 for all i > q. Therefore, NI ⊂ Kq.
Algorithm 2.1 recursively constructs the set Kq ⊃ NI (further denoted as K) as described

by Lemma 2.4 and illustrated in Figure 4(b). To remove indirect and spurious nodes in K
that do not belong to NI , we apply the result of Theorem 2.2(c), Cj→I|(K−{j}) = 0⇒ j /∈ NI .
This gives rise to Lemma 2.5 and Algorithm 2.2.
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Algorithm 2.2. Progressive removal of noncausal nodes.

Input: Sets of nodes I ⊂ V and K ⊂ V
Output: N̂I (inferred set of causal parents of I)
1: for every j ∈ K do
2: if Cj→I|(K−{j}) = 0 then
3: K ← K − {j}
4: end if
5: end for
6: N̂I ← K

Lemma 2.5 (progressive removal of noncausal nodes). Suppose that the network stochastic
process given by (2.4) satisfies the Markov properties in (2.8). Let I ⊂ V and NI be its
causal parents. Let K = {p1, p2, . . . , pq} such that K ⊃ NI . Define the sequence of sets
{K0,K1,K2, . . . ,Kq} by K0 = K, and

(2.29) Ki =

{
Ki−1 if Cpi→I|(Ki−1−{pi}) > 0,

Ki−1 − {pi} if Cpi→I|(Ki−1−{pi}) = 0

for every 1 ≤ i ≤ q. Then Kq = NI .
Proof. By definition, K0 = K ⊃ NI . We prove that Kq ⊃ NI by induction. Suppose that

Ki−1 ⊃ NI . If node pi ∈ NI , then Cpi→I|(Ki−1−{pi}) > 0 by Theorem 2.2(c), and therefore
Ki = Ki−1 ⊃ NI . If node pi /∈ NI , then Ki ⊃ Ki−1 − {pi} ⊃ NI .

Next we prove that Kq ⊂ NI . Suppose that node pi /∈ NI . Since Ki−1 ⊃ NI , the causation
entropy Cpi→I|(Ki−1−{pi}) = 0 by Theorem 2.2(b), and so Ki = Ki−1 − {pi}. Therefore,
p /∈ Ki ⊃ Kq, which implies that Kq ⊂ NI (contrapositive).

Algorithm 2.2 iteratively removes nodes that are not causal parents from a set K until
the set converges to NI as described by Lemma 2.5 and illustrated in Figure 4(c).

Jointly, Algorithms 2.1 and 2.2 can be applied to identify the causal parents of each node,
thus inferring the entire causal network.6

Remark 2.4. There exists a number of algorithms for the problem of network inference,
and we will comment on the two most relevant techniques. First, we note that the ARACNE
algorithm [46] attempts to infer a (noncausal) interaction network based on mutual informa-
tion. The ARACNE algorithm first computes the mutual information between all pairs of
nodes/variables, filtering out the insignificant ones, and then enumerates through all triplets
and removes links based on the data processing inequality [16]. It was proven to correctly
infer the undirected network under the assumptions that (i) mutual information is estimated
without error, and (ii) the network is a tree [46]. Second, the PC algorithm developed by
Spirtes, Glymour, and Scheines removes noncausal links by potentially testing all combina-
tions of conditioning subsets and was proven to correctly infer general causal networks if the
conditional independence between the variables can be perfectly examined [66]. Runge et al.

6Numerically estimated causation entropy is always positive due to finite sample size and numerical preci-
sion. In practice, one needs to use a statistical test (e.g., permutation test as described in section 4) to examine
the conditions x > 0 in Algorithm 2.1 and Cj→I|(K−{j}) = 0 in Algorithm 2.2.
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[60, 61] recently utilized the PC algorithm to infer causal networks by establishing the condi-
tional dependence/independence via estimation of appropriately defined conditional mutual
information between time-lagged variables. We note that whereas we utilize Algorithm 2.2 for
the divisive step in network inference, an alternative would be to utilize the PC algorithm for
the divisive step. Although the accuracy versus efficiency tradeoff for such a modification has
yet to be tested, we expect that it may be helpful specifically for inferring the causal parents
for nodes with large degree, suggesting that in practical applications one may wish to switch
back and forth between Algorithm 2.2 and the PC algorithm for the divisive step, depending
on a node’s degree.

3. Application to Gaussian process: Analytical results. In this section we make ana-
lytical comparisons among three approaches to causal network inference: causation entropy,
transfer entropy [63], and conditional Granger causality [29, 30]. The next section will be
devoted to the exploration of the numerical properties of these approaches for general random
networks.

While information-theoretic approaches including causation entropy do not require strin-
gent model assumptions, a linear model must be assumed to offer a fair comparison with the
conditional Granger causality. As a benchmark example, we focus on the following linear
discrete stochastic network dynamics:

(3.1) X
(i)
t =

∑
j∈Ni

AijX
(j)
t−1 + ξ

(i)
t

(
or, in matrix form, Xt = AXt−1 + ξt

)
.

Here X
(i)
t ∈ R represents the state of node i at time t (i ∈ {1, 2, . . . , n}, t ∈ N), ξ

(i)
t ∈ R

represents noise, and AijX
(j)
t−1 models the influence of node j on node i. Equation (3.1) finds

application in a broad range of areas, including time series analysis (as a multivariate linear
autoregressive process [10]), information theory (as a network communication channel [16]),
and nonlinear dynamical systems (as a linearized stochastic perturbation around equilibrium
states [43]). It is straightforward to check that (3.1) is a special case of the general network
stochastic process, (2.4), and asymptotically (as t → ∞) satisfies the Markov assumptions
in (2.8).

3.1. Analytical properties of the solution. We begin by reviewing the well-known sta-
tistical properties of time series data generated by (3.1) [20], which will serve as a framework
for us to compare methods for causal network inference.

3.1.1. Solution formula. Defining X0 = ξ0 for convenience, the solution to (3.1) can be
expressed as

(3.2) Xt =

t∑
k=0

Akξt−k.

We assume that ξ
(i)
t are i.i.d. Gaussian random variables with zero mean and finite nonzero

variance, denoted as ξ
(i)
t ∼ N(0, σ2

i ) with σi > 0. Therefore,

(3.3) ξt ∼ N(0, S),
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where the covariance matrix S is defined by Sij = δijσ
2
i with δ denoting the Kronecker delta.

It follows that

(3.4)

{
E[ξ

(i)
t ] = 0,

Cov(ξ
(i)
t , ξ

(j)
τ ) = δijδtτ .

Note that a random variable obtained by an affine transformation of a Gaussian variable
is also Gaussian. For example, if Y = [Y1;Y2] is Gaussian, the distribution of Y1 conditioned
on Y2 is also Gaussian [20]. The proposition below follows from expressing random variables
via appropriate affine transformations of ξt’s.

Proposition 3.1. Let I and K be any subsets of V. Let t ∈ N and τ ∈ {0} ∪ N. The

conditional distribution of X
(I)
t+τ given X

(K)
t is Gaussian.

3.1.2. Covariance matrix. Under an affine transformation from Gaussian variable Y to
Z as Z = CY + d, the mean and covariance of Y and Z are related by μZ = CμY + d and
ΣZ = CΣYC

� [20]. We consider covariance matrices Φ(τ, t), where the (i, j)th entry of Φ(τ, t)
is defined as

(3.5) Φ(τ, t)ij ≡ Cov[x
(i)
t+τ , x

(j)
t ].

It follows from (3.2) and (3.3) that

(3.6) Xt ∼ N(0,Φ(0, t)), where Φ(0, t) =
t∑

k=0

AkS(Ak)�.

In the following we prove a sufficient condition for the converge of the covariance matrix Φ(0, t)
as time t→∞. Denote the spectral radius of a square matrix M by

(3.7) ρM ≡ max{|λ| : λ is an eigenvalue of M}.
Note that ρM = ρM� since a square matrix and its transpose have the same set of eigenvalues.
For the dynamical system defined by (3.1), matrices A with |ρA| < 1 are the only matrices
for which the underlying system poses a stable equilibrium in the absence of noise. We refer
to these matrices as stable.

Definition 3.2 (stable matrix). Matrix M is stable if ρM < 1.
The following is a known result from classical matrix theory [36].
Theorem 3.3 (convergence of matrix series [36]). The matrix series

∑∞
k=0Mk converges if

the scalar series
∑∞

k=0 ‖Mk‖ under any induced norm ‖ · ‖ converges.
Note that it is possible for the matrix series

∑∞
k=0Mk to be convergent while the corre-

sponding scalar series
∑∞

k=0 ‖Mk‖ diverges, analogous to the possibility of a scalar series that
is convergent but not absolutely convergent. Next we state and prove a sufficient condition
under which the matrix series in (3.6) converges.

Proposition 3.4 (convergence of the covariance). The series
∑∞

k=0A
kS(Ak)� converges if A

is stable.
Proof. Let ‖ · ‖ be any induced norm. Then ‖AkS(Ak)�‖ ≤ ‖Ak‖ · ‖S‖ · ‖(A�)k‖ for any

k ∈ N. Gelfand’s formula (see [25]) implies that

(3.8) lim
k→∞

‖Ak‖1/k = lim
k→∞

‖(A�)k‖1/k = ρA.
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On the other hand, limk→∞ ‖S‖1/k = 1. Therefore,

lim
k→∞

‖AkS(Ak)�‖1/k ≤ lim
k→∞

(‖Ak‖ · ‖S‖ · ‖(A�)k‖)1/k = ρ2A < 1,

where the last inequality follows from the fact that A is stable. Hence the scalar series∑∞
k=0 ‖AkS(Ak)�‖2 is convergent. The proposition follows by Theorem 3.3.
For the remainder of this section, it will be assumed that A is stable in (3.1). As t→∞,

we drop the second argument in Φ(0, t) and define the asymptotic covariance matrix

(3.9) Φ(0) ≡ lim
t→∞Φ(0, t) =

∞∑
k=0

AkS(Ak)�.

It follows that Φ(0) satisfies an algebraic equation given by the proposition below.
Proposition 3.5 (asymptotic covariance matrix). Assume that A is stable. The asymptotic

covariance matrix Φ(0) =
∑∞

k=0A
kS(Ak)� satisfies the equation

(3.10) AΦ(0)A� − Φ(0) + S = 0.

Proof. Since A is stable, both of the two matrix series below converge:{
Φ(0) = S +ASA� +A2S(A2)� +A3S(A3)� + · · ·
AΦ(0)A� = ASA� +A2S(A2)� +A3S(A3)� + · · · .

Subtracting the two equations gives the result of the proposition.
Equation (3.10) is a (discrete) Lyapunov equation which often appears in stability analysis

and optimal control problems [59]. Using “⊗” as the Kronecker product and “vec” for the
operation of transforming a square matrix to a column vector by stacking the columns of the
underlying matrix in order, (3.10) can be converted into

(3.11) (In2 −A⊗A) vec(Φ(0)) = vec(S),

where In2 denotes the identity matrix of size n2-by-n2. Matrix Φ(0) can be computed either
by solving (3.10) through iterative methods (see [5]) or by directly solving (3.11) as a linear
system. In practice, we found the iterative approach to be numerically more efficient and
stable compared to direct inversion.

Covariance matrices are in general positive semidefinite [20]. For the network dynamics
defined in (3.1), we show that they are indeed positive definite.

Proposition 3.6 (positive definiteness of the covariance matrix). The covariance matrix Φ(0, t)
is positive definite for any t ∈ N. The asymptotic covariance matrix Φ(0) is also positive
definite.

Proof. For any unit vector v ∈ R
n, v�AΦ(0, 0)A�v = (A�v)�A�v ≥ 0. From (3.2)

and (3.3), for any t ∈ N, Φ(0, t) = AΦ(0, t− 1)A� + S. By induction,

v�Φ(0, t)v = v�AΦ(0, t− 1)A�v + v�Sv

≥
(
A�v

)�
Φ(0, t− 1)

(
A�v

)
+min

i
σ2
i ≥ min

i
σ2
i > 0.(3.12)

This shows that Φ(0, t) is positive definite (indeed, we have ρΦ(0,t) ≥ mini σ
2
i > 0). Taking

t→∞ in the above estimate also shows that Φ(0) is positive definite.
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3.1.3. Time-shifted covariance matrices. We define the time-shifted covariance matrix
Φ(τ, t) for each t ∈ N (time) and τ ∈ N (positive time shift between states). If A is stable,
then the covariance matrix Φ(t, τ) converges for each time shift τ as t→∞. The (asymptotic)
covariance matrices with different time shifts are related by a simple algebraic equation given
in the following proposition.

Proposition 3.7 (relationship between time-shifted covariance matrices). Assume that A is
stable. For each τ ∈ N, the following limit exists:

lim
t→∞Φ(τ, t) = Φ(τ),

where matrix Φ(τ) satisfies

(3.13) Φ(τ) = AΦ(τ − 1) = A2Φ(τ − 2) = · · · = AτΦ(0).

Proof. For every τ ∈ N and t ∈ N, it follows that

(3.14) Φ(τ, t)ij = E

[
n∑

k=1

aikx
(k)
t+τ−1 + ξ

(i)
t+τ , x

(j)
t

]
=

n∑
k=1

aikΦ(τ − 1, t)kj .

Therefore, the matrix Φ(τ, t) satisfies

(3.15) Φ(τ, t) = AΦ(τ − 1, t) = A2Φ(τ − 2, t) = · · · = AτΦ(0, t).

Taking the limit as t→∞ and making use of the fact that A is stable, we reach the conclusion
of the proposition.

3.2. Analytical expressions of causation entropy. Here we provide analytical expressions
for causation entropy of the Gaussian process described in (3.1). Because causation entropy
can be interpreted as a generalization of both transfer entropy and conditional Granger causal-
ity under the appropriate selection of nodes i and j and the conditioning set K, these results
also provide analytical expressions for transfer entropy and conditional Granger causality.

3.2.1. Joint entropy expressions. Let Σ be the covariance matrix of a multivariate Gauss-
ian variable X ∈ R

n (i.e., X ∼ N(µ,Σ)); it follows that [1]

(3.16) h(X) =
1

2
log[det(Σ)] +

1

2
n log(2πe).

Note that the right-hand side of the above is actually an upper bound for a general random
variable (i.e., the equality “=” becomes inequality “≤” [16]). Therefore, a Gaussian variable
maximizes entropy among all variables of equal covariance.

The random variable Xt is Gaussian and converges to N(0,Φ(0)) as t → ∞. For an
arbitrary subset of the nodes K = {k1, k2, . . . , k�}. The joint entropy is

(3.17) h(X(K)) = lim
t→∞h(X

(K)
t ) =

1

2
log(det(ΦKK(0))) +

1

2

 log(2πe).

Here we have introduced the notation

(3.18) ΦIJ(0) ≡ P (I)Φ(0)P (J)�,

where, for a set K = {k1, k2, . . . , k�}, P (K) is the 
-by-n projection matrix defined as

(3.19) P (K)ij = δki,i.
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3.2.2. Causation entropy. For the Gaussian process given by (3.1), we obtain the ana-
lytical expression of causation entropy as

(3.20) CJ→I|K =
1

2
log

⎛
⎝ det

[
Φ(0)II − Φ(1)IKΦ(0)−1

KKΦ(1)�IK
]

det
[
Φ(0)II − Φ(1)I,K∪JΦ(0)−1

K∪J,K∪JΦ(1)
�
I,K∪J

]
⎞
⎠ .

If J = {j} and I = {i}, this equation simplifies to

(3.21) Cj→i|K =
1

2
log

(
Φ(0)ii − Φ(1)iKΦ(0)−1

KKΦ(1)�iK
Φ(0)ii − Φ(1)i,K∪{j}Φ(0)−1

K∪{j},K∪{j}Φ(1)
�
i,K∪{j}

)
.

3.2.3. Transfer entropy. Recall that causation entropy recovers transfer entropy when
K = {i}. Letting K = {i} in the formula above gives the transfer entropy (with single time
lag) for multivariate Gaussian variables:

Tj→i = Cj→i|i =
1

2
log
(
1 +

αij

βij − αij

)
,

where

{
αij ≡

(
Φ(0)iiΦ(1)ij − Φ(0)ijΦ(1)ii

)2
,

βij ≡
(
Φ(0)2ii − Φ(1)2ii

)(
Φ(0)iiΦ(0)jj − Φ(0)2ij

)
.

(3.22)

It follows that βij ≥ αij ≥ 0, and therefore Tj→i ≥ 0 (Ti→i = 0). Furthermore,

(3.23) Tj→i = 0 ⇐⇒ αij = 0 ⇐⇒
n∑

k=1

Aik

(
Φ(0)iiΦ(0)kj − Φ(0)ijΦ(0)ki

)
= 0.

3.2.4. Conditional Granger causality. As shown in [3], when the random variables are
Gaussian, expression of Granger causality is equivalent to that of transfer entropy (and also
causation entropy introduced here). In fact, for Gaussian variables, the Granger causality
from j to i without conditioning equals 2Cj→i, while the conditional Granger causality (with
full conditioning) equals 2Cj→i|(V−{j}).

3.3. Analytical results for directed linear chain, directed loop, and directed trees. We
derive expressions of transfer entropy and causation entropy for several classes of networks,
including directed linear chains, directed loops, and directed trees. These results highlight
that although transfer entropy may indicate the direction of information flow between two
nodes, its application to causal network inference is often unjustified as it cannot distinguish
between direct and indirect causal relationships (unless appropriate conditioning is adopted
as in causation entropy).

3.3.1. Directed linear chain. Denote a directed linear chain of n nodes as

(3.24) 1→ 2→ 3 · · · → n.

For simplicity we assume that all links have the same weight w = 1. Consequently, the
corresponding adjacency matrix A = [Aij ]n×n is given by

(3.25) Aij = δi,j+1.
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Figure 5. Causation entropy and transfer entropy for a Gaussian process on three classes of networks.
(a) For directed linear chains, both causation entropy and transfer entropy correctly identify the network as
Cj→i = Tj→i > 0 iff i = j + 1 (otherwise Cj→i = Tj→i = 0). The dependence of Cj→j+1 on node index j
is given by (3.27) and plotted. (b) For directed loops, causation entropy and transfer entropy again correctly
identify the network topology with Cj→i = Tj→i > 0 iff j → i. The dependence of Cj→i on link weight w
is given by (3.33) as shown. (c) For directed trees, causation entropy given by (3.41) correctly identifies the
network topology based on (3.43). In contrast, transfer entropy without appropriate conditioning infers many
links that do not exist in the actual network (red dashed lines), as described by (3.42).

It follows that ρA = 0, and therefore A is stable. By inverting the lower-triangular matrix
(In2 −A⊗A) in (3.11) and applying (3.13), we obtain that

(3.26)

{
Φ(0)ij = δij

∑j
k=1 σ

2
k,

Φ(1)ij = δi,j+1
∑j

k=1 σ
2
k.

Letting K = ∅ and K = {i}, respectively, in (3.21) and (3.22), it follows that

(3.27) Cj→i = Tj→i =
1

2
δi,j+1 log

(
1 +

∑j
k=1 σ

2
k

σ2
i

)
.

Therefore, for the directed linear chain defined in (3.25), transfer entropy Tj→i = Cj→i,
and it is positive iff there is a direct link j → i, i.e.,

(3.28) Cj→i = Tj→i > 0 ⇔ Aij = 1, and Cj→i = Tj→i = 0 ⇔ Aij = 0.

Interestingly, both causation entropy Cj→j+1 and transfer entropy Tj→j+1 increase monoton-
ically as a function of j, and the values depend only on part of the chain from the top node
(node 1) to node j + 1 and not on the rest of the network. Interpreting the monotonicity in
terms of the network structure, the closer node j is to the end of the chain, effectively the
more information is transferred through the directed link j → j + 1. Figure 5(a) illustrates
this via a network of n = 1000 nodes.

3.3.2. Directed loop. Consider now a directed loop with n nodes, denoted as

(3.29) 1→ 2→ 3 · · · → n→ 1.
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Let w > 0 be the uniform link weight. It follows that ρA = w. Thus, for the adjacency matrix
A to be stable, we must have w < 1. To keep the symmetry of the problem, we further assume
that the variance of noise is the same at each node; therefore,

(3.30) σ2 ≡ σ2
1 = σ2

2 = · · · σ2
n.

The entries in Φ(0, t) satisfy

(3.31) Φ(0, t)ij = w2Φ(0, t− 1)pi,pj + δijσ
2,

where pi denotes the unique node that directly links to node i. Taking the limit as t → ∞
and solving the resulting recursive equations, we obtain that

(3.32)

{
Φ(0)ij = δijσ

2/(1− w2),

Φ(1)ij = δpi,jσ
2w/(1 − w2),

where the second equation is obtained through Φ(0)ij and (3.13). LettingK = ∅ andK = {i},
respectively, in (3.21) and (3.22), we conclude that

(3.33) Cj→i = Tj→i =
1

2
δpi,j log

( 1

1− w2

)
.

Note that causation entropy and transfer entropy equal and do not depend on the noise
variation σ2, and they are positive iff there is a direct link j → i; i.e.,

(3.34) Cj→i = Tj→i > 0 ⇔ Aij = 1, and Cj→i = Tj→i = 0 ⇔ Aij = 0.

By symmetry, causation entropy and transfer entropy through each directed link are the same.
As the link weight w increases in (0, 1), both increase monotonically in (0,∞). The larger the
link weight w is, the larger the amount of information is that is transferred via each directed
link, as intuitively expected. Also see Figure 5(b) as an illustration.

3.3.3. Directed trees. We now consider directed tree networks with uniform link weight
w = 1 and unit node variance7

(3.35) σ2
1 = σ2

2 = · · · σ2
n = 1.

A directed tree has one root (indexed as node 1 without loss of generality), and each nonroot
node i (i �= 1) has exactly one ancestor, denoted by pi. The corresponding adjacency matrix
A = [Aij ]n×n thus satisfies

(3.36) Aij = (1− δi1)δi,pi .

It can be shown that ρA = 0. For i �= 1, we denote the directed path from 1 to i by

(3.37) 1 = p
(di)
i → p

(di−1)
i → · · · → p

(1)
i ≡ pi → p

(0)
i ≡ i,

7Similar results hold for trees with general link weights and node variances, but the corresponding equations
are too cumbersome to list.
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where di is the depth of node i in the tree (for node 1, we define its depth d1 = 0). Thus, the
highest node in the tree is the root, and the lowest nodes have the greatest depth. For any
two nodes (i, j), we denote their lowest common ancestor by pij, i.e.,

(3.38) pij = argmax
{k|∃�,m≥0,s.t.,p

(�)
i =p

(m)
j }

dk.

The covariance matrix Φ(0, t) satisfies

(3.39) Φ(0)ij = δ1iδ1jσ
2
1 + (1− δ1i)(1 − δ1j)[Φ(0)pi,pj + δij ].

We solve these recursive equations to obtain

(3.40)

{
Φ(0)ij = δdi,dj (dpij + 1),

Φ(1)ij = (1− δi1)δdi,dj+1(dpij + 1),

where pij is defined in (3.38) and Φ(1)ij is obtained by Φ(1) = AΦ(0).
We calculate causation entropy and transfer entropy through (3.21) and (3.22):

(3.41) Cj→i = Tj→i =
1

2
δdi,dj+1 log

(di + 1)(dj + 1)

(di + 1)(dj + 1)− (dpij + 1)2
.

Note that, in general, 0 ≤ dpij ≤ min{di, dj}. Thus, Cj→i = Tj→i ≤ 1
2 log(1+di) with equality

iff j is the ancestor of i (i.e., j = pi = pij). Therefore, we have

(3.42)

{
Tj→i > 0 ⇔ di = dj + 1 ⇐ Aij = 1 (but Tj→i > 0 �⇒ Aij = 1),

Tj→i = 0 ⇔ di �= dj + 1 ⇒ Aij = 0 (but Aij = 0 �⇒ Tj→i = 0).

In other words, transfer entropy being positive (without appropriate conditioning) corresponds
to a superset of the links that actually exist in a directed tree, and the inferred network using
this criterion will potentially contain many false positives. See Figure 5(c) for an example.
On the other hand, for a given node i �= 1, we have

(3.43)

{
pi = argmaxj Cj→i,

Cj→i|{pi} = 0.

Therefore, for each node i, the node j that maximizes causation entropy Cj→i among all
nodes is inferred as the causal parent of i. Conditioned on this node, the causation entropy
from any other node to i will become zero, indicating no other directed links to node i. This
causation entropy based procedure allows for exact and correct inference of the underlying
causal network, a directed tree.

4. Application to Gaussian process: Numerical results. In this section, we illustrate
that causal network inference by optimal causation entropy is reliable and efficient for the
Gaussian process, (3.1), on large random networks.
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4.1. Random network model and time series generation. We consider signed Erdős–
Rényi networks, which are a generation of their original model [8]. In particular, each net-
work consists of n nodes (V = {1, 2, . . . , n}) such that each directed link j → i is formed
independently with equal probability p, giving rise to a directed network with an expected
number n2p of directed links. For generality, we allow the link weight of each link j → i to be
either positive (Aij = w) or negative (Aij = −w) with equal probability. Recalling that the
network adjacency matrix A is defined entrywise by Aij ∈ {w,−w} iff there exists a directed
link j → i (otherwise Aij = 0), the link weight w may be selected to tune the spectral radius
ρ(A) of matrix A.

We generate time series from the stochastic equation, (3.1), where matrix A is obtained
from the network model and random variables ξt ∼ N (0, S), where the covariance matrix S
is taken to be the identity matrix of size n×n. To reduce transient effects, for a given sample
size T we solve (3.1) for 10T time steps and use only the final 10% of the resulting time series.

To summarize, our numerical experiments contain the following parameters: n (network
size), p (connection probability), ρ(A) (spectral radius of A), and T (sample size).

4.2. Practical considerations for network inference. We have established by Theorems
2.2 and 2.3 and Lemmas 2.4 and 2.5 that, in theory, exact network inference can be achieved
by optimal causation entropy, which involves implementing Algorithms 2.1 (aggregative dis-
covery) and 2.2 (progressive removal) to correctly identify the set of causal parents Ni for
each node i ∈ V.

In practice, the success of our optimal causation entropy approach (and, in fact, any
entropy-based approaches) depends crucially on reliable estimation of the relevant entropies
in question from data. This leads to two practical challenges.

(1) Entropies must be estimated from finite time series data. While there are several tech-
niques for estimating entropies for general multivariate data, such estimations are increasingly
inaccurate for small sample sizes and high-dimensional random variables [52]. In this research,
we side-step this computational complexity by using knowledge of the asymptotic functional
form for the entropy of the Gaussian process, where the covariance matrices Φ(0) and Φ(1)
in (3.20) and (3.21) are estimated directly from the time series data.

(2) Application of the theoretical results rely on determining whether the causation entropy
Cj→i|K > 0 or Cj→i|K = 0. However, the estimated value of Cj→i|K based on sample covari-
ances is necessarily positive given finite sample size and finite numerical precision. Therefore,
a statistical test must be used to assess the significance of the observed positive causation
entropy. We here adopt a widely used approach in nonparametric statistics called the per-
mutation test.8 Specifically, we propose the following permutation test based on the null
hypothesis that causation entropy Cj→i|K = 0: first, we perform r random temporal permu-

tations of the time series {X(j)
t }, leaving the rest of the data unchanged; we then construct an

empirical cumulative distribution F̂ (x) of the estimated causation entropy from the permuted

8The idea of a permutation test is to perform (a large number of) random permutations of a subset of the
data, leaving the rest unchanged, giving rise to an empirical distribution of the static of interest. The observed
statistic from the original data is then located on this empirical distribution in order to associate its statistical
significance [28].
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time series;9 finally, given a prescribed significance threshold θ, the observed Cj→i|K = c is

declared significant (i.e., the null hypothesis is rejected at level 1− θ) if F̂ (c) > θ.
To summarize, the inference algorithms contain two parameters to be used in the permu-

tation test: r (number of random permutations) and θ (significance threshold).

4.3. Comparing optimal causation entropy, conditional Granger, and transfer entropy.
Here we compare the performance of three approaches of causal network inference: conditional
Granger (see, for example, [23, 32]), transfer entropy (see [76] and the references therein),
and optimal causation entropy (oCSE). In particular, the conditional Granger and transfer
entropy approaches under consideration both estimate the entropy Cj→i|K for each pair of
nodes (i, j) independently, with the choice of K = V − {j} in the case of conditional Granger
and K = {i} in the case of transfer entropy. In both approaches, a causal link j → i is inferred
if the observed Cj→i|K > 0 is assessed as significant under the permutation test. The oCSE
approach combines Algorithms 2.1 and 2.2, and the permutation test is used once per each
iteration (line 2 of both algorithms).

The performance of the three approaches is quantified by two types of inference error:
false negative ratio, denoted as ε− and defined as the fraction of links in the original network
that are not inferred, and false positive ratio, denoted as ε+ and defined as the fraction of
nonexisting links in the original networks that are inferred. In terms of the adjacency matrix
A of the original network and that of the inferred network Â, these ratios can be computed as

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε− ≡ number of (i, j) pairs with χ0(A)ij = 1 and χ0(Â)ij = 0

number of (i, j) pairs with χ0(A)ij = 1
,

ε+ ≡ number of (i, j) pairs with χ0(A)ij = 0 and χ0(Â)ij = 1

number of (i, j) pairs with χ0(A)ij = 0
.

For the random networks considered here, we found that Algorithm 2.1 achieves almost
the same accuracy as the combination of Algorithms 2.1 and 2.2. We therefore present re-
sults which are based on the numerical application of Algorithm 2.1 alone, leaving detailed
numerical study of Algorithm 2.2 to future work.

Figure 6(a)–(b) shows that although the conditional Granger approach is theoretically
correct and works well for small network size with sufficient samples, it suffers from increasing
inference error as the network size increases, and it becomes extremely inaccurate when the
network size n starts to surpass the sample size T . Such limitations are overcome by the
oCSE approach, where both the false positive and false negative ratios remain close to zero
as the network size increases. The reason that oCSE is accurate even as n increases is that
it builds the causal parent set in an aggregative manner, therefore relying only on estimating
entropy in relatively low dimensions (here roughly the same dimension as the number of
causal parents per node). In sharp contrast, the conditional Granger approach requires the
estimation of entropy in the full n-dimensional space and therefore requires many (potentially
exponentially) more samples to achieve the same accuracy when n becomes large.

9The accuracy of this empirical distribution and therefore the power of the permeation test increases with
an increasing number of permutations r. However, as r increases, the computational complexity also increases,
scaling roughly as a linear function of r.
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Figure 6. Comparison of causal network inference approaches: Conditional Granger, transfer entropy, and
oCSE. The time series are generated from the Gaussian process defined in (3.1) using signed Erdős–Rényi
networks (see section 4.2 for details). Two types of inference error are examined—false negative and false
positive ratios, defined in (4.1). (a)–(b) Inference error as a function of network size n using conditional
Granger versus oCSE approaches. Here the networks have a fixed average degree np = 10 and spectral radius
ρ(A) = 0.8. Sample size is T = 200. (c)–(d) Inference error as a function of the spectral radius ρ(A) using
transfer entropy versus oCSE approaches. Here the networks have a fixed number of nodes n = 200 and average
degree np = 10. Sample size is T = 2000. For all three approaches we apply the permutation test using
r = 100 permutations and significance threshold θ = 99%. Each data point is obtained from averaging over 20
independent simulations of the network dynamics, (3.1).

Figure 6(c)–(d) shows that even for a sufficient number of samples, the transfer entropy
approach without appropriate conditioning can lead to considerable inference error and is
therefore inherently unsound for causal network inference. In particular, although inference
by both transfer entropy and oCSE gives similar false negatives in the regime of ρ(A) ≈ 0,
where the dynamics is dominated by noise and not the causal dependencies, transfer entropy
yields increasing false positives when the causal links dominate, ρ(A)→ 1. This is mainly due
to the fact that as ρ(A)→ 1, indirect causal nodes become increasingly difficult to distinguish
from direct ones without appropriate conditioning [71]. oCSE, on the other hand, consistently
yields nearly zero false positive ratios in the entire range of ρ(A). Interestingly, the spectral
radius ρ(A) can be interpreted as the information diffusion rate on networks and is found to
be very close to criticality (i.e., ρ(A) ≈ 1) in neuronal networks [39, 42].

These numerical experiments highlight that whereas the conditional Granger approach
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Figure 7. Performance of the oCSE approach for causal network inference with different significance
thresholds for networks of various sizes. The time series are generated from the Gaussian process defined
in (3.1) using signed Erdős–Rényi networks (see section 4.2 for details). False negative ratio (upper row) and
false positive ratio (lower row) are defined in (4.1). (a)–(b) Inference error as a function of sample size T for
various significance levels θ used in the permutation test. Here networks have n = 200 nodes with expected
average degree np = 10 and information diffusion rate ρ(A) = 0.8. (c)–(d) Inference error as a function
of sample size T for various network sizes. Here networks have the same expected average degree np = 10
and information diffusion rate ρ(A) = 0.8, and we use r = 1000 permutations in the permutation test with
θ = 0.999. Note that all three false negative curves in (c) appear to converge for T ≈ 300. The critical sample
size T∗ (defined as the minimum T for which ε− < 1− θ) as a function of the network size n is shown in the
inset of (c), suggesting the absence of scaling of T∗ in terms of n. Each data point is obtained from averaging
over 20 independent simulations of the network dynamics, (3.1).

is inaccurate for T � n and the transfer entropy approach is inaccurate when ρ(A) � 1,
the proposed oCSE approach overcomes both limitations and yields almost exact network
inference even for rather limited sample size.

4.4. Performance of optimal causation entropy approach for causal network inference.
Having established the advantages of the oCSE approach, we now examine its performance
under various parameter settings.

First, we examine the effect of the significance threshold θ on the inference error. As
shown in Figure 7(a)–(b), the false negative ratio ε− does not seem to depend on θ and
converges to zero as sample size T increases. On the other hand, as T →∞, the false positive
ratio saturates at the level ε+ ∼ (1 − θ), which is consistent with the implementation of the
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permutation test which rejects the null hypothesis at θ. This observation suggests that in
order to achieve higher accuracy given sufficient sample size, one should choose θ as close to
1 as possible. The tradeoff in practice is that reliable implementation using larger θ requires
an increasing number of permutations and therefore increases the computational complexity
of the inference algorithms.

Next, we investigate the effect of sample size T on the inference error for networks of
different sizes. The results are shown in Figure 7(c)–(d). As expected, when T increases, the
false negative ratio decreases toward zero. Somewhat unexpectedly, the false positive ratio
stays close to zero (in fact, close to the significance level θ) even for relatively small sample
size (T as small as 50 for networks of up to 500 nodes). Furthermore, it appears that for
networks of different sizes but the same average degree and information diffusion rate, the
false negative ratios drop close to zero almost at the same sample size. To better quantify
these effects, we define the critical sample size T∗ as the smallest number of samples for
which the false negative ratio falls below 1 − θ. As shown in the inset of Figure 7(c), for
networks with the same average degree and information diffusion rate, the critical sample size
T∗ remains mostly constant despite the increase of the network size. This result is unexpected.
Traditionally, the network size n represents a lower bound on sample size T as any covariance
matrix (e.g., application of the conditional Granger requires that T > n for the invertibility of
the covariance matrices). Our result surprisingly indicates that sample size T does not need
to scale with network size n for accurate network inference and highlights the fact that the
oCSE approach is scalable and data efficient, with accuracy depending not on the size of the
network but rather on other network characteristics such as the density of links and spectral
radius (information diffusion rate).

To strengthen our claim that for Erdős–Rényi networks, performance of the causal infer-
ence by the oCSE approach depends on the density of links as measured by average degree
and information diffusion rate as measured by the spectral radius rather than network size,
we further investigate the dependence of inference error on these two additional parameters,
np and ρ(A). As shown in Figure 8(a), for networks of the same size n = 200 with fixed
ρ(A) = 0.8, the larger the average degree np, the larger the number of samples required to
reduce the false negative ratio to zero. In fact, as shown in the inset of Figure 8(a), the critical
sample T∗ to reach ε− < 1− θ appears to scale linearly as a function of the average degree np,
but not the network size (see the inset of Figure 7(c)). On the other hand, Figure 8(c)–(d)
shows that the information diffusion rate, ρ(A), seems to pose a harder constraint on accurate
network inference: the smaller it is, the more samples are needed for accuracy. In particular,
as shown in the inset of Figure 8(c), the critical sample size appears to increase exponentially
as ρ(A) decreases toward zero. Interestingly, as shown in Figure 8(b),(d), the false positive
ratios in both cases remain close to its saturation level around 1 − θ = 10−3 even for very
small sample size (T ∼ 50), and this holds across networks with different average degree and
different size (also see Figure 7(d)).

To briefly summarize these numerical experiments, we found that for the Gaussian process,
practical causal network inference by the proposed oCSE overcomes fundamental limitations
of previous approaches including conditional Granger and transfer entropy. One important
advantage of the oCSE approach, as suggested by the numerical results, is that it often requires
a relatively small number of samples to achieve high accuracy, making it a data-efficient
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Figure 8. Performance of the oCSE approach for causal network inference for networks with different
average degree and spectral radius. The time series are generated from the Gaussian process defined in (3.1)
using signed Erdős–Rényi networks (see section 4.2 for details). False negative ratio (upper row) and false
positive ratio (lower row) are defined in (4.1). (a)–(b) Inference error as a function of sample size for networks
with various average degree np. Here the networks have the same size n = 200 and spectral radius ρ(A) = 0.8.
The inset shows the critical sample size T∗ (see text) as a function of np. (c)–(d) Inference error as a function
of sample size for networks with various special radii ρ(A). Here the networks have the same size n = 200 and
average degree n = 10. The permutation test used for the data in all panels involve r = 1000 permutations
with the significance threshold θ = 0.999. Each data point is obtained from averaging over 20 independent
simulations of the network dynamics, (3.1).

method to use in practice. In fact, we found that for Erdős–Rényi networks, the critical number
of samples required for the false negatives to vanish does not depend on the network size but
rather depends on the density of links (as measured by average degree) and the information
diffusion rate (as measured by the spectral radius of the network adjacency matrix). This is
somewhat surprising because traditionally the network size poses as an absolute lower bound
for the sample size in order for proper inversion of the covariance matrix (recent advances such
as Lasso have partially resolved this issue by making specific assumptions about the model
form and utilizing l1 optimization techniques [22, 73]). On the other hand, our numerical
results also suggest that only a very small number of samples is needed for the false positives
to reach saturation level. This level is inherently set by the significance threshold used in the
permutation test rather than other network characteristics and can be systematically reduced
by increasing the significance threshold and the number of permutations.
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5. Discussion and conclusion. Although time series analysis is broadly utilized for sci-
entific research, the inference of large networks from relatively short times series data, and in
particular causal networks describing “cause-and-effect” relationships, has largely remained
unresolved. The main contribution of this paper includes the theoretical development of cau-
sation entropy, an information-theoretic statistic designed for causality inference. Causation
entropy can be regarded as a type of conditional mutual information which generalizes the
traditional, unconditioned version of transfer entropy. When applied to Gaussian variables,
causation entropy also generalizes Granger causality and conditional Granger causality. We
proved that for a general network stochastic process, the causal parents of a given node are
exactly the minimal set of nodes that maximizes causation entropy, a key result which we refer
to as the optimal causation entropy principle (see Definition 2.1). Based on this principle, we
introduced an algorithm for causal network inference called oCSE, which utilizes two steps to
jointly infer the set of causal parents of each node.

The effectiveness and data efficiency of the proposed oCSE approach were illustrated
through numerical simulation of a Gaussian process on large-scale random networks. In par-
ticular, our numerical results show that the proposed oCSE approach consistently outperforms
previous conditional Granger (with full conditioning) and transfer entropy approaches. Fur-
thermore, inference accuracy using the oCSE approach generally requires fewer samples and
fewer computations due to its aggregative nature: the conditioning set encountered in entropy
estimation remains relatively low-dimensional for sparse networks. The number of samples
required for the desired accuracy does not appear to depend on network size but rather on
the density of links (or, equivalently, the average degree of the nodes) and the spectral radius
(which measures the average rate at which information transfers across links). This makes
oCSE a promising tool for the inference of networks, in particular large-scale sparse causal
networks, as found in a wide range of real-world applications [6, 19, 48, 49]. Therefore, we
wish to emphasize that among all the details we presented herein, our oCSE-based algorith-
mic development (aggregative discovery jointly with progressive removal) is the most central
contribution, serving as a computational tool to systematically infer casual relationships from
data generated by a complex interrelated process. In principle, we expect our two-step process
given by Algorithms 2.1 and 2.2 to also be effective for network inference when the statistic
is not necessarily causation entropy.

We conclude by noting several problems that remain to be tackled. First, for general
stochastic processes, exact expression of entropy is rarely obtainable. Practical application
of the oCSE therefore requires the development of nonparametric statistics for estimating
causation entropy for general multidimensional random variables. An ideal estimation method
should rely on as few assumptions about the form of the underlying variable as possible and
be able to achieve the desired accuracy even for relatively small sample size. Several existing
methods, including various binning techniques [62] and k-nearest neighbor estimates [40], seem
promising, but further exploration is necessary to examine their effectiveness [33]. Second,
temporal stationarity assumptions are often violated in real-world applications. It is therefore
of critical importance to divide the observed time series data into stationary segments [77],
allowing for the inference of causal networks that are time-dependent [45]. Finally, information
causality suggests physical causality, but they are not necessarily equivalent [33, 53]. It is our
goal to put this notion onto a more rigorous footing and further explore their relationships.
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Appendix A. Causal inference of finite-order Markov processes. The main body of
the paper deals with causal inference of a first-order stationary Markov process. Such a
framework can in fact be extended to any finite-order stationary Markov processes. The idea
is to convert a finite-order process to a first-order process and define nodes in the causal
network to be variables at different time layers.

Consider a stationary Markov process {Zt} of order τ , which satisfies

(A.1) p(Zt|Zt−) = p(Zt|Zt−1, . . . , Zt−τ ),

where Zt− = [Zt−1, Zt−2, . . . ] denotes the infinite past of Zt. Define a delay vector

(A.2) Xt = [Zt, . . . , Zt−τ+1].

Then, for every xt = [zt, zt−1, . . . , zt−τ+1] and xt− ,

p(Xt = x|Xt− = xt−) = p(Xt = xt|Zt−1 = zt−1, Zt−2 = zt−2, . . . )

= p(Xt = xt|Zt−1 = zt−1, Zt−2 = zt−2, . . . , Zt−τ = zt−τ )

= p(Xt = xt|Xt−1 = xt−1),(A.3)

where the last step follows from (A.1) and the definition of Xt. See Figure 9 for an example
with τ = 2. This shows that the process {Xt} is indeed a first-order Markov process. The
inference of the causal network is therefore converted into the identification of the causal
parents of the nodes corresponding to {Zt} in the equivalent first-order process, for which the
results in the main body of the paper apply so long as the conditions in (2.8) are met.

In practice, if the order of the underlying Markov process is unknown, then one needs to
estimate it before being able to turn the process into a first-order process. The determination
of Markov order has been a long-standing problem and is traditionally addressed by performing
hypothesis tests based on computing a χ2 statistic [4]. The main disadvantage is that the χ2

distribution is only valid in the infinite-sample limit. A breakthrough was made recently
by Pethel and Hahs [54], who developed a relatively efficient procedure for surrogate data
generation which yields an exact test statistic valid for arbitrary sample size at the expense
of increased computational burden.

Appendix B. Necessity of the faithfulness assumption. The faithfulness assumption is
necessary for the “true positive” statement in Theorem 2.2(c) to be valid. To illustrate this
point, consider a network of three nodes X, Y , and Z, and let

(B.1) Xt+1 = Yt ⊕ Zt,

where ⊕ denotes the “exclusive or” (xor) operation and Yt and Zt are Bernoulli random
variables with probabilities

(B.2) P (Yt = 0) = P (Yt = 1) = P (Zt = 0) = P (Zt = 1) = 0.5.

It follows that

(B.3) CY→X = CZ→X = 0.
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Figure 9. Converting a high-order Markov process into a first-order Markov process by making multiple
instances of nodes. (a) A second-order Markov process on n = 3 nodes, where causal relationships are across

time lags of either 1 or 2 time steps. We denote by Z
(i)
t the state of node i at time t. (b) The flow of

information for the second-order Markov process. Each row corresponds to a given node i ∈ {1, 2, 3}, and

each column corresponds to the nodes’ states {Z(i)
t } at a particular time t. Solid and dotted lines denote

causal relationships across a time lag of 1 and 2 time steps, respectively. (c) The flow of information for the
equivalent first-order Markov process. Each row corresponds to a given node i ∈ {1, 2, . . . , 2n}, and each column

corresponds to the nodes’ states {X(i)
t } at a particular time t. For i ∈ {1, 2, 3}, the new variables {X(i)

t } are

defined by X
(i)
t = Z

(i)
t and X

(n+i)
t = Z

(i)
t−1 = X

(i)
t−1. For Markov processes of order τ , one can use the more

general transformation X
((s−1)n+i)
t = Z

(i)
t−s+1 for nodes i ∈ {1, . . . , n} and s ∈ {1, 2, . . . , τ}.

However,

(B.4) C(Y,Z)→X = log 2 > 0.

This results from the fact that multiple random variables can be mutually independent but
not jointly independent. Expressed in terms of causal inference, it is possible that several
variables jointly cause another variable, and this causal relationship cannot be decomposed.
Such occurrences are believed to be rare and are often explicitly excluded by making the
faithfulness/stability assumption [48]. For instance, in our example above, it occurs only
when all the discrete probabilities are exactly uniform, p = 0.5, a situation that is unstable
under perturbations. We exclude this situation from our study by imposing condition (3)
in (2.8).
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