
J.S
tat.M

ech.
(2008)

P
06001

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Graph compression—save information
by exploiting redundancy

Jie Sun1, Erik M Bollt1 and Daniel ben-Avraham2

1 Department of Mathematics and Computer Science, Clarkson University,
Potsdam, NY 13699-5815, USA
2 Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA
E-mail: sunj@clarkson.edu, bolltem@clarkson.edu and qd00@clarkson.edu

Received 21 December 2007
Accepted 6 May 2008
Published 3 June 2008

Online at stacks.iop.org/JSTAT/2008/P06001
doi:10.1088/1742-5468/2008/06/P06001

Abstract. In this paper we raise the question of how to compress sparse graphs.
By introducing the idea of redundancy, we find a way to measure the overlap of
neighbors between nodes in networks. We exploit symmetry and information by
making use of the overlap in neighbors and analyzing how information is reduced
by shrinking the network and, using the specific data structure we created, we
generalize the problem of compression as an optimization problem on the possible
choices of orbits. To find a reasonably good solution to this problem we use a
greedy algorithm to determine the orbit of symmetry identifications, to achieve
compression. Some example implementations of our algorithm are illustrated and
analyzed.

Keywords: random graphs, networks

ArXiv ePrint: 0712.3312

c©2008 IOP Publishing Ltd and SISSA 1742-5468/08/P06001+16$30.00

mailto:sunj@clarkson.edu
mailto:bolltem@clarkson.edu
mailto:qd00@clarkson.edu
http://stacks.iop.org/JSTAT/2008/P06001
http://dx.doi.org/10.1088/1742-5468/2008/06/P06001
http://arxiv.org/abs/0712.3312

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Contents

1. Introduction 2

2. A motivating example and the idea of redundancy 4

3. Information redundancy and compression of sparse matrices 6
3.1. How to choose pairs of vertices to reduce information 6
3.2. On greedy optimization of the α, β, orbit 9

4. Greedy algorithm for compression 11

5. Examples of application to graphs 12
5.1. A simple benchmark example: lattice graph 12
5.2. Compressing a Watts–Strogatz small-world graph 12
5.3. Real-world graphs . 13

6. Discussion 14

Acknowledgments 15

Appendix. Yale sparse matrix format for adjacency matrices of simple graphs 15

References 16

1. Introduction

Complex networks have been studied extensively in recent years in the fields of
mathematics, physics, computer science, biology, sociology, etc [1]–[4]. Various networks
are used to model and analyze real-world objects and their interactions with each other.
For example, in sociology, airports and airflights that connect them can be represented
by a network [12]; in biology, yeast reactions are also modeled by networks [9], etc. The
mathematical terminology for a network is conveniently described in the language of
graph theory. A common encoding of graphs uses an adjacency matrix, or an edge list,
when the adjacency matrix is sparse [5]. However, even for a large network the edge
list contains a large information storage. In the case that some important network is
transferred frequently between computers, it will save time and cost if there is a scheme
to efficiently encode, and therefore compress, the network first. Fundamentally we find it
a relevant issue to ask how much information is necessary to present a given network, and
how symmetry can be exploited to this end.

In this paper we will demonstrate one way to reduce the information storage of a
network by using the idea that habitually graphs have many nodes that share many
common neighbors. So, instead of recording all the links we could rather just store some of
them and the difference between neighbors. The ideal compression ratio using this scheme
will be η = 2/〈k〉, where 〈k〉 is the average degree of the network, compared to the standard
compression using the Yale Sparse Matrix Format [6, 7] which gives ηY = 1/2 + 1/〈k〉.
In practice this ratio is not attainable but the real compression ratio is still better than
using YSMF, as shown by our results.

doi:10.1088/1742-5468/2008/06/P06001 2

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Figure 1. A drawing of a planar embedding of an example graph.

A graph G = (V, E) is a set of vertices (or nodes) V = {v1, v2, . . . , vN} together with
edges (or links) E = {(vi, vj)} which are the connected pairs. Graphs are often used to
model networks. It is sometimes convenient to call the vertices that connect to a vertex
i in a graph to be the neighbors of i. We will only consider undirected and unweighted
graphs in this paper.

A drawing as in figure 1 allows us to directly visualize the graph (i.e. the nodes and the
connections between them), but a truism that anyone who works with real-world graphs
from real data knows is that commonly those graphs are so large that even a drawing will
not give any insight. Visualizing structure in graphs of such sizes (N > 100–1000) begs
for some computer assistance.

An adjacency matrix is a common, although inefficient, data representation of a graph.
The adjacency matrix AG of a graph G = (V, E) is a N × N square matrix where N is
the number of vertices of the graph and the entries ai,j of AG are defined by

ai,j = 1 if node i and node j are connected

ai,j = 0 else.
(1)

For example, the adjacency matrix AG for the graph in figure 1 is

AG =

⎡
⎢⎣

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎤
⎥⎦ . (2)

However, in the case that the number of edges in a graph are so few that the
corresponding adjacency matrix is sparse, the edge list will be used instead. The edge list
is a list of all the pairs of nodes that form edges in a graph. It is essentially the same
as the edge set E for a graph G = (V, E). Using the edge list EG to represent the same
graph as above we will have

EG = {{1, 2}, {2, 3}, {3, 4}, {2, 4}}. (3)

Note here that in the edge list we actually record the label of nodes for each edge in
the graph, so for an undirected graph, we can exchange the order for each pair of nodes.

We will only consider sparse simple graphs, whose adjacency matrices will thus be
binary sparse matrices, and the standard information storage for such graphs or matrices
will be the information units that are needed for the corresponding edge list (or two-
dimensional arrays).

doi:10.1088/1742-5468/2008/06/P06001 3

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Figure 2. An extreme example which shows similarity between vertices.

We now sharpen the definition for the unit of information in our context. From
the perspective of information theory, a message which contains N different symbols will
require log2 N bits for each symbol, without any further coding scheme. The edge list
representation is one example of a text file which contains N different symbols (often
represented by natural numbers from 1 to N) for a graph containing N vertices. Note
that the unit of information depends only on the number of symbols that appear in the
message, i.e. the number of vertices in a graph, so for any given graph this will be a fixed
number. Thus, when we restrict the discussion to any particular graph, it is convenient
to assume that each pair of labels in the edge list requires one information unit without
making explicit what is the size of that unit. For example, the above graph requires four
information units. In this paper we will focus on how to represent the same graph using
fewer information units than its original representation.

2. A motivating example and the idea of redundancy

As a motivating example, let us consider the following graph and its edge list.
Note that here the neighbors of node 1 are almost the same as those of node 2. The

edge list EG for this graph will be

E = {{1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9},
{2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 8}, {2, 9}, {2, 10}}. (4)

This requires 14 information units for the edge list. However, if we look back to the
graph, we note that in this graph there are many common neighbors between node 1 and
node 2, so there is a great deal of information redundancy. Considering the subgraphs,
the neighbors of node 1 are almost the same as the neighbors of node 2, except that node
3 links to 1, but not 2, while node 10 links to 2, but not 1.

Taking the redundancy into account, we generate a new way to describe the same
graph, exploiting the graphs. In the graph of figure 2, we see that the subgraph including
vertices 1, 3, 4, 5, 6, 7, 8, 9 is very similar to the subgraph including vertices 2, 4, 5, 6, 7,
8, 9, 10, see figure 3. We exploit this redundancy in our coding.

We store the subgraph which only consists of node 1, and all its neighbors. Then, we
add just two more parameters:

α = (1, 2) (5)

and

β = {−3, 10} (6)

doi:10.1088/1742-5468/2008/06/P06001 4

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Figure 3. Similar subgraphs of the original graph. Here the subgraph containing
node 1 (on the left) is very similar to the one dominated by node 2 (on the right).

Figure 4. Construct from the subgraph and parameter α = (1, 2). ‘Copy’ from
node 1 to node 2.

Figure 5. Add and delete links according to β = {−3, 10}.

that allow us to reconstruct the original graph. Here the ordered pair α = (1, 2) tells us
that, in order to reconstruct the original graph, we need to first copy node 1 to node 2.
By copy, we mean the addition of a new node into the existing graph with label 2, and
then linking all the neighbors of node 1 to the new node 2. See figure 4.

The set β = {−3, 10} tells us that we should then delete the link that connects the
new nodes 2 and 3 and add a new link between 2 and 10. See figure 5.

After all these operations we see that we successfully reconstruct the graph with fewer
information units: in this case, nearly half as many as the original edge list. So, instead
of equation (4), we may use the edge list of the subgraph

ESG = {{1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}} (7)

as well as two sets

α = (1, 2)

β = {−3, 10} (8)

to represent the same graph (figure 6).

doi:10.1088/1742-5468/2008/06/P06001 5

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Figure 6. Reconstruction of the original graph using a subgraph and the
parameters α and β.

The above example suggests that, by exploiting the symmetry of the graph, we might
be able to reduce the information storage for certain graphs by using a small subgraph as
well as α and β as defined above.

However, there remains the question of how to choose the pair of vertices so that we
actually reduce the information, and which is the best possible pair? It is important to
answer these questions since most of the graphs are so large that we will never be able to
see the symmetry just by inspection as we did for the above toy example.

In the following we answer the first question, and partly the second, by using a
greedy algorithm. In section 3 we will define information redundancy for a binary sparse
matrix and show that it reveals the neighbor similarity between vertices in a graph which
is represented by its corresponding adjacency matrix. Then in section 4 we will give a
detailed description of our algorithm which allows us to implement our main idea. Then
in section 5 we will show some examples of these applications followed by a discussion in
section 6.

3. Information redundancy and compression of sparse matrices

Throughout this paper, we describe our methods in terms of manipulations of adjacency
matrices to describe corresponding manipulations to the graphs. We choose this approach
for pedagogical reasons, particularly regarding presentation of the analysis of information
redundancy and algorithmic complexity. However, we emphasize that all of the necessary
manipulations can and should be done in practice in terms of the more efficient edge list
representation.

3.1. How to choose pairs of vertices to reduce information

The graphs we seek to compress are typically represented by large sparse adjacency
matrices. An edge list is a specific data structure for representing such matrices to reduce
information storage. We will consider the edge list form to be the standard way of storing
sparse matrices, which requires M units of information for a graph with M edges. There
are approaches for compressing sparse matrices, among which the most general is the Yale
Sparse Matrix Format [6, 7], which does not make any assumptions on the structure of the
matrix and only requires 1

2
(M +N) units of information. There are other approaches, such

doi:10.1088/1742-5468/2008/06/P06001 6

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

as [8], which emphasize not only the storage but also the cost for data access time. We
will focus on the data storage, so the Yale Format will be considered as a basic benchmark
approach for compression of a sparse matrix, to which we will compare our results. The
Yale format yields the compression ratio (see the appendix)

ηY =
M + N

2M
=

1

2
+

1

〈k〉 (9)

where 〈k〉 = 2M/N is the average degree of the graph.
We will show our approach of compressing the sparse matrices by first illustrating how

the redundancy of a binary sparse matrix will be defined regarding our specific operation
on the matrix.

Generally, the adjacency matrix is a binary sparse matrix, A = {aij}, where aij equals
0 or 1 indicating the connectivity between node i and j. For a simple graph consisting of
M edges this matrix has 2M non-zero entries, but since it is symmetric only half of them
are necessary to represent the graph, which yields M units of information for the edge
list.

Now, if two nodes i and j in the graph share a lot of similar neighbors, in the adjacency
matrix row i and row j will have a lot of common column entries, and likewise for column
i and column j (due to the symmetry of the matrix).

Supposing that we apply the operation to the graph, mentioned in the last section,
by choosing α = (i, j) and the corresponding β, we will not need row j and column j in
the matrix to represent the graph. The number of non-zero entries in row j and column
j is 2kj, where kj is the degree of node j in the graph. By doing that, the number of
non-zero entries in the new adjacency matrix becomes 2M − 2kj, which requires M − kj

units of information. However, the extra information we have to record is encoded in α
and β. α always has two entries, which requires 1 unit of information, and the units of
information for β depend on the number of different neighbors between node i and node
j. If i and j have Δij different neighbors, the size of β will be

|β| = Δij , (10)

and the units of information for β will thus be 1
2
Δij . Taking both the reduction of the

matrix and the extra information into account, the actual information it requires after
the operation is

M − kj + 1 + 1
2
Δij = M − (kj − 1 − 1

2
Δij). (11)

This is true for i different from j. We could extend the operation to allow

α = (i, i), (12)

meaning a self-match. Then we will put all the neighbors of i into the corresponding set
β and then delete these links associated with i. Then by a similar argument we find that
after this operation we need

M − ki + 1 + 1
2
ki = M − (1

2
ki − 1) (13)

units of information using the new format.
Note that here we need to clarify exactly the meaning of different neighbors since in

the case that i and j are connected i is a neighbor of j but j is not, and likewise for j.

doi:10.1088/1742-5468/2008/06/P06001 7

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

However, this extra information can be simply encoded in α by making the following rule:
α = (i, j) means when we reconstruct we do not connect i and j and α = (i,−j) means we
connect i and j when we reconstruct. Then we can write Δij = ‖A(i, :)−A(j, :)‖1 − 2aij.

From the above discussion we see that if we define

rij = kj − 1 − 1
2
Δij, i �= j

rii = 1
2
ki − 1

(14)

then by choosing α = (i, j), rij measures exactly the amount of information it reduces. We
call rij the information redundancy between node i and j. Note here that in general this
redundancy is not symmetric in i and j, since for any pair of nodes Δij is symmetric but
the degree of these two nodes can be different, and deleting the node with higher degree
will always reduce more units of information compared to deleting the lower degree node.

We form the redundancy matrix R by setting the entry in row i and column j to be
rij . We perform the shrinking operation for the pair with maximum rij , thus saving the
maximum amount of information.

For example, again using the graph from section 2, the adjacency matrix is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

and the corresponding redundancy matrix is

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.5 5 −3 −2.5 −2.5 −2.5 −2.5 −2.5 −2.5 −4
5 2.5 −4 −2.5 −2.5 −2.5 −2.5 −2.5 −2.5 −3
3 2 −0.5 0.5 0.5 0.5 0.5 0.5 0.5 −1

2.5 2.5 −0.5 0 1 1 1 1 1 −0.5
2.5 2.5 −0.5 1 0 1 1 1 1 −0.5
2.5 2.5 −0.5 1 1 0 1 1 1 −0.5
2.5 2.5 −0.5 1 1 1 0 1 1 −0.5
2.5 2.5 −0.5 1 1 1 1 0 1 −0.5
2.5 2.5 −0.5 1 1 1 1 1 0 −0.5
2 3 −1 0.5 0.5 0.5 0.5 0.5 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

The maximum entry in R is r12 = r21 = 5, indicating that either choice of α = (1, 2)
or α = (2, 1) will give the maximum information reduction, and the corresponding β can
be obtained by recording the column entries in row 1 and row 2 according to our rule.

In the above discussion we only consider a one-step shrinking operation on the graph
and find out the direct relationship between the maximum information reduction and the
redundancy matrix. But we know that, after deleting one node, the resulting graph is

doi:10.1088/1742-5468/2008/06/P06001 8

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

still sparse and so could be compressed further by our scheme. The question is then how
to successively choose α and β to obtain the best overall compression.

3.2. On greedy optimization of the α, β, orbit

Let αt = (it, jt) denote the operation at step t, t = 1, 2, . . . , T (here the sign for jt would
not affect our analysis so, for convenience, we just write jt). In order to analyze the multi-
step effect, we first consider how the adjacency matrix A is affected by the orbit {αt}. Let
A0 = A be the original adjacency matrix. Let At be the corresponding adjacency matrix
after applying αt and the entries in it be At(i, j). On deleting node jt we actually set row
and column jt to be zero in At−1 and all the other entries are unchanged, to obtain the
new matrix At, i.e.

At(i, j) = At−1(i, j) if i, j �= jt

At(i, j) = 0 if i = jt or j = jt.
(17)

So by induction we see that

At(i, j) = A0(i, j) if i, j /∈ {j1, . . . , jt}
At(i, j) = 0 if i ∈ {j1, . . . , jt} or j ∈ {j1, . . . , jt}.

(18)

Then we analyze how the redundancy matrix R changes. Use Rt to represent
the redundancy matrix, kt(i) the degree of node i and Δt(i, j) the number of different
neighbors of node i and j, associated with the graph of At. Since our goal is to achieve
compression, once a node is deleted in the graph it is useless for future operations. So we
will set Rt(i, j) = 0 if i or j has been deleted before, i.e.

Rt(i, j) = 0 if i ∈ {j1, . . . , jt} or j ∈ {j1, . . . , jt}. (19)

Now, for those i and j that have not been deleted, i.e. i, j /∈ {j1, . . . , jt}, by
equation (14) we see that Rt(i, j) = kt(j)−1− 1

2
Δt(i, j) for i �= j and Rt(i, i) = 1

2
kt(i)−1.

Since At is obtained by deleting row and column jt in At−1, the degree of each node
changes according to

kt(i) = kt−1(i) − At−1(i, jt) (20)

and Δij changes according to

Δt(i, j) = Δt−1(i, j) − |At−1(i, jt) − At−1(j, jt)|. (21)

Thus, we conclude that for i �= j

Rt(i, j) = kt−1(j) − At−1(j, jt) − 1 − 1
2
[Δt−1(i, j) − |At−1(i, jt) − At−1(j, jt)|]

= kt−1(j) − 1 − 1
2
Δt−1(i, j) − At−1(j, jt) + 1

2
|At−1(i, jt) − At−1(j, jt)|

= Rt−1(i, j) + [1
2
|At−1(i, jt) − At−1(j, jt)| − At−1(j, jt)] (22)

and for i = j

Rt(i, i) = 1
2
kt(i) − 1

= 1
2
(kt−1(i) − At−1(i, jt)) − 1

= Rt−1(i, i) − 1
2
At−1(i, jt). (23)

doi:10.1088/1742-5468/2008/06/P06001 9

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

By induction, we obtain that for i �= j

Rt(i, j) = R0(i, j) +

t∑
τ=1

[1
2
|Aτ−1(i, jτ) − Aτ−1(j, jτ)| − Aτ−1(j, jτ)] (24)

and for i = j

Rt(i, i) = R0(i, i) +
t∑

τ=1

[−1
2
Aτ−1(i, jτ)]. (25)

By use of the fact that i, j /∈ {j1, . . . , jt}, by equation (17), we can simplify the above
two expressions to yield

Rt(i, j) = R0(i, j) +
t∑

τ=1

[1
2
|A0(i, jτ) − A0(j, jτ)| − A0(j, jτ)] if i �= j

Rt(i, i) = R0(i, i) +
t∑

τ=1

[−1
2
A0(i, jτ)].

(26)

Note that, if we choose a pair (it, jt) at step t, the information we save is measured
by Rt−1(it, jt). Thus, for any orbit {αt = (it, jt)}T

t=1 satisfying it, jt /∈ {j1, . . . , jt−1} for
t = 2, 3, . . . , T (we call such an orbit a natural orbit), the total information reduction (or
information saving) will be

s({αt}T
t=1) =

T∑
t=1

Rt−1(it, jt)

=

T∑
t=1

[R0(it, jt) + c(it, jt, t)] (27)

where c is defined by

c(i, j, t) =
t∑

τ=1

[1
2
|A0(i, jτ) − A0(j, jτ)| − A0(j, jτ)] if i �= j

c(i, i, t) =
t∑

τ=1

[−1
2
A0(i, jτ)].

(28)

So the compression problem can be stated as

Find max
{αt}T

t=1

s({αt}T
t=1). (29)

One more thing to mention is that the length of the orbit, T , is also a variable, which
could not be larger than N since there are only N nodes in the graph and it is meaningless
to delete an ‘empty’ node which does not even exist.

doi:10.1088/1742-5468/2008/06/P06001 10

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

4. Greedy algorithm for compression

From the previous section we see that, for a given adjacency matrix, the final compression
ratio depends on the orbit {αt}T

t=1 we choose, and the compression problem becomes an
optimization problem. However, to find the maximum of s and the corresponding best
orbit is not trivial. One reason is that the number of natural orbits is of the order of N !,
which makes it impractical to test and try for all possible orbits. Another reason which is
crucial here is that, for any given orbit of length T , evaluating s costs O(T 2) operations,
making it hard to find an appropriate scheme to search for the true maximum or even the
approximate maximum. Instead, we use a greedy algorithm to find an orbit which gives
a reasonable compression ratio, and which is easy to apply.

The idea of the greedy algorithm is that, at each iteration step, we choose the pair
of nodes it and jt which maximizes Rt−1(i, j) over all possible pairs, and we stop if the
maximum value is non-positive. Also we need to record α and β according to the graph.

Here we summarize the greedy algorithm as pseudocode.
Given the adjacency matrix A of a graph (N nodes and M edges).
Begin:
Set A0 = A;
Calculate R0(i, j) for all i, j = 1, . . . , N . This forms the redundancy matrix R0 = R.
Set t = 1.

1. Let Rt−1(it, jt) be the largest element in Rt−1.

If Rt−1(it, jt) > 0

record αt = (it, jt),

then go to step 2.

Else,

End.

2. Set βt according to the difference between the two rows ofαtin At−1,

Update At−1 to At according to (17);

Update Rt−1 to Rt according to (22) and (23) for i, j �= jt;

Set Rt(i, j) = 0 for i or j = jt.

3. Set t = t + 1 and go to step 1.

The compressed version of the matrix will consist of: the final matrix AT , the orbit
(α1, . . . , αT) and the vectors {β1, . . . , βT}, which will allow us to reconstruct A = A0 and
any intermediate matrix At during the compression process.

The computational complexity of this greedy algorithm is dominated by the
initialization of the redundancy matrix R, which requires O(MN) operations3. The
subsequent operations will each require only an update of R according to formula (22)
and (23), resulting in O(N) operations per step. Thus the overall cost of the greedy
algorithm will be O(MN) and the average cost per step is O(MN/T), where T is the
number of shrinking steps (T < N).

3 Here O(MN) comes from the fact that we are comparing N2 pair of vertices, and each comparison requires
O(M/N) operations (in an efficient format like the edge list) since the matrix is sparse. Thus the cost for
initializing R is O(N2 · M/N) = O(MN).

doi:10.1088/1742-5468/2008/06/P06001 11

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Figure 7. Compression results for lattice graphs. Stars indicate the final
compression ratios for the lattice graphs with 〈k〉 2–40. The compression limit is
indicated by the bottom curve given by ηk = 2/〈k〉, and we find that for 〈k〉 large
the compression ratio is close to the empirical formula: ηk = 3/〈k〉 (upper curve).
For comparison, we plot the result using YSMF (broken line): ηk = 1/2 + 1/〈k〉.
For 〈k〉 > 2, our algorithm always achieves a better result than the YSMF and
the advantage increases with increasing 〈k〉.

5. Examples of application to graphs

In this section we will show some examples of our compression scheme on several networks.
We begin with the lattice graph, which is expected to be readily compressible due to the
high degree of overlapping between neighbors of nodes. As a secondary example, we
add some random alterations and apply our method to the corresponding Watts–Strogatz
network. Finally we show some results for real-world networks.

5.1. A simple benchmark example: lattice graph

One of the most symmetric graphs is the lattice graph, a one-dimensional chain where
each site is connected to k/2 nearest neighbors to its right and left. In this case 〈k〉 = k
represents the degree of each vertex in the lattice graph. The total number of nodes is
N � 〈k〉 and the corresponding adjacency matrix is sparse.

We implement our algorithm for a lattice graph with different 〈k〉. The results are
shown in figure 7. Here we take N = 500.

5.2. Compressing a Watts–Strogatz small-world graph

It is not surprising that the lattice graphs are easy to compress since these graphs are
highly symmetric and nodes have lots of overlaps in their neighbors. However, in the case
that we do not have such perfect symmetry, we still hope to achieve compression. Here
we apply our algorithm to the WS graphs. The WS graph comes from the famous Watts–
Strogatz model for real-world networks by showing the so-called small-world phenomenon.
The WS graph is generated from a lattice graph by the usual rewiring of each edge with
some given probability p from the uniform distribution.

doi:10.1088/1742-5468/2008/06/P06001 12

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Figure 8. Compression results for WS graphs. Here the base lattice graph is with
N = 500 and 〈k〉 = 40. The stars show the compression results by our algorithm.
The lower line is the compression ratio for the lattice N = 500 and 〈k〉 = 40 and
the upper line is the ratio from the YSMF. We see that, as p increases, there is
less and less overlap between neighbors in the network and the compression ratio
increases. For p ∼ 0.5, we obtain a worse result than YSMF.

Figure 9. Compression process for metabolic network [10]: compression ratio η
during each step (left) and information redundancy ρ for each step (right).

We apply our algorithm to WS graphs with different p to explore how p affects the
compression behavior. Results are shown in figure 8.

5.3. Real-world graphs

In the following we show the compression results for some real-world graphs: a C.elegans
metabolic network [10] (figure 9), a yeast network constructed from yeast reactions [9],
an e-mail network [11] and an airline network of flight connections [12]. In table 1 we
summarize the compression results for these real-world graphs.

doi:10.1088/1742-5468/2008/06/P06001 13

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

Table 1. Compression results for some networks.

Network N 〈k〉 ηY η η∗
Lattice N 〈k〉 1

2 + 1
〈k〉

3
〈k〉

2
〈k〉

Yeast [9] 2361 6.08 0.66 0.50 0.33
Metabolic [10] 453 9.01 0.61 0.43 0.22
Email [11] 1133 9.62 0.60 0.49 0.21
Airline [12] 332 12.81 0.58 0.31 0.16

6. Discussion

From the previous section we see that our algorithm works for various kinds of graphs
and gives a reasonable result. The ideal limit of our method for a graph with N nodes,
M edges and average degree 〈k〉 = 2M/N , which is relatively large, is 2/〈k〉. This is
obtained when each βt during the compression process is empty, meaning that most of the
nodes share common neighbors, in which case we only need to record all the αt, requiring
N
2

units of information and yielding

η =
N

2M
=

2

〈k〉 . (30)

Notice that trees do not compress, since for trees 〈k〉 = 2, so on average the overlap in
neighbors will be even smaller (likely to be 0), and a possible way to achieve compression
is by self-matching for large degree nodes, for example, the hubs in a star graph. For
comparison, the YSMF always gives the compression ratio

ηY =
1

2
+

1

〈k〉 (31)

which does not compress trees and has a lower bound 1
2
, while our method in principle

approaches 0 as 〈k〉 → ∞. Actually the compression ratio using YSMF can be achieved
by choosing a special orbit in our approach which only contains self-matches α, i.e.

{αt}T
t=1 = {(i, i)}N

i=1. (32)

In this case the neighbors of each node will be put into corresponding β sets and, since
any αi contains the same pair of numbers (i, i), we can just use one i to represent the pair,
resulting in a total of (N + M)/2 information units. So our approach can be considered
as a generalization of the YSMF.

However, as we observed in our compression results, the compression ratio given
by (30) is, in general, not attainable since it is only achieved for the ideal case that
nearly every node in the graph shares the same neighbors, and yet the graph needs to be
sparse! However, for lattices we observe that the actual compression ratio achieved by
our algorithm is about 3/〈k〉, which is of the same order as the ideal compression ratio.
For WS graphs, when the noise p is small, our algorithm achieves a better compression
ratio than YSMF, and the compression ratio is nearly linearly dependent on p for p < 0.5.
For p > 0.5 the graph resembles Erdos–Renyi random graphs [13], there is no symmetry
between nodes to be used and thus our approach does not give good results, as compared
to the YSMF.

doi:10.1088/1742-5468/2008/06/P06001 14

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

For real-world graphs, the results from our algorithm are better than using YSMF,
but not as good as we observed for lattice graphs. This suggests that in real-world graphs
nodes, in general, share a certain amount of common neighbors even when the total
number of links is small. This kind of overlap in neighbors is certainly not as common
as we see in lattice graphs since real-world graphs, in general, have more complicated
structures.

Acknowledgments

JS and EMB have been supported for this work by the Army Research Office grant 51950-
MA. EMB has been further supported by the National Science Foundation under DMS-
0708083 and DMS-0404778, and DBA is supported by the National Science Foundation
under PHY-0555312. We thank Joseph D Skufca and James P Bagrow for discussions.

Appendix. Yale sparse matrix format for adjacency matrices of simple graphs

We illustrate first the standard form of YSMF by a simple example. Consider the
matrix

A =

⎡
⎢⎣

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎤
⎥⎦ , (A.1)

which can be encoded using YSMF by a collection of three arrays:

V A = [1, 1, 1, 1, 1, 1, 1, 1],

IA = [1, 2, 5, 7, 9],

JA = [2, 1, 3, 4, 2, 4, 2, 3],

(A.2)

where V A contains the values of all non-zero entries of A, listed in the order from left to
right then top to bottom of the matrix A; IA encodes the number of non-zero entries of
each row of A, IA(1) := ||A(1, :)||1 and IA(i + 1) := IA(i) + ||A(i, :)||1 (for i = 1, . . . , N);
and JA contains the column indices of non-zero entries in A, listed in the same order as
entries in V A.

However, for simple graphs, the corresponding adjacency matrices are symmetric and
binary; thus it is sufficient to store only the upper (or lower) half of the matrix. Without
loss of generality, we consider the upper half of A, so that A(i, j) = 0 whenever i > j.
The array V A will consist of all 1’s and thus is not necessary; also in IA we can let
IA(i) = ||A(i, :)||1 instead of the above definition so that IA contains exactly N entries,
while JA is the same as the standard form of YSMF, which now contains M entries where
M is the number of edges of the graph.

Thus, for an adjacency matrix of a simple graph, it requires N + M entries to be
stored using YSMF, which requires (N + M)/2 information units by the definition in the
early sections in this paper. Compare to the original information storage M , we obtain
the compression ratio (M + N)/2M .

doi:10.1088/1742-5468/2008/06/P06001 15

http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

J.S
tat.M

ech.
(2008)

P
06001

Graph compression—save information by exploiting redundancy

References

[1] Watts D J and Strogatz S H, 1998 Nature 393 440
[2] Watts D J, 1999 Small Worlds: The Dynamics of Networks between Order and Randomness

(Princeton, NJ: Princeton University Press)
[3] Barabasi A-L and Albert R, 1999 Science 286 509
[4] Albert R and Barabasi A-L, Statistical mechanics of complex networks, 2002 Rev. Mod. Phys. 74 47
[5] http://en.wikipedia.org/wiki/Adjacency matrix and http://en.wikipedia.org/wiki/Adjacency list
[6] Eisenstat S C, Elman H C, Schultz M H and Sherman A H, The (new) Yale sparse matrix package, 1984

Elliptic Problem Solvers II ed G Birkho and A Schoenstadt (New York: Academic) pp 45–52
[7] Eisenstat S C, Gursky M C, Schultz M H and Sherman A H, Yale sparse matrix package I: the symmetric

codes, 1982 Int. J. Numer. Methods Eng. 18 1145
[8] Tarjan R and Yao A, Storing a sparse table, 1971 Commun. ACM 22 606
[9] Sun S, Ling L, Zhang N, Li G and Chen R, 2003 Nucleic Acids Res. 31 2443

[10] Duch J and Arenas A, 2005 Phys. Rev. E 72 027104
[11] Guimera R, Danon L, Diaz-Guilera A, Giralt F and Arenas A, 2003 Phys. Rev. E 68 065103(R)
[12] Batagelj V and Mrvar A, 2006 Pajek datasets http://vlado.fmf.uni-lj.si/pub/networks/data/
[13] Bollobas B, 2001 Random Graphs 2nd edn (Cambridge: Cambridge University Press)

doi:10.1088/1742-5468/2008/06/P06001 16

http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/RevModPhys.74.47
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_list
http://dx.doi.org/10.1002/nme.1620180804
http://dx.doi.org/10.1145/359168.359175
http://dx.doi.org/10.1093/nar/gkg340
http://dx.doi.org/10.1103/PhysRevE.72.027104
http://dx.doi.org/10.1103/PhysRevE.68.065103
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://dx.doi.org/10.1088/1742-5468/2008/06/P06001

	1. Introduction
	2. A motivating example and the idea of redundancy
	3. Information redundancy and compression of sparse matrices
	3.1. How to choose pairs of vertices to reduce information
	3.2. On greedy optimization of the alpha ,beta , orbit

	4. Greedy algorithm for compression
	5. Examples of application to graphs
	5.1. A simple benchmark example: lattice graph
	5.2. Compressing a Watts--Strogatz small-world graph
	5.3. Real-world graphs

	6. Discussion
	Acknowledgments
	Appendix. Yale sparse matrix format for adjacency matrices of simple graphs
	References

