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THE BIGGER PICTURE From decision-makers to scientific problems from a wide range of areas, process-
ing information and making decisions are often reduced to Boolean function inference, meaning yes or no
answers to similarly input data. When these interactions occur in complex networks, solutions of the under-
lying functions from data become exponentially computationally intensive. We have developed an informa-
tion-theoretic approach here, called Boolean optimal causation entropy, which is capable of inferring the
interaction network and the underlying functions simultaneously, accurately, and efficiently. We show
that this method also allows for identifying underlying essential features for a related reduced-order Bool-
ean model.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Boolean functions, and networks thereof, are useful for analysis of complex data systems, including frombio-
logical systems, bioinformatics, decision making, medical fields, and finance. However, automated learning
of a Boolean networked function, from data, is a challenging task due in part to the large number of unknown
structures of the network and the underlying functions. In this paper, we develop a new information theoretic
methodology, called Boolean optimal causation entropy, that we show is significantlymore efficient than pre-
vious approaches. Our method is computationally efficient and also resilient to noise. Furthermore, it allows
for selection of features that best explains the process, described as a networked Boolean function reduced-
order model. We highlight our method to the feature selection in several real-world examples: (1) diagnosis of
urinary diseases, (2) cardiac single proton emission computed tomography diagnosis, (3) informative posi-
tions in the game Tic-Tac-Toe, and (4) risk causality analysis of loans in default status.
INTRODUCTION

In this paper we consider an important problem in data science

and complex systems, which is the identification of the hidden

structure and dynamics of a complex system from data. Our

focus is on binary (Boolean) data, which commonly appear in

many application domains. For example, in quantitative biology,

Boolean data often come from gene expression profiles where

the observed state of a gene is classified or thresholded to either

‘‘on’’ (high expression level) or ‘‘off’’ (low to no expression level).
This is an open access article under the CC BY-N
In such an application, it is a central problem to understand the

relation between different gene expressions, and how theymight

impact phenotypes, such as occurrence of particular diseases.

The interconnections among genes can be thought of as forming

a Boolean network, via particular sets of Boolean functions

that govern the dynamics of such a network. The use of Boolean

networks has many applications, such as for the modeling of

plant-pollinator dynamics,1 yeast cell cycles,2,3 pharmacology

networks,4 tuberculosis latency,5 regulation of bacteria,6

biochemical networks,7 immune interactions,8 signaling
Patterns 3, 100631, November 11, 2022 ª 2022 The Authors. 1
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Figure 1. A Boolean function can be

uniquely identified by a truth table, called a

Boolean table

For a k-ary Boolean function, the table has 2k rows,

and k + 1 columns. For each row, the first k entries

correspond to a particular input binary string (e.g.,

(0,1,0)), and the last entry represents the output of

the function.
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networks,9 gut microbiome,10 drug targeting,11 drug syn-

ergies,12 floral organ determination,13 gene interactions,14 and

host-pathogen interactions.15 In general, the problem of learning

Boolean functions and Boolean networks from observational

data in a complex system is an important problem to explain

the switching relationships in these and many problems in sci-

ence and engineering.

To date, many methods have been proposed to tackle the

Boolean inference problem.16–22 Notably, REVEAL (reverse engi-

neering algorithm for inference of genetic network architectures),

which was initially developed by Liang et al. in 199819 has been

extremely popular. REVEAL blends ideas from computational

causality inference with information theory, and has been suc-

cessfully applied in many different contexts. However, a main

limitation of REVEAL is its combinatorial nature and thus suffers

from high computational complexity cost, making it effectively

infeasible for larger networks. The key challenge in Boolean

inference are due to two main factors: (1) the system of interest

is typically large, containing hundreds, if not thousands and

more, components; (2) the amount of data available is generally

not sufficient for straightforward reconstruction of the joint prob-

ability distribution.

A function of the form

f : D/B; where B = f0; 1g; (Equation 1)

is called a Boolean function, where D3Bk and k˛N is the arity

of the function. For an k-ary Boolean function, there are 2k

possible input patterns, the output of each is either 0 or 1. The

number of distinct k-ary Boolean functions is 22
k
, a number

that clearly becomes extremely large, extremely quickly, with

respect to increasing k. Consider, for example, 22
3
= 256,

22
5
z4:2953 109, and 22

8
z1:15831077 (comparable with the

number of atoms in the universe, which is estimated to be be-

tween 1078 and 1082). This underlies the practical impossibility

of approaching a Boolean function learning problem by brute

force exhaustive search.

Each Boolean function can be represented by a truth table,

called a Boolean table. The table identifies, for each input

pattern, the output of the function. An example Boolean function

y = fðx1; x2; x3Þ together with its corresponding Boolean table

are shown in Figure 1.

A Boolean function is useful to model a system that has multi-

ple binary inputs and a single binary output. More generally, a

system can have multiple outputs, in which case multiple Bool-

ean functions are needed, each capturing the relation between
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an output variable and the set of input variables. The collection

of these individual functions constitute a Boolean network.

Formally, a Boolean network is characterized by a triplet of

sets, denoted as G = ðV ;E; FÞ, where ðV ;EÞ represents a graph

that encodes the structure of the network: VðGÞ = f1; 2;.;ng is
the set of nodes, and EðGÞ3V3V is the set of directed edges

(possibly including self-loops). The functional rules of the

network are encoded in FðGÞ = ðf1;f2;.;fnÞ, which is an ordered

list of Boolean functions. For each node i in the network, we

represent its set of directed neighbors by N i = fj : ði; jÞ ˛Eg
and the degree of node i as the cardinality of N i, denoted as

ki = jN ij. Thus, fi : Bki/B is a ki-ary Boolean function that rep-

resents the dependence of the state of node i on the state of its

directed neighbors. Note that, alternatively, the dependence

patterns of a Boolean network can also be represented by an

adjacency matrix A = ½Aij�n3n, where:

Aij =

�
1; if j˛N i;
0; otherwise

: (Equation 2)

Thus, the adjacency matrix A encodes the structure of a Bool-

ean network, although not the functional rules. More details on

stochastic Boolean function, stochastic Boolean network, and

a discussion of several forms of data that commonly appear in

application problems are presented in the problem of learning

a Boolean network from observational data. We show that data

can either be directly represented or rearranged into a set of

input-output pairs:

fðxðtÞ; yðtÞÞ : t = 1;.; Tg; (Equation 3)

where,

xðtÞ = ½x1ðtÞ;.; xnðtÞ�˛Bn = f0; 1gn; and;
yðtÞ = ½y1ðtÞ;.; y[ ðtÞ�˛B[ = f0; 1g[ ; (Equation 4)

are both vectors of Boolean states.

In this paper, we propose that information flow built upon

causation entropy for identifying direct versus indirect influ-

ences,23,24 using the optimal causation entropy principle

(oCSE)25 is well suited to develop a class of algorithms that

furthermore enable computationally efficient and accurate

reconstruction of Boolean networks and functions, despite noise

and other sampling imperfections. Instead of relying on a combi-

natorial search, our method iteratively and greedily finds relevant

causal nodes and edges and the best Boolean function that uti-

lizes them, and thus is computationally efficient. We validate the
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Figure 2. Number of data points required for

learning random Boolean networks with no

error (left) and error ratios as a result of

applying the proposed method (right)

BoCSE, for learning random Boolean networks of

fixed size n = 50 and degree K = 3. For both

panels, each point on the plotted curve is the result

of an average over 50 random realizations. These

test networks are generated in a random process.

For each node i, K out of the remainder n � 1 are

selected with directed links to node I. The Boolean

function is defined by assigning randomly an output

of either 0 or 1 to each input pattern, with equal

probability.
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effectiveness of our new approach that here we call, Boolean

optimal causation entropy (BoCSE), using data from several

real-world examples, including for the diagnosis of urinary dis-

eases, cardiac single proton emission computed tomography

(SPECT) diagnosis, Tic-Tac-Toe, and risk causality analysis of

loans in default status.

RESULTS

Given a set of input-output pairs fxðtÞ;yðtÞg, (here yðtÞ is a single

bit), we want to find a minimal Boolean function that is sufficient

in representing the data. To quantify the complexity of the Bool-

ean function, we state the following information-theoretic

criterion

minK3½n�jKj; s:t: I
�
XðKÞ;Y

�
= maxK ˛ ½n�I

�
XðKÞ;Y

�
: (Equation 5)

Here,

½n� = f1;2;.;ng;
K = fk1;.; k[g is a subset of ½n�;
Y = ½yð1Þ;.; yðtÞ�; :and
XðKÞ

=

h
XðKÞ

i
T 3 [

where
h
XðKÞ

i
tj
= XðtÞkj

: (Equation 6)

The symbol I denotes mutual information, that is, IðXðKÞ;YÞ is
the mutual information between XðKÞ and Y.

At a glance, solving this combinatorial problem seems to be

computationally complex. In our previous work25 we proposed

an oCSE algorithm for the case of general distributions that

can find K efficiently, and we proved in Sun et al.25 that it

correctly infers the underlying network as it is able to distinguish

direct versus indirect connections correctly. In this work we build

upon these previous results to develop a fully automated frame-

work for learning Boolean networks and functions. Basic con-

cepts from information theory are reviewed in the discussion,

and a detailed presentation of the BoCSE framework is provided

in BoCSE for data-driven learning of the structure and function of

Boolean networks. In this section we present examples of appli-

cations of BoCSE, the proposed Boolean learning method.

Benchmark on random Boolean networks
We first evaluate BoCSE for learning randomly generated bool-

ean networks. These networks are generated with two parame-

ters, n is the number of nodes, and K is the in-degree of each

node in the network (for example, K = 3 means that each node

i receives three inputs from other nodes, randomly chosen).
The Boolean function associated with each node i is constructed

by assigning randomly an output of either 0 or 1 to each input

pattern, with equal probability. Figure 2 shows that the number

of data points needed for correctly learning the entire Boolean

network scales sublinearly as the size of the network (left panel).

Although the scaling becomes worse as K increases, it is still

within practical reach for networks of several hundred of nodes.

In the right panel of Figure 2, we show the error of learning for

networks of fixed size n = 50. As the length of data increases

(more data points), both false positive and false negative ratios

decrease toward zero, confirming the validity and convergence

of the method.
Automated diagnosis of urinary diseases
As an application to aid the automation of medical diagnosis, we

consider a dataset that documents the symptoms and diagnosis

outcomes of 120 patients. The data are an extended version of

the table used in Czerniak and Zarzycki26 and are available

at the UCI Machine Learning database via the following link un-

der the name ‘‘Acute Inflammations’’: https://archive.ics.uci.

edu/ml/datasets/Acute+Inflammations.

In this extended dataset, there are descriptions from a total of

120 patients, each with 6 attributes and 2 decision variables. The

attributes are (1) temperature, (2) nausea, (3) lumbar pain, (4)

urine pushing, (5) micturition pains, (6) burning of urethra, itch,

swelling of urethra outlet. Other than temperature, which takes

a value in the range of 35�C–42�C), all the other 5 attributes are

recorded as a Boolean value, either ‘‘1’’ (symptom exists) or

‘‘0’’. In our analysis, we threshold the temperature data into bi-

nary values by simple thresholding: temperature equal or above

38�C are converted into ‘‘1’’ (fever) and those below are con-

verted into ‘‘0’’ (no fever). The two decision (outcome) Boolean

variables are

1. (acute) inflammation of the urinary bladder

2. nephritis of renal pelvis origin

In Table 1 we summarize the description of the attributes and

decision variables.

We apply the BoCSE learning method separately to the two

outcome variables. For each outcome variable, we treat each

patient’s attributes as one input Boolean string and the corre-

sponding recorded outcome as a single output.

For the first outcome variable Y1, that is inflammation of the

urinary bladder, we found that the relevant attributes are (in

terms of decreasing order of importance): (4) urine pushing, (5)
Patterns 3, 100631, November 11, 2022 3
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Table 1. Attributes and outcome variables for the urinary

disease data

attributes description

X1 fever

X2 nausea

X3 lumbar pain

X4 urine pushing

X5 micturition pains

X6 burning of urethra, itch,

swelling of urethra outlet

Outcome

Y1 (acute) inflammation of urinary bladder

Y2 nephritis of renal pelvis origin

Each variable is Boolean and takes a value 1 or 0 representing the pres-

ence or absence of a particular attribute/outcome.
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micturition pains, and (6) burning of urethra, itch, swelling of

urethra outlet. The inferred Boolean function for the relation be-

tween these attributes and the outcome are shown in the left-

hand part of Table 2, and is found to accurately describe every

individual data record. Interestingly, for the other outcome Y2,

the relevant attributes become X1 and X3 (in order of decreasing

importance), and the inferred Boolean function, as shown in the

right-hand part of Table 2, can be written using a simple ‘‘and’’

gate: Y2 = X1^X2, which implies that the diagonals of nephritis

of renal pelvis origin can be based on having both symptoms: fe-

ver and lumbar pain. Yet again, this relation is consistent with

every single patient’s record in the dataset. Note that in the in-

ferred Boolean network, several links are undetermined and

marked as N/A since the input patterns are not observed in the

available data thus causing ambiguity; such ambiguity can

potentially be resolvedwith additional data or other side informa-

tion, and integrating such information into the learning process

will be an interesting topic of research on its own.

Next, using the inferred attributes from the entire dataset (120

samples), we explore the dependence of the accuracy of our

Boolean inference on the sample size. We do this by randomly

selecting a subset of the samples, and use such ‘‘down-

sampled’’ data instead of the full dataset for Boolean inference.

For each sample size, we repeat such inference 50 times and

compute the average number of false positives (attributes in-

ferred using the down-sampled data that are not present using

the full-size data) and false negatives (attributed to inference us-

ing the full dataset, which now appears using the down-sampled

data). The results are shown in Figure 3. Interestingly, for this

particular example our method never seems to produce false

positives, and the number of false negatives decreases rapidly

to zero as more samples are used in Boolean inference, which

suggests the effectiveness of the method in automated diag-

nosis systems via relatively small sample sizes.

Automated cardiac SPECT diagnosis
In this example, we test our Boolean learning method on an

existing dataset that aims at automated image-based cardiac

diagnosis. The dataset is derived from a set of images obtained

by cardiac SPECT.27 In particular, there is a total of T = 267 pa-

tients, each of whom is classified as either normal ðyt = 1Þ or
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abnormal ðyt = 0Þ. The data are divided into a training set that

contains T1 = 80 patients and a test (validation) set of T2 = 187

patients. For each patient’s image set, a total of n = 22 binary

feature patterns were created, defining xiðtÞ = 1 if the i-th feature

is present in the SPECT images of the t-th patient, and xiðtÞ = 0

otherwise, for i = 1;.;22 and t = 1;.;267. Finally, this post-

processed Boolean dataset is further divided into a training set

that contains 87 out of the 267 patients’ features and diagnosis,

and a validation set that contains such information for the re-

maining 180 patients.

Focusing on this post-processed Boolean data, we are inter-

ested to see if our automated Boolean inference method is

able to learn the decision rules, that is, to diagnose a patient

based on a reduced set of Boolean features out of the 22 fea-

tures. In this sense, our methodology can be understood as use-

ful for reduced-order modeling in the realm of complex Boolean

function inference problems. Said another way, this method de-

scribes a way to simplify decision-making problems by focusing

on the most relevant factors, which are those that lead to impor-

tant outcomes. As shown in Figure 4, our method is able to learn

a Boolean function that achieves near 80% of decision accuracy

on the validation data across a wide range of parameters. The

achieved accuracy, generally using only a subset of the full set

of 22 Boolean features, and without any fine-tuning of parame-

ters or further optimization, is already comparable with the

best known result on such datasets.28

Tic-Tac-Toe
Tic-Tac-Toe is a classical two-player board game, which is also

often played using pencil and paper. The ‘‘board’’ is a 3-by-3 grid

with a total of 9 slots, as illustrated in Figure 5A. At the beginning

of the game, the board is empty. Then, the two players take turn

to mark any empty ‘‘slot’’ in each turn—typically one uses ‘‘X’’

the other uses ‘‘O’’. The player who is the first to have marked

three consecutive horizontal, or vertical, or diagonals slots,

wins the game. For instance, Figures 5B–5D is an example of

the sequence of marks made by the players, where the first

player (player ‘‘X’’) eventually wins by having marked an entire

row (in this case, the top row). In general, if both players do their

best at every move, the outcome would be a draw.

Our interest here is not (re)analysis strategies of this relatively

simple game. For those who are interested, variants of the game

actually has a connection to Ramsey theory.29,30 Here, we are

interested in testing our Boolean learning algorithm to see if it

providesanyuseful information.To thisend,wecollected thecom-

plete set of possible board configurations at the end of a Tic-Tac-

Toe game via the following link under the name ‘‘Tic-Tac-Toe

Endgame DataSet ’’: https://archive.ics.uci.edu/ml/datasets/Tic-

Tac-Toe+Endgame. There is a total of 958 instances. For the t-th

instance, we use xðtÞ = ½x1ðtÞ;.; x9ðtÞ�u to present the state of

the i-th slot, ordered as follows: upper-left, upper-middle, upper-

right, middle-left, center, middle-right, lower-left, lower-middle,

and lower-right. Each xiðtÞ can either be 1 (if marked by ‘‘X’’), � 1

(ifmarkedby (‘‘O’’), or 0 (if empty). Corresponding to each instance

t is the final outcome,whichwedenote as yðtÞ, which either equals

1 if player ‘‘X’’ wins or 0 if ‘‘X’’ does notwin. Interpreting ðtÞ and yðtÞ
as samples of random variablesX and Y , we can ask the question

of which slots in the board, statistically, are more relevant (or

predicative) for the first player to win the game.

https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
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Table 2. Inferred Boolean relations by BoCSE for the two

outcome variables: Y1 (left-hand part of table) and Y2 (right-hand

part of table)

X4 X5 X6 Y1

Occurrence

(%) X1 X3 Y2

Occurrence

(%)

0 0 0 0 25.00 0 0 0 33.33

0 0 1 N/A 0 0 1 0 16.67

0 1 0 0 8.33 1 0 0 8.33

0 1 1 N/A 0 1 1 41.67

1 0 0 1 8.33

1 0 1 0 17.50

1 1 0 1 16.67

1 1 1 1 24.17

Each entry in the ‘‘occurrence’’ column shows the fraction of observed

attribute data: ðX4;X5;X6Þ for the left-hand table and ðX1;X3Þ for the

right-hand table. For each attribute pattern, the ‘‘predicted’’ value of

outcome is shown in the Y column, where ‘‘N/A’’ refers to cases where

no such input pattern is ever seen in the empirical data.
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Applying our Boolean learning algorithm, we found a list of

most important slots, ordered in decreasing value of (added)

relevance: i1 = 5 (center), i2 = 1 (upper-left), i3 = 9 (lower-right),

i4 = 3 (upper-right), i5 = 7 (lower-left), i6 = 8 (lower-middle),

and i7 = 2 (lower-right). To quantify the relative importance of

each attribute, we compute the conditional entropy HðY jXi1.ik Þ
for k = 0;.;7, where HðY jXi0 Þ is used to represent HðYÞ. This
shows that, as the number of attributes increases, uncertainty

decreasesmonotonically and reaches 0 (complete predictability)

when 7 attributes are used (Figure 6). In this example, the best

Boolean network is not uniquely defined due to the symmetry

in the problem—all corners are equivalent; however, as soon

as one of them is selected as the second most important, it

breaks the symmetry and leads to a unique set of subsequent

variables.

Risk causality analysis of loans in default status
Loan default prediction is an essential problem for banks and

insurance companies to fiscally responsibly approve loans.

However, in many cases, the borrowers fail to pay the loan as

agreed, called loan default, which motivates the risk analysis

problem in the banking industry, to identify those parameters

that identify one borrower as trustworthy, and another borrower

as representing a high risk.

We consider the open dataset from LendingClub (American

peer-to-peer lending company), which can be downloaded

from the LendingClub website. We considered the dataset for

the year 2019 (four quarters). The dataset contains more than

500,000 entries (data points, sample size). However, we only

considered the long term (the final) status of the loans. Therefore,

we excluded all the loans with the status Current as an outcome,

to have a sample size of 62,460 for our analysis. That is, all can be

classified to an outcome Paid in full, or Default status. We should

emphasize here that we only considered the parameters asBool-

ean in nature, which limits those considered to those 10 parame-

ters that we investigate as to their influence on the outcomes.

This example gives a causality driven description of those pa-

rameters that, combined, can represent a high risk that the
borrower will not be able to pay his loan in full. This causality

inference occurs within the Boolean framework for parameters

concerning the loan long-term status. Table 3 shows the attri-

butes and their description. In loan issuing risk analysis, the

amount of the requested loan and the annual income of the

borrower are important variables to consider, and they are

both numeric variables. We introduce here the combined attri-

bute, loan to income ratio, which combines both variables in

the form of a Boolean variable. Our dataset has a sample size

of 62,460, and the loan to income ratio range from 0.0001 to

36,000. So, we considered the median value mz0:2 to be our

threshold step, such that X9 = 0 indicates that the loan to income

ratio of the loan request is less than 0.2, and it is within the lowest

50% of all the requested loans over the period (which is, in our

case, 1 year).

We then apply BoCSE, the proposed Boolean factors learning

approach to the outcome variable Y , where we found that the

relevant attributes are, in decreasing order of importance:

d X9, loan to income ratio

d X10, loan terms

d X3, verification of the reported income

We expect that the probability of having the loan fully paid

ðY = 1Þ will be larger than a default ðY = 0Þ in this example, for

all the observed combinations of the relevant attributes. Howev-

er, the challenge here is to find the combination of attributes that,

together, represent a high risk if approving the loan. For example,

if for someattribute combinations (binary string)X, the probability

PrðY = 1Þ = 0:8, and PrðY = 0Þ = 0:2, we may not be satis-

fied by saying that the expected outcome that the borrower will

pay the loan in full because PrðY = 1Þ>PrðY = 0Þ. Our focus

here will be that there is a risk that the borrower will not pay the

loan with probability PrðY = 1Þ = 0:2, which represents a

high risk.

In Table 4, we can see the inferred Boolean function relation-

ship between these attributes and the resulting outcomes.

From application of our automated Boolean function learning

method (results shown in Table 4), we summarize these inter-

esting summary observations:

d The first four rows represent patterns where X3 = 0, that

describe loans in which the borrower’s incomewas not veri-

fied. We see that this feature coincides with a significant in-

crease in the probability that the loan will not be paid in full.

The lowest value in this group of patterns is ðX3;X9;X10Þ =

ð0;0; 1Þ, which represents an unverified income, low loan

to income ratio, and a 60-month loan term, and the joint

probability is then 1:9%. We conclude that low loan to in-

come ratio combined with a long-term loan (which implies

low monthly payment) reduces the risk of loan default.

d For the same pattern, but with a 36-month loan term, ðX3;

X9; X10Þ = ð0; 0;0Þ, we see a significant increase in risk

from 1:9% to 9:6%. For the pattern ðX3;X9Þ = ð0;1Þ, the
risk increases with the 36-month term loan, from 6:3% to

8:1%. This indicates that higher monthly payments indi-

cate a higher risk. However, the effect of the loan term be-

comes neutral, meaning no effect in terms of observing

only the verified income patterns ðX3 = 1Þ. For these

two patterns, where we have a verified income, the same
Patterns 3, 100631, November 11, 2022 5
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Figure 3. Boolean inference error as a func-

tion of sample size for the urinary disease

example

Here, the ‘‘true’’ set of relevant attributes are taken

to be the ones inferred using the full data (120

samples).

(A) Inference error as a function of sample size (from

10 to 120) for the first outcome variable, Y1, where

error is quantified by false positives and false neg-

atives. The number of true attributes is 3 in this case.

(B) Similar to (A), but for Y2. The number of true at-

tributes is 2 in this case. In each plot, each data

point is an average over 50 independent random

down-samplings of the full dataset.

0.6

0.8

1

Accuracy
FNR
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risk conclusions follow for both the 36- and 60-month

term loans.

d Comparing the above two points, we conclude that, if the

borrower’s reported income is verified, there is no differ-

ence in the risk between different loan terms. However, if

it is not verified, then going with the 60-month term loans

can profoundly reduce the risk, regardless of the loan to in-

come ratio.

d We see that the lowest risk, or the most trustworthy bor-

rowers, are the ones with the combination ðX3;X9;X10Þ =

ð1; 0;1Þ, which represents a verified income, low loan to in-

come ratio, and 60-month term loan reflecting lowmonthly

payments. The risk, in this case, is about 0:4%. Unfortu-

nately, however, such a pattern occurs infrequently, repre-

senting fewer than 1% of the borrower customers.

d On the other hand, we see that a significant high risk asso-

ciates with the combination ðX3;X9;X10Þ = ð0;0;0Þ, which

represents unverified income, low LTI ratio, and 36-month

term loan (high monthly payments). This is particularly

interesting since a low LTI may on its own may suggest a

safer primary indication because it implies a high income,

low loan value, or both. However, we see that, even with

high income, or low requested loan amount, the combina-

tion of unverified income together with large monthly pay-

ment, ðX3; X10Þ = ð0; 0Þ, has the highest risk compared

with all other combinations in the table: 9:6% and 8:1%.
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4 FPR

fraction of features

Figure 4. Automated diagnosis of heart disease using 22Boolean at-

tributes derived from cardiac SPECT

Here, we explore how the diagnosis accuracy changes as the parameter a

(confidence control parameter, see estimation of conditional mutual informa-

tion and tests of significance for details) in our Boolean inference method is

varied. In particular, we apply BoCSE to the training data (80 patients) and

validate the resulting Boolean functions on the validation set (187 patients). We

compute the accuracy of diagnosis as the overall percentage of correct di-

agnoses in the validation set, as shown in the figure. In addition, we also

compute and plot, for each a, false-positive ratio (FPR) and false-negative ratio

(FNR), together with the effective number of Boolean variables inferred by our

method (dashed curve).
DISCUSSION

Although black box machine learning methods have become

increasingly more popular due to their relative ease of implemen-

tation without deep understanding of how theywork, in some ap-

plications, such as quantitative biology, where it is essential to

uncover causal and relevant factors beyond functional fitting. A

prototype problem of such is to learn, from noisy observational

data, the structure and function of a Boolean network. The

classic widely used REVEAL approach accomplishes this by

performing a combinatorial search in the space of Boolean vari-

ables, and its performance relies heavily on having a relatively

small network size and small maximum degree, two aspects

that are in sharp contrast to typical biological systems that can

be large and complex. To overcome these difficulties, here we

present BoCSE as a new learning approach based on the optimi-
Patterns 3, 100631, November 11, 2022
zation of causation entropy applying to Boolean data. This new

approach relies on computing entropies of judiciously con-

structed subsets of variables, and does not require the combina-

torial search typically used in other methods. We benchmark the

effectiveness of BoCSE on random Boolean networks and

further apply it in several real-world datasets, including in finding

the minimal relevant diagnosis signals, quantifying the informa-

tive signs of a board game Tic-Tac-Toe, and in determining the

causal signatures in loan defaults. In all examples, the BoCSE

provides outcomes that are directly interpretable and relevant

to the respective application scenarios.

Basic concepts from information theory
In this section, we review some basic concepts from information

theory. These concepts are rooted in information and theory,31,32

and are heavily utilized in our computational approach for Bool-

ean inference.

The (Shannon) entropy of a discrete random variable X is

given by



Figure 5. Tic-Tac-Toe game

(A) Start of the game, where the board is made up

of a 3-by-3 grid.

(B–D) Example of a sequence of moves made by

two players, where player ‘‘X’’ plays first, and

eventually wins the game by filling in an entire

horizontal row.
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HðXÞ = �
X
x

PðxÞlog PðxÞ; (Equation 7)

where PðxÞ = ProbðX = xÞ and the summation is over the sup-

port of PðxÞ, that is, all values of x for which PðxÞ> 0. The base

of the ‘‘log’’ function is typically chosen to be 2 so that the unit

of entropy becomes ‘‘bit,’’ although other base values can also

be used depending on the application. Entropy is a measure of

‘‘uncertainty’’ associated with the random variable: generally

the larger the entropy is the more difficult it is to ‘‘guess’’ the

outcome of a random sample of the variable.

When two random variables X and Y are considered, we

denote their joint distribution by Pðx; yÞ = ProbðX = x;Y = yÞ
and conditional distributions by PðyjxÞ = ProbðY = yjX = xÞ
and PðxjyÞ = ProbðX = xjY = yÞ, respectively. These func-

tions are used to define the joint entropy as well as the condi-

tional entropies, as:

Jointentropy : HðX;YÞ = �
X
x;y

Pðx; yÞlog Pðx; yÞ;

Conditional entropies :

Y given X : HðYjXÞ = �
X
x;y

Pðx; yÞlog PðyjxÞ;

X given Y : HðXjYÞ = �
X
x;y

Pðx; yÞlog PðxjyÞ:

While the joint entropy HðX;YÞ measures the uncertainty asso-

ciated with the joint variable ðX; YÞ, the conditional entropy

HðY jXÞ measures the uncertainty of Y given knowledge about X

and similar interpretation holds for HðXjYÞ. In general, HðY jXÞ%
HðYÞ andHðXjYÞ%HðXÞ, with ‘‘ = ’’ if and only ifX andY are inde-

pendent. Interestingly, the reduction of uncertainty as measured

by HðYÞ � HðY jXÞ coincides with HðXÞ � HðXjYÞ, leading to a

quantity called themutual information between X and Y, given by:

IðX;YÞ = HðXÞ � HðXjYÞ = HðYÞ � HðY jXÞ: (Equation 8)
Figure 6. Decrease of uncertainty in ‘‘predicting’’ the outcome of a

Tic-Tac-Toe game using partial observations of the board in the final

configuration

Here, uncertainty is measured by the conditional entropy HðY jXi1.ik Þ, and the

indices ik are obtained using our Boolean inference algorithm: i1 = 5 (center),

i2 = 1 (upper-left), i3 = 9 (lower-right), i4 = 3 (upper-right), i5 = 7 (lower-left),

i6 = 8 (lower-middle), i7 = 2 (lower-right), and the index k in ik is shown in green

numbers.
Mutual information is symmetric IðX;YÞ = IðY ;XÞ, and also

nonnegative: IðX;YÞR 0 with IðX;YÞ = 0 if and only if X and Y

are independent.

Finally, the conditional mutual information between X and Y

given Z is

IðX;Y jZÞ = HðXjZÞ � HðXjY ;ZÞ; (Equation 9)

which measures the reduction of uncertainty of X given Z due

to extra information provided by Y . Conditional mutual

information is symmetric with respect to interchanging X and

Y, and nonnegative, equaling zero if and only if the conditional

probabilities PðxjzÞ and PðyjzÞ are independent: PðxjzÞPðyjzÞ =

Pðx;yjzÞ.
The problem of learning a Boolean network from
observational data
Stochastic Boolean function and stochastic Boolean

network

In practice, the states and dynamics of a system are almost al-

ways subject to noise. Therefore, it is important to incorporate

randomness and stochasticity into a Boolean network. To do

so, we first extend the Boolean function concept from the deter-

ministic definition to a stochastic generalization, defining a sto-

chastic Boolean function as

gðxÞ = fðxÞ4x; (Equation 10)

where f is a (deterministic) Boolean function and x is a Bernoulli

random variable that controls the level of randomness of the

function. In this model, the function contains a deterministic

part, given by the Boolean function fðxÞ; the actual output of

the function gðxÞ is given by the output of fðxÞ subject to a certain

probably of being switched.

Following the notion of a stochastic Boolean function, we now

define a stochastic Boolean network as a quadruple of sets,

G = ðV ;E;F;qÞ, where the triplet of sets ðV ;E; FÞ represents a

(deterministic) Boolean network, and the vector q = ½q1;.;qn�u
˛ ½0;1�n represents the level of noise, each as a random variable,

each with qi quantifying the probability of switching the output

state at node i, a scalar parameter describing theBernoulli random

variable xi � BernoulliðqiÞ.
Data from Boolean functions and Boolean networks

We start by discussing several forms of data that commonly

appear in application problems. These include: (1) input-output

data from a single Boolean function; (2) input-output data from

a Boolean network, which can be regarded as a generalization

of (1); (3) time series data from a Boolean network. In each one

of these scenarios, the data can either be directly represented

or rearranged into a set of input-output pairs. Recall from

Equation 3:
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Table 3. Attributes for the loan issuance data

Attributes description

X1 home ownership: (1) homeowner; (0) not a

homeowner

X2 delinquency in the past 2 years: (1)

delinquency occurredmore than 2 times; (0)

no more than 2 delinquencies occurred in

the past 2 years

X3 verification of the reported income: (1)

income verified; (0) income not verified

X4 history of public records: (1) there is a public

record; (0) no public records

X5 application type: (1) individual; (0) with co-

borrower

X6 120 days past due date: (1) have an account

ever past due date by more than 120 days;

(0) never past due date by more than

120 days

X7 recent opened accounts in the last

12 months: (1) have opened a new account

in the last 12 months; (0) no new accounts

opened

X8 bankruptcies: (1) have declared

bankruptcies; (0) never declared

bankruptcies

X9 loan to income ratio (see caption)

X10 terms: (1) 60-month term; (0) 36-month term

All variables are Boolean. The outcome Y is a Boolean vector that takes

the value 1 if the loan is fully paid, and 0 otherwise (charged off or marked

as default). The loan to income ratio is the ratio r =
the loan amount

annual income
, and

it is formed as a Boolean function such that X9 =

�
1; r >m

0; r%m
, where m is a

threshold ratio that we selected to be the median value of the ratio of all

the available dataset, and it was m = 0:2.
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fðxðtÞ; yðtÞÞ : t = 1;.;Tg; (Equation 11)

(1) Input-output data from a single Boolean function. For a

Boolean function (either deterministic or stochastic), if ob-

servations or measurements are made about its inputs

and outputs, such data can be represented in the form

of Equation 3, where yðtÞ is a scalar (i.e., [ = 1). Here,

each pair ðxðtÞ; yðtÞÞ represents the observed input string

of k bits, encoded in xðtÞ, and the corresponding output

yðtÞ. The ordering of the input-output pairs is arbitrary.

(2) Input-output data from a Boolean network. For a (deter-

ministic or stochastic) Boolean network of n nodes,

input-output data of the network come in the form similar

to that of a single Boolean function, except that each

output itself is no longer a single bit, but instead multiple

bits representing the state of all the nodes in the network.

Thus, the dimensionality of xðtÞ and yðtÞ are both equal to

n, that is, [ = n in the general form of Equation 3. The

ordering of input-output pairs is arbitrary.

(3) Time series data from a Boolean network. For a time se-

ries observed on a Boolean network of n nodes, we can

represent such data using a sequence of Boolean vectors
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ðxðtÞÞTt = 0, where xðtÞ = ½x1ðtÞ;.; xnðtÞ�u ˛Bn represents

the state of the entire network at time t. The pair

ðxðt � 1Þ; xðtÞÞ can be described as an input-output data

pair from the underlying Boolean network. For this matter,

time series data from a Boolean network can also be put

into the input-output data form of Equation 3 with the

additional constraint that

yðtÞ = xðt + 1Þ for every t = 1;.;T � 1: (Equation 12)

Here, unlike the case of input-output data as in (1) and (2), the

temporal ordering in the time series data is unique and should

not be (arbitrarily) changed.

To summarize, in these three commonly encountered sce-

narios as we discussed above, observational data from a Bool-

ean network can be represented as input-output pairs as in

Equation 3. When the network contains only one node it is really

just a Boolean function and thus each y (t) is a scalar; on the

other hand, when the data come from time series then each

yðtÞ = xðt � 1Þ and the temporal ordering of the data be-

comes fixed.

The problem of learning the structure and function of a

Boolean network

Given Boolean data in the standardized form of Equation 3, we

interpret data as samples of amultivariate conditional probability

distribution

pðyjxÞ = ProbðYðtÞ = yjXðtÞ = xÞ (Equation 13)

=
Yk
i = 1

Prob
�
YiðtÞ = yjiXðtÞ = x

�
=

Yk
i = 1

pðyijxÞ; (Equation 14)

where x˛Bk and y˛B[, and thus

pðyijxÞ = pðyijx1;.; xnÞ: (Equation 15)

The problem of reconstructing or learning the Boolean

network then is, can pðyijxÞ be maximally reduced to a lower-

dimensional distribution. That is, does there exist a smallest

(sub)set of indices,

Si 3 f1;.; [g; such that pðyijxÞ = p
�
yijxSi

�
: (Equation 16)

Once we have identified, for each i, this set of nodes Si, they

together constitute a network, where a directed link j/i corre-

sponds to having j˛Si. Furthermore, to identify such a subset

of explaining variables that closely approximates this conditional

equality statement represents a simplified or reduced-order pre-

sentation of the process.
BoCSE for data-driven learning of the structure and
function of Boolean networks
In this section we develop a computational framework to recon-

struct both the structure and function of a Boolean network from

observational data. We start with the reconstruction of a mini-

mally sufficient Boolean function from input-output data. This

method is repeated to find the neighbor set and function for

each node, and as a result reconstructs the whole network.



Table 4. Inferred Boolean relations for the outcome variable Y

X3 X9 X10 PrðY = 0Þ PrðY = 1Þ
0 0 0 0.24836 0.75164

0 0 1 0.33667 0.66333

0 1 0 0.34837 0.65163

0 1 1 0.39923 0.60077

1 0 0 0.31724 0.68276

1 0 1 0.38599 0.61401

1 1 0 0.41463 0.58537

1 1 1 0.46288 0.53712

Given each attribute pattern, the conditional probability that value of

outcome PrðY = 0Þ, meaning that the probability that the borrower will

not fully pay the loan, is shown in the PrðY = 0Þ column, and the proba-

bility that the borrower will fully pay the loan, is shown in the PrðY = 1Þ
column. The reader can refer to the provided code for reproducing this

table. See the data and code availability.
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Reconstruction of a minimally sufficient Boolean

function

Given a set of input-output pairs fxðtÞ;yðtÞg, (here yðtÞ is a single

bit), wewant to find aminimal Boolean function that is sufficient in

representing the data. To quantify the complexity of the Boolean

function, we state the following information-theoretic criterion

�minK3½n�jKj;
s:t: I

�
XðKÞ;Y

�
= maxK ˛ ½n�I

�
XðKÞ;Y

�
: (Equation 17)

Here,

½n� = f1;2;.; ng;
K = fk1;.; k[g is a subset of ½n�;
Y = ½yð1Þ;.; yðtÞ�; and
XðKÞ

=

h
XðKÞ

i
T 3 [

where
h
XðKÞ

i
tj
= XðtÞkj :

(Equation 18)

The symbol I denotes mutual information, that is, IðXðKÞ;YÞ is
the mutual information between XðKÞ and Y.

At a glance, solving this combinatorial problem seems to be

computationally complex. However, in our previous work25 we

developed an oCSE algorithm that can find K efficiently, and

we proved in Sun et al.25 that it correctly infers the underlying

network as it is able to distinguish direct versus indirect connec-

tions correctly. Here, we further develop the concept to also

learn the associated Boolean functions on the networks, which

we call BoCSE. Although various extensions of the oCSE algo-

rithm are possible, some may even yield better results in certain

scenarios. We focus here on the most basic version of our other-

wise greedy search algorithm that consists of only two stages, a

forward selection stage and a backward elimination stage.

d Forward selection. We initialize the solution set Kf = B ,

and, in each iteration, we choose an element k that sat-

isfies the following conditions

�maxj I
�
Xj;Y jXðKf Þ

�
> 0;

k = argmaxj I
�
Xj;Y jXðKf Þ

�
:

(Equation 19)
If such a k exists, then we append it to the set Kf and proceed

to the next iteration; otherwise, when no such k exists, the for-

ward selection is terminated.

d Backward elimination. Start with Kb = Kf , in each step of

backward elimination, we select an element k that satisfy

the following

k = argminj˛Kb
I
�
Xj;Y jXðKb=fjg

�
: (Equation 20)

Such k always exists since Kb is a finite set. Then, if

I
�
Xk ;Y jXðKb=fkg

�
= 0; (Equation 21)

we remove k from Kb and repeat; otherwise, the algorithm

terminates.

The result of the algorithm is a set Kb = fk1;.;k[g, which is an

estimate of the index set of the minimal Boolean function that fits

data. Finally, given such a set Kb, we construct the correspond-

ing Boolean function by estimating the best output (0 or 1) for

each unique input pattern available from the data. Symbolically,

for each x0 ˛B[, we define the set

T Kb
ðx0Þ =

�
t : xðKbÞðtÞ = x0

�
; (Equation 22)

and define

gðx0Þ =

P
t˛ T Kb

ðx0ÞyðtÞ		T Kb
ðx0Þ

		 ˛ ½0; 1�: (Equation 23)

Then, we obtain f : B[/B using the tabular form, by defining

fðx0Þ = dgðx0Þe˛ f0; 1g: (Equation 24)

If T Kb
ðx0Þ = B for some x0, it means that particular input

pattern is never observed in the data. Then, in the absence of

additional information, the value of f for such input cannot be

optimally determined (the choice of either fðx0Þ = 0 or fðx0Þ = 1

makes no difference in ‘‘fitting’’ the data).

Estimation of conditional mutual information and tests

of significance

The proposed BoCSE learning approach requires estimating

various forms of mutual information and conditional mutual infor-

mation (see Equations 7–9) from data. In practice (i.e., when en-

tropies need to be estimated from data), a threshold (either e or

h) needs to be determined in each step of either the forward or

backward stage of the algorithm. The key is to decide, from

data, whether an estimated conditional mutual information of the

form bI = IðX;Y jZÞ should be regarded as zero, with confidence

(as opposed to positive). In particular, we need to consider

�H0

ðnull
hypothesisÞ :

bI = IðX;Y jZÞ = 0;

H1

ðalternative
hypothesisÞ :

bI = IðX;Y jZÞ> 0:
(Equation 25)

To decide whether or not to reject H0 (here equivalent as ac-

cepting H1), we construct shuffled data by permuting the time

ordering of the components in X. To be specific, suppose that
Patterns 3, 100631, November 11, 2022 9



ll
OPEN ACCESS Article
s : f1;.;Tg/f1;.; Tg (Equation 26)

is a random permutation function, from which we compute

IðXs;Y jXbSÞ where Xs represents the shuffled time series fxsð1Þ;
xsð2Þ;.;xsðTÞg. By sampling s uniformly, we then obtain a cdf

FðxÞ = PðIðXs;Y jXÞ % xÞ: (Equation 27)

From this cdf, we can then estimate the p value underH0 to be

1 � FðbIÞ, fromwhichwe can determine the threshold. For a given

a level (e.g., a = 0:01), the corresponding threshold can then be

decided as�
ε = F� 1ð1 � aÞ; for forward selection;
h = F� 1ð1 � aÞ; for backward elimination:

(Equation 28)

Throughout this paper, we set the same a = 0:05 for both the

forward and backward stage of the algorithm (unless otherwise

noted), and obtain the cdf FðxÞ by uniformly sampling by select-

ing 1,000 independent random permutation functions s.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Abd AlRahman R. AlMomani (almomana@

erau.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

All of the original code has been deposited at GitHub under https://github.

com/almomaa/Boolean_oCSE and is publicly available.
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