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Finite time coherent sets [Froyland et al., 2010] have recently been defined by a measure-based
objective function describing the degree that sets hold together, along with a Frobenius—Perron
transfer operator method to produce optimally coherent sets. Here, we present an extension
to generalize the concept to hierarchically define relatively coherent sets based on adjusting
the finite time coherent sets to use relative measures restricted to sets which are developed
iteratively and hierarchically in a tree of partitions. Several examples help clarify the meaning
and expectation of the techniques, as they are the nonautonomous double gyre, the standard
map, an idealized stratospheric flow, and empirical data from the Mexico Gulf during the 2010
oil spill. Also for the sake of analysis of computational complexity, we include an Appendix
concerning the computational complexity of developing the Ulam—Galerkin matrix estimates of
the Frobenius—Perron operator centrally used here.
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operator; subdivision flow chart.

1. Introduction

Central to understanding mixing and transport
mechanisms is the related question of defining
partitions relative to which the transport can be
discussed. To this end, the concept of almost invari-
ant sets defined for autonomous systems [Dellnitz &
Junge, 2000; Bollt & Santitissadeekorn, 2012; Froy-
land & Padberg, 2009] and coherent sets for nonau-
tonomous systems [Froyland et al., 2010] are central
since transport may be defined as the measure of the
set that leaves the partition element corresponding
to the almost invariant set (or finite time coherent
set) in a given time epoch. See also [Froyland & Pad-
berg, 2009]. Transfer operator methods are proven

fAuthor for correspondence

to be computationally effective for use in identify-
ing almost invariant sets and finite time coherent
sets. See [Bollt et al., 2010; Froyland & Padberg,
2009; Shadden et al., 2005]. The method to identify
coherent pairs used here is based on the Frobenius—
Perron operator, the Ulam—Galerkin method and
the thresholding method. See [Froyland & Padberg,
2009].

In this work, we extend the concept of finite
time coherent pairs to incorporate relative mea-
sure, and we call this relatively coherent pairs.
This extension provides the theoretical framework
to simply apply the definition of finite time coher-
ence iteratively and at each stage we hierarchically
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define the relative measure on each element of the
subpartitions which are developed. The results can
be collected in a tree structure to emphasize the
hierarchical nested nature of such partitions.

Also we present an adapted thresholding
method that can identify the finite-time relatively
coherent structures in successive scales of time-
dependent systems. We study four examples in
this paper, for both closed systems and relatively
open systems. In the first and second examples, we
show our method identifies the fine scaled relatively
coherent structures in a nonautonomous double
gyre and a standard map. In the third example, an
idealized zonal stratospheric flow, our method gives
fine scaled details with respect to relative coher-
ence. In our fourth example, we show the method
is also efficient with an open system, corresponding
to oceanographic flows in the Mexico Gulf.

This paper is organized as follows. In Sec. 2, we
define relative coherent structures. Then we briefly
describe the Frobenius—Perron operator, and the
Ulam—Galerkin matrix estimate and the threshold-
ing method. In Sec. 3, we give the details of the
algorithm and a successive flow chart for explana-
tion and we define the theoretical term restricted
Frobenius—Perron operator. In Sec. 4, we apply the
method to four examples. Conclusions are given in
Sec. 5. In Appendix A, we analyze the computa-
tional complexity.

2. Relatively Coherent Structures

We define relatively coherent structures by spe-
cializing the definition of coherent pairs, which we
now review [Froyland et al., 2010]. Let (2,4, 1)
be a measure space, where A is a o-algebra and
1 is a normalized measure that is not necessarily
invariant. The key to the specialization to rela-
tively coherent pairs is the use of an iteratively
defined relative measure, refined from the initial
global measure p. From these, Frobenius—Perron
operators follow as does the computation.

Generally, we assume that Q C R? Given a
time-dependent flow ®(z,¢4;7) : @ x R x R — Q,
through the time epoch 7 of an initial point z at
time ¢, a coherent pair (A, Ay1,) can be considered
as a pair of subsets of {2 such that,

(P(At,t;’T) ~ AtJrT.

Definition 2.1 [Froyland et al., 2010]. (A, Ayyr) is
a (po,t,7)-coherent pair if

(AN (A r,t+7,-7))
M(At)
> po, (1)

where the pair (A, Ai1) are “robust” to small
perturbation and p(A;) = u(Apsr).

pu(Ata At+7'> =

Note that the definition centrally depends on
the full measure p on €2, and we will substitute suc-
cessive relative measures on refinements. Now we
consider a relative measure on K induced by pu,
where K is a nonempty measurable subset of €.
In this way enter refinements of the initial partition
on successive scales. A relative measure of K to
Qs
i (A) = uANK)

p(K)

for all A € A.

From the above definition, it follows that the
space (K, A|k, 1x) is also a measure space, where
A|k is the restriction of M to A and ug is a normal-
ized measure on K. We call the space (K, Al pir),
the relative measure space. Now, we define the rel-
atively coherent pairs.

(2)

Definition 2.2. Relatively coherent structures are
those (po,t,T)-coherent pairs defined by Defini-
tion 2.1, with respect to given relative measures on
a subset K C €, of a given scale.

To find relatively coherent structures in time-
dependent dynamical systems, the basic tool is the
Frobenius—Perron operator. Let (2, A, ;1) be a mea-
sure space and p is a normalized Lebesgue mea-
sure. If S : Q —  is a nonsingular transformation
such that u(S~(A)) = 0 for all A € A satisfying
u(A) = 0, the unique operator P : L}(Q) — LY(Q)
defined by,

/ P ()u(de) = / f@udr) ()
A 5-1(A)

for all A € A is called the Frobenius—Perron oper-
ator corresponding to S, where f(z) € L'(Q2). See
[Lasota & Mackey, 1994]. In our case, S can be con-
sidered as the flow map ® and the formula above
can be written as

Pyrf(2) = f(S7H(2)) - |det D(S7H(2))|
- f((I)<Z7t +7; _T)>
-|det D®(z,t + 7; —7)]. (4)
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Suppose X is a subset of M, let Y be a set that
includes S(X). We develop partitions for X and
Y respectively. In other words, let {B;}!"; be a
partition for X and {Cj}?zl be a partition for Y.
The Ulam—Galerkin matrix follows a well-known
finite-rank approximation of the Frobenius—Perron
operator, the entry of which is of the form

5 MBiNSTHC)))
) T M(Bi> ) <5>

where p is the normalized Lebesgue measure on ).
As usual, we numerically approximate P; ; by,

p.— #{azk 1T € B@&S(ﬂfk) S CJ}
v #{:L'k T € Bl} ’

where the sequence {x}} is a set of test points (pas-
sive tracers). See [Ding et al., 2002].

The following thresholding method from [Froy-
land et al., 2010] finds optimally coherent pairs in
a time-dependent dynamical system, with respect
to the chosen measure. In the following section, we
will iteratively adapt the method to the relative mea-
sure. This algorithm thresholds to the singular val-
ues and singular vectors of the matrix P obtained
by the Ulam—Galerkin method:

(6)

(1) Calculate the second singular value and corre-
sponding to the left and right singular vectors
{x;} and {y;} of the normalized Ulam-Galerkin
martrix.

(2) Find values {(by,ck)} as pairs such that,

Z piPij
B >by & jiy;>c
p(X (by), Y (cp)) = L7 (7)

Zpi

1:x; >by

by thresholding, where

pi = p(By),
X(r)= |J Bi and
i >by <8>
Yi)= |J ¢
Jiyj>ck

(3) Choose a partition related to a pair (b*,c*) of
(b, c) such that

p- = m]?X{p<X(bk>7Y<Ck>)}- (9)

The partition is maximally coherent with
respect to p on Q and the test set {(bg,cx)}

Relatively Coherent Sets as a Hierarchical Partition Method

3. Algorithm

We now describe how to find relatively coherent
pairs, making use of relative measure and cor-
respondingly restricted Frobenius—Perron opera-
tors. By the thresholding Egs. (7)-(9), we have
obtained optimal coherent pairs, which are defined
as (X1,Y7) and (Xo,Y3). Y7 can be considered as
the image of X under a flow ® in time-7. In order
to find relatively coherent structures in Xy, Y7, Xo
and Y5, we define relative measures on each of these
sets. Define relative measures px, (S) and vy, (T)
on the coherent pair (X71,Y7), according to Eq. (2).
Then we have the measure spaces (X1, Alx,, 1x,)
and (Y1, Aly,,vy;) with px, and vy, the normal-
ized measures. The probability measure v can be
considered as the discretized image of u. The detail
of construction of v can be found in [Froyland et al.,
2010].

The relative measures for both X; and Y;
allow the adaptation of the thresholding methods
on (X1, Alx,, 1x,) and (Y1, Aly;, vy, ) under the rel-
ative measures. Then follows two relatively coherent
pairs in the previous coherent pair (Xi,Y7), which
are now named as (Xi1,Y11) and (Xi2,Y72). Also,
the coherent pair (Xs,Y3) can be divided to two
relatively coherent pairs, (X1, Y21) and (Xag, Yao).

Next, we repeat the building process above, but
we will also require a way to decide when to stop.
That is, to define eight normalized measures on
each of X171, Y11, X192, Y12, Xo1, Y21, Xoo and Yoo,
respectively, such that they become new spaces with
corresponding relative measures, we then apply the
adapted thresholding method on these new spaces
to get more relatively coherent structures.

Now, we state our hierarchical method as an
algorithm with a stopping criterion, and for con-
venience, we use (X;,Y;) and (X;,Y;) to denote
two coherent pairs, ¢ and j which can be stated to
emphasize the hierarchy tree.

Algorithm 1

(1) Define relative measures px, and vy, and
relative measure spaces (X;, Alx,,px,) and
(Yi, Aly;, vy;) for (X;,Y;), where

px(8) = £ and oy (1) = 2

for all S C X; and for all T' C ;.
(2) Apply the adapted thresholding method on
(Xiﬂ A’XN,UJXi) and (Y;, A’Yw UY@'> for (Xiﬂ YZ)
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to develop refined coherent pairs (Xj;, Y;;) and
(X5, Ys).

(3) Repeat the above two steps for the pair
(X;,Y;) to obtain further refined coherent pairs
(Xji, i) and (X5, Y55).

According to the first three steps, a relatively
coherent structure can be denoted by

(Xk1k2-..kqayk1k2...kq) (11)

and k, € {i,7},p = 1,2,...,q, through g¢-steps
of the algorithm, ¢+ 1 levels deep into the tree.
See Fig. 1. That is, the subscript kikg - - - k; can
be any possible finite ¢ permutations of ¢ and j.
We usually choose ¢ = 1 and j = 2. Figure 1 is a
flow chart depicting four levels, which describes
the steps to find relatively coherent pairs in
finer “scales”. The chart emphasizes a “tree”
structure. Besides, we only compute the Ulam
matrix once at the beginning, then we mask the
matrix. For more detail of masking matrix, see
[Bollt & Santitissadeekorn, 2012].

However, we cannot repeat the algorithm for-
ever, so we must decide a stopping criterion.
The following step is as a completion for the
algorithm.

(4) Stop a given branch if in Eq. (9),

P = m]?X{p<Xk1k2...kq(bk>yYklkg...kq (ck))}
(12)
is such that,

p* < po, (13)

.“(h,.) o

7 o] o

c>

EL

1* level 2 level 3 level 4™ level

Fig. 1. Successive relatively coherent sets tree as per
Algorithm 1.

where py € (0,1) is a threshold from Eq. (1),
descriptive of optimal coherence which is not
very coherent.

The Gulf Example in Fig. 7 shows how such
stopping criterion leads to the number of coherent
pairs # 29.

4. Examples

Before showing our examples, we introduce a theo-
rem and its corollary on computational complexity,
the detail is in Appendix A.

The question is how many sample initial points
should we use for a given Ulam grid. In other words,
for a given grid, how many initial points is enough
to well represent the whole domain under a flow
so that we can accurately build the Ulam—Galerkin
matrix. Intuitively, we may wish to add “as many
as possible”, however, it will lead to an expensive
computation. Generally, finer grids require exponen-
tially more points, depending on the dimensional-
ity, but also on the local stretching of the map. Let
f: X x[tg,t] — X beaflowand X be compact. We
use X (t9) and X (¢) to denote the status of X at time
to and ¢t under the flow f, respectively. For an arbi-
trary point z € X, we set z(to) and z(t) as the posi-
tions of = at times ty and ¢t. Consider a square box
with length ¢, we use such size ¢ box to make par-
titions for X (¢9) and X(t), which are B = {B;}",

and C' = {C;}]_;, m and n are positive integers.

Theorem 1. For a Lipschitz flow f in the plane
X € R? and partitions B = {B;}™, and C =
{Cj}Yj—y consist of identical boxes with length ¢ > 0
for X(to) and X(t), where ty < t. Let P;; be from
Eq. (6) and Py be from Eq. (5). For each P, built
by N uniformly sampled points from a B;-q-box, 3
is a confidence coefficient r € (0,1) which depends
on the Lipschitz constant M of f, and the density
d of sampling points N. According to Egs. (A.7)
and (A.13), it follows that r — 0 as N — oco.

Note that the confidence coefficient r may vary
for different B;. If we use local Lipschitz constants
for each box B; and this discussion could lead to
adaptive grids but here we simply use a uniform
Lipschitz constant from a global grid.

As a direct conclusion, we have the following
corollary.

Corollary 4.1. Alternatively, choosing r € (0,1)
for a B; box, the number of uniform sampling
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points N(r,B;) of B; box follows from FEgs. (A.7)
and (A.18), such that we can control the error
|P;,j — P; | term by term as desired.

4.1. The nonautonomous double
gyre

Consider the nonautonomous double gyre system,
& = —mwAsin(n f(x,t)) cos(my),
gy =mAcos(mf(x,t))sin(ry),

where f(x,t) = esin(wt)z? + (1 — 2esin(wt))z,
€ = 0.25, w = 271 and A = 0.25. See [Froyland &
Padberg, 2009].

Let the initial time be ¢ = 0 and the final
time be t = 10. We use 24200 identical triangles
{B;}222% 0 cover the region [0, 2] x [0, 1] by Delau-
nay triangulation. For good sampling, the relation-
ships between the given grid and the necessary
number of points we choose is discussed on com-
putational complexity. The Lipschitz constant M of
this model is 1.3999. Therefore, by Theorem 1, for a
24200 by 24 200 matrix and a confidence threshold
r = 0.5%, we have all s is around 8.9997¢—04, so
we need about at least 9000000 points. Then ran-
domly and uniformly we choose 10 000 000 points in
the region as our initial conditions.

We numerically calculate the final status of
these points by the Runge-Kutta method to esti-
mate the flow. Because the double gyre model is
an area-preserving system, the same triangulation
can be used as the image partition {C} }?4:2100. The
Ulam—Galerkin’s transition matrix estimates the
Frobenius—Perron operator that has the size 24 200
by 24 200.

We apply the thresholding method on the
matrix to find the first two coherent pairs in the
initial status and final status. See Fig. 2. The first
two coherent pairs are colored blue and red in the
first level of both the upper and lower charts. We
define the left part of the initial status as X; and
the left part of the final status as Y7, both of which
are filled with blue as halves of the initial status
and final status. Thus, two relative measures can
be defined on each of these two parts separately,

p(S) v(T)

wxy D=y

On the other hand, we can do the same in
the right red-filled regions which we call the initial

px, () = (15)

Relatively Coherent Sets as a Hierarchical Partition Method

status X9 and the final status Y5 to develop another
two relative measures as follow,

wy(8) = 8L iy = 20D

1(X2)’ Co(Ya)

Now X; and Y7 can be considered as the initial
status and the final status of a refined relative sub-
“system”. Likewise for X5 and Y5. By the same pro-
cess as with the whole double gyres system, we can
get some new coherent structures in the new system
consisting of X7 and Y7. In Fig. 2, following the first
blue arrow between first and second levels of both
flow charts, X7, the blue half on the first level of
the upper chart is divided by blue and light blue,
we define the blue part as Xi; and the light blue
part as Xjo in the second level. Correspondingly,
we have Y71 which is blue and Y7o which is light
blue in the second level of the lower chart of Fig. 2
as the outcome states of X711 and Xio. X711 and Y73
are relatively coherent structures, and so are Xio
and Y12.

As above, we can develop an X that is red
and an X9 that is light green from X5 in the second
level of the upper chart of Fig. 2; and Ys; that is
red and Yo that is light green from Y5 in the second
level of the lower chart of Fig. 2. The same subscript
means Xo; and Y5 are a relatively coherent pair,
so are Xo9g and Yso. Now we have four relatively
coherent pairs in the second level.

We can eventually get the tree structures in
Fig. 2 by repetition of the process. There are eight
relatively coherent structures shown in the third
level with different colors and 16 relatively coherent
structures in the fourth level with different colors. In
Fig. 2, we can see the egg-shaped relatively coher-
ent structures which are four resonance “islands”
as expected in such Hamiltonian twist maps [Meiss,
1992]. Even finer structures will be revealed by fur-
ther refinement and sufficient sampling to allow
appropriate resolution. Appropriate sampling in a
given refinement scale is discussed in terms of com-
putational complexity in developing a given Ulam—
Galerkin’s matrix for a given fine grid. Note that
while closed for initial measure p, it is open in all
subsequent measures.

(16)

4.2. An idealized stratospheric flow
Next, consider the Hamiltonian system
dx 0 dy 0P

dt oy’ dt  ox’
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1t level 2 level 3rd |evel 4t |evel

1%t level 2M level 3rd |evel 4t level

(b)

Fig. 2.  The upper figure is the initial status of the double gyre and the lower figure is the image under the time-7 flow, where
7 = 10. The same color areas between the two associates one relatively coherent pair. In this case, we have 16 different relative
coherent structures with different colors. By following the colored arrows, we can see the relative coherent structures through
four levels of refinement. (a) ¢t = 0 and (b) ¢ = 10.
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where
O(z,y,t)

=c3y — UpL tanh(

i<
~—

+ A3Uy L sech? ( cos(kyx)

cos(kax — oat)

@ ~N|w
~_— ~—

+ AoUy L sech? (L

+ AUy L sech? (%) cos(kix —oyt).  (18)

This is a quasiperiodic system that repre-
sents an idealized zonal stratospheric flow [Froy-
land et al., 2010]. There are two known Rossby
wave regimes in this system. Let Uy = 63.66,co =
0.205U0, C3 = 0.7U(), A3 = O.Q,AQ = 0.4, Al = 0.075
and the other parameters in Eq. (18) be the same
as stated in [Rypina et al., 2007].

The Lipschitz constant M here is 0.7854. Equa-
tion (1) tells us the necessary number of points
for a 32640 by 39694 matrix is about 15000 000.
We choose 20000000 points in the domain X =
[0,6.3717 * 105] x [—2.5 % 10°,2.5 % 105] of the flow
and use 32640 triangles as the partition {B;}32{4
for the initial status points and 39 694 triangles as
the partition {Cj}ggjg‘l for the final status of the
points. Note that this system is “open” relatively to

Fig. 3.

Relatively Coherent Sets as a Hierarchical Partition Method

the domain X chosen, though it is a area-preserving
flow. The two coherent pairs are colored blue and
red which are defined as (X7,Y7) and (X2, Y2) at the
first level of Fig. 3. Again, we now build the relative
measures and tree of relatively coherent pairs. By
applying the method as we have done with the pre-
vious two examples, we develop four and eight dif-
ferent coherent structures for the second and third
levels, respectively. In Fig. 4, we repeat the color
scheme in both the initial status and final status in
each of the second and third levels for the relatively
coherent structure. Thus, we now see a much finer
scaled relative coherence in the dynamical system
than previously seen.

4.3. The standard map
Consider the standard map,
Pnt1 = Pn + KSIH(Gn) (19)
Hn—i-l - 071 +pn+1
where p,, and 0,, are taken modulo 27. See [Meiss,
1992], and this is a map on the torus Q = [0,1) x
[0,1). We will study the case that K = 1.2 in our
example, as this is well known to be K = 1.2 >
Ko = 0.971635 shortly after the breakup of the
last “golden” torus allowing momentum boosting
orbits and a mixed chaotic and ordered phase space
including periodic elliptic islands [Meiss, 1992].

Relative coherence in the Rossby system Eq. (18). The first level partition (left-hand side) and third level partition

(right-hand side) of both the initial and final status of the zonal flow. Compare to the hierarchical structure as emphasized in

Fig. 4. (a) and (b) t = 0; (¢) and (d) t = 10 days.
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1t level

2" Jevel|

3rd [evel

15t level

2nd |evel

3rd [evel

(b)

Fig. 4. Relative coherence hierarchy in the Rossby system Eq. (18). Coloring and hierarchy tree structure as in (a) and (b).
Compare also to Fig. 3. (a) t = 0 and (b) t = 10 days.
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1t level 2 |evel 3rd Jevel

1% level 27 Jevel 31 |evel

Fig. 5. Standard Map Eq. (19), structured relative coherence hierarchy tree arranged as in (a) and (b). (a) At the beginning
and (b) after 10 iterations.
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The first level of Fig. 5 shows two large coher-
ent pairs in the Standard Map, which are filled by
blue and red, respectively. By prior knowledge on
this benchmark problem, it is clear that the bound-
ary between the primary blue and red coherence
estimates the cantorus remnant of the golden area
resonance, an expected act came as this is known
to remain a primary pseudo-barrier to transport
when K = 1.2, still not much larger than K. =
0.971635.

Iteratively repeating the process according to
the algorithm for each of X7, Y7, X9 and Y5 yields
four relatively coherent structures which are colored
blue, light blue, red and green in the second level.
The third level in Fig. 5 tells us there are eight
different such structures in total in the first three
levels. The outcome partition here shows a familiar
depiction of the resonance layers known to be due to
cantorus pseudo-barriers which cause the famously
slow transport for the standard map [Meiss, 1992].
Notice that the lack of stopping criterion could
be due to the great deal of symmetries in this
System.

98 95 94 52 80 )

Fig. 6.

4.4. The Gulf of Mexico

In our last example, we consider the Mexico Gulf.
The data is the same as was used in [Bollt et al.,
2010] and formed by the method in [Bleck, 2002;
Halliwell, 2004]. The difference between the Gulf
model and the above three examples in the Gulf is
an open system, that is, there is water entering and
exiting the region. See Fig. 6. This is the reason why
in Fig. 7, the shapes of the whole Gulf water of the
initial status and final status are slightly different
at the bottom and top regions.

By Theorem 1, we need at least 12807000
points, the Lipschitz constant M of this model is
2.6911. We choose 20000000 points uniformly and
randomly in the water region as the initial status,
with more details of data. See [Bollt et al., 2010].
The final status is the position of these points after
6 days. We use 32867 triangles {B;}32%7 as a par-
tition of X and 32359 triangles {Cj}?jw as a par-
tition of Y. After applying our subdivision method
on these triangles, the results are shown in Fig. 7.
In this example, we set pg = 0.9998 as the thresh-
old, the stopping criterion. Therefore, the number

80 78

Vector field describing surface flow in the Gulf of Mexico on May 24, 2010, computed using the HYCOM model

[HYCOM, 2010]. Note the coherence of the Gulf Stream at this time. Oil spilling from south of Louisiana could flow directly
into the Gulf Stream and out towards the Atlantic. This is an open system relative to this window shown. Horizontal and
vertical units are degrees longitude (negative indicates west longitude) and degrees latitude (positive indicates north latitude),

respectively.
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p* = 0.9997 < p, =
p* = 0.9999 > p, 3
¢ A W

p* =0.9992 < p,

’ p” =0.9999 > p, |@
‘ , p* _[}9992<Po
p* =0.99978 < p,

’ p* = 0.9999 > p, ‘ p* = 0.9999 > p,

'g
p* =0.99989 > p,

K

p*=0.9999 > p,

ﬁ p*=0.9999 > p,
1%t level 2" [evel 31d |evel 4th [evel

(a)

p* = 0.9997 < p,

p* = 0.9999 > p, @w
. p* = 0.9992 < p,
L A p* = 0.9999 > p, }
y '@'
p* =0.9999 > ,0(1‘ ‘ ’ p* =0.9992 < p,

p* =0.99978 < p,
p* = 0.9999 > p,

,0 —099989),00 _
1 Q) »° = 0.9999 > p,

1t level 2" level 3 level 4th [evel
(b)

Fig. 7. Hierarchical relative coherence in the Gulf of Mexico following the flow according to vector field data as illustrated
in Fig. 6. Tree structure and relatively coherent pairs coloring as in (a) and (b). (a) t =0 and (b) ¢t = 6 days.

p* —09999>p0
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of relatively coherent pairs is not equal 29, where ¢
is defined in Eq. (11).

5. Conclusions

We have defined a concept of relative coherence
based on relative measure, as a generalization of
coherent pairs. We have also introduced a recur-
sive method of detecting relatively coherent struc-
tures under flows in a finite time, based on relative
measures, with respect to the restricted Frobenius—
Perron operator. Relative measures are used to
build a hierarchy of relatively coherent pairs at suc-
cessive levels, which can be illustrated in a natural
tree structure of relative coherence.

We have demonstrated the method with the
double gyres, the standard map, a Rossby wave sys-
tem and data from the Gulf of Mexico. These exam-
ples have included hierarchical structure, open and
closed systems, a system known only through data,
and the use of the stopping criterion.
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Appendix A
On Computational Complexity

In this section, we analyze the computational
complexity to properly develop an Ulam—Galerkin
matrix. The following discussion is based on the
Lipschitz constant and Gronwall’s inequality. See
[Perko, 2006]. There are some other works related
to this topic. See [Dellnitz & Junge, 1998; Guder
et al., 1997; Guder & Kreuzer, 1999; Junge, 2001].

The arguments here are premised on a very
simple idea that all we need to consider is the
boundary before and the boundary after a flow. Let
f X X [tg,t] — X be a flow and X be compact.
We use X(tp) and X (¢) to denote the status of X
at time t¢ and t under the flow f, respectively. For
an arbitrary point z € X, we set x(tp) and z(t)
as the positions of x at time ty and ¢. Consider a
square box with length ¢, we use such size ¢ box
to make partitions for X (t9) and X(¢), which are
B ={B;}I"; and C = {Cj}?:p m and n are posi-
tive integers.
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Theorem A.1 [Theorem 1]. For a Lipschitz flow f
in the plane X € R? and partitions B = {B;}!",
and C = {C;}]_; consist of identical bozes with
length ¢ > 0 for X (to) and X(t), where ty < t. Let
P,; be from Eq. (6) and P, be from Eq. (5). For
each P ; built by N uniformly sampled points from
a Bj-qg-box, 3 is a confidence coefficient r € (0,1)
which depends on the Lipschitz constant M of f,
and the density § of sampling points N. According
to Egqs. (A.7) and (A.13), it follows that r — 0 as
N — o0.

Note that the confidence coefficient r may vary
for different B;. If we use local Lipschitz constants
for each box B; and this discussion could lead to
adaptive grids, but here we simply use a uniform
Lipschitz constant from a global grid.

As a direct conclusion, we have the following
corollary.

Corollary A.1 [Corollary 4.1]. Alternatively, choos-
ing r € (0,1) for a B; box, the number of uniform
sampling points N(r,B;) of B; box follows from
Egs. (A.7) and (A.18), such that we can control
the error |P;; — PM\ term by term as desired.

Notice that the number N(r, B;) may vary for
different 7 and the total sample points number is the
sum of all N(r, B;),i=1,2,...,m, see Eq. (A.14).
The corollary allows us to develop adaptive sam-
pling for different boxes designed according to local
Lipschitz constant values rather than the global
Lipschitz M we use in the theorem.

Theorem 1 may be used to estimate the term
by term errors between the matrices P and P. And
Corollary 4.1 is always applied on deciding the total
number of uniform sampled points. Therefore they
both are important for the numerical approximation
of Ulam’s matrix.

Before we prove the theorem, we consider the
error types in the matrix building process. Suppose
f’i,j = «, which means if we uniformly and ideally
choose N sample points in B; box, there will be
Round(Na) points or Round(Na) + 1 points in the
C; box. We will explain the word “ideally” at the
end of subsection B.

We now discuss another type of error. For con-
venience of illustration, we assume B; is a box of
partition of X(to), there will be a box Cj_; of
the partition of X (¢) sharing all of the boundary
of B;. That is, they totally overlap. The triangula-
tion we use is handled similarly, but rectangles will

Relatively Coherent Sets as a Hierarchical Partition Method

simplify this discussion even if triangles allow for
the powerful Delaunay triangulation algorithms in
practice. For convenience, we discuss here compu-
tational cost of boxes instead of triangles, but one
box can be easily changed to two triangles by cut-
ting through the diagonal.

First, recall that, the Gronwall’s inequality is,

[21(8) = @a(t)] < |21 (fo) — w2(to) M0l (A1)

where M is the Lipschitz constant. Assuming f is
uniformly continuously differentiable,

of
2wt

= max
(2,)EX X[to.]

(A.2)

A.1l.

We assume the time interval [¢o, t] is relatively short.
Without loss of generality, we choose a ¢ box B; as
a subdomain, there will be a C;_; at the same place
as B;. Figure 8 is an illustration of the subdomain
under a flow f in the short time interval. That is,
the different time status of the box overlap in the
most major part. However, we wish to catch the
behaviors of the flow as much as possible, so we need
a proper number of initial points in the domain so
that they can be transported everywhere including
the small nonoverlapping region, the shadow region
in Fig. 8, under the flow.

Intuitively, we may choose a finite open cover
of the shadow region and study the preimages of
the elements of the cover. See Fig. 9. Since an open
cover for a compact space X under a flow is still an
open cover, the preimages of open sets still cover
X at time ty. Then we choose a smallest radius of
all the preimages as the largest distance among ran-
dom points. Generally, we catch most of the domain

An open cover

q-box B; as a subdomain at ¢,
(q-box Cj_, att)

[N

|'I Tf}e sub,
domajp,
uﬂde]" P |
/ Sfaty

q-box B;,q at ty
(g-box C; at t)

.{\ N
NN

Fig. 8. A small square shape subdomain under flow f
through time t — ¢g.
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q-box B;,q at t,
(q-box Cj at t)

g-box B; as a subdomain at t;
(g-box C;_, att)

Fig. 9.

A finite open cover of the shadow region.

in this way, however, there will still be a problem
on building the Ulam—Galerkin matrix. Figure 10
shows a small slice of the shadow region, we now
discuss why a usual open cover may not work for
our case.

From now on, without of loss of generality, we
focus on building the entry P; ;. We consider three
scenarios of open neighborhoods in the cover. See
the colored circles on the right-hand side of Fig. 11.
The three open neighborhoods can be denoted by

|zu(t) — x(t)] < (A.3)

where z,,u = 1,2,3 are centers of the circles and
[ > 0. By Gronwall’s inequality, there is a

l
T eMlt—to

0 (A.4)
such that if 2(¢y) in one of the open neighborhoods
defined as follows, the three open neighborhoods on

the left-hand side of Fig. 11,
[2u(to) — 2(to)| < & (A.5)

where v = 1,2,3 and z,(to) are the centers of the
neighborhoods, x(t) will go to one of the three open

g-box Bj as a subdomain at
ty (q-box Cj_y att)

Fig. 10.

A piece of boundary
of g-box Cj at t

neighborhoods on the right-hand side of Fig. 11,
respectively.

To understand this well, we place all circles in
partitions of X(¢y) and X(¢). In Fig. 12, B; and
B; 1 are boxes from the partition of X (). By our
assumption, we set C;_1 as the one totally overlap-
ping with B;, as a direct conclusion, so is C; with
respect to B;11. See Fig. 12.

We assume that we have built the open sets
small enough so that we can only afford to choose
only one point from one set due to heavy computa-
tion. Now we have the following cases where we are
trying to build the Ulam—Galerkin matrix P.

(1) An arbitrary point from the green one in B;
must map across the boundary of B; and into
C;. Therefore, the Ulam—Galerkin matrix P will
have an adjusted value of F; ;.

(2) An arbitrary point from the yellow one across
Bi and Bi+1 will adjust to Pi,j or PiJrLj.

(3) An arbitrary point from the red one in B; will
effect Pi,j or Pi,jfl-

When we build the matrix P, we expect that all the
points we choose randomly in a neighborhood only
change one certain item of the matrix P, such as
P; ;. The reason is, for example, for the red one in
X(t) of Fig. 12, we can see part of it is still in the
Cj_1 box after flow f, if we choose the initial point
x(to) in the red one in X (tg) such that () in C; —1
in X (t), we lose the information of part of the red
one in Cj when we build the matrix.

If we go back to check Egs. (5) and (6), we easily
find that the case that all points chosen from such
circles covering 71(C;) must be in T-1(C}), since
they focus on ]51] and FP; ;. In other words, each
entry of the matrix need more points to describe
the mass change, however, Cases 2 and 3 indicate
if one can be more accurate, the other one will be
effected. A way to eliminate this kind of interaction
is to try to avoid choosing points from yellow and

A picce of boundary of
the subdomain under f at t

A small slice of the shadow region with part of boundary.
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g-box B; at t,

A piece of boundary
of g-box Cjatt

A piece of boundary
of the subdomain
under f att

Fig. 11. The circles on the right-hand side are open neigh-
borhoods we choose, and the corresponding colored circles on
the left-hand side are from Gronwall’s inequality.

B; Biiq
@9 X(to)
i1 Gj

CaO -

Fig. 12.
and X(t).

The open neighborhoods in partitions of X (tg)

red ones, such that the entries will be independent
of each other. However, we do not know the specific
positions of these red and yellow ones in X (¢g). And
also if so, we lose information of red and yellow ones.

A.2. An adjusted open cover

Consider shrinking the discs on the trapezoid
region’s boundary in Fig. 11, so that we can reduce
the probability of sampling points chosen from yel-
low and red discs. Figure 13 shows that we can

The g-box C; at time t

Qa©
ODO — —

Fig. 13. The process to reduce an open neighborhood.
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The g-box C; at time ¢

A piece of boundary of
the g-box C; at time t

Fig. 14. The structure built by four green open neighbor-
hoods in X (t).

reduce a red open neighborhood by four green
open neighborhoods. We assume all points from a
green neighborhood only change one element in the
matrix, according to Case 1. Then we build the
structure as shown in Fig. 14 by drawing four circles
with radius . The region S surrounded by the four
circles is the region that leads to Case 2 or Case 3.
Notice this structure is in X (¢); we now consider the
status of the structure in time ¢y which is in X (¢o).
It can be shown that relative position of the four
circles will hold at time ¢y by topology properties
of the flow. See, Fig. 15. Moreover, by Gronwall’s
inequality, the radius 0 of these circles at time tg is
smaller than [; and then the surrounding region S’
at time tg will be smaller than S.

We can decrease the area of S’ by shrinking
the area of S. On the other hand, the smaller [
is, the smaller .S will be. Therefore, we can reduce
the probability of a random point chosen from S’
by making a smaller S’, which indicates we need a

A piece of boundary of
the g-box C; at time ¢

Fig. 15.

times.

The relative position of the circles hold for different
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smaller [. However, as [ becomes smaller, the radius
6 will become smaller by Gronwall’s inequality. If
we set the largest distance among the uniform ini-
tial points to be smaller than §, we need more sam-
ple points when d become smaller. By the geometry
of the S’ structure, the relationships between ¢ and
the area of S’ is,

(A.6)

where p is the measure defined on X (¢y). Thus, the
size of S” cannot be zero, which will lead to infinitely
many initial points. We have to use a confidence
coefficient as a measure for the probability we dis-
cussed above.

At the end of this subsection, we talk about
choosing points ideally. We say, if all the initial
points are chosen from X (t() except all the S’ area,
these points are sampling ideally.

A.3. A confidence coefficient

Note that there are finite number S’ regions in B;
box due to a finite open cover. We now consider a
ratio number r such that,

> (S

. s'eBin(U; f~1(Cy))
1(B;)

Notice in the theorem, we use uniformly sampling
points which automatically eliminates the effect of
P;1 ; from Case 2, but not the whole Case 2. Even
for uniform sampling points, we still do not know if
some points lie in such S’ regions. Thus, r can be
considered as a confidence coefficient that indicates
the probability Case 2 or Case 3 occurs. Note that
r is for all C; related to a fixed B;. If we consider
an r for a B;, it turns out r is the error from all
missed transitions about B;.

Then the only question left is how many S’
regions are in B; box. It is not easy to find the
number of S’ directly. However, since the number of
S’ regions in B; is the number of S regions on the
part of the shadow region’s boundary, see Fig. 16,
which is a direct conclusion from our discussion in
the above section, we can calculate the number of
S instead of S’.

We next give a method to count the number
of S. For consistency, we use the same shape shadow
region, however, the method can deal with a more
general case. We now only consider the shadow

(A7)

g-box B;,q at ty
(g-box C; att)

g-box B; as a subdomain at £,
(g-box CL'-_Z_?_I t)

| — n®

/
f
I|I The Sub
Ao
Omain ypge, Fi G

/

{
\

Y2(t)

Fig. 16. The shadow of region’s boundary is split into an
orange curve C7 and a green curve Cs.

region’s boundary in Cj. In Fig. 16, we separate
part of the shadow region by two curves with dif-
ferent colors, C; and Cy. We use Num(S,C7) and
Num(S, C1) to denote the number of S on C} and
(3, respectively; and |C| denotes the length of a
curve C' with respect to the corresponding measure.
And then we have the following relationships,

Num(S’, B;, C;)

= Num(S, C1) + Num(S,Cs), (A.8)

where Num(S’, B;, C;) denotes the number of S’ in
B; related to Cj.
For curve (', the orange one, it is easy to get
Num(S, C4), for it consists of line segments,
|C1]

Num(S,C) ~ [—-‘

: (A.9)

For curve Cy, however, |Cs] is hard to be determined
directly. Remember that the S regions on Cy cor-
respond to some S’ regions in B;, so we go back to
study the status of Cy at time t.

In Fig. 17, we can see there are two intercepts
y1(t) and ya(t). We consider the positions of y; and
Y2 at time to, ie. Y1 (to) and yg(to). Y1 (t()) and yg(to)
must lie on the part of ¢g-box B;’s boundary, by
assuming an orientation preserving property. We
conclude that Cs at time tg must be the red line seg-
ments in Fig. 17, denoted by Cs(t¢), so the number
of §" on Cg(to), Num(S’, Cg(t())), is

Num(S/,Cg(tg)) ~ % ’V@-‘, (AlO)
where § is from Eq. (A.4) for the same [ in Eq. (A.9).
There is a 1/2, because for any S” on Cs(t() we only
have half the area inside B; by the structure we have
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g-box B; as a subdomain at ¢, q-box B, at ty

hor Q;l_ft_ By ltn) (g-box Cj at )
| e PO
I|l| \
."." Cz “0) N
l.'ll llfl CZ
/
/
f
{ ¥2(to) | Y2(8)

Fig. 17. The red line segment is the status of Cy at time tg,
which is denoted by Ca(to).

built. On the other hand, the following relationships
hold, as we discussed,

Num(S, CQ) = Num(S',Cg(tg)). (All)

Thus, by Egs.
Num(S’, B;) as,

(A.8)—(A.11), we can rewrite

Num(s', B;, C) = [@] .1 [‘Czétoﬂ

l 1 . (A12)

Moreover, by Egs. (A.12) and (A.6), Eq. (A.7)
becomes

ZNum(S’, B;,Cj)ym(S")

J

r (B . (A.13)
Actually, Egs. (A.4) and (A.13) can be consid-
ered as a function between r and [ for a given flow
and a partition. Therefore, we can use a given r to
solve [ and then we can get §; for each B;. Normally,
we set 7 < 0.5%. Now, we have the equation of the
necessary number of initial points for a partition

Relatively Coherent Sets as a Hierarchical Partition Method
_ k
B ={Bi}i_,,

2
Initial Points’ Number = Z [q—-‘ . (A14)
B;

A.4. Proof of Theorem 1

By following the above subsections, we give a brief
proof for Theorem 1.

Given a F;; built by N uniformly sampling
points from B; ¢-box with density 4, according to
Egs. (A.13) and (A.7), by adding J, we can get a r.
Clearly, the equations tell us when r — 0,6 — 0
and then N — oo.

Moreover, suppose 15” = a,a € (0,1) and
the points are ideally chosen. Then we have
Round(Na) +1 or Round(Ne«) points in Cj; for the
ideal case. On the other hand, for another error, the
worst case is when N7 points all are effected in P ;.
Thus, for the general P; ; not built by ideally chosen
points, we have

Nr r+1

. Q@

1Pij =Pl < v+ <% (A.15)

The cases o = 0,1 mean we have all points in C}
or no point in Cj, and then |P;; — ]3”\ = 0. As

we proved above, when r — 0,1/N — 0, so P
converges to P term by term, for each i, 7, where
1=1,2,...,mand 5 =1,2,...,n.

Theorem 1 tells us, if we uniformly choose
enough points, no matter where the positions of
these points, we can get an appropriate approxi-
mation of Ulam’s matrix related to r. The theo-
rem is a strong support for numerically computing
the Ulam’s matrix without considering the sampling
problem. In practice, each r and § are nearly the
same for different B; because of relatively short time
and Lipschitz flow f.
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