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Building predictive models from data is an important and challenging task in many fields including biology,
medicine, engineering, and economy. In this issue, Sun et al.1 present a method for the inference of Boolean
networks along with practical applications.
Boolean networks have been used suc-

cessfully in modeling several dynamical

processes including the bistable behavior

of the lac Operon,2 the interaction of

pancreatic cancer cells with their micro-

environment,3 and the yeast-to-hyphal

transition of the yeast Candida albicans.4

Moreover, there is a growing set of Bool-

ean network models in the Cell Collective

database covering processes such as

signaling, regulation, and cancer.5 A Bool-

ean model f with n variables is typically

characterized by two objects: a directed

graph or wiring diagram with n vertices

that describes how variables affect each

other and n Boolean functions that indi-

cate how variables depend on each other.

In contrast to other quantitative modeling

approaches such as models based on

ordinary differential equations, Boolean

networks can be seen as qualitative

models that focus on themechanisms un-

derlying the interactions and the nonlinear

features of biological systems. The dy-

namics of a Boolean network is given by

a graph with 2n vertices (all binary strings

with n entries) and directed edges from x

to y if the Boolean network can transition

from x to y (in the synchronous case

this means fðxÞ = y). Two problems of

interest in Boolean modeling are (1)

the forward problem of dynamics predic-

tion, that is, being able to efficiently pre-

dict the dynamics of a Boolean network

from its wiring diagram or from the

Boolean functions without the need of

exhaustive simulation, and (2) the inverse

problem of learning or reverse-engineer-

ing a Boolean network from partial infor-

mation. These two problems remain

largely unsolved but have been studied

with widely different approaches using
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tools from algebraic geometry, computa-

tional algebra, information theory,

etc.1,2,6–8

A primary challenge in building predic-

tive models from temporal data or input-

output data is selecting the appropriate

network and the regulatory functions

that fit the data. With the increase of

available data in repositories and data-

bases, several data-driven approaches

for equation learning (EQ) have been

developed. Specially, for models based

on ordinary differential equations, soft-

ware and mathematical theory are avail-

able and are currently being used for

several applications.9 However, the ex-

isting methods for continuous models

usually require large amounts of data to

provide an accurate model, which limits

their applicability on datasets relevant

to biological and biomedical applications

where relatively few time-point measure-

ments are available. To take full advan-

tage of the potential of mathematical

models, new data-driven approaches

and software that will work well even in

the case of limited data needs to be

developed. For time courses with few

time points, EQ for Boolean models

such as the one introduced in this issue

by Sun et al.1 provides an attractive

alternative.

Reverse engineering approaches can

be broadly classified into two groups de-

pending on what they find: algorithms

that learn the wiring diagram2 and algo-

rithms that learn the Boolean rules.6,8 In

Veliz-Cuba,2 the authors used algebraic

geometry to study the inverse problem

when data are already discrete and noise

is negligible. They used an algebraic ob-

ject (ideal of polynomials) to encode all
ticle under the CC BY-NC-ND license (http://cr
functions that fit the data without listing

the functions. This encoding at the wiring

diagram level combined with a kind of

factorization (primary decomposition) al-

lowed the authors to find all wiring dia-

grams for which there are Boolean net-

works that fit the data. In Liang et al.,7

the authors introduced REVEAL (reverse

engineering algorithm for inference of ge-

netic network architectures) that has been

used for benchmarking purposes with

other newer methods. In this issue, Sun

et al.1 present a method called Boolean

optimal causation entropy (BoCSE). The

BoCSE method is based on an optimiza-

tion procedure of the mutual information

between possible input and output vec-

tors which they can solve efficiently.

They have assessed the predictive ability

of their method using random networks.

Additionally, they applied their method to

construct a binary classifier for an auto-

mated diagnosis of urinary disease using

clinical data. Likewise, they applied the

Boolean function inference to obtain an

automated cardiac SPECT diagnosis us-

ing patient data. They also used their

method to rank the slots in the game tic-

tac-toe. Finally, they applied their

approach to devise a classifier of risk cau-

sality of loans that result in default using

publicly available data.

The limitations of the existing network

inference methods are those related to

each component in the inference process.

For instance, most of these methods will

take as inputs discrete or discretized

data. Therefore, the discretization can

create issues due to noise in themeasure-

ments and can lead to overfitting. Another

limitation is that it is not known how much

data is needed to guarantee that the
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predicted model is ‘‘close’’ to the true

network unless the network is known a

priori. Finally, we highlight the need of a

user-friendly software that can take real

data and output a model that can used

to make predictions. Although some tools

exist that address the inference pro-

cess,8,1,7 the code is either unavailable,

not editable, or not in a ready-to-use

format.
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