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We find that the global symbolic dynamics of a diffusively coupled map lattice is well approximated by
a very small local model for weak to moderate coupling strengths. A local symbolic model is a truncation
of the full symbolic model to one that considers only a single element and a few neighbors. Using interval
analysis, we give rigorous results for a range of coupling strengths and different local model widths.
Examples are presented of extracting a local symbolic model from data and of controlling spatiotemporal

chaos.
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In this Letter, we approximate the global symbolic dy-
namics of a diffusively coupled map lattice (CML) with a
local model consisting of a relatively small number of
symbols. Coupled map lattices [1] are popular models of
spatiotemporal chaos, and their description via symbolic
dynamics provides a complete basis for understanding
them. Indeed, the topology of unimodal maps has been
completely elucidated in terms of 2-symbol alphabets [2],
and recently it has been conjectured that these results
extend simply to the CML case [3]. Nevertheless, one still
has to contend with the high dimensionality of lattices.
While a single logistic map is fully described by 2 symbols,
an N-element lattice requires an alphabet of 2V symbols. In
the case of diffusive coupling, however, we find that the
symbolic dynamics at a particular site is largely deter-
mined by a local neighborhood, at least for some range
of coupling strengths. Previously, it has been shown that
the symbol statistics at a single site can indicate degrees of
global synchronization [4]. Here we propose using sym-
bolic information from a small neighborhood to recon-
struct the dynamics of the entire lattice. In what follows
we use interval analysis to quantify this idea and to show
that the global symbolic dynamics can be well approxi-
mated by a compact local model for weak to moderate
coupling strengths.

We consider a map lattice with N sites labeled i =
I, ..., N. Each site is described by a state x§ in the interval
I' and a unimodal local dynamic f;: I' — I'. Denote by F
the product function of f; onto each site, and by A an N X
N coupling matrix, then the map lattice can be written as
X,4+1 = H(x,), where H = A o F. Models of this type have
been extensively studied with regard to turbulence and
pattern formation [5]. Here we introduce an alternate for-
mulation in terms of local symbolic dynamics.

As reported previously [3], it is conjectured that for
nonsingular A a homeomorphism exists between the spa-
tiotemporal sequence {xi:i=1,...,N,t=0} and the
equivalently sized set of binary symbols si defined by
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where 7)) and I are the two subintervals over which the
unimodal map f; is monotonic. Figures 1(a) and 1(b)

illustrate this mapping for a CML of logistic maps. The
particular state x} is homeomorphic to s plus the set of all
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FIG. 1. A time-space segment of a 1D CML of logistic maps.
(a) Real valued CML states (shown with 2 digits of precision),
(b) the equivalent symbolic representation using I, = [0, 0.5)
and I; = [0.5,1]. A m = 3, n = 5 local symbolic representation
of xi is shown outlined.
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future symbols. This relationship can be understood in the
following way. Consider that the symbol vector s, , in-
dicates which subinterval the components of x,,, lie in.
Provided one knows which preimage to use, X,,_; can be
estimated by applying H ! onto this vector of subintervals.
The symbol vector s,.,,— resolves the preimage ambiguity
because the branches of f; ! lie on unique monotonic seg-
ments labeled by {0, 1}. Repeat this process until an esti-
mate of X, is reached. At the last step only the symbol s! is
required to estimate xi. Because the inverse of a chaotic
map is (on average) contracting, the estimate converges to
xias n — oo,

Let Pg, be the vector of subintervals containing the CML
state at time ¢. The first n terms of the above algorithm can
be expressed as

— JN —1lg... -1
{XO}SO"'Sn—l =1 ﬁI_Iso ° ° HSn—2PSn—1’

=INn(F;01A71)°”'O(FSTIEZAil)Ps,Z,Ir (2)

where IV is the N dimensional domain of H and the sub-
script on F~! specifies a particular inverse branch. The
left-hand side is the set of all states that produce the
sequence Sy - -S,_;. An empty set implies a forbidden
sequence.

Exact evaluation of Eq. (2) is difficult; however, it is
amenable to interval analysis [6]. This method utilizes
interval arithmetic for the purpose of achieving rigorous
bounds on the solution space. In this case, interval compu-
tations result in guaranteed, tight bounds on the compo-
nents of the vector x; given some symbol sequence.
Tightness is a consequence of the monotonicity of Fy !,
and is significant because it implies that the interval ap-
proximation converges with symbol depth n at the same
rate as Eq. (2).

Using interval arithmetic, the local symbolic dynamics
can be investigated rigorously. We define the local sym-
bolic representation of a CML site x! to be the symbols in a
neighborhood of spatial width m and temporal depth n.
Because the symbols s/, j # i are irrelevant to x we are
effectively left with the paddle-shaped region illustrated in
Fig. 1(b). Restricting Eq. (2) to the local neighborhood
requires using a full interval for each unspecified compo-
nent of Py and taking the union of the two preimages at
each of these sites. In this way we can compute guaranteed
bounds on x! given only knowledge of symbols in a local
neighborhood.

As mentioned earlier, we expect the local symbolic
model to be suitable for diffusively coupled systems.
From Eq. (2) we see that the symbols are related to the
CML state via repeated applications of the inverse map-
ping, H' = F 10 A~! In the case that the coupling
matrix A is tridiagonal—i.e., the CML employs nearest
neighbor coupling—the elements of A~! can be found
analytically [7] and shown to fall off exponentially in
magnitude with increasing offset from the diagonal. A
major point here is that the symbolic dynamics at site i is
largely determined by a small neighborhood m <« N, at

least for some range of coupling strengths. Importantly, the
local model requires only mn — m + 1 symbols and is
independent of the lattice size N.

Having defined our local model approach, let us inves-
tigate its efficacy in terms of the commonly studied 1D
CML written as

X = (= Of ) + [ + L G)

with periodic boundaries [5]. The coupling parameter € €
[0, 0.5] sets the diffusion rate. Staying with convention we
use the logistic map f(x) = 4x(1 — x) as the local dy-
namic; therefore, the symbol “0” corresponds to site val-
ues in the interval I, = [0, 0.5) and the symbol “1”" to the
interval I; = [0.5, 1]. For large N, the off-diagonal terms
of A~! decay in magnitude as (e/(2 — 2¢))®!, where & is
the offset from the diagonal [7]. The restriction of the local
model to nearest neighbor symbols (m = 3) is tantamount
to neglecting the & = 2 elements of A~!, which, at the
moderate coupling strength € = 0.1, are less than 1% of
the diagonal terms.

We gauge the fidelity of the local symbolic model by its
mean error over a test CML trajectory. The test data are
symbolized and Eq. (2) is used to produce an interval
estimate at each CML site x! for various local model sizes
and coupling strengths. We define the expected value & to
be the midpoint of this interval and compute a mean
absolute error E = (|xi — %) over the data set. In Fig. 2
we plot E versus symbol depth n, and coupling strength €
for an N = 128 lattice of logistics maps. The test data are
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FIG. 2 (color online). Mean absolute error E for m = 1, m =
3, and the global symbolic model (m = 128) of a logistic CML
of 128 elements. (a) E versus symbol depth n for e = 0.1. B is
the extrapolated value of E(n) for n — oo; (b) E versus coupling
strength € for n = 16.
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10* iterations of the CML starting from a random initial
condition. These errors should be compared to the [0, 1]
range of the dynamics at each site.

As seen in Fig. 2(a), the fidelity of the local model
improves smoothly with increasing n. The error is shown
fitted to the function, E(n) =~ ae * + B, for € = 0.1 and
for the cases of no neighboring symbolic information (m =
1), nearest neighbors only (m = 3), and for the global
symbolic model (m = 128). The value $ is the extrapo-
lated limit of E(n) for n — oo. The m = 3 local model
performs well compared to the global model; for n = 6
there is very little difference in fidelity. We note that at n =
6, the local model requires only 16 symbols (3 X 6 — 2) to
achieve an error of approximately 1% of the [0, 1] dynamic
range at each site. After n = 10, the m = 3 model hits an
error floor (8 = 0.0044), whereas the global model asymp-
totes to zero error.

In Fig. 2(b), n is fixed at 16 and the error is shown versus
coupling strength. In the region of weak to moderate
coupling strength (¢ = 0.11) the error is small and there
is good agreement between the m = 3 local model and the
global model. For strong coupling (e = 0.2), the error
grows steeply for the global model, and therefore for the
local models as well. The error in this case is not so much
due to the local symbol approximation, but to slow con-
vergence of Eq. (2) with respect to n. The region € €
[0.12, 0.18] contains nonchaotic states, for which our defi-
nition of E(n) is not intended; we include this region only
for completeness.

Given that there is merit to the local model approach,
we now formalize the theory. Define a local symbolic
model as the set S of at most 2"~ *! elements represent-
ing all truncated symbol patterns that are allowed by the
dynamics at site i{. By ‘“‘pattern” we mean a particular
arrangement of symbols within the m X n paddle-shaped
window [Fig. 1(b)]. A global symbolic state Sy, =

S}CI‘S%Z o 'SZ/ is an overlapping concatenation of local

symbolic states, where k; indexes an element of S'. An
overlapping concatenation is possible between two local
symbolic states only if overlapping symbols match. The
approximated global symbolic dynamics can now be de-
fined as the set {Sy, ,,} of all overlapping concatenations
of local symbolic states. Obviously, any incompatibilities
that occur outside the spatial and temporal boundaries of
the local model are not accounted for in this approxima-
tion. The set {S;, , } is therefore a superset of the actual
global symbolic model.

Local models are a compact means of describing the
global symbolic dynamics of the CML. If we define the
complexity of a set to be the growth rate of its cardinal-
ity, then the maximum complexity of the entire collection
of local models is @O(N2™"~"*1) This extreme assumes
that a different local model must be used at each site.
Importantly, the complexity of local model approach scales
at worst linearly with N, whereas the exact symbolic
description scales as 2V".

There are two major features of the local symbolic
model that we emphasize and elaborate on here. The first
is that local models can be small enough to compile from
data and store as a table. As seen earlier,anm =3, n = 6
local model closely approximates the dynamics of our
example CML (N = 128, € = 0.1). Such a model can
contain at most 2'® = 65, 536 symbol patterns, whereas
the corresponding global model could have up to 2286,

A table of local symbol patterns can effectively replace
Eq. (2) if we associate with each entry the mean CML state
observed for that symbol pattern. The resulting data struc-
ture is a lookup table (LUT) mapping symbol patterns to an
expected value at that site. A LUT assembled from a finite
time data set may not be complete; however, we can default
to LUTs of lesser symbol depths to fill in missing entries.
The trade-off is that rare symbol patterns will not be
resolved as well as common ones.

We find that the m = 3 LUT assembled from 10° iter-
ations of our example CML gives an error that is almost
identical to that from interval analysis for n =7. In
Fig. 2(b) we have plotted the error (triangles) of the m =
3, n = 6 LUT as a function of €. For very strong coupling
(e = 0.25), the LUT is superior to the global (m = 128,
n = 16) symbolic model, in spite of the lower symbol
depth. We note that the expected value produced by the
LUT is weighted by the natural invariant density, which is
information not used in Eq. (2). This extra information
results in an improved estimate, at least for typical orbits.

The second point we wish to emphasize is that local
symbolic models can be used to construct arbitrary global
states and connecting orbits for the purpose of controlling
spatiotemporal chaos or for transmitting information [8].
In sequence space chaos control is straightforward: we may
simply append the desired target symbol sequence onto the
end of the current symbolic state [9]. Mapping the modi-
fied sequence back to state space gives us the connecting
orbit to the target state. In this setting the error E of the
symbolic model is equivalent to the control signal ampli-
tude needed to steer the CML along this orbit.

Take as a control example the challenge of steering a
logistic CML (e = 0.1) along the symbolic trajectory rep-
resented by the 480 X 363 image [10] shown in Fig. 3
(inset). The black and white pixels are interpreted as 0
and 1 symbols, respectively, and each row as the symbolic
state of a CML. That is, a CML site is greater than 0.5 only
if the corresponding pixel is white. For dynamical reasons
we doubled the pixel dimensions to 960 X 726 and re-
placed every black pixel with a 2 X 2 checkerboard of
white and black pixels, thereby eliminating blocks of
consecutive 0s. Using Eq. (2) we found that all the m =
3 local symbol patterns in this modified image are allowed
by the CML dynamics for n = 6. The N = 726, € = 0.1
CML orbit corresponding to this symbol sequence is
shown in Fig. 3. The first 50 iterates of Eq. (3) are uncon-
trolled. After iteration 50, the CML state is steered toward
the orbit described by the image symbols. The target states
were read from the m = 3, n = 6 LUT described earlier.
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FIG. 3. A time-space plot of a 1D CML of 726 logistic maps.
CML site values are displayed on a compressed gray scale x —
[tanh(4x — 2) + 0.964]/1.928. Prior to iteration 50 the CML is
uncontrolled. At iteration 50 a complex orbit is targeted that
approximates the image shown in the overlay.

The mean perturbation required to force the CML along
this orbit was found to be 0.007, which is less than 1% of
the [0, 1] dynamical range at each site. This assumes a
controller that pushes the system state exactly onto the
desired orbit at each time step. One-sided limiter control
[11] produces the same results, but with slightly higher
control perturbations (0.011). We conclude that local sym-
bolic models extracted from data can be used to control
spatiotemporal chaos in diffusive CMLs.

Finally, we present a closing example in the interest of
broadening the applicability of the local symbolic model
approach. Consider the following set of ordinary differen-
tial equations (ODEs):

l/.ll' =0.5— 4Ui + K(”i+l + u—1 — 21/{,'), 4
v, = —v; + 2max[u; — 8cost — 16, 0], @
where i = 1, ..., 1000. This is a driven reaction-diffusion

system that exhibits fully developed spatiotemporal chaos
for k €[0,0.02]. The solitary oscillator (x = 0) is
Rossler-like, but with regular timing. The stroboscopic
return map u;(k¢p) — u;([k + 1]¢), k integer, ¢ =
4.0212, is approximately 1D and unimodal. These features
suggest that u(k¢p) — u((k + 1]¢p), « =0, acts like a
diffusive CML and can be reduced to a local symbolic

model. As a test case we choose k = 0.01 and consider 103
cycles of the ODE system. The resulting 103 X 10° data set
{u;(k)} is symbolized by setting s;(k) to 1 where u;(k) > u,
and to 0 everywhere else. To be consistent with our CML
ansatz, u,, should map to the peak of the x = 0 return map.
We estimate u,, = 7.6 by locating sup{u,(k)} and taking the
prior iterate at that site. From these data we construct an
m = 3 LUT and compute E(n) over a new 10> X 10° data
set. As before, we find a smooth exponential decline of E
vs n. At n = 13 the error is less than 1% of the dynamic
range of the data. For this ODE system, the local symbolic
model performs almost as well as it does for Eq. (3).

We conclude that complex systems that can be modeled
as diffusively coupled lattices of unimodal maps are likely
to have a compact description in terms of local symbolic
models. For these systems chaos control is straightforward
and novel global states can be predicted and targeted from
measured data. The approach discussed here is easily
generalized to multidimensional lattices of maps with
more than two symbols. We think it likely that any small
in-degree network of such maps is a good candidate for
reduction to a local symbolic model. It remains an open
question as to whether networks of invertible maps or
multidimensional maps can be treated similarly.
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