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Spatially dependent parameters of a two-component chaotic reaction-diffusion PDE model describing ocean
ecology are observed by sampling a single species. We estimate model parameters and the other species in the
system by autosynchronization, where quantities of interest are evolved according to misfit between model
and observations, to only partially observed data. Our motivating example comes from oceanic ecology as
viewed by remote sensing data, but where noisy occluded data are realized in the form of cloud cover. We
demonstrate a method to learn a large-scale coupled synchronizing system that represents spatio-temporal
dynamics and apply a network approach to analyze manifold stability.
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Research in large-scale oceanic phenomena is
made possible by remote sensing instruments
mounted on ocean-observing satellites. These in-
struments provide datasets that can be filtered to
study sizable ecological events, including harmful
algal blooms. The fact that datasets are often
patchy when clouds hide regions in the spatial
domain is a substantial difficulty when attempt-
ing to parameterize a dynamical system. To at-
tack this problem we extend a recently developed
autosynchronization method. Model parameters
and states are evolved in a drive-response pat-
tern, on a-priori known model equations, to learn
model states and parameters even while data
are considerably spatially occluded. It has been
shown that, assuming the model structure to be
known, a synchronization system can be designed
to effectively act as an observer to identify system
parameters, even in a large scaled network sys-
tem. While a discretized PDE can be interpreted
as a particular lattice network, the realistic prob-
lem of cloud occlusions will cause times where the
observer network is essentially disconnected. Our
prior work has shown that synchronization can
exist even in a large scale network that is not fully
connected but rather has a so-called fast blinking
structure. The method is analyzed by interpret-
ing the discretized PDE as a large-scale coupled
moving neighborhood network.
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I. INTRODUCTION

Algae form the basis of the food chain in the oceans and
are ultimately responsible for providing nourishment for
other marine life further up the food chain1. Seasonal
environmental heterogeneities such as nutrient replen-
ishment, predation, and temperature provide favorable
conditions for recurring algal blooms, often called spring
blooms. More localized bloom events are commonly ob-
served in estuaries and coastal regions2. Certain bloom
events, especially harmful algal blooms, elicit widespread
repercussions on regional communities including human
sickness, shellfish poisoning, and fish kills3. These harm-
ful algal blooms are detrimental to regional ecology and
economies through fishing losses and tourism depletion.
Models for near-shore algal blooms would be extremely
useful for forecasting during such events and might help
inform short-term management decisions.

Parameter and state identification based on observed
data remains an important topic in both dynamical sys-
tems and control theory. Several powerful methods for
parameter estimation of spatio-temporal systems include
Kalman filter methods4–6, multiple shooting methods7,8,
and synchronization methods9–19. Autosynchronization
is a special variation of synchronization methods based
on an approach to force a response model to adapt
to observed data by developing additional equations
for the parameters that depend on the synchronization
error10,15. Our implementation of the method assumes
prior knowledge of the model structure. Recently, it has
been shown that it is possible to estimate spatially de-
pendent parameters for a PDE system by autosynchro-
nization using a combination of diffusive and complete
replacement coupling of observed data (drive model) to
force the response model and parameters to synchronize
with observables20.

Our interest here is to exploit these ideas toward mod-
eling ocean ecology as informed by hyperspectral re-
mote sensing data captured by ocean observing satel-
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lites. Many well accepted ocean ecology models in-
clude predator-prey dynamics between at least two com-
ponents: zooplankton, the predator, and phytoplank-
ton, the prey21–34. Data observations are often noisy
or patchy, particularly when observing spatio-temporal
systems. The usual hurdle to fitting and subsequently
solving a predator-prey reaction-diffusion system as in-
formed by remote sensing data is the inability to observe
zooplankton. As of now, there exists no method to esti-
mate zooplankton densities based on hyperspectral infer-
ences. Here, we adapt the method of autosynchronization
of PDEs to be used with less available information, where
noisy data are occluded by clouds.

At the heart of the problem is the observability of the
dynamical system based on available sampling data, in
this case phytoplankton. The problem of observability
on nonlinear systems has been a topic of research over
the past decade and is now much better understood35–37.
We therefore demonstrate that the system we study is
observable from the variable provided by remote sensing
data. We note that one might first check if the corre-
sponding ODE system is observable by investigating the
invertibility of the Jacobian of the differential embedding
map of observed samples35. Such a result would provide
hope that a search for an autosynchronization scheme is
worthwhile.

We begin by introducing the reaction-diffusion equa-
tions used to create synthetic observed data. Next, we
assign the response system and discuss an autosynchro-
nization configuration. We show the method can work
with significant proportions of the data unobservable, e.g.
data occluded by cloud cover. Finally, we consider the
large-scale coupled synchronization system as a moving
neighborhood network and apply a theorem for synchro-
nization based on the rate of switching between network
topologies to prove that our system can synchronize. It is
shown that as long as the average network corresponding
to the graph Laplacian supports synchronization and the
switching epoch between new samples of network topolo-
gies is small enough, synchronization is achieved. There-
fore, it is feasible to realize model fitting and data as-
similation for multi-component ecological systems with
realistic remote sensing data.

II. MODEL DATASET

Satellite data of plankton blooms often reveal complex
mesoscale structures such as ocean gyres and eddies for
which there are several theories. As a synthetic dataset,
the spatiotemporal model for plankton ecology should
have the capability to render mesoscale structures. Med-
vinksi, et al,24 describe a two-component predator-prey
model, including phytoplankton and zooplankton, over
a rectangular two-dimensional region. Given perturbed
initial conditions, the model exhibits spiral patterns on
a spatial scale comparable to that which is observed in
nature. By sampling snapshots from the solution of this

model, we emulate a satellite image dataset. The dataset
is complicated by including spatially varying parameters.
This is a valid consideration when modeling mesoscale
ocean ecology. Consider the system of two PDEs as given
in24,

∂P

∂t
= 4P + P (1− P )− PZ

P + h
, and (1)

∂Z

∂t
= 4Z + k

PZ

P + h
−mZ,

where P (x, y, t) represents phytoplankton density,
Z(x, y, t) represents zooplankton density, and both are
observed on a compact connected two-dimensional do-
main, Ω, with zero-flux boundary conditions.

These equations represent a dimensionless reaction-
diffusion model for phytoplankton-zooplankton ecology,
invoking predator prey dynamics in the reaction term.
The ecology is considered over a horizontal layer with
homogeneous vertical distributions in the water column.
Our simulations are computed over a grid of size Ω =
864× 288. The model assumes that phytoplankton obey
a logistic growth and are grazed upon by zooplankton
following a Holling-type II functional response. The
Holling-type II functional response38 assumes a deceler-
ating growth rate wherein the predator is limited by its
ability to efficiently process food. Zooplankton grow at a
rate, k, proportional to phytoplankton mortality and die
according to a natural mortality rate m. For scalar pa-
rameters, k = 2, h = 0.4, and m = 0.6, and nonuniform
initial conditions, this system gives rise to transient spiral
pattern behavior, and progresses into spatially irregular
patchy patterns24. We perform numerical simulations
with a basic forward-time and central-space discretiza-
tion using the perturbed initial conditions found in24.

The system Eq (1) is modified as found in24 by allowing
the parameters to be nonnegative C0(Ω) functions. Gen-
erally, we may allow Ω ⊂ R2 to be a compact domain
such as a rectangle for simplicity or a realistic domain
representing a coastal region obtained from a satellite.
Two examples are found in Figure 1, where high a con-
centration of phytoplankton appears as a greenish color-
ing of the water. Imaging sensors mounted on satellites
measure light in discrete bandwidths, including several
bandwidths outside of the visible range. These band-
widths are subsequently combined to build certain prod-
ucts of interest. To reconstruct an image as the eye would
see it, bandwidths in the visible spectrum are combined
to build what is called a “quasi-true” image. The quasi-
true color image at the top of Figure 1 was taken on July
8, 2010 from the HICO (Hyperspectral Imager for the
Coastal Ocean) instrument mounted on the Japanese Ex-
periment Module Exposed Facility on the International
Space Station. It is the first such imaging spectrom-
eter specifically designed to sample the coastal ocean39.
The image captures the Columbia River mouth bordering
Oregon and Washington. The domain is large enough to
render mesoscale and small scale patterns, which may re-
sult from complex intra-species and fluid dynamics. The
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image at the bottom of Figure 1 was taken by the MERIS
(Medium Resolution Imaging Spectrometer) instrument
on board the Envisat satellite. Here again high phyto-
plankton concentrations appear as a greenish coloring in
the water. This image highlights a presently unavoidable
issue with hyperspectral satellite data: the presence of
cloud coverage.

FIG. 1: A quasi-true color satellite image from HICO
instrument,39 (top), of the Columbia River mouth taken
on July 8, 2010. High plankton densities shown by green
coloring of the water. Spatial resolution is fine enough
that a boat is clearly visible in the upper half of the

image. Bottom: Quasi-true color image of same region
taken during an algal bloom on December 12, 2009 by

the MERIS instrument on the ENVISAT satellite.

In many systems, it is quite reasonable to expect that
model parameters need not be spatially homogeneous.
And therefore, taking our problem of interest, spatial in-
homogeneity in parameter values may be an important
theoretical assumption when constructing models for
coastal algal blooms, since the plankton growth rate is af-
fected by near-shore nutrient runoff and upwelling24,40,41.
More to that point, ocean fronts and eddies cause flow-
induced long-term inhomogeneities in the ocean which
results in a formidable spatial structure for density pro-
files in the ocean24. Whether inhomogeneities be the re-

sult of the flow dynamics or of boundary conditions from
nutrient runoff, they are an important consideration for
modelling ecology over large coastal domains. Thus, de-
pending on the scale and resolution, it may be prudent
to include spatially dependent parameters.

Therefore, we develop synthetic datasets with spatially
varying parameters to challenge our methods. To push
our methods we add random noise to each parameter as
displayed in Figure 2. Spatially dependent parameters
are chosen to be in the range given in24 for spatially ir-
regular behavior. Three different functional forms for
the parameters are tested for variety. First, we define a
Gaussian parameter function,

k1(x, y) = ae
−
(

(x−n/2)2

2σ2
+

(y−m/2)2

2σ2

)
, and (2)

m1(x, y) = ce
−
(

(x−n/2)2

2σ2
+

(y−m/2)2

2σ2

)
,

where a = 2, c = 0.6,m = 300, n = 900, and σ = 400.
Appropriate parameters are chosen to maintain m(x, y)
and k(x, y) in the target range. Figure 2 shows the three
parameter forms discussed above, where only k(x, y) is
plotted since the parameters differ by a scalar multiple.
For example, Eq (2) is displayed in Figure 2a. Next, we
define,

k2(x, y) = a cos(bx+ d) sin(by) + s, and (3)

m2(x, y) = c cos(bx+ d) sin(by) + t,

where a = 0.2, b = π/(m/2), c = 0.6, d = π/2, s = 0.5,
and t = 1.5, to test the quality of the autosynchroniza-
tion method to resolve fine spatial structures in model
parameters. The surfaces produced by Eq (3) are dis-
played in Figure 2b.

Finally, we build a swirly parameter function in or-
der to simulate spiral-like behavior in parameter values
as might be expected in turbulent coastal regions. A
time instance is sampled from a simulation of the origi-
nal PDE, Eq (1), is scaled appropriately, and is treated as
a parameter function. These spiral parameters, k3(x, y),
are shown in Figure 2c.

We discretize the modified system, Eq (1), with ex-
plicit finite differences, using a five-point center differ-
ence stencil for spatial derivatives and forward Euler time
stepping. The spatial and temporal step sizes are chosen
as dx = 2 and dt = 0.2. The model output P (x, y, t)
is treated as an image sequence given by a particular
(known) model form but with parameters k(x, y) and
m(x, y) and component function Z(x, y, t) to be deter-
mined.

In order to properly mimic our target application of re-
mote sensing oceanographic data of hyperspectral images
filtered to reveal plankton blooms, we add random noise
and “moving cloud cover” to the dataset by occluding
large proportions of the image from direct observation.
Clouds are a natural occurrence when studying a large
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FIG. 2: The three different forms spatially dependent
parameters used in simulations with apparent noise
included. Since k(x, y) and m(x, y) are simply scalar

multiples, we plot only k(x, y) for each form. Figure 2a
is described by Eq (2). The parameters described by Eq

(3) are shown in Figure 2b. Finally, the swirly
parameters are shown in Figure 2c.

terrestrial area over several days, and luckily the clouds
tend to move.

III. AUTOSYNCHRONIZATION

Two model systems are required in order to estimate
unknown model states and parameters by autosynchro-
nization, a drive system and response system. One-way
direct replacement and diffusive coupling are combined so
that observables are coupled directly into the response
model as it evolves. Samples are taken from the drive
system,

ut(x, y, t) = f(u(x, y),p(x, y)), (4)

with parameters p(x, y) ∈ C0(Ω) and u ∈ H2(Ω). A
response system is formed,

vt(x, y, t) = g(u(x, y),v(x, y),q(x, y)), (5)

with q(x, y) ∈ C0(Ω). We formulate an associated sys-
tem of PDEs for the parameters of Eq (5),

qt(x, y, t) = s(u(x, y),v(x, y)), (6)

with the goal that (v,q)→ (u,p) as t→∞. If success-
ful, the method is called autosynchronization42 since the
parameters are evolved deterministically along with the
response model.

Generally, some model variables from the drive sys-
tem need not be sampled. For a two-species system,
we write u(x, y, t) = (u1(x, y, t), u2(x, y, t))T and we
do not require that u2(x, y, t) is sampled. An associ-
ated response system v(x, y, t) = (v1(x, y, t), v2(x, y, t))T

is built wherein both equations are fed samples from
u1(x, y, t). A schematic diagram for this type of simu-
lation might be helpful and is found in Figure 3, where
dots denote time derivatives.

FIG. 3: Diagram for autosynchronization of
two-component PDE system such as described by Eqs

(4) - (6).

For our synthetic dataset given by Eq (1) with param-
eters Eq (2) or Eq (3), we form a response system to be
synchronized to the observations as,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(P − P̂ ), and

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P + h
− m̂Ẑ, (7)

where we assume P̂ (x, y, 0) 6= P (x, y, 0), Ẑ(x, y, 0) 6=
Z(x, y, 0), k̂(x, y, 0) 6= k(x, y), and m̂(x, y, 0) 6= m(x, y).

Parameters are updated as diffusively coupled PDEs
during the synchronization process as,

∂k̂

∂t
= −s(P − P̂ ), and

∂m̂

∂t
= −s(P − P̂ )P̂ , (8)

where s = 30 and κ = 2.4 are chosen for specificity and
for which we observe good convergence results. For these
experiments, we sample the drive system at every time
step, but note that a larger sampling time will work20.
The parameter equations are evolved simultaneously by
Eq (7) with a forward Euler discretization and the same
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time step. As we vary s and κ, autosynchronization may
fail as commonly observed with diffusively-coupled sys-
tems.

To begin the simulation, parameters are initialized

as the constant function, e.g. k̂(x, y, 0) = 5 and
m̂(x, y, 0) = 5. We evolve Eq (1) forward and count the
model output as observed data. Initial conditions for the
response system are P̂ (x, y, 0) = 2 and Ẑ(x, y, 0) = 2.
Furthermore, to avoid values outside the normal range
of Eq (1), we enforce that

P̂ =

{P̂ : 0 < P̂ < 2

0 : P̂ ≤ 0

2 : P̂ ≥ 2

and Ẑ =

{Ẑ : 0 < Ẑ < 2

0 : Ẑ ≤ 0

2 : Ẑ ≥ 2

∀x, y ∈ Ω during the simulation. As noted above, au-
tosynchronization is observed for the test set of parame-
ters in Figure 2 and the spatial inhomogeneities in each
case are effectively resolved. We emphasize that zoo-
plankton are not observed in Eq (7)-(8).

IV. HIDDEN DATA

Ocean-observing satellite imagery often includes signif-
icant amounts of cloud cover43. In other words, a large
fraction of that data may be occluded. Furthermore, we
have found that level 2 mapped and processed images
may include striping or other defects from projecting a
sphere onto a uniform grid. The lack of data presents
a challenge to data assimilation and model filtering by
synchronization methods. Suppose ω ⊂ Ω is the set of
unobservable data. We allow for ω = ω(x, y, t) so that
the set of unobservables varies with space and time like
a cloud. We consider a simple case where the dynamics
of ω(x, y, t) are governed by the advection equation

∂ω

∂t
+ ν

∂ω

∂x
= 0,

with periodic boundary conditions, so that clouds move
in the x-direction with speed ν. We couple the systems
only on the complement of ω. That is, we turn the driv-
ing signal off when the image is unobservable, allowing
the two systems to oscillate independently, and switch it
on after the clouds have passed. We do this only in the
subregion ω ⊂ Ω that is unobservable in order that data
contained in the complement of ω may continue to be
driven by observables toward the synchronization mani-
fold.

Here we build on the method described in section
III, where zooplankton densities and model parameters
are estimated by observing solely the phytoplankton.
Now we observe phytoplankton and clouds. However,
if we couple at every spatial grid point, the synchroniza-
tion manifold is de-stabilized by incident cloud coverage.
With a large enough amount of cloud coverage over Ω,
the systems fail to synchronize. We say large enough in
deference to the case where the occluded region is small

enough such that diffusion allows information to pass into
any hidden regions.

As a remedy we allow the drive and response models
to oscillate independently, or uncoupled, while the drive
model is hidden by clouds. The pixels representing cloud
cover in remote sensing data are typically set to some
large fixed integer, I. We represent this formally,

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(H[P ]− P̂ ), and

∂Ẑ

∂t
= 4Ẑ + k

P̂ Ẑ

P̂ + h
−mẐ, (9)

where H[P ] represents a switching function given by

H[P ] =

{
P̂ , P = I
P , P 6= I.

The form of response model switches off the coupling
when a cloud mask is detected in the image and allows the
systems to oscillate independently in the corresponding
pixels, while being driven over pixels that are observed.
Eq (9) is slightly different from temporal subsampling of
data, where models are not coupled for a given number
of time steps. Here the models are always coupled some-
where in Ω, which is determined by time-varying clouds.

We first demonstrate model state synchronization
given occluded data before addressing the estimation of
model parameters. Let Eq (1) be the drive model and Eq
(9) be the response model. Figure 4 represents a partially
observed dataset from Eq (1), with a field of 30 randomly
placed synthetic clouds evolving from left to right with
periodic boundary conditions resulting in 65.8% of Ω oc-
cluded at all times. The clouds repeatedly scroll from left
to right and parts of the image are always occluded, but
every element in the domain is eventually driven, caus-
ing the drive and response to systems to synchronize.
The response system is initialized by P̂ (x, y, 0) = 2 and

Ẑ(x, y, 0) = 2, and we choose κ = 2.6.

Once synchronized, even hidden phytoplankton are re-
vealed for initializing short-term forecasts, demonstrat-
ing the utility of this result. Figure 5 demonstrates that
despite 65.8% of the drive system hidden, the two PDE
systems eventually evolve toward identical synchroniza-
tion. In Figures 4e and 4f nearly all evidence of clouds is
“synchronized away” from the response system and the
globally averaged error between the two has been driven
to be less than 2.6 × 10−12. We remark that the choice
of coupling strength, κ, varies with the amount of data
occluded.

Given a model form, we advance the method to sample
a single species toward parameter estimation and non-
linear data assimilation for a two-species PDE model,
regardless of clouds. That is, by stating the response
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FIG. 4: Synchronization of response system shown at
t = 0, t = 20, and t = 12000. Here 65.8% of Ω is hidden

at any point in time from clouds, however identical
synchronization is observed. Each figure shows drive

(top) and response (bottom) pairs. P (x, y, 0) and

P̂ (x, y, 0) in 4a, P (x, y, 20) and P̂ (x, y, 20) in 4c, and

P (x, y, 12000) and P̂ (x, y, 12000) in 4e. Z(x, y, 0) and

Ẑ(x, y, 0) in 4b, Z(x, y, 20) and Ẑ(x, y, 20) in 4d, and

Z(x, y, 12000) and Ẑ(x, y, 12000) in 4f.

system

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κ(H[P ]− P̂ ),

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

H[P ] + h
− m̂Ẑ,

∂k̂

∂t
= s1(H[P ]− P̂ ), and

∂m̂

∂t
= s2(H[P ]− P̂ )P̂ , (10)

where k(x, y), m(x, y), Z(x, y, t), and P (x, y, t)|ω are to

be estimated by k̂(x, y), m̂(x, y), Ẑ(x, y, t), and P̂ (x, y, t)
by sampling only P (x, y, t)|ωC . As before, the coupling is
turned off completely for the pixels on which clouds are
detected. The drive system is still Eq (1), but we allow

FIG. 5: Globally-averaged relative synchronization
errors. Errors given by simulation shown in Figure 4
decrease to less than 2.6× 10−12 despite ever-present

clouds.

for spatially dependent model parameters k(x, y),m(x, y)
in the form of Figure 2. For robustness, we consider that
the model parameters need not have the same functional
form. We choose m(x, y) defined by Eq (3) and k(x, y)
with form shown in Figure 2c and also add random noise
to both parameters.

Figures 6 and 7 demonstrate a comparison between
drive and response models. In the top of Figure 6a, we
see the observed system P (x, y, t)|ωC wherein 25.5% of
the data on Ω is not observable. Figures 6 and 7 demon-
strate that phytoplankton, zooplankton, and both spa-

tially dependent parameters k̂(x, y, t) and m̂(x, y, t) are
estimated to high precision.

Figure 8 describes the globally-averaged relative error
between the true system and the response system. The
rate of convergence to the synchronization manifold is
slower than with cloudless data as a result of allowing
the systems to oscillate independently while not driven
on ω. For the simulation in Figures 6 and 7, we choose
κ = 0.625, s1 = 0.2, and s2 = 0.6 for good autosynchro-
nization results. Summarizing, we have demonstrated
that it is possible to fill in missing data when hidden by
clouds and, as an added bonus, estimate noisy spatially-
dependent model parameters with different functional
forms. Similar results are obtained by testing other com-
binations of the two forms of model parameters in Figure
2.

Simulations are run for varying percentages of hidden
data. Figure 9 shows the synchronization errors for sim-
ulations after a fixed time epoch of t = 2400 for all simu-
lations. Specifically, the globally-averaged relative error
between drive and response systems is plotted against
the percentage of hidden data. It is clear that the speed
of convergence of assimilation slows with respect to the
degree of occlusion. A counter-intuitive side note is that
the assimilation quality actually improves by hiding data
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FIG. 6: Autosynchronization of species with 25.5% of Ω
is hidden at any point in time from clouds, however
autosynchronization is observed. Each figure shows

drive (top) and response (bottom) pairs. P (x, y, 0) and

P̂ (x, y, 0) in 6a, P (x, y, 200) and P̂ (x, y, 200) in 6c, and

P (x, y, 8563) and P̂ (x, y, 8563) in 6e. Z(x, y, 0) and

Ẑ(x, y, 0) in 6b, Z(x, y, 200) and Ẑ(x, y, 200) in 6d, and

Z(x, y, 8563) and Ẑ(x, y, 8563) in 6f.

through about 13% before worsening as a larger percent-
age of data is hidden. For these simulations, the same
initial conditions are used throughout for consistency.

We acknowledge inherent noise in remote sensing data
and next demonstrate the method can work with fairly
noisy observations. We add random noise to P (x, y, t)
for the length of the simulation, occlude P (x, y, t) with
25.5% cloud coverage, and consider the same noisy, mixed
functional form model parameters as above. As expected,
as more noise is added to observations, the rate of syn-
chronization slows and the error after a fixed epoch in-
creases. Figure 10 includes numerical experiments in
which increasing noise is added to P (x, y, t) and synchro-
nization errors are compared over a fixed time epoch of
t = 2400.

To be considered practical, the method should provide
decent results if data are available on a courser grid than
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FIG. 7: Autosynchronization of parameters with 25.5%
of Ω hidden at any point in time from clouds and

random noise added, however autosynchronization is
observed. Each figure shows drive (top) and response

(bottom) pairs. k(x, y) and k̂(x, y, 0) in 7a, k(x, y) and

k̂(x, y, 200) in 7c, and k(x, y) and k̂(x, y, 8563) in 7e.
m(x, y) and m̂(x, y, 0) in 7b, m(x, y) and m̂(x, y, 200) in

7d, and m(x, y) and m̂(x, y, 8563) in 7f.
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FIG. 8: Globally-averaged relative synchronization
errors. Errors from simulation shown in (a) correspond
to Figure 6 and (b) correspond to Figure 7, shown to
drop to within 1.2× 10−5 despite ever-present clouds.
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FIG. 9: Synchronization error plotted against
percentage of data hidden after simulation for t = 2400.
Species shown in Figure 9a and parameters in Figure 9b.
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FIG. 10: Synchronization error plotted against amount
of noise added to observations after simulation for

t = 2400. Noise is normalized relative to amplitude of
drive dynamics. Species shown in Figure 10a and

parameters in Figure 10b.

that on which the model is evolved.

V. SAMPLES ON A COARSE GRID

Model simulations require data on an appropriately
resolved grid, which may not line up with the grid on
which samples are available. Often is the case that sam-
pled data exist on a coarsened grid relative to a required
simulation grid. We demonstrate that a simple modi-
fication of the technique will produce results similar to
those above. We imagine that the domain is sampled in
discrete patches, denoted by Sn, and on the patches we
have available only local averages of true data as depicted
in Figure 11. In this way, we sample a coarser subset of
the domain and take local averages to be the new driving
signal.

To adapt the problem to such data, we modify the
response system, Eq (10)

x

y

Coarse grid

0 200 400 600 800
0

100

200

FIG. 11: Coarsely sampled domain with 2-pixel by
2-pixels sensors on which locally averaged data are

sampled, and with 1 pixel between sensors wherein no
data are available.

∂P̂

∂t
= 4P̂ + P̂ (1− P̂ )− P̂ Ẑ

P̂ + h
+ κGn ∀x, y ∈ Sn,

∂Ẑ

∂t
= 4Ẑ + k̂

P̂ Ẑ

P̃ + h
− m̂Ẑ, (11)

∂k̂

∂t
= 4k̂ + s1(P̃ − P̂ ),

∂m̂

∂t
= 4m̂+ s2(P̃ − P̂ )P̂ ,

where P̃ represents locally averaged observations from
the drive system and

Gn(t) =
1

(dx)(dy)

∑
x,y∈Sn

(P (x, y, t)− P̂ (x, y, t)), (12)

where Sn is the rectangular “sensor” on which local av-
eraging occurs.

Note, for best results, diffusion is added to the param-
eter equations in Eq (11) in order that data from the
driven regions, Sn will diffuse into the occluded regions.
To further mimic our target problem of remote sensing
data, we add white Gaussian noise to the observations.
We now demonstrate the method reconstructs parame-
ters and unknown states on incomplete, noisy, patchy
experimental data.

Figure 12 includes the results of simulations with cou-
pling given by Eq (11), with a sensor size of 2 pixels by
2 pixels, and a spacing of 1 pixel between sensors. Here
we show the end of the simulation for brevity. It is obvi-
ous the method suffers from noise, local averaging, and
missing data between sensors. In Figure 12a, it is clear
a considerable amount of data is occluded, the data that
are available include noise, and still unknown states and
parameters are reconstructed fairly well.

In Figure 13 we provide simulations to demonstrate
the dependency of synchronization quality on the sen-
sor spacing. The synchronization errors for zooplankton
and the parameter k(x, y) are plotted against time for
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FIG. 12: Autosynchronization of states and parameters

with 25.5% of Ω hidden at any point in time from
clouds, data available on a course grid, and random

noise added. The messy available data is evident at the
top of 12a. Each figure shows drive (top) and response

(bottom) pairs. P (x, y, 4000) and P̂ (x, y, 4000) in 12a,

Z(x, y, 4000) and Ẑ(x, y, 4000) in 12b, and k(x, y) and

k̂(x, y, 4000) in 12c. m(x, y) and m̂(x, y, 4000) in 12d.

simulations admitting zero, one, and two pixels between
sampling sensors on the domain. If sensor spacing is
too sparse, the method struggles to fill in data between
patches on which local averages are provided, and ulti-
mately fails. We note that the parameter m(x, y) and
phytoplankton exhibit similar behavior.
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FIG. 13: Synchronization error over time for different
amounts of spacing between locally averaged data.

Species shown in Figure 13a and parameters in Figure
13b.

These results demonstrate potential for future appli-
cation to real data. In fact the autosynchronization
method is capable of data assimilation by revealing hid-
den phytoplankton and zooplankton densities and esti-

mating model parameters on noisy, coarse, cloudy data.
Furthermore, our simulations indicate that state estima-
tion by synchronization is more robust to coarse data
than autosynchronization, which may be of use if param-
eter estimates are not required. This is merely a demon-
stration of autosynchronization applied to a remote sens-
ing problem. These results require analytical reinforce-
ment, including a discussion of the basin of attraction
for the synchronization manifold and allowable coupling
strengths to observe synchronization and parameter esti-
mation. In the following, we provide analysis of manifold
stability.

VI. ANALYSIS

To better understand this tendency to synchronize de-
spite hidden data, we are inspired by a method from
network theory. We represent the system as a moving
neighborhood network and define each pixel in the image
domain Ω, to be an individual oscillator, uj. We include
the drive and response images in the network so that an
m× n image provides 2N = 2mn oscillators.

Therefore, each drive oscillator uj, for some j = 1 : N ,
feeds a response oscillator corresponding to the same spa-
tial pixel, ûj, for some j = N + 1 : 2N . The drive system
is hidden for a time epoch ∆ to represent intermittent
cloud cover. Pixels over which there are clouds are uncou-
pled while covered. In time the network topology shifts
thereby shifting the coupling between drive and response
oscillators over Ω.

The adjacency matrix of our directed weighted random
graph has zeros on the main diagonal and is defined as:

aij =

{
wij with probability pij
0 with probability 1− pij ,

for i 6= j. We subtract the adjacency matrix from the
matrix D, with nonzero elements on the main diagonal
di =

∑n
j=1 aij , to obtain the graph Laplacian L. Our

network requires edges between nearby neighbors for dif-
fusion, and between images for both direct replacement
and diffusive drive-response coupling. We choose to or-
der the 2N vertices representing image pixels from left
to right, taking a row at a time, and placing the drive
image first, followed by the response image. That is we
stack subsequent rows of the drive image followed by the
response image to build the vector of 2N components.

Here we analyze the occluded synchronization system
(9). We define two Laplacians to represent diffusion and
drive-response coupling. L1 ∈ R2N×2N is a sparse matrix
with weighted entries corresponding to a chosen diffusion
stencil and boundary conditions. L2(t) ∈ R2N×2N , with
elements l2ij(t) is a time-dependent sparse matrix that
represents diffusive coupling with a switching network
topology and is fixed in the time interval Tk = [tk, tk+1)
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L2(t) =

[
0 0
IN −IN

]
,

where 0 is an N × N zero matrix. Next, we define two
matrices to model coupling between species, B1 = I2×2
and B2 = [1 0; 0 0]. The drive dynamics for the first N
oscillators and the response dynamics for the remaining
N oscillators are

u̇q(t) = f(uq) + σ1B1

2N∑
j=1

l1qj(t)uj , q = 1 : N, (13)

u̇q(t) = f(uq) + σ1B1

2N∑
j=1

l1qj(t)uj + σ2B2

N∑
j=1

l2qj(t)uj ,

q = N + 1 : 2N,

respectively, where uq ∈ R2 is the state of the qth oscil-

lator, σ1 =
1

h2
, σ2 = κ, and f : R2 → R2 describes the

individual dynamics of each oscillator.
We linearize the system about the synchronization

manifold as

˙δu(t) = (F + σ1L
1 ⊗B1 + σ2L

2(t)⊗B2)δu(t), (14)

where

F = I2N ⊗ Ji, and

Ji =

[ (
1− 2Pi − h

(Pi+h)2

)
− Pi

Pi+h
hk

(Pi+h)2
kPi
Pi+h −m

]
.

We decompose (14) into a component that evolves
along the synchronization manifold and a transverse com-
ponent with a matrix W ∈ R2N×(2N−1). The state vector
δu(t) is decomposed, with e denoting the standard basis
vector in R2, as

δu(t) = (W ⊗ I2)ζ(t) + e⊗ δus(t),

where

ζ(t) = (W ⊗ I2)T δu(t),

and

δus(t) =
1

N
((e⊗ I2)T δu(t)).

The linearized dynamics (14) are partitioned as

˙δus(t) = F (t)δus(t) + σ1(eTL1W ⊗B1)ζ(t)

+ σ2(eTL2(t)W ⊗B2)ζ(t), and

ζ̇(t) = I2N−1 ⊗ F (t) + σ1(WTL1W ⊗B1)ζ(t)

+ σ2(WTL2(t)W ⊗B2)ζ(t),

where almost sure asymptotic synchronization of (13)
is observed if ζ(t) almost surely converges to zero44.

It has been proven45 that if the un-occluded system
is uniformly asymptotically stable, then so is the oc-
cluded system, provided that the system is observable
often enough. For completeness we restate Theorem 1
found in45:

Theorem 1. Consider the deterministic dynamic sys-
tem:

ẏ(t) = (IN−1 ⊗ F (t) + σWTE[L]W ⊗B(t))y(t), (15)

representing the linearized transverse dynamics of

ẋq(t) = f(xq(t)) + σB(t)

N∑
j=1

E[lqj(t)]xj(t), (16)

q = 1, ..., N, t ∈ R+

where E[L] is the time-averaged graph Laplacian. As-
sume that F(t) and B(t) are bounded and continuous for
all t ≥ 0. If (15) is uniformly asymptotically stable,
there is a time-scale ∆∗ > 0 such that for any shorter
time-scale ∆ < ∆∗, the stochastic system (13) locally
asymptotically synchronizes almost surely.

Now we check that the hypothesis of this theorem holds
in the scenario of interest to us in this paper, which is
that the deterministic graph Laplacian supports synchro-
nization and the switching period ∆ between network
topologies is sufficiently small.

Corollary 1. Consider the stochastic system (13), where
L2(t) represents the switching network topology induced
by moving clouds with speed ν. Suppose ω is the set of
unobservable data over the domain Ω. If (15) is uni-
formly asymptotically stable, there exists a C > 0 and
ν∗(C), such that if ||ω|| < C and ν > ν∗(C), then the
time-scale between switching network topologies is suffi-
ciently small, ∆ < ∆∗, and the stochastic system locally
asymptotically synchronizes almost surely.

Proof. The proof of Theorem 1 found in45 need only be
altered slightly for our modification. We modify the def-
inition of M(t) so that

M(t) = I2N−1 ⊗ F (t) + σ1W
TL1W ⊗B1

+ σ2W
TL2(t)W ⊗B2, and

M̄(t) = I2N−1 ⊗ F (t) + σ1W
TE[L1]W ⊗B1

+ σ2W
TE[L2]W ⊗B2.

We note that both B1 and B2 are bounded and continu-
ous for t > 0, and there are positive constants β1, β2, and
β, such that for any t ≥ 0, ||B1|| ≤ β1, and ||B2(t)|| ≤
β2. Then setting β = max(β1, β2), the remainder of the
proof follows. Therefore, we are guaranteed a time-scale,
4∗ > 0, below which the system will asymptotically syn-
chronize.
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The referenced time scale is the time epoch under
which the drive system is occluded. That is, if the drive
system is occluded for too long, corresponding to clouds
that are too large or plentiful, the systems will not ex-
hibit synchronization.

To demonstrate Corollary 1 with respect to our prob-
lem, we simulate with varied rates of cloud movement.
As cloud movement slows, ∆ increases, and the graph
Laplacian switches less frequently. If cloud movement
slows too much, then the systems will not exhibit syn-
chronization. Figure 14 includes the results of simula-
tions over a fixed time epoch of t = 2400. Parameter
and state errors increase as the rate of cloud movement
decreases.
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FIG. 14: Synchronization error plotted against rate of
cloud movement over observations after simulation for
t = 2400. Species shown in Figure 14a and parameters

in Figure 14b.

VII. SUMMARY

We have extended the method of autosynchronization
for PDEs with spatially dependent parameters to par-
tially observable noisy PDEs with noisy parameters. We
have shown that two PDEs can synchronize together even
if the drive system is largely unobservable. Furthermore,
all model states and parameters are estimated by sam-
pling only one partially available noisy state. The work
is a step toward modeling ocean ecology by remote sens-
ing data over coastal regions or regions with recurring
algal blooms. Remote sensing data in the form of hyper-
spectral satellite imagery often suffer from cloud cover-
age occluding parts of the domain over which we observe.
Parameters and model states are estimated by treating
the drive and response systems as independent oscilla-
tors on the unobservable set and periodically driving the
dynamics toward the synchronization manifold.

Future work in this area includes adapting the method
to work with reaction-diffusion-advection models, and
building tools to optimize parameter and state estima-
tion given extremely sparse data. To find a Lyapunov
function for the system would provide strong theoretical
backing. Furthermore, one might study the observability

of the system, or similar systems, in order to understand
which state variables are necessary to be sampled for suc-
cessful estimation35,36

Algal blooms, especially harmful algal blooms, can
have widespread negative consequences on local fisheries
and tourism. In effect, models could inform manage-
ment decisions and provide forecasts for local commu-
nities. Coupled with optical flow techniques46, advec-
tion could be added to reaction-diffusion models for addi-
tional accuracy, particularly over regions for which there
are no vector field data for ocean currents. With advec-
tion data, techniques such as Finite-time/size-Lyapunov
exponents47,48 or coherent sets based on transfer operator
theory48–51 could be used to analyze the coastal dynam-
ics to uncover Lagrangian coherent structures that might
inhibit transport between regions of the ocean. Several
such techniques could be used in concert to build bloom
forecasts for coastal communities, informed by remote
sensing data.
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