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Abstract

Standard graph theoretic algorithms are applied to chaotic dynamical systems to identify orbits that are optimal relative
to a prespecified cost function. We reduce the targeting problem to the problem of finding optimal paths through a graph.
Numerical experiments on one-dimensional maps suggest that periodic saddle orbits of low period are typically less expensive
to target (relative to a family of smooth cost functions) than periodic saddle orbits of high period. c© 1998 Elsevier Science
B.V.

PACS: 05.45.+b

1. Introduction

The “control of chaos” refers to a procedure wherein
one applies a sequence of small perturbations to con-
fine a chaotic trajectory to a small neighborhood of
a given saddle periodic orbit embedded in the attrac-
tor [1]. “Targeting” refers to a process wherein one
uses a suitable sequence of small perturbations to steer
an initial condition, on an attractor, to a neighborhood
of a prespecified point (target) as quickly as possi-
ble [2]. Targeting algorithms can be used to rapidly
switch a chaotic process between different periodic
orbits [3].

A variety of different performance objectives may
be important in applications of control and target-
ing. Consider a discrete dynamical system that is a
Poincaré map of a flow. Successive iterates on the
surface of section may correspond to widely varying
times of flight. A targeting algorithm that reaches a
given point on the surface of section in a minimum

number of iterates typically does not correspond to
the minimum time of flight in the original flow. Thus,
it may be desirable to define a “cost” or “perfor-
mance” function of points on the surface of section
and choose a targeting path that minimizes the total
cost of reaching the target (or alternatively maximizes
performance).

Targeting a spacecraft from the earth to the moon
is an example where a minimum-time orbit might be
desirable. Alternative performance goals might be to
minimize overall fuel consumption or to avoid certain
regions of space.

In this Letter, we address two distinct, but related,
questions. (1) Targeting algorithms such as those dis-
cussed in Ref. [2] may yield many orbits that lead to
a neighborhood of a given target point. Which orbits
have the lowest cost? (2) It is possible to use targeting
algorithms to steer from one periodic point to another.
On the average, do orbits leading to a periodic point
of low period have a lower cost per step compared to
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orbits leading to periodic points of high period?

2. Finding optimal orbits

We use well-established algorithms from graph the-
ory to minimize the total cost of targeting from one
point to a neighborhood of another point. These al-
gorithms apply in a natural way to transition diagram
descriptions of dynamical systems [4,5]. The breadth-
first search (BFS) algorithm finds the shortest path
through an unweighted directed graph, and Dijkstra’s
algorithm finds the optimal path through a directed
graph with positive weights [6]. Our results suggest
that transition diagrams can be well approximated by
direct observation of a sufficiently long chaotic orbit.
As we now show, the targeting problem can be traded
for the problem of finding optimal paths through a
graph, which in turn are found by generating spanning-
trees through the graph. The advantage of this trade
is that path searching is a mature topic in graph the-
ory [6] and in computer science; there are algorithms
to find paths that satisfy a variety of different restric-
tions.

The generating symbol partition of a dynamical sys-
tem allows the use of symbol dynamics to represent
the system in the equivalent but abstract setting of a
Bernoulli shift map on a symbol space; the orbit of
each initial condition in the phase space has a corre-
sponding infinite symbol sequence. (The sequence is
bi-infinite if the map is invertible.) Given the generat-
ing partition, symbol dynamics lends itself particularly
well to representation by a directed graph [4,5,7,8].
Often, however, the generating partition is difficult to
find: no general method is known for more than two
dimensions, and even in two dimensions, the meth-
ods must be tailored to specific maps [5]. While the
Markov partition is important for applications such as
computations of entropy, Lyapunov exponents, and the
like, it is not needed for path searching applications.
This is fortunate, because an arbitrary grid is not ex-
pected to be Markov.

When symbol dynamics are impractical, we pro-
pose the use of a simplistic, but serviceable, grid-based
method. Suppose we require an optimal orbit from
A to B using perturbations that move points by dis-
tances less than ε in phase space. Given a map Fλ
parametrized by λ, this constraint requires

ε ≈ ∂Fλ
∂λ

λmax. (1)

Fig. 1a illustrates an ε-grid covering the Hénon attrac-
tor, generated by the map (xn+1, yn+1) = F(xn, yn) =
(1 − αx2

n + yn, βxn). For clarity of the illustration,
we have chosen the crude grid (εx, εy) = (0.5, 0.2).
Given an orbit of length M, we determine the num-
ber N of occupied ε-boxes and identify the occupied
boxes with a directed graph of N nodes. If the point
(xi, yi) lies in box j and (xi+1, yi+1) lies in box k,
then we draw an arrow from node j to node k in the
corresponding graph; see Fig. 1b. This graph repre-
sentation of the discretized global action of the map
on the grid, while not Markov, is a surjection from the
phase space onto the graph of observed transitions;
each graph path has a corresponding observed ε-chain
pseudo-orbit.

For a fixed ε-grid, the accuracy of the observed tran-
sition diagram improves as the test orbit gets longer.
For a fixed-length test orbit, the accuracy deteriorates
as ε decreases, because some boxes are missed. For
good accuracy, the orbit must be long enough so that
there are many ε-recurrences, which requiresN� M.

Suppose that the attractor is contained in the region
[xmin, xmax] × [ymin, ymax]. We assign a number to
each box in the ε-grid. By allocating a new node in
the graph whenever an iterate first visits a new box, no
storage is required for unoccupied boxes. The mem-
ory requirements are proportional to the box dimen-
sion [9] of the attractor, which may be considerably
less than the dimension of the phase space. The time
required to construct the transition diagram from a test
orbit of length M is O(M2).

Any sufficiently long chaotic test orbit can be rep-
resented as a directed graph, including embeddings of
time series from laboratory experiments. We have ap-
plied the method to numerically generated orbits from
the logistic map, the standard map (which is difficult
to target [10,11]), and a Poincaré map derived from
the flow of the Lorenz equations. The method also
works for higher dimensional dynamical systems, al-
lowing only for the memory requirements of covering
an attractor of (possibly large) box dimension with a
(possibly small) ε-grid [12].

Once an orbit has been interpreted as a directed
graph, a path through the graph can be realized by
targeting iterates of the orbit that correspond to nodes
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Fig. 1. (a) The Hénon attractor with α = 1.4, β = 0.3, and an (εx, εy) = (0.5, 0.2) grid covering. We enumerate and show only the grid
squares that are occupied by an iterate of the map. (b) The observed action of the Hénon map on the grid; an arrow is drawn from node
j to node k whenever an iterate goes from box j to box k on the attractor. The edges may have equal weights or may carry weights
according to a nonnegative cost function.
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in the desired path sequence. Given an approximate
orbit (ε-chain), one can numerically “shoot” at the
stable manifolds of the targeted sequence of points
using small variations of an adjustable map parame-
ter [10,13]. Hence, the targeting problem reduces to
the problem of finding optimal paths through a graph.

The BFS algorithm finds the shortest path from node
A (corresponding to the box containing the initial con-
dition) to nodeB in an unweighted directed graph [6].
Starting at nodeA, we inspect each adjacent node, that
is, the nodes that can be reached in one step. From
these nodes, we check all adjacent nodes that have not
yet been visited; these nodes can be reached fromA in
exactly two steps. We continue until we find the target
node among the nodes reachable in exactly k steps.

The computer implementation maintains two lists.
The second list contains the nodes that have never
been visited (initially, all nodes except A), and the
first list contains the nodes that have been reached in k
or fewer steps (initially, only node A). When a node
is added to the first list, it is removed from the second
list. Hence, the number of steps through the graph is
bounded by the number of nodes, N. Starting at A,
the program can find the distance (number of steps)
to every node in the graph in time complexity O(E),
where E is the number of edges in the graph. To find
the path, we maintain the first list as a 3 × N array,
where the first entry is an identifier for the node, the
second entry is the number of steps to reach the node,
and the third entry identifies the predecessor of the
node. Given the graph’s connectivity, we can backtrack
through the array to find the shortest path from node
A to node B.

When the unweighted graph exactly corresponds to
the symbolic dynamics of the process, the shortest
path represents the optimal orbit (in a minimum iterate
sense) from the initial condition to an ε-neighborhood
of the target. The value of ε, which determines the
precision of the graph, depends on the allowable size
of the parameter perturbations; see Eq. (1).

The efficacy of this approach depends on how well
the graph approximates the symbolic dynamics of the
map. Typically, the existence of a short path between
two nodes implies that it is possible to reach a neigh-
borhood of a target point relatively quickly from a
given initial condition. For example, in Fig. 1b, there
is an arrow from node 13 to node 9. Hence, it may be
possible to reach an ε-neighborhood of a target point

Table 1
Lengths of shortest paths from fixed starting and target nodes on
directed graphs constructed from test orbits of length M from the
Hénon map with α = 1.4, β = 0.3. The ε-chain pseudo-orbit has
an error bounded by, the ε of the grid of fixed precision (ε ≈
0.005) in the region [−1.8, 1.8]× [−1.8, 1.8]

M 211 212 213 214 215 216 217

Path length 63 45 28 25 16 16 16

in box 9 from initial conditions in box 13 in one iter-
ate; the size of the required parameter perturbations is
determined by Eq. (1). On the other hand, if the test
orbit were sufficiently short, the transition from node
13 to node 9 might not be observed. In this case, the
shortest path goes through nodes 10, 6, 8, 1, 12, and
then 9.

Table 1 shows the length of the shortest paths from
a fixed starting node and ending node, using BFS ap-
plied to graphs derived from an observed trajectory of
the Hénon map. The directed graphs follow observed
test orbits of lengthM through a grid of fixed precision
(ε ≈ 0.005) in the region [−1.8, 1.8]×[−1.8, 1.8].
When the test orbit is sufficiently short (say M <
215), the fastest observed paths are suboptimal be-
cause some transitions between grid boxes are not ob-
served. As M is increased, more transitions are ob-
served, and the BFS paths become shorter. Eventu-
ally, the length of the optimal paths approaches a con-
stant value (here 16), because no new transitions are
observed with further increases in M. This result is
typical for a variety of parameter values, grid sizes,
and maps, including the standard map and the logistic
map [12].

Dijkstra’s algorithm finds a cost-optimal path
through a directed graph whose arcs have arbitrary
positive weights. If two different paths have exactly
equal weights, then Dijkstra’s algorithm selects the
tree-wise leftmost equivalent path. In any case, the
surjection yields an optimal ε-pseudo orbit that is no
more costly than any other ε-pseudo orbit of the map.
A detailed description of the algorithm can be found
for example in Ref. [6]. The time complexity of Di-
jkstra’s algorithm is O(N2), where N is the number
of nodes in the graph. This time requirement is small
compared to the O(M2) time needed to construct the
graph from a test orbit of length M.

A natural choice for a positive cost function F(x)



E.M. Bollt, E.J. Kostelich / Physics Letters A 245 (1998) 3991406 403

is the time of flight from x to its next return to the sur-
face of section for a Poincaré return map. The weight
from node A to node B in the corresponding directed
graph might be the average of F over all points in the
ε-neighborhood identified with A that move in one it-
erate of the Poincaré map to the ε-neighborhood iden-
tified with B. Dijkstra’s algorithm can be used to find
an orbit on the Poincaré section that corresponds to a
very fast orbit in the original flow.

Weighted graphs and targeting algorithms can yield
a control strategy that allows one to avoid prespeci-
fied regions of a chaotic attractor. For example, given
a directed graph constructed from a test orbit on the
full attractor, nodes corresponding to undesirable re-
gions on the attractor can be eliminated, either man-
ually [14] or by assigning an infinite weight to the
incoming edges. In either case, Dijkstra’s algorithm
avoids paths containing the undesirable nodes.

We close this section with an observation that re-
lates two equivalent viewpoints found in dynamical
systems theory and in graph theory. A principal fea-
ture that makes path searching problems through a
graph of N nodes computationally simple is the fact
that, when building spanning trees, at each step, the
next (arc) closest node is selected from a decreasing
list of nodes that have not yet been visited. There-
fore, the longest possible path and the longest pos-
sible search are bounded by a path that visits all N
nodes. Translated to the language of dynamical sys-
tems, one’s ability to cover the attractor with the ε-grid
requires a compact attractor. The pigeonhole principle
can be used to show that an ε-recurrence must occur
in a time bounded above by N iterations. (This is a
form of the Poincaré recurrence theorem [10].) If we
consider the graph as generating a finite-type subshift
symbol space on N symbols with the discrete topol-
ogy, then in that setting, path searching is equivalent
to finding grammatically legal words (a sequence of
symbols) joining two symbols (nodes). When this
symbolic representation is derived from the map by a
generating partition, then the representation is equiva-
lent by semi-conjugacy. (See, for example, Ref. [8].)

Finally, we note that Hsu [18] has studied “cell-to-
cell” mapping methods for characterizing a dynami-
cal system on a grid, with much attention to refine-
ment, where needed, to capture fine details. Cell-to-
cell mapping considers the orbit of a grid square to
be determined by the orbit of the point at the square’s

center. In contrast, we determine the orbit possibilities
of a grid square by all iterates of a test orbit that er-
godically wander into the square; hence, we consider
branching in a more natural way. To our knowledge,
there has been no attempt to use cell-to-cell mapping
as a vehicle for path searches.

3. The costs of targeting periodic orbits

So far we have considered the question of how to
identify one or more orbits to a target that are optimal
with respect to a given criterion. In this section, we
introduce an initial numerical study of the optimal-
ity of families of targeted orbits. We are interested in
the question of whether periodic orbits of low period
are less expensive to target, on the average, than those
of high period, given a prespecified “cost” or perfor-
mance function.

An important question in the study of dynamical
processes is the long-time average value of a smooth
function F over a given orbit {xi}, which for a discrete
dynamical system is

〈F〉 = lim
n→∞

1
n

n∑
i=1

F(xi).

Hunt and Ott [15] have investigated chaotic processes
where “typical” orbits (with respect to the Lebesgue
measure of initial conditions in the phase space) have
well-defined long-time averages. Saddle periodic or-
bits embedded in the attractor are not typical in this
sense, and they may yield values of 〈F〉 that are differ-
ent from those of the typical (aperiodic) orbits within
the attractor.

The function F also may be regarded as a “cost” or
performance function. Hunt and Ott examined a large
number of saddle periodic orbits embedded in the at-
tractors of some low-dimensional dynamical systems
and considered a large family of performance func-
tions, Fγ, parametrized by γ. They found that for most
choices of γ, the value of 〈Fγ〉 was more likely to be
larger on periodic orbits of low period than the value
of 〈Fγ〉 on orbits of high period. Thus, if one regards
Fγ as a measure of system performance, periodic or-
bits of low period are more likely to be the “optimal”
periodic orbits in a chaotic attractor.
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As discussed in the Introduction, there are many
possible performance measures that one may wish to
optimize in a given chaotic process. Hunt and Ott
found that 〈F〉 is often largest when evaluated on pe-
riodic orbits of low period. We are interested in the
values of 〈F〉 that are obtained when the average is
computed over a large ensemble of targeted orbits that
reach a small neighborhood of a periodic orbit. We
now consider some numerical experiments that ad-
dress the question of whether periodic orbits of low
period are less expensive to target, on the average,
than those of high period, for a given family of per-
formance functions.

As a first example, we consider the tent map

T(xn) = xn+1 = 2xn, 0 6 xn 6 1/2,

= 2− 2xn, 1/2 < xn 6 1. (2)

Let y be a periodic point of T , and suppose that z0 is
eventually periodic to y in k iterates; that is, T k(z0) =
y but T j(z0) /∈ orbit(y) for 0 6 j < k. We define the
average targeting cost per step to reach y from z0 as

1
k

k∑
j=1

Fγ
(
T j(z0)

)
,

where Fγ is one of a family of smooth performance
functions parametrized by γ. (Here T k denotes the tent
map composed with itself k times.)

The average targeting cost per step depends on the
particular periodic orbit y and the initial condition z0.
For a given periodic orbit, there are arbitrarily many
eventually periodic points, as k may be any positive
integer. In most applications, however, one wants to
reach a given target point relatively quickly, so we
are interested primarily in cases where k is relatively
small. In the numerical results presented below, we
have taken k = 7, but there is nothing special about
this choice; we have found similar results for other
small values of k.

Having fixed k, we now consider all the period-p
points of the tent map for a given p. (We regard y
as a period-p point if Tp(y) = y but T j(y) 3 y for
0 < j < p.) Let Sp(k) be the set of all points z0 such
that z0 is eventually periodic to a period-p point of
the map T in k steps. The set Sp(k) represents all the
possible “perfect” targeting orbits, as each one lands
directly on a period-p target in k steps.

Fig. 2. Period of the orbit with minimal average targeting cost
per step, as a function of γ, which parametrizes the family of
performance functions. The average targeting cost per step is
computed over all orbits that are eventually periodic to a period-p
point in 7 steps for the tent map. (a) Results using the cost
function Fγ(x) = cos 2π(x−γ); (b) results using the cost function
Fγ(x) = cos 2π(x− γ) + sin 6π(x− γ).

We define the average targeting cost per step to
reach a period-p point in k steps as

Cγ(p) =
1
kN

∑
z0∈Sp(k)

k∑
j=1

Fγ
(
T j(z0)

)
, (3)

where N is the number of points in Sp(k). The quan-
tity Cγ(p) is simply the value of 〈Fγ〉, where the aver-
age is computed over the set of all eventually periodic
orbits that lead to a period-p point in k steps. The set
Sp(k) is straightforward to generate using the symbol
sequence associated with each orbit of the tent map.

We are interested to know how the average target-
ing cost per step for periodic points depends on the
performance function Fγ and the period p when k is
fixed (as mentioned above, we take k = 7). For each
period p 6 14, we evaluate Cγ(p) for 105 uniformly
spaced values of γ between 0 and 1, using the perfor-
mance function Fγ(x) = cos 2π(x− γ). This family
of functions is the same used by Hunt and Ott [15];
the cosine simply provides a convenient, smooth fam-
ily.
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Fig. 2a shows, as a function of γ, the period p
that minimizes the value of Cγ(p). For this family
of performance functions, the numerical experiment
suggests that the low-period orbits have the lowest
average targeting cost per step. Fig. 2b shows analo-
gous results for the family of performance functions
Fγ(x) = cos 2π(x− γ) + sin 6π(x− γ).

Given an arbitrary map, it is not convenient to char-
acterize all of the periodic orbits and eventually peri-
odic orbits using symbolic sequences alone, because
one does not usually have a formula for the n-bit word
intervals. Instead, we use a targeting algorithm to get
within a small neighborhood of a target point in a cer-
tain number of steps. We now ask whether results are
similar to the tent map example, Eq. (2).

Consider the quadratic map, Qa(xn) = xn+1 =
axn(1− xn). If a = 3.72, then the map Q3.72 appears
to have chaotic orbits, but it is not conjugate to the
tent map. We can locate all the periodic points for
p 6 9 using a careful numerical search. (There are no
orbits of period 3 or 5 for a = 3.72.) We then target
each periodic point, starting from random initial con-
ditions, using the algorithm of Shinbrot et al. [16].

More precisely, given a periodic point as the target,
we start from a random initial condition in the unit in-
terval and seek a sequence of parameters in the inter-
val [3.69, 3.75] to steer the orbit to within 10−4 of the
target point in 7 steps. That is, given the initial condi-
tion x0, we attempt to find a sequence of parameters
a0, a1, . . ., a6 in [3.69, 3.75] such that the sequence
x1 = Qa0 (x0), x2 = Qa1 (x1), . . ., x7 = Qa6 (x6) is an
orbit such that x7 lies within 10−4 of a prespecified,
target periodic point. (As in the tent map example,
there is nothing special about the choice of 7 steps,
and we have found similar results for other, relatively
short targeted orbits.) For each target, the algorithm
is repeated until a set of 105 initial conditions is found
that satisfies these criteria.

We then repeat the algorithm using each periodic
point of period p 6 9 as a target point. For each p, we
let Sp denote the set of all the initial conditions found
above that lead to one of the period-p points in k = 7
steps. In analogy with Eq. (3), we define

Cγ(p) =
1
kN

∑
z0∈Sp

k−1∑
j=0

Fγ
(
Qaj(xj)

)
, (4)

where N is the number of points in Sp .

Fig. 3. Period of the orbit with minimal the average targeting
cost per step for the quadratic map with a = 3.72. (a) The
cost function Fγ(x) = cos 2π(x − γ); (b) the cost function
Fγ(x) = cos 2π(x− γ) + sin 6π(x− γ).

Fig. 3a shows the period p that minimizes Cγ(p)
as a function of γ. The family of performance func-
tions is Fγ(x) = cos 2π(x − γ). This numerical ex-
periment supports the expectation that for this family
of performance functions, the low-period orbits have
the lowest average targeting cost per step.

These numerical experiments are preliminary, but
they do suggest that, in many cases, it is likely to be
less expensive to target a periodic point of low pe-
riod than a periodic point of high period, where the
expense is defined in terms of the average value of a
smooth cost function computed over a large number of
targeting orbits. Additional investigations are under-
way to examine targeting orbits for periodic points in
higher dimensional maps, such as the kicked double
rotor map [17].

4. Conclusions

A variety of performance objectives may be im-
portant in targeting applications in chaotic dynamical
systems. Two types of questions may be considered:
Given a target, how can one identify an “optimal” or-
bit? Given a variety of targets (such as periodic saddle
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orbits of various periods), which ones are least ex-
pensive to target, relative to some family of cost func-
tions whose value is averaged over a large number of
targeting orbits? Graph theoretic methods can be used
to address the first question, and we have presented a
preliminary set of numerical experiments that suggest
that periodic orbits of low period may, in many cases,
be less expensive to target than periodic orbits of high
period.
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