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We present a method to reduce the RY dynamics of coupled map lattices (CMLs) of N invertibly
coupled unimodal maps to a sequence of N-bit symbols. We claim that the symbolic description is
complete and provides for the identification of all fixed points, periodic orbits, and dense orbits as well as
an efficient representation for studying pattern formation in CMLs. We give our results for CMLs in terms
of symbolic dynamical concepts well known for one-dimensional chaotic maps, including generating
partitions, Gray orderings, and kneading sequences. An example utilizing coupled quadratic maps is

given.
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The study of complex motion is greatly simplified by
investigating models that employ a coarse space-time dis-
cretization. Such models, typified by coupled map lattices
(CMLs), have been shown to reproduce the essential fea-
tures of turbulence in physical, chemical, and biological
systems [1]. A further simplification can be achieved by
considering iterates of the resulting map through a partition
which reduces the chaotic motion to a purely symbolic
signal with associated transition rules. The study of such
signals is called symbolic dynamics [2]. An effective state-
space-time discretization connects dynamical systems the-
ory to the study of formal languages, and hence, to com-
puter science, information theory, and automata [3].
Symbolic dynamical methods have been studied as a pos-
sible way to understand space-time chaos [4] and have
recently been used [5] to bound entropy and determine
ergodic properties of CMLs [6]. These attempts rely on
specially constructed CMLs or on showing that Markov
partitions of local, uncoupled dynamics are preserved in
the presence of weak interactions [7,8].

In this Letter we describe the symbolic dynamics due to
generating partitions, which we claim exist in a much
broader class of CMLs, including those with strong cou-
pling. For CMLs of N unimodal maps the implication is
that evolution through the R" state space is reducible to a
sequence of N-bit symbols. We conjecture that the sym-
bolic description is complete and provides for the rigorous
identification of all fixed points, periodic orbits, and dense
orbits as well as an efficient representation for studying
pattern formation in CMLs [9]. We also show that the
symbol ordering properties of 1D maps extend naturally
to CMLs and allow the calculation of topological features
without the need for extensive time series data. Impor-
tantly, the results presented here make straightforward
the application to CMLs of symbolic dynamical methods
used recently for the targeting and control of chaos [10—
12], for probing the limits of synchronization [13], and for
efficient chaos communication schemes [14-16].

We consider a map lattice with N sites labeled i =
1,..., N. Each site is described by a state x/, in the interval
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I = [a, b] and with local dynamics f;: I — I. A typical
diffusively coupled map lattice (CML) as introduced by
Kaneko is written as

= (L= ofilx) + €/2[fima () + fiar ()]
(D

along with rules for the boundary sites [17]. The behavior
of the lattice with respect to the coupling parameter € is of
primary interest here; the dynamics of the local maps f; are
well understood. In particular, we choose f with a good
symbolic representation.

Such a function can be taken from the family of uni-
modal (single-humped) maps over the interval. We label
the location of the maxima as the critical point x. and
divide the interval into two sets P = {P,, P,}, where P, =
[a, x.) and P, = (x,, b]. The point x, € I is mapped to the
semi-infinite symbol sequence 7(xy) =8 = 5055253 ..

where
0
Sn =1

The critical point can be assigned either symbol. In this
formulation the dynamics are characterized by a set of
rules that determine which sequences are allowed by f.
The set of allowable sequences can be related to the state
space through the inverse mapping

i
Xn+1

if f"(xo) € Py,

if f”()CO) € Pl‘ (2)

rs) = ()£ "(Py). 3)
n=0

For a faithful representation of chaotic dynamics, we re-
quire that r(s) converge to a single point in the interval, or
to the null set if s is not permitted by f. A partition that
satisfies this property is referred to as generating. Note that
for noninvertible maps f~! has multiple solutions, one on
each monotonic segment of f. For a partition to be gen-
erating each of these branches must be uniquely labeled,
otherwise points that share a common image would not be
distinguishable in sequence space.
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Returning to the CML, denote by F the product function
of f; onto each site, and by A an N X N coupling matrix.
Then (1) can be generalized as the composition H = A o
F, where A is chosen consistent with H: IV — V.
Assuming A is nonsingular, the elements of H ™! are

o)l = £ (35'5), 4)
J

keeping in mind that f; ! is multivalued. Because f; ! acts
alone on the ith element the associated generating partition
Pi of the solitary map f; suffices to distinguish the
branches of H; !. Accordingly, we propose a partition for
the CML that is the product of the partitions of the local
maps. More precisely,

N
’PCML=V:P"=ZPIVZPZV...VTN, (5)
i=1

where PVP ={P,NP:0=k=|Pl-10=I=
|P'| — 1} is the mathematical join of P and P’. The
form of (4) implies that the preimages of H(x,) are
uniquely labeled under this choice of partition. We con-
jecture, then, that Py is generating for chaotic behavior
in the CML. Our reasoning is that if the ergodicity is
preserved by the coupling then the set of preimages
{H™"(xy): n € N}, each labeled differently under Pcpy,
covers the chaotic attractor and thus no two points on the
attractor can be represented by the same semi-infinite
symbol sequence.

In the case where all f; are unimodal, the IV state space
can be coarsely discretized into 2V regions without incur-
ring a loss of fine detail on the attractor. As an example,
consider the 2-element lattice H: I*> — I* written as

xlo = (1= ef(x)) + ef(x2),
X2 = ef(xh) + (1 — e)f(x2),

where f(x) = 1 — 2x? is the quadratic map on the interval
I = [—1, 1]. The quadratic map has a generating partition
consisting of the regions [—1, 0) and (0, 1] which we shall
denote as {P], P1}, respectively, for coordinate x!, and as
{P3, P2} for x*. Applying (5) the partition for the coupled
system is

TCML = ?2 \'% Tl
={PinP}, P;NP,PINP,PiNnPlL. (7)

(6)

Reading the subscripts of each term as a binary number, we
relabel the regions as {P,, P, P,, P} and assign to them
the symbols 0, 1, 2, and 3. These four quadrants of I are
illustrated in Fig. 1(a).

The interesting dynamics of (6) occur for € € [0, 0.5].
When the coupling is very strong (0.25 < e = 0.5) the
synchronization manifold is stable and the long-term be-
havior is that of a solitary quadratic map, for which Pcyy.
is known to be generating. At weaker coupling strengths
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FIG. 1. Refinements of the square under a two element qua-
dratic map lattice, Eq. (6), with coupling strength € = 0.1.
(a) The primary partitioning of the square into four symbols,
(b) the second refinement into 2-block sequences, (c) 3-block
sequences (unlabeled) with region 313 darkened, and (d) region
313 subdivided into its 4-block words. The equivalent sequences
under the inverse Gray transformation are shown parenthetically.

the dynamics are considerably more complicated. Empiri-
cally, a positive Lyapunov exponent in this regime indi-
cates that the map is asymptotically expanding along typi-
cal orbits and thus the inverse mapping (3) converges to a
set of zero measure. Figure 1 illustrates the refining of /2
into increasingly smaller regions for € = 0.1. When this
process is extended indefinitely, every point on the attractor
is assigned a different symbol sequence.

The most powerful feature of the symbolic picture is that
time evolution is reduced to a simple shift in sequence
space. We denote the shift operator as ¢ and define its
action on a symbol sequence as o(sys|53...) = ;5283 ...,
so that the effect of o is to discard the leading symbol. If
we set s = 7(Xg), then it follows from (2) that o"(s) =
7(x,). Consequently, the entire evolution of X, is con-
tained in its symbolic representation. A point on a
period-m orbit, for example, is conjugate to a sequence
formed by infinitely repeating m symbols, or m blocks.
This property has application in describing the spatiotem-
poral patterns that are observed in large CMLs [9]. A static
or repeating global pattern would be represented by an
eventually stationary or eventually periodic symbolic se-
quence. Spatially localized structures, such as traveling
waves, appear in the bitwise decomposition of the symbols.
In all cases, spatiotemporal patterns are more efficiently
identified symbolically versus an analysis of real-valued
CML states. In what follows we will describe a method for
determining which symbol sequences are compatible with
the dynamics of H and which sequences are forbidden due
to dynamical restrictions.

In unimodal maps the symbolic sequence associated
with the image of the critical point, referred to as the
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kneading sequence, plays a special role in determining the
admissibility of all other sequences [18—21]. When inter-
preted as a Gray code [22], the kneading sequence is the
largest of all allowable sequences. Any sequence that
orders above the kneading sequence is forbidden while
those that order below it are admissible provided they do
not contain sub-blocks that are inadmissible. The order of a
sequence can be found by applying an inverse Gray trans-
formation, G~!, and interpreting the result as binary num-
ber. Given a symbol sequence s = s,5,53..., 5, € {0, 1},
the bitwise elements of G~ !(s), denoted b,b,b;..., are
determined by setting b; = s; and

b;=>b;_ ®s, fori>1, (8)
where ® is the exclusive-OR operator.

To accommodate lattices of N elements, we apply the
Gray transformation by defining the ® operator to act
bitwise on the N-bit representation of the symbols. For
example: 2® 3 = 10® 11 = 01 = 1. Thus the word 313
is mapped by (8) to 321 viathe steps by = 3,0, =3® 1 =
2, and b3 =3® 1 ®3 = 1. Like the 1D case, applying
G~! onto the symbol sequences produced by N coupled
unimodal maps gives information about their relative lo-
cation in state space. In this notation the subregion labels
appear in the same spatial relationship as they do in the
primary partitioning: for N = 2 the lower left “quad” of
region 321 is labeled 3210, the lower right quad is 3211
and so on [see Fig. 1(d)].

In the CML the critical point is generalized to a critical
surface of dimension N — 1, which is comprised of the
generating partition boundaries. The image of the critical
surface produces the associated kneading surface that
bounds the attractor [23]. In Fig. 2(a) the kneading curve
is the diamond shape. The symbolic sequences associated
with this kneading curve are maximal in the sense that all
sequences that lie outside of the region it encloses are

FIG. 2. The image of the critical curve and its fifth refinement
for € = 0.1. (a) The kneading curve (heavy black lines) is
comprised of the images of the generating partition boundaries
(gray). The chaotic attractor, represented by 500 points, lies
within this curve. (b) Here the kneading curve is shown as its
fifth refinement by the gray-shaded regions. The area outside the
kneading curve is tiled in by the 3-, 4-, and 5-block forbidden
regions listed in Table I.

forbidden. In this aspect, we have a partial order, and our
work has a strong relationship to previous work [24] as a
type of high-dimensional pruning front.

An algorithm for finding m-block forbidden sequences
can be arrived at by comparing consecutive refinements of
the kneading curve. Consider the set comprised of all the
m-block subregions of the (m — 1)th refinement of the
kneading curve. The members of this set that lie strictly
outside the mth refinement of the kneading curve are the
m-block forbidden words. As in the case of unimodal
maps, the inverse Gray transformation is useful in deciding
these spatial relationships. The result of this procedure for
€ = 0.1 of the 2-element lattice (6) is listed in Table I and
shown graphically in Fig. 2(b) for words up to m = 5.

To see the utility of Table I, consider the problem of
locating all period-2 orbits of (6) for € = 0.1. In sequence
space points belonging to period-m orbits are represented
by sequences comprised of infinitely repeating m-block
words. We use a bar to denote infinite repetition, so that
01 and its shift 10 represent one possible period-2 orbit. In
a four symbol alphabet there are exactly six such pairs:
(01, 10), (02, 20), (03, 30), (12,21), (13, 31), and (23, 32).
The first two are inadmissible because they contain the
forbidden words 010, 101, 020, and 202 listed in line 3 of
the table. The other period-2 orbits do not contain any of
the forbidden words, nor are they members of the kneading
curve. Figure 3 displays the locations of these allowable
period-2 orbits computed with the first seven terms of (3).

Computing the kneading curve and evaluating (3) as
described above is feasible for small N when symmetry
is exploited. For large N an alternate approach would be to
compile a lookup table of observed symbol sequences and
their locations in state space from time series data, as is
done in experimental studies of symbolic dynamics [11-
14]. For many coupling geometries the most compact
representation would be in terms of the local symbolic
dynamics, rather than with symbols describing the global

TABLE 1. Forbidden m-block words for € = 0.1.
m Forbidden m-block words
1 None
2 None
3

010, 020, 100, 101, 102, 110, 111, 120, 122,
200, 201, 202, 210, 211, 220, 222, 310, 320

4 0011, 0022, 0113, 0223, 1031, 1032, 1033
1132, 1231, 2031, 2032, 2033, 2132, 2231
3011, 3022, 3113, 3223

5 00123, 00213, 01123, 02213, 11230, 11330,
11331, 12130, 12330, 12332, 21230, 21330,
21331, 22130, 22330, 22332, 30123, 30213,
31123, 32213
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FIG. 3. The locations of the period-2 orbits of the quadratic
map CML, Eq. (6), resolved to 7 symbols are overlaid on the
attractor (shown in gray). Regions labeled a, b, ¢, and d corre-
spond to sequences 0303030, 1212121, 1313131, and
2323232, and their shifts, respectively.

state. We intend to address the subject of local symbols in
future research.

In summary, we present a method for efficiently describ-
ing the RY dynamics of a broad class of CMLs using N-bit
symbols. We show that the concepts of generating parti-
tions and kneading sequences for unimodal maps can be
extended to the case of CMLs when the coupling matrix is
invertible. The symbolic model can be computed exactly
from the images of the generating partition or compiled
from time series data. Importantly, these models are useful
in chaos control and communication as reported previously
[10-16]. Accordingly, we claim that symbolic dynamics
provides a natural coordinate system for understanding
turbulence in coupled map lattices.
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