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Estimating generating partitions of chaotic systems by unstable periodic orbits
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An outstanding problem in chaotic dynamics is to specify generating partitions for symbolic dynamics in
dimensions larger than 1. It has been known that the infinite number of unstable periodic orbits embedded in
the chaotic invariant set provides sufficient information for estimating the generating partition. Here we present
a general, dimension-independent, and efficient approach for this task based on optimizing preeitrofy
functions defined with respect to periodic orbits. Our algorithm allows us to obtain the approximate location of
the generating partition for the Ikeda-Hammel-Jones-Moloney map.

PACS numbgs): 05.45.Ac, 05.45.Pq, 05.45.Vx

Many chaotic systems admit a good symbolic dynamics In this paper, we present an efficient algorithm for esti-
[1]. Take, for example, the one-dimensional logistic f2p  mating the location of the generating partition for a chaotic
Xn+1=IXp(1—X,). For a typical trajectory, the correspond- system whose attractor is dense with UP(4]. Our prin-
ing symbolic dynamics can be defined by associating twaipal idea is based on the observation that the coarse features
symbols0 and 1 with trajectory points 6=x,<X.=1/2 and of chaotic attractors are typically revealed by a relatively
X.<xp=1, respectively. In this example, there is a one-to-small number of short UPO’s, while increasingly longer or-
one correspondence between trajectories in the phase spasigs refine(fill-in) the features without altering the general
and itinerary sequences represented (bgmjinfinite se-  structure. Therefore, orbit points of longer UPO’s are most
quences of the two symbols. The critical pakgtin this case jikely to be assigned the same symbols as the nearby points
is the generating partitionfor the logistic map. For two- pelonging to shorter UPO’s. We then construct a setrok-
dimensional maps there exists no unique recipe for identify;nity functions in the phase space, which greatly facilitates
ing generating partitions. For example, it is conjectured thafhe “assignment of symbols to orbit points of increasingly
a generating partition passes through fignary tangency 5,06 UpQ's, thereby allowing us to estimate generating
p%mtﬁ 'betvv.eeln fﬂ}?"s:jablel "’}nd unst@fyble manlfc[msﬁlr; partitions in an extremely efficient way. Besides taking ad-
which Is strictly Tulfilied only for specific systems such as vantage of the proximity functions, our success also relies on

the Henon map[7,3,4]. For other systems, additional consid- - : o
erations have to be employed, such as attractor folding in thEahe efficient detection of large numbers of UPQ's in general

cr?se of Dufffiﬂg attragto[dﬁ], (ghg] symmerry consictl)(larations in E:lhgiggc gﬁsrtzgsr,ogcaazﬁatglaets r:jasst (;eézoenrlgﬁ tgetﬁgrgee nfgﬁjz%e
the case of the standard mpggJ. It is also possible to con- o ;
struct generating partitions based on a topological analysi g;tg;?rl\]ﬂ;%ngcargggli]y ?;ig]?:isu;_h as the lkeda-Hammel-
dimensionaimaps obtained from the Poncartace of sec /e bein by deining aenerating pariionof symbolic
tion of three-dimensional flows. At present, there exists nogmﬁrg"?ss'";rﬂhne ’?gtflct)r?eogﬁgse:lsunfcg?r:t![icr)rrrll[sli]f Iriebj:jrible
efficient approach to identifying the generating partition forSets [16] pCon%ider anlBl—dimenZional dvnamical svstem
generalhigh-dimensional chaotic dynamics. Being of funda- —f ; MM A finit lect y f disioi ty '
mental importance to the study of chaotic dynamics, findind(”“_ (X,Q)’ VIV inite cotiection ot disjoint open
generating partitions is also critical for important technologi- €151 Bktk=1, WhereBNB; = (k#]), is defined to be a
cal applications such as communicating with chi@ls topological partltlon_lf the union of their closures exactly
Given a chaotic system, it is known that the generatingoversM: M =U}_,By [17]. Given an initial conditiorx,
partition can be specified by using the set of an infinite numand the topological partition{B,};_,, the trajectory
ber of unstable periodic orbit®JPO’s) embedded in the un- {x;}{__, defines a sequence of visited partition elements:
_derlying dynamical invariant s¢fl0]. The genera_l criterion {Bxi}i”:_n, where Bxi is the partition elemenB, such that
is that each UPO has to be represented by a unique symbolic _ g, The set of the intersection of the images and preim-
sgqugr;cei[lf the partition |sbg<|ert1erat|nrg1].J2uos itis thSSIbIeH '%ges of these elemen@s™. _ f(-1)(B, ) is, in general, open
principle, to assign a symbol to eac point in such a . i .
way that the above requirement is satisfied up to some Iarg%nd no-nem;r)]ty.l_Fo-r awfa'thIUI S}}@S’O“C represel:)ntatlop OI the
period p. Since the numbeN,, of orbit points increases ex- 2YNamIcs, the limit,_oMi- (Bx) must be a single
ponentially as a function of the periqd N,~ P where point. Given a dynamical systefaAM— M on a measure
hy>0 is the topological entropy of the chaotic set, specify-space (M,F,u), a finite partitionP={B}{_, is generating
ing a generating partition in this manner appears to be & the union of all images and preimagesPpives the set of
formidable optimization problem for a large number of or- all u-measurable sets. In other words, the “natural” tree
bits. of partitions: \/;~ _f()(P) always generates some sub-
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o-algebra, but if it gives the fullr algebra of all measurable
setsF, thenP is calledgenerating[16]. This weaker notion
says that the splitting needs only be up to measurable sets.
Since our approach demands splitting of a countable set of
points, the unstable periodic orbits, we do not make this
distinction. For our algorithm to work, it is sufficient to de-
mand that the UPO’s be dense in the attractor, which is a
common trait of chaotic attractors.

We now outline our general strategy for estimating the
generating partition of chaotic systems based on the knowl-
edge of unstable periodic orbits embedded in the chaotic set.
Consider anN-dimensional dynamical system),,="f(X,)
and assume that we know the location of the UPO'’s of up to
a relatively large period. The numb#&r of symbols neces-
sary for the symbolic representation must be large enough to
allow for unique encoding of all UPQ'’s in the systeik:
zm%p Ny, whereN, is the total number of orbit points of A
periodp, including orbit points with periods that are factors
of p. Our goal is to assign each orbit poixta symbols;

e A={aq, ... ,ak}, such that all the UPO'’s are represented FIG. 1. A schematic illustration of the proximity function and its
by distinct symbolic sequences. In general, this is a compliusage in the determination of the generating partition based on un-
cated problem of optimization for which a practical solution stable periodic orbits. The two proximity functior®, (x) and
does not exis— a factor that hinders the determination of Z, (x) are equal on the curve.

generating partitions from UPQ’s. Our success relies on the

following key observation: if we start the encoding processt . ... Clearly, if x is “closer” to the set of “+” points,

by assigning symbols to low-period UPO'’s and then usghe distances, , rg , rc , etc., are shorter, leading to

them as a guidance for encoding increasingly longer UPO'SZS(X)>Zg(x) as shown schematically in Fig. 1. While
then the optimization problem becomes greatly simplified. Incan be any point on the chaotic set, choosing it to be the
particular, if the encoding of short UPO’s correctly reflectscomponems of all periodic orbits of periog-¢ 1) yields the

the overall partitioning of the phase space, then most of thgympolic coding for these periodic orbits, which in turn, re-
orbit points of longer periods are likely to be encoded ac<ines the generating partition. Thus, starting from periodic
cording to theirproximity to the orbit points of shorter peri- orpits of the lowest period, we can, in principle, assign
ods. In order to have a quantitative measure, we define thgroper symbols to orbit points of all periods. Since unstable
following proximity functions of order fdor an arbitrary  periodic orbits are dense on a chaotic set, in the limit

pointx in the phase space: —oo, the boundaries between subsets of points with distinct
symbols asymptote to the generating partition.Fig. 2, we
Nep 8, o see that UPO’s through period-18 already “fill-in” quite
ASIOVEDS KD k=1, ... K, (1)  well) This strategy is powerful because the symbolic coding
=1 |x—xi? of the lowest periodic orbit can be readily obtained by ex-

amining the structure of the chaotic set. The method is also
whereN_,, is the total number of orbit points whose periods €fficient because the computation required is just to compute
are less than or equal i ands,, s is the Kronecker delta, the proximity functions. Occasionally, a point on a period-
which selects for the sum only those points encoded by th p+1) orbit may be a35|g_ned a wrong symbol, but this can
symbol @,. The choice of the functiodx—x|~2 is not e corrected easily by testing the uniqueness of the encoding
. i . ) . .
unique, as long as it satisfies the following requirements: iof all period-(p+1) orbits and then comparing the relative

must be a positive monotone decreasing function Whicﬁ/alues_of proxim_ity functions at the orbit _points. We find in
tends to+ in the limit x—x; . In our particular choice we numerical experiments that such corrections are rarely nec-
i

were primarily guided by the computational efficiency. We essary.

o ol e S e OB S e P s s e ot ety
thatZ{9(x)=Z{(x), j #k, and, therefore, define a partition P 9 ’ P

) N . li h isti hod8-6]. Rather, fi
which distinguishes all UPQO’s up to at least perjmd ence from the existing method8—6|. Rather, we define a

To better illustrate th ol t th imity “coloring” scheme for a large list of periodic orbits, and
o better lllustrate the USetuiness of the proXimity Tunc- .o \ye imply that a partitioning curve (or hyper surface)
tions, say we consider a symbolic dynamics of two symbol

. - . . asses between every two unlike colored pair of poifite
and the set of points on periodic orbits of periods less th_an Oéap in-between is expected to decrease with increasing pe-
equal to p. Assume that a subset of these points:

. ‘riod. Our approach is thus more natural than specifying an
(A:,B4,Cy,...), hasalready been assigned the Symbo'exact partitioning curve. Most importantly, once the list of
“+” and the complementary seA( ,B_,C_, ...) bears

25 periodic orbits has been found, our algorithm is essentially
the symbol “~". Let x be a point in the phase space, then Wejimension independent.

- . - N 42
have the following two proximity functionsZ, (x) =1/ry To have confidence in our method, we tested our strategy
g +1rE + ... and Z,(\)=1ri +1rg +1rg  using the Haon map[7]: (x,y)—(a—x?+by,x) for differ-
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FIG. 2. (Color) Orbit points up to period-18 for the Ikeda-Hammel-Jones-Moloney attractor inZccolored according to their
symbolic representation: green and red dots represent orbit points encoded with s§rabdl, respectively.

ent parametersa(b), for which the generating partition has ~ We begin construction of the partition by assigning sym-
been obtained previously by examining the tangencies bebols to the fixed points, e.g., point (0.5328,0.2469) in the
tween stable and unstable manifol@$ We shall neglect the attractor is encoded with the symb@] and point (1.1143,
computational details here and instead, give details shortly-2 2857) on the basin boundary is encoded with the symbol
when we compute the generating partition for the Ikeda- [18]. Next, we determine the values of the proximity func-
Hammel-Jones-Moloney mafdl4]. It suffices to say that tjon z,(x(®) at the positions of the two period-2 orbit points:
generating partitions which we obtain for the ném map x(®={(0.5098;-0.6089,(0.6216,0.6059), relative to the
converge to those passing through the primary tangencyst assigned partitioning of the period-1 orbifshe corre-
points[3]. _ sponding values are 1.05 and 7.19, which would indicate that
We now consider the Ikeda-Hammel-Jones-Moloney magoth points should be encoded with This encoding obvi-
[14] for which the generating partition, to our knowledge, oysly violates the requirement for unique symbolic represen-
has not been previously known. The map is given by tation of each UPO, and, therefore, correction is necessary.
An orbit point with the smallest absolute value of the prox-
imity function is most likely to be the one encoded incor-
(2)  rectly. Thus the symbol representing point (0.5098,
y'=b(xsing+y cosg), —0.6084) is changed t&. We then proceed to calculating
Z,—1(xP) for p=3, with subsequent assignment of symbols
wheres=k— 7/(1+x*+y?), and the parameters are chosenaccording to the sign of the proximity functions, with
such that the map has a chaotic attractor:1.0, b=0.9,k  uniqueness verifications after each period. In this example,
=0.4, and»=6.0. Using a recently developed method forno more inconsistencies are encountered until period-8,
efficient detection of large numbers of UPQ’s in general chawhere two orbits are assigned the same sequences. The nec-
otic systemg13] we obtain a(conjectured complete set of essary correction is again obvious if we consider the values
UPO'’s of period up to 22. The topological entropy of the of the proximity function at the two orbit$—554.6,—265.4,
attractor ishy~0.602<In2, so the symbolic dynamics is 188.3, 486.4, 664.9, 608.9-8.4, 310.3 and (—535.2,
likely to be encoded with two symbolsA={0,1}). In the ~ —270.0, 188.3, 487.4, 708.1, 704.298.6, 395.0. Accord-
case of a binary representation it is convenient to define gg to these values, we should change the encoding of the
single proximity function:Zp(X)=ZE,l)(X)—Z(pz)(X), which  seventh point in the first orbit. After this correction, no more
is positive in the domain of the symb0land negative the inconsistencies are detected, and we can proceed to the next
domain of the symbol. period. Note that the number of corrections for this attractor

x'=a+b(xcosp—ysing),
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is extremely small: a total of only 16 corrections was re- Note that our approach has some common ideas with the
quired for the encoding of all the UPO’s up to period{a@r  one based on the topological anaIyESﬂ; Both methods ex-
a total of 373005 orbit poinjs each correction being as tract the information about symbolic dynamics progressively
simple as the one illustrated above. from the hierarchy of UPO’s, and both rely on the continuity
The position of the generating partition for the attractorand uniqueness of the underlying dynamics. The topological
given by Eq.(2) is indicated in Fig. 2, where orbit points analysis has the added constraint that topological invariants
with periods up to 18 are colored according to their symbolicd’® compatible with symbolic names to ensure dynamic rel-
representation. The generating partition curve passes throug@yance. However, this analysis can only be applied to flows
the narrow region separating the two colors. We remark thagnd hence to orientation-preserving two-dimensional maps,
in Fig. 2, one can see a “shadow” of the homoclinic tan- While our approach is simpler, more general and, in prin-
gency point§19] through our partition curveven though no Clpllﬁ,sclijlmemn;:;nv&re]dﬁg\?gc(jjir\]/téloped an efficient strategy for
such considerations entered directly into our computations - ' : " . .
Apparently, the precision of thus de¥ermined generpating part_jetermmlng the generating partitions in chaotic systems. Our

tition can be made arbitrarily hiah by considering UPO's Ofmethod works extremely well for low-dimensional chaotic
) X ¢ arbitrarly hignh by 9 systems for which UPO’s can be readily obtained, and is
higher period, which is, in principle, no longer an obstacle

particularly for low-dimensional chaotic systeriis2,13. applicable to high-dimensional chaotic systems as well, in so

We stress two facts herél) the generating partition ob- far as large numbers of UPG's can be detected.

tained is only an approximation, arig) to our knowledge, R.L.D., Y.-C.L., and M.D. were supported by AFOSR
the generating partition shown in Fig. 2 for the Ikeda-under Grant No. F49620-98-1-0400 and by the NSF under
Hammel-Jones-Moloney map has not been obtained previsrant No. PHY-9722156. E.M.B. was supported by the NSF
ously. under Grant No. DMS-9704639.
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