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Introduction
Understanding the behavior of a complex system requires knowledge of its underlying 
structure. However prior knowledge of the network of interactions is often unavailable, 
necessitating estimation from data. Perhaps no complex system is more important to 
our health and well being than that of the gene expression network. However, these data 
are generally time-point process (TPP), and discretely distributed, rather than contin-
uous valued as most mutual information inference methods presume. Specifically, we 
assume a jointly distributed Poisson process. While TPP are relatively common, as far as 
we know, no efficient joint entropy estimator exists which does not make the assumption 
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that the data is continuously distributed. Generally for the purposes of entropy, the 
assumption is that we may simply use mutual information of the normal distribution 
to approximate that of the Poisson distribution. As we will show, this can lead to poor 
results, particularly when using these estimates for the purposes of network inference, 
leaving a gap in our ability to estimate the structure when the data is Poisson distributed. 
To this end, the main goal of this paper is to fill that gap.

Understanding which variables have a causal relationship with one another, the causal 
network, is an essential aspect of the ability to drive a system toward a desired outcome. 
In this work we focus on Granger causality in order to derive the causal structure of 
a given system. Granger causality (Granger 1969) has been used for network inference 
when interpreted as a causation inference concept. For linear stochastic processes, an 
example of a method which fits within the Granger causality framework is transfer 
entropy (TE) (Schreiber 2000) which is based on information theory for nonlinear pro-
cesses. However when applied to a system with more than two factors, transfer entropy 
is unable to distinguish direct versus indirect effects or confounders, and therefore they 
will tend to yield false positive connections. #ese false positives may lead to interven-
tions which do not achieve the desired result, for instance in the context of the gene 
expression network, if a gene is inferred to have far more outgoing edges than it truly 
has, one might conclude that its removal will lead to a desired outcome when in fact it 
will not.

To this end, we developed causation entropy (CSE) as a generalization of transfer 
entropy (Sun 2014; Sun et al. 2015), that explicitly defines the information flow between 
two factors, conditioned on tertiary intermediary factors. #is, together with a greedy 
search algorithm to construct the network of interactions of the complex stochastic 
process, provably reveals network structure of certain stochastic processes, (Sun et al. 
2015). Additionally numerical evidence suggests that optimal causation entropy (oCSE) 
produces very few spurious connections, even while finding the vast majority of true 
connections. In past studies, TE as well as CSE were computed nonparametrically, by 
the Kraskov–Stögbauer–Grassberger (KSG) (Kraskov and Stögbauer 2004) mutual infor-
mation estimator which is a K-nearest neighbors (KNN) method. However, if specific 
knowledge of the joint distribution of the process allows considerable computation effi-
ciencies particularly faster convergence, such as our previous work where jointly Gauss-
ian variables (Sun et  al. 2015) or jointly Laplace distributed variables in Ambegedara 
et al. (2016) were relevant then it becomes preferable to use these distributions.

Here, we focus on gene expression networks, which are an application of consider-
able scientific importance due to their foundational relevance as a building block tool to 
understanding details of life science. It is well understood that many diseases associate 
with variations of the expression of a single gene (Rogers 2008; Sebastiani et al. 2005; 
De Boulle 1993), e.g., famously such as sickle cell disease and cystic fibrosis. However 
it remains a difficult problem with considerable health implications to explain and to 
infer complex interactions and associations when many genes may be involved in com-
mon and even deadly disease. Such diseases are called polygenetic, and these include the 
breast cancer example that we study here. According to the Centers for Disease Control 
(CDC), in the USA, breast cancer is considered to be the second most common form of 
cancer amongst women, (https:// www. cdc. gov/ cancer/ breast/ stati stics/ index. htm), that 



Page 3 of 22Fish et al. Applied Network Science            (2022) 7:70  

in 2019 was forecast to 268,600 cases and 42,260 deaths in 2019. In previous work, gene 
expression data has been assumed to be drawn from a multivariate Poisson distribution 
(Allen 2013; Gallopin et al. 2013). #is highlights an application for the usefullness of the 
development of a Poisson version of oCSE.

We advance here a new methodology to probe variations in expression of a group (net-
work) of genes that may lead to disease. Understanding the gene interaction network 
structure may be crucial to the development of future treatments. Network inference 
itself has many applications beyond cancer research, including functional magnetic res-
onance imaging (fMRI) network inference (Smith 2012; Bassett 2011; Stoltz and Har-
rington 2017; Fish et al. 2021), drug-target interaction networks (Yamanishi et al. 2008), 
and earthquake network inference (Zhang et al. 2016) and economy issues (Iori 2008) to 
name a few.

With this motivation, the main technical premise of this paper is to develop a compu-
tationally efficient approach to estimate joint entropy and related information theoretic 
measures for multivariate Poisson processes, which are necessary for utilizing oCSE for 
network estimation. Data derived from these are discrete-valued data, and typically con-
sist of a significant fraction of zeros punctuated with nonzero values describing event 
counts in a given epoch. From the multi-variate Poisson model, we derive an analytical 
series representation of the joint entropy and the mutual information. #en, a practi-
cal finite partial-sum estimator allows estimation of mutual information, toward transfer 
entropy and causation entropy (Fig. 1 ).

#is paper is structured as follows: first, we provide a brief introduction to mathemati-
cal background including a multivariate Poisson model and also relevant information 
theoretic quantities which are necessary to define information flow. #en, we derive 
our multivariate Poisson joint entropy estimator, which we relate to network inference. 
Finally, in the Results section we demonstrate our method and performance for bench-
mark synthetic data and then we study the breast cancer gene expression data sets.

Background
#e goal of this work is to expand the optimal causation entropy (oCSE) (Sun et  al. 
2015) to handle Poisson distributed data. Below we highlight the necessary background 
of a multivariate Poisson distribution, Granger causal inference, and finally causation 
entropy for the development of a new Poisson oCSE algorithm.

Fig. 1 Work flow of our computationally efficient approach to estimate the joint entropy of multi-variate 
Poisson distributed variables. From data, we proceed to distribution parameter estimation to approximate 
joint entropy
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Multivariate Poisson model
First let us recall the single variate Poisson Model, (Reiss 2012; Bollt and Santitis-
sadeekorn 2013):

#e Poisson model has a multivariate generalization as follows, (Karlis and Meligotsidou 
2007):

where the set

and N0 = N ∪ {0} . #is model is based on assuming that the xi are linearly transformed 
from a set of independently drawn Poisson variables. We begin with

Here each yij is independent Poisson, that is: yij ∈ Nt
0 ∼ Poisson (!ij),

( for i = 1, ..., n, j ≥ i) , so m = n+
n(n−1)

2  , B ∈ N
n×m
0  . Note that in this case !ij = !ji . #e 

rows of X thus represent Poisson random variables which have t observations. Although 
the number of parameters needed to specify this model grows quickly, there are some 
nice properties. For instance, this model allows a simple estimate of each !ij , since the 
sum of independent Poisson variables yields the following covariance matrix structure:

with !ij = !ji . #e (i, j) entries of the covariance matrix represent cov (xi, xj) , the covari-
ance between the two random variables, xi and xj) . Proof of Eq. 5 may be found in the 
appendix.
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#is model is a multivariate extension of the Poisson model that does not assume the 
random variables are necessarily independent. However, there are some limitations to this 
model. First, the rapid growth in the number of states and parameters with respect to the 
number of variables, making calculation of the joint distribution computationally unwieldy 
and expensive. Another limitation is that model cannot handle negative covariance (Karlis 
and Meligotsidou 2007). Some of these difficulties will be handled later on, however we do 
not address negative covariances, as a fix to this generally requires models which are not 
Poisson.

Transfer entropy and causation entropy
We briefly review certain Shannon entropies, building toward the concepts of transfer 
entropy and causation entropy. #ese are the fundamental concepts of information flow 
we use to consider network inference. #e Shannon entropy of a (discrete) random vari-
able X is given by Shannon (1948), Cover and #omas (2012):

where P(x) is the probability that X = x , and 0 log (0) = 0 is the usual interpretation 
in this context. For the remainder of this paper we choose the natural log and thus all 
entropies will be measured in nats. Entropy can be thought of as a measure of how 
uncertain we are about a particular outcome. As an example we can imagine two sce-
narios, in one case we have a random variable X1 = (x(1)1 , x(2)1 , ..., x(n)1 ) with x(t)1 = 0(∀t) , 
that is P(X1 = 0) = 1 , in the other case the random variable X2 = (x(1)2 , x(2)2 , ..., x(n)2 ) with 
P(X2 = 0) = 0.5, P(X2 = 1) = 0.5 . Here H(X1) = 0 nats, while H(X2) = ln (0.5) nats 
which happens to be the maximum for this case (Cover and #omas 2012). It is easy 
to see that Shannon entropy reaches its greatest value when we are the most uncertain 
about the outcome, and its minimal value (0) when we are completely certain about the 
outcome. We can now examine the case of two random variables X and Y. #e joint 
entropy of a discrete random variable is defined (Cover and #omas 2012):

When the two random variables X and Y are independent H(X ,Y ) = H(X)+H(Y ) 
which is the maximum joint entropy. #us H(X ,Y ) ≤ H(X)+H(Y ) , taken all together 
this means the joint entropy is largest when the variables are independent, and decreases 
as they become more and more dependent. #is is an important feature, which we take 
advantage of for network inference.

#ere are comparable definitions of differential entropies for continuous random vari-
ables in terms of integration. #e conditional entropy is defined:

#e conditional entropy gives us another way to describe the relationship between var-
iables, which is the key to network inference. If knowledge of the variable Y gives us 

(6)H(X) = −

∑

x∈X

P(x) log (P(x)),

(7)H(X ,Y ) = −

∑

x∈X

∑

y∈Y

P(x, y) ln (P(x, y)).

(8)H(X | Y ) = −

∑

x∈X

∑

y∈Y

P(x, y) ln P(x | y).
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complete knowledge of the variable X then the conditional entropy will be H(X | Y ) = 0 
nats. Note that there is a relationship between the conditional entropy and the joint 
entropy namely:

#is is convenient in situations where it may be easier to compute one of the two entro-
pies. Another important Shannon entropy is the mutual information which is defined as 
Cover and #omas (2012):

 #e mutual information is exactly 0 when the variables are independent, and grows 
along with the mutual dependence. A feature which separates mutual information from 
correlation, is that the mutual information generally works well as a measure of depend-
ence even when the relationships are not linear, which is not necessarily the case for 
correlation, for the interested reader an example of this is shown in Smith (2015). Finally, 
the Kullback-Leibler (KL) divergence ( DKL ) (Cover and #omas 2012) is stated:

#e KL divergence describes a distance-like quantity between two probability dis-
tributions, though it is not a metric as for one, it is not symmetric (that is in general 
DKL(P || Q) != DKL(Q || P) ), and also it does not satisfy the triangle inequality. Mutual 
information Eq.  10 can be written in terms of KL divergence as Cover and #omas 
(2012):

describing a deviation from independence of a joint random variable (x,  y). In other 
words, the mutual information can be recast as a distance like measure between two 
variables in the distributional sense. #is is a key component for the use of mutual infor-
mation, and specifically conditional mutual information, for inferring direct causal con-
nections between variables.

For a stationary stochastic process, {Xt
} , the entropy rate is defined as Cover and 

#omas (2006), Bollt and Santitissadeekorn (2013):

If the process is Markov (memoryless) then (Cover and #omas 2012):

(9)H(Y | X) = H(X ,Y )−H(X).

(10)
I(X ,Y ) =

∑

x∈X

∑

y∈Y

P(x, y) ln
( P(x, y)

P(x)P(y)

)

= H(X)−H(X | Y )

= H(X)+H(Y )−H(X ,Y ).

(11)DKL(P || Q) = −

∑

x∈X

P(x) ln
(Q(x)

P(x)

)

.

(12)I(X ,Y ) = DKL(P(x, y) || P(x)P(y)),

(13)H(χ) = lim
t→∞

H(Xt
| Xt−1,Xt−2, ...,X1).

(14)H(χ) = lim
t→∞

H(Xt
| Xt−1).



Page 7 of 22Fish et al. Applied Network Science            (2022) 7:70  

For this work we will assume that the networked system to be analyzed is a set of sta-
tionary stochastic processes, and therefore we can learn the Granger causal structure 
from observational data obtained from the system. #e transfer entropy from X2 to X1 is 
defined as Schreiber (2000), Sun (2014):

 #e transfer entropy can be thought of as measuring the total amount of information 
flowing from one variable to another. Note however that some of that information may 
be flowing to one variable through another variable (for excellent figures illustrating this 
please see Sun 2014; Sun et al. 2015) and thus transfer entropy may infer a link between 
two variables that in reality do not have a direct connection to one another. #is issue 
can be solved by conditioning as will be discussed below.

Causation entropy is a generalization of the transfer entropy, where (Sun 2014; Sun 
et al. 2015):

CQ→P|S is designed to describe the remaining information flow from processes Q to 
processes P that may not be accounted for (conditioned on) processes S . An example 
of causation entropy is shown in Fig. 2a. In theory if a process Z has no influence over 
another process Y, the causation entropy after conditioning out the remaining processes 
would be identically 0, allowing us to reject a connection from Z to Y. In practice how-
ever, when estimating these quantities by statistics from finite samples of noisy data, 
these will not compute to be identically 0, making it necessary to have a threshold, which 
is the purpose of using a shuffle test as discussed in Sun et al. (2015).

Network inference can be developed based on Eq.  16. However, considering the 
power-set of all possible subsets P ,Q,S is clearly NP-hard and so not practical. #is 

(15)TX2→X1 = H(Xt+1
1 | Xt

1)−H(Xt+1
1 | Xt

1,X
t
2).

(16)CQ→P|S = H(P t+1
| S

t)−H(P t+1
| S

t ,Qt).

Fig. 2 a The causation entropy between two processes Z and Y is shown. In this case since we are only 
conditioning on a process X, CZ→Y |X = TZ→Y . Of course X may be replaced with a set of variables. b Here we 
show a special case where Z is independent of both X and Y (Z in this case may represent the history of X. 
In this case it becomes clear that H(Z | X , Y) = H(Z) , H(X | Y , Z) = H(X | Y) and H(Y | X , Z) = H(Y | X) . As 
explained in the text, this special case helps us to discern what are the proper variables to use in the Poisson 
case



Page 8 of 22Fish et al. Applied Network Science            (2022) 7:70 

led to the development of a greedy search algorithm, we referred to as optimal causa-
tion entropy (oCSE) (Sun et al. 2015; Ambegedara et al. 2016) to a minimal network that 
explains the data, in terms of minimal causation entropy. #is proceeds in two stages, 
aggregative discovery of statistically significant links, those that are maximally informa-
tive influencers in terms of the conditionally already significant links, with possible 
removal of statistically irrelevant links developed while growing the global network, and 
significance decided by a null hypothesis in terms of multiple random shuffles of the 
data. We were able to prove under mild hypothesis of the stochastic process that this 
procedure will discover the true network, also assuming a good statistical estimation of 
the entropies. It is precisely this problem of good data-driven statistical estimation of 
entropies specialized to the scenario of a multivariate Poisson process which is what we 
handle in this paper.

Entropy estimation from multivariate Poisson data
oCSE requires the calculation of conditional mutual information (CMI) (Sun et al. 2015), 
and there are numerous paths to obtain it. We reiterate that oCSE is the algorithm used 
for network inference, however the previously available versions of oCSE have proven to 
be insufficient in accurately reconstructing the network on synthetic Poisson data as will 
be shown in the results section.

In some cases, such as in the Gaussian case, the mutual information, and therefore the 
conditional mutual information, is easily estimated directly from data. Another possible 
path, which is the path we choose below, is to estimate the CMI using the joint entropy.

An estimator of the joint entropy of the Poisson distribution was derived in Guerrero-
Cusumano (1995). However they derive their estimate by assuming the mutual informa-
tion is the same as the Gaussian distribution. #is would make the mutual information 
estimator the same as the one presented in Sun et al. (2015). However, particularly for 
smaller values of the rate parameter ! of the Poisson distribution, this estimator can be 
quite inaccurate, and as we will see in the results section, this can lead to highly inaccu-
rate estimates for network structure.

In order to obtain an estimator which produces more accurate estimates of network 
structure, we take a different approach to estimating the mutual information of the Pois-
son distribution. Below an approximation of the joint entropy of the multivariate Pois-
son distribution is derived, and from this joint entropy the CMI needed for oCSE will be 
computed.

Estimating joint entropy of Poisson systems
Here we develop an estimator of entropies for the multivariate Poisson distribution, 
Eq. 2. To this end, we truncate partial sums from series representations.

Poisson entropy
We begin the Poisson Entropy:
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#is expression for the entropy of a Poisson random variable is in terms of an infinite 
series, which is well approximated by a finite truncation partial sum.

Bivariate Poisson entropy
#e Bivariate Poisson case is instructive to the n-variate Poisson case. Consider:

Let,

and,

#en Eq. 18 will become:

Now to get the joint entropy of the Bivariate Poisson we have:

A scenario of interest arises when !11, !22, and !12 are all small and !12 ! !11!22 . In this 
case we have

(17)

HPoisson(K ) = −

∞
∑

k=0

!k

k!
e−! ln

(

!k

k!
e−!

)

=

−

∞
∑

k=0

!k

k!
e−!

[−!+ k ln (!)− ln (k!)] =

!− ! ln (!)+

∞
∑

k=0

!k

k!
e−! ln (k!).

(18)

P(x1, x2) = e−!11−!22−!12
!11

x1

x1!

!22
x2

x2!

(min(x1,x2)
∑

a12=0

x1!

(x1 − a12)!

x2!

(x2 − a12)!a12!

(

!12

!11!22

)a12
)

.

(19)d12 =
!12

!11!22
,

(20)D(x1, x2) =

min(x1,x2)
∑

a12=0

x1!

(x1 − a12)!

x2!

(x2 − a12)!

da1212

a12!
.

(21)P(x1, x2) = e−!11−!22−!12
!11

x1

x1!

!22
x2

x2!
D(x1, x2).

(22)

H(X1,X2) = −

∞
∑

x1=0

∞
∑

x2=0

P(x1, x2) ln (P(x1, x2)) = −

∞
∑

x1=0

∞
∑

x2=0

e−!11−!22−!12
!11

x1

x1!

!22
x2

x2!
D(x1, x2)×

[−!11 − !22 − !12 + x1 ln (!11)+ x2 ln (!22)− ln (x1!)− ln (x2!)

+ ln (D(x1, x2))].

(23)D(x1, x2) ≈

min(x1,x2)
∑

a12=0

da1212

a12!
,
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since the d12 term dominates. Small !11 and !22 ensures that the large x1 and x2 terms to 
become insignificant in Eq. 22. #us, D(x1, x2) ≈ 1+

d212
2! + ... ≈ 1 . Grouping terms and 

remembering (the middle part of ) Eq. 17, and estimating D(x1, x2) = 1 , a finite partial 
sum of Eq. 22 can be written:

Remembering the assumption !12 << 1 , the expression Eq. 24 reduces further:

As Fig.  3 shows, this approximation works well when d12 << 1 =⇒ !12 << !11!22 , 
and in this regime the error will be small. Similar analysis can be carried out for the 
larger multivariate cases which allows us to arrive at a general formula for our approxi-
mation given by:

where we are assuming that !ij are small for all (i, j) pairs. Fortunately as we can see in 
Eq. 26, all of the quantities on the right hand side are computationally efficient to com-
pute. #is in fact greatly reduces the computational time necessary for estimation of the 
joint entropy. #is formulation requires asymptotic assumptions that may not be valid 
in general in nature. However we find empirically in simulations that by scaling the rates 
!ij to be in [0, 1] the estimate performs well, as described by Fig. 3 and, verified in the 
network simulations, regardless of what the true underlying rates this scaling produces 
similar results.

(24)H(X1,X2) = e−!12 [H(X1)+H(X2)+ !12].

(25)H(X1,X2) = [H(X1)+H(X2)+ !12].

(26)H(X1,X2, ...,Xn) ≈ [H(X1)+ ...H(Xn)+
∑

j>i

!ij],

Fig. 3 The relative error in the joint entropy calculation between the joint entropy calculated through 
truncation and the joint entropy calculated by our approximation. It is clear that when both !12 and !11!22 
are small, the relative error is small. Thus we expect this approximation to work well when all of the estimated 
rates are small. In practice we find that when scaling the rates to be in [0, 1] we get good results, regardless of 
how high the true rates were
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Now we have available to us an approximation of the joint entropy for Poisson vari-
ables, which can be used to infer the edges of a network (in a Granger causal sense) by 
estimating the conditional mutual informations necessary for the oCSE algorithm.

As a note of caution, consider that when calculating the mutual information in the 
Poisson model, care must be taken due to how the marginals of a joint Poisson pro-
cess are drawn. For example from Eq. 10 it may be tempting to assert:

with X1 ∼ Poisson (!11) and X2 ∼ Poisson (!22) . However this is not exactly correct, 
though the error here is subtle. In fact we must make a small change to Eq. 27 to be:

here X1 ∼ Poisson (!11) and X2 ∼ Poisson (!22) , but X̂1 ∼ Poisson (!11 + !12) and 
X̂2 ∼ Poisson (!22 + !12) . #is subtle difference is important, because without recog-
nizing this fact, the calculated mutual information becomes negative, which violates our 
well established condition that mutual information be positive. #e need for X̂1 and X̂2 
is apparent from Eq. 5, when two Poisson random variables are summed together their 
marginals then are drawn from the sum of the underlying rate (i.e. !ii ) and the coupling 
rate (i.e. !ij ). #is also transfers to computing the conditional mutual information. To 
better illuminate this calculation it is helpful to refer to Fig. 2b.

In the special case presented in Fig. 2b Eq. 29 becomes

therefore,

In this special case we can note the following:

Applying Eq. 32 to Eq. 31 we find that:

We know from Eq. 28 that in the Poisson case this becomes:

Applying the following facts to Eq. 34

we find that:

(27)IPoisson(X1,X2) = H(X1)+H(X2)−H(X1,X2),

(28)IPoisson(X1,X2) = H(X̂1)+H(X̂2)−H(X1,X2),

(29)I(X ,Y | Z) = H(X ,Z)+H(Y ,Z)−H(X ,Y ,Z)−H(Z).

(30)I(X ,Y | Z) = I(X ,Y ) = H(X)+H(Y )−H(X ,Y ),

(31)H(X)+H(Y )−H(X ,Y ) = H(X ,Z)+H(Y ,Z)−H(X ,Y ,Z)−H(Z).

(32)H(Y ,Z) = H(Y )+H(Z).

(33)H(X)−H(X ,Y ) = H(X ,Z)−H(X ,Y ,Z).

(34)H(X̂)−H(X ,Y ) = H(X ,Z)−H(X ,Y ,Z).

(35)
{

H(X ,Y ,Z) = H(X ,Y )+H(Z),
and H(X ,Z) = H(X)+H(Z),
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Similar analysis also shows that:

this implies that we must use the Poisson marginals in the computation of the condi-
tional mutual information. #at is in the Poisson case we must have:

Note the use of X̂ and Ŷ  in this case. #is distinction in the Poisson case is important 
because we note that without using the proper marginals the computation results in 
negative conditional mutual information which is clearly not correct since conditional 
mutual information must be positive (Cover and #omas 2012).

Importantly the new definition given in Eq. 26 becomes more computationally effi-
cient than computing the Poisson joint entropy directly from the joint probability. 
#is requires calculation of only separate single variate entropies which is requires 
less computation. #is naturally leads to the question of the accuracy of this new 
model. As can be seen in Fig. 4 the new definition of entropy still leads to accurate 
identification of network structure. #is new definition also fits into the general 
framework of entropy which was developed above, allowing us to apply the optimal 

(36)H(X̂) = H(X).

(37)H(Ŷ ) = H(Y ),

(38)I(X ,Y | Z) = H(X̂ ,Z)+H(Ŷ ,Z)−H(X ,Y ,Z)−H(Z).

Fig. 4 True Positive and False Positive Rates for several test methods on ER graphs of two different levels of 
sparsity. Erdős-Rényi (ER) graphs with triangles for a 50 nodes graph with strong sparsity due to p = 0.04 , 
and the x’s for 50 nodes ER graphs with due to denser p = 0.1 . The magenta lines represent GLASSO, the blue 
lines represent the Poisson oMII, the red lines represent the Gaussian oMII, and the green lines represent the 
KNN oMII. In a the true positive rate (TPR) is shown for different sample sizes, each point is averaged over 
50 realizations of the network dynamics. In b the false positive rate (FPR) is shown. Clearly GLASSO finds 
more true edges, but at the expense of a significantly higher false positives. In fact, for the highly sparse ER 
network GLASSO finds 3 times as many edges as actually exist in the network with 1000 data points. The 
FPR increases with data set. As can be seen the Gaussian oMII performs as well as Poisson oMII in TPR with 
the KNN performing poorly, but the Poisson oMII significantly outperforms all other methods in terms of 
FPR. It appears that the Poisson oMII is the only method that converges to the true network structure with 
increasing sample size. c Comparing TPR between GLASSO, the hybrid method and Poisson oCSE. The hybrid 
method has an increased TPR relative to Poisson oCSE. d The FPR increases slightly for the hybrid method, but 
is substantially lower than GLASSO
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mutual information interaction (oMII) (Ambegedara et al. 2016) algorithm, which is a 
version of oCSE without time-shift, to the data.

Network structure and inference
In a gene interaction network, understanding how future treatments could be devel-
oped, especially in the cases where more than a single gene may be implicated in a 
disease, may help in designing targeted for therapies. Genes interact with outcome 
such as disease reduces to a network inference problem. We do not assume apriori 
knowledge of the underlying network structure, but instead we have data describing 
time series of evolving stochastic processes at each of the states, related to each indi-
vidual gene. #e network is stated as a graph G defined as a set of vertices V ⊂ N and 
edges E ⊂ V × V , G = {V , E} . Note that |V| = n denotes that there are n vertices (or 
nodes) in G , by the cardinality, | · | , of a set. #e adjacency matrix A ∈ N

n×n
0  is a con-

venient way to encode a graph,

When a system has a graph structure it is often referred to as a network. #e adjacency 
matrix then encodes the network structure of the system. Our goal is to estimate net-
work structure Â closely as possible to the true network structure A , that is we want, 
∑

i,j |A− Â|, to be as small as possible (ideally 0). We would also like for this to be 
accomplished with as little data (t) as possible, since we are often limited in the amount 
of real world data we receive. Our estimation of the network structure relies on nodes 
sharing information with one another. #us Â may be thought of as which nodes are 
directly communicating with one another, rather than strictly being the physical struc-
ture. In our previous work, (Sun 2014; Sun et  al. 2015), we proved that under mild 
hypothesis, the multi-variate stochastic evolving by coupling on a complex network can 
be derived perfectly by optimal causation entropy (oCSE), errors arising from estimation 
issues such as model entropies of observations from various distributions, and finite data 
effects, but the information network structure align accurately in most situations.

In the first example demonstration of our methods, we benchmark with synthetic 
simulated by the multivariate Poisson model, Eqs. 2 and 4. To explicitly incorporate 
the adjacency matrix A and noise E as shown in Allen (2013), Gallopin et al. (2013), 
consider as:

where In is the (n× n) identity matrix, P ∈ N
n×(m−n)
0  is a permutation matrix with 

exactly n ones per row ! represents the Hadamard product (componentwise multipli-
cation of same sized arrays). 1n ∈ Nn×1 is the vector of all ones, and tri(A) ∈ N

n(n−1)
2 ×1

0  
denotes the vectorized upper triangular portion of the adjacency matrix, and E ∈ N

n×t
0  . 

In the results section, the methods developed will be contrasted with GLASSO, a 

(39)
{

Aij = 1 if (i, j) ∈ E ,
Aij = 0 otherwise .

(40)X = BY + E,

(41)B = [In;P ! (1ntri(A)T )]
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popular method used for benchmark comparison as discussed in Allen (2013), Gallopin 
et al. (2013) and elsewhere for inference of gene expression networks.

We have established in previous discussion that there is no analytical solution for 
the entropy of the multivariate Poisson, instead an approximation has been made. 
Since the Poisson distribution resembles the Gaussian distribution often the lat-
ter is assumed for estimates, we thus compare the performance of oMII assuming 
both distribution types. Figure  4 shows that the oMII method, but even using the 
rough Gaussian best estimates of entropies, nonetheless does reasonably well find-
ing the true edges with a high true positive rate (TPR). #is is contrasted to network 
inference based on other entropy estimators, including the nonparametric kNN 
method, GLASSO, both of which are discussed below, and also the Poisson estima-
tor developed here. However, the Gaussian oMII finds the edges at the expense of 
a much larger false positive rate (FPR). Specifically, define TPR and FPR as follows: 
let G = {V , E} be the true network structure and Ĝ = {V̂ , Ê} be the estimated network 
structure. #en:

and

In this case \ represents set subtraction. Note that from this definition 0 ≤ TPR ≤ 1 
while FPR ≥ 0.

Results
Synthetic data
We compare the performance of several methods on simulated data sets, including 
various types of oMII, as well as GLASSO (Friedman et al. 2008). Unlike oMII, which 
involves conditional mutual information as its engine, GLASSO involves maximizing the 
log-likelihood provided in Eq. 44 over values of a regularization parameter ρ,

A common method for the choice of ρ is maximazation of the Bayesian information cri-
terion (BIC). We utilize 1000 log-spaced values of ρ in [10−2, 1] which varies Â between 
a complete network to a completely disconnected network with zero edges. Following 
(Gallopin et al. 2013), first we use a box-cox transformation of the Poisson distributed 
data, to make the data more Gaussian like, prior to using GLASSO. #e box-cox trans-
formation of a random variable z is

GLASSO results are shown in Fig. 4.

(42)TPR =
|E ∩ Ê |

|E |
,

(43)FPR =
|Ê \ E |

|E |
.

(44)L(X , ρ) = log ( det (Â))− trace ( Cov (X)Â)− ρ||Â||1.

(45)bc(z | γ ) =

{

zγ−1
γ ifγ "= 0

log (z) ifγ = 0.
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#e Poisson oMII method is tested on data simulated as described in the sec-
tion above. In Fig. 4 each data point is averaged over 50 realizations of the network 
dynamics. Two different Erdős-Rényi (ER) graph types are used, one with p = 0.04 
and one with p = 0.1 . #e parameter p in an ER graph controls the sparsity of the 
graph, thus the graphs with p = 0.1 will have considerably more edges on average 
than graphs with p = 0.04 . For these simulations n = 50 was chosen. #e rates were 
chosen to be !ij = 1 (∀ i, j) and Ei ∼ Poisson (0.5) (∀ i) where Ei ∈ N

t×1
0  are the col-

umns of E. #is is the high SNR scenario from Allen (2013). To estimate the rates, 
we simply use correlation between all pairs in the data. We note that this differs from 
above where we utilized the covariance matrix. Using correlation rather than covari-
ance guarantees the calculated rates will be relatively small since the values of corre-
lation do not exceed 1 in absolute value, this allows the estimated rates to stay in the 
small relative error regime shown in Fig. 3. #e correlation matrix then gives us all of 
the off diagonal rates !ij (i != j) and to obtain the rates !ij (i = j) we can see from Eq. 5 
that we simply need to subtract the sum of the non-diagonal elements from the diago-
nal elements. #at is if we let

then !ii = eii −
∑

j "=i
!ij . In Fig. 4 it can be seen that in terms of TPR all of the methods 

perform quite well with the exception of the KNN version of oMII which exhibits poor 
performance across all examined sample sizes, likely due to slow convergence. In fact, 
for networks with few connections the poorest performing method in terms of TPR is 
the Poisson oMII method, with the best performing method being GLASSO. However 
GLASSO produces a very high FPR, in fact GLASSO finds more false positives than 
there are total edges in the true network, thus producing an FPR of greater than 1. By 
contrast both Gaussian and Poisson versions of oMII produce significantly lower FPR 
and the Poisson oMII produces the lowest rate of FPR across all sample sizes. It should 
be noted as well that the FPR of the Poisson version of oMII maintains an approximately 
constant level across all sample sizes, while the Gaussian version of oMII has an increas-
ing FPR with sample size. For the denser networks, which had an expected average 
degree of 5, as expected all methods had a decreased TPR for low sample size. #e FPR 
also fell for all methods due to the larger denominator (more edges). #e conclusions 
remain the same for both network densities.

We offer a comparison of the complexity as well. For the oCSE/oMII algorithm it is 
difficult to pin down the theoretical complexity as has been noted previously (Runge 
2018), however it appears from numerical experiments to scale polynomially in time 
(Sun et al. 2015). #e computation time of oCSE is generally related to the number 
of edges in the network, more so than its size in the situation when the network is 
sparse. GLASSO on the other hand was found to be O(n3) (Friedman et al. 2008). For 
this reason, it is difficult to compare the performance between oCSE and GLASSO 
directly though we compare the performance in Table  1. #e listed performance 

(46)Corr (X) =









e11 !12 · · · !1n
!12 e22 · · · !2n
...

... · · ·

...
!n1 !n2 · · · enn









,
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assumes sequential processing, however we note that the performance of oCSE can 
be substantially improved in parallel as the permutation test is performed many times 
and need not be sequential. Additionally the edges for each node can be estimated in 
parallel. As can be seen, GLASSO has the best performance in terms of speed over 
the whole network in serial. Also for calculation of the conditional mutual informa-
tion (CMI) the Gaussian version of oCSE tends to be the fastest, though for large n 
situations the speed of the Poisson version is roughly comparable. Finally for the large 
t scenario, the KNN version gets substantially slower, as would be expected.

In the first row we compare the performance of all of the algorithms used in the paper 
on the denser network scenario. All times listed are in seconds. For the full network time 
the times are averaged over 50 networks, and we can see that GLASSO has the best per-
formance in terms of time. In the next rows we compare the performance of the 3 ver-
sions of oCSE in terms of the average time it takes to calculate the conditional mutual 
information, with each variation averaged over 1000 runs. We see that the performance 
of the Poisson version of oCSE is generally quite a bit slower for a small number of vari-
ables (n) and small length time series (t), but as n and t grow the performance of the 
Poisson version of oCSE approaches that of the Gaussian oCSE. #e non-paramaetric 
(KNN) estimator is most sensitive to large t.

Breast cancer dataset
We now examine data derived from breast cancer patients who have been screened for 
different micro RNA’s (miRNA’s) occurrence counts of is analyzed by the Poisson oMII 
method featured in this paper. In previous work (Allen 2013; Gallopin et al. 2013) the 
gene expression data has been assumed to be drawn from a multivariate Poisson distri-
bution and we follow that convention in this work, while noting that in some cases the 
marginals are not perfectly Poisson but rather have some overdispersion (i.e. the situ-
ation when the variance is larger than the mean). #ese data sets are publicly available 
at https:// portal. gdc. cancer. gov website, described as TCGA-BRCA sequencing miRNA. 
In this case, t = 1207 and n = 1881 different miRNA samples are available. Of these, 
1881 miRNA’s ≈ 1000 pass the two sample Kolmogorov–Smirnov (KS) (Lilliefors 1967) 

Table 1 Computational complexity

Poisson Gaussian KNN GLASSO

Full network ( n = 50) 5824.1 109.2 3265.6 20.4

CMI n = 3, t = 100 0.0175 0.0002 0.0021 –

CMI n = 3, t = 1000 0.0123 0.0002 0.0170 –

CMI n = 3, t = 5000 0.0119 0.0002 0.2944 –

CMI n = 502, t = 100 0.0279 0.0082 0.0019 –

CMI n = 502, t = 1000 0.0270 0.0084 0.0708 –

CMI n = 502, t = 5000 0.0271 0.0070 2.1338 –

CMI n = 1002, t = 100 0.0486 0.0377 0.0022 –

CMI n = 1002, t = 1000 0.0446 0.0402 0.1187 –

CMI n = 1002, t = 5000 0.0438 0.0314 4.6982 –
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test comparing to the Poisson distribution, to confidence level α = 0.05 . #e remaining 
≈ 900 miRNA data were then scaled as follows:

#e notation, < · > represents the mean and !·" componentwise, to integers. #e scaled 
data is well fitting, again by KS-test, to a negative binomial distribution, with only ≈ 200 
failing as both Poisson and negative binomial. Recall that the Poisson distribution is a 
special case of the negative binomial distribution, since:

In the limit, r → ∞ in Eq. 48 it is easy to see that the term (1− !)r → e−! , and rewrit-
ing 

(k+r−1
k

)

=
(k+r−1)!
k!(r−1)! →

1
k! . Combining these facts, as r → ∞ , the negative binomial 

distribution limits to a Poisson distribution.
Given that the majority of this miRNA data is distributed as scaled negative binomial 

(the Poisson data also can be fit as negative binomial) we must interpret the results of 
with caution especially in light of the results shown in Fig. 4. #e results of the applica-
tion of the Poisson oMII still are interesting, especially in light of the fact that the nega-
tive binomial distribution can be viewed as a compound Poisson distribution (Anscombe 
1950; Bissell 1972). To obtain the networks shown in Fig. 5 we first restricted the data to 
having a minimum of > 100 total counts,this was to avoid including data that had zero 
variation or near zero variation. #is restriction left us with 1072 miRNA’s, oMII was 
then used to analyze the remaining miRNA data without any further pre-processing, 
which resulted in the network shown in Fig. 5. #e network has many miRNA’s which 
are non-interacting, however there is a large weakly connected component. Focusing on 
the nodes which are members of the largest weakly connected component (LWCC) we 
found that many miRNA’s that have been previously identified as up or down regulated 
in breast cancer end up in this component, this component included most of the miR-
NA’s listed in Table 1 of Iorio et al. (2005). #e miRNA’s which land in the LWCC will be 
labeled as interesting miRNA’s for brevity.

Focusing on this set of 656 miRNA’s, the plot of Fig. 5 focuses in on this component 
by sizing the nodes relative to their out degree. #e nodes with no out degree are so 
small that they are difficult to see in the figure, while the nodes with largest out degree 
are prominent. A feature of this network is that there are miRNA’s that are “drivers” of 
the network, in that they have much larger out degree than the majority of other nodes. 
We list the top 20 miRNA’s in order of their centrality based on out degree, betweenness 
centrality and eigenvector centrality in Table 2. For all three measures the top 4 miRNA’s 
are identically ordered, all 4 of which have been noted for a prominent role in breast 
cancer (Iorio et al. 2005; Lim 2013; Antolín 2015; #ammaiah and Jayaram 2016; Med-
imegh et al. 2014; Tanic et al. 2015) and they seem to be the main drivers. #is suggests 
that it may be possible to target a small number of miRNA’s for some desired behavior of 
the system of miRNA’s in drug development.

(47)x∗i ∈ N
1207×1
0 = $

xi
< xi >

%.

(48)PNegBin(k) =

(

k + r − 1

k

)

!
k(1− !)r .
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Conclusion
In this paper we have given an approximation to the mutual information of a multivari-
ate Poisson system, which is needed for applications such as inferring the gene expres-
sion network. We have shown through numerical experiments that this approximation 
works efficiently, and the results of network estimation indicate that the approximation 
is justified. We have also developed the oMII (and by extension the oCSE) algorithm for 
computation of the causation entropy of a Poisson system based on the joint entropy 
approximation discussed above. We have shown that this model is superior to simply 
assuming the data is Gaussian, which is likely related to the strange behavior of the mar-
ginals in a Poisson sytem, as we have outlined above. #e Poisson oMII algorithm also 
significantly outperforms the nonparametric KNN version of oMII. Finally, we have 
applied the Poisson oMII algorithm to a breast cancer miRNA expression count dataset, 
which has produced potentially interesting insights into the network of miRNA’s as it 
relates to breast cancer. Our network inference on the breast cancer miRNA network 
has shown that there is a relationship between the highest variance (in expression val-
ues) of miRNA’s. #ere seems to be unidirectional connections between these miRNA’s, 
with certain miRNA’s taking on the role of drivers in the network. #is may suggest a 
future course of action for future drug development.

Table 2 The top 20 genes discovered from the hybrid method in terms of: out degree, 
betweenness centrality, and eigenvector centrality. All of these genes have been linked to breast 
cancer by previous studies

Out degree Betweenness centrality Eigenvector centrality

Mir-200c Mir-200c Mir-200c

Mir-141 Mir-141 Mir-141

Mir-143 Mir-143 Mir-143

Mir-200a Mir-200a Mir-200a

Mir-21 Mir-205 Mir-205

Mir-205 Mir-21 Mir-21

Mir-30a Mir-26b Mir-30a

Mir-26b Mir-30a Mir-183

Mir-183 Mir-183 Mir-26b

Mir-199b Mir-199b Mir-326

Mir-210 Mir-125b-2 Mir-200b

Mir-125b-2 Mir-134 Mir-210

Mir-134 Mir-326 Mir-125b-2

Mir-326 Mir-3607 Mir-199b

Mir-200b Mir-379 Mir-429

Mir-379 Mir-210 Mir-32

Mir-3607 Mir-1976 Mir-3607

Mir 429 Mir-150 Mir-134

Mir-32 Mir-203a Mir-766

Mir-337 Mir-100 Mir-100
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Appendix 1 covariance of multivarite Poisson
Below we offer proof of Eq. 5.

Proof Covariance of the multivariate Poisson
In the model presented in Eqs. 2, 3, 4, we can see that:

Without loss of generality we will look at the pair (i = 1, j = 2) . In this case we see that 
the covariance between this pair of random variables is defined:

Considering Eqs. 49, 50 and noting y12 = y21 , we have:

(49)

x1 = y11 + y12 + ...+ y1n

x2 = y12 + y22 + ...+ y2n

...

xn = y1n + y1n + ...+ ynn

(50)cov (x1, x2) = E[x1x2]− E[x1]E[x2],

Fig. 5 Example network generated by the hybrid oMII algorithm. Nodes and text are sized relative to the out 
degree of the node. The nodes with largest out degree have previously been connected with breast cancer
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Because the expectation is a linear operator,Eq. 51 can be expressed as:

From the independence of each yij the covariance can thus be expressed:

Since y12 is independent Poisson and from the variance of an independent Poisson 
random variable Var (y12) = !12 . Applying this to each i, j(i != j) pair gives the desired 
covariance structure.  !

Abbreviations
TPP  Temporal point process
KNN  K-nearest neighbors
CSE  Causation entropy
oCSE  Optimal causation entropy
miRNA  Micro-ribonucleic acid
TE  Transfer entropy
KSG  Kraskov–Stobauer–Grassberger
CDC  Centers for disease control
fMRI  Functional magnetic resonance imaaging
oMII  Optimal mutual information intereaction
KS  Kolmogorov–Smirnov
LWCC   Largest weakly connected component

(51)
cov (x1, x2) = E
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− E[y11 + y12 + ...+ y1n]E[y12 + y22 + ...+ y2n]

(52)

cov (x1, x2) = E[y212] + E
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(53)

cov (x1, x2) =E[y212] +
n

∑

i = 1
i != 2

n
∑

j=2

E
[

y1iy2j
]

−

E
2
[y12]−

n
∑

i = 1
i != 2

n
∑

j=2

E
[

y1iy2j
]

=

E[y212]− E
2
[y12] =

Var (y12).
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