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Abstract: Forecasting outcomes from initial states continues to be an essential task
in dynamical systems theory as applied across the sciences and engineering. The data-
driven philosophy has become prevalent across the community. While geometric methods
founded in time series to rebuild the underlying geometry based on Taken’s embedding
theorem have been popular and successful in previous decades, they are complex, compu-
tationally expensive, and parametrically intensive. The wave of machine learning meth-
ods have come to reveal that a black box oriented approach has a great deal to offer the
fundamental problem of forecasting the future. Modelling the flow operator as a linear
combination of nonlinear basis functions in terms of regression least squares fitting in a
data-driven manner is straight forward to pose. However there are two major obstacles to
overcome, which are first, the problem of model complexity may lead to either underfitting
or overfitting, but these can be mitigated by Tikohonov regularization. Another serious
issue regards computational complexity, which can be overcome by the kernel trick, where
in all necessary inner products to be computed in a high dimensional feature (basis func-
tion) space occur implicitly within low-dimensional kernel operations. In particular kernel
methods from the broader theory of support vector machines is founded in the functional
analytic theory of Mercer’s theorem and also reproducing kernel Hilbert spaces (RKHS),
but practically this fundamental concept in machine learning has become central to many
efficient algorithms. Putting these concepts together, the efficiency of kernel methods,
and the robustness of regularized regression are both possible within an approach called
kernelized ridge regression, that we show here makes for an especially useful way to carry
forward time-series forecasting problems, as a simple to use and computationally efficient
methodology. We demonstrate the utility of these concepts in terms of a progression of
examples from low dimensional where direct analysis is possible, to high-dimensional and
spatiotemporally chaotic, and then an experimental data set from physiology of heart rate
and breathing interactions.
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1 Introduction

Predicting the future is a classic problem in applied dynamical systems. Indeed in science
more generally, the problem of forecasting is a central goal. Assuming an initial value
problem (IVP),

= F(t,x),z(tg) = o, (1)

forecasts demand knowledge of the flow z(t) = S;(x¢), a function that relates outcomes
in terms of inputs, (f,x¢) — x(t) = Si(x). Whether a “closed form” solution is derived
analytically, or an approximate solution is found by computational methods such as finite
difference methods, the goal is to access the function Si(z) and we write S; : U C 2 —
V C Q, where U,V are subsets, U = V' if an invariant set, that may represent an attractor
in a d-dimensional phase space €, for example, R

A data-driven approach to forecasting takes a somewhat different assumed starting
point regarding the role of data, given or assumed as examples of outcomes, rather than
relying directly on assuming the underlying differential equation. These examples on
inputs and outputs may be collected from physical experiments, or otherwise from com-
putational simulations, and they implicitly express the flow as many instances of inputs
xo initial conditions, and outputs S;(zg) downstream by the flow. Building a general
model, based on fundamental laws, yielding a differential equation which describes the
motion of states, may not be necessary given enough data. “This requires strong assump-
tions. A good fit of the data to the model validates the assumptions,” [61]. Weigend and
Gershenfeld make a distinction between weak modeling (data-rich and theory-poor) and
strong modeling (data-poor and theory-rich). [61]. This is related to, “... the distinction
between memorization and generalization . . .” It is always nice to have a general theory
from which we may write down a global set of equations of motion. However, this is
not always necessary if the goal is satisfied by producing forecasts. A scalar time series
to represent the attractor when the time series is considered with enough delays, where
enough may be taken in terms of the phase space, or even as related to the fractal dimen-
sion of the attractor, [48]. Forecasting can be done within this now classical framework
by local-linear regression, [1, 41, 18, 6, 7, 20, 50|, building an atlas of charts for an un-
derlying manifold [40] in terms of a local “k-nearest” neighbor model for forecasting each
point . While a data intensive approach may require many parameters to decide, such as
embedding dimension, delay, k the number of near neighbors, and the many local poly-
nomial models,[6], the method had some excellent success for forecasting, characterizing
qualitative features [9], and popularity. Now, a new wave toward the same basic goal
of forecasting enlists a modern machine learning approach which is able to skip many of
these details which rather may well be implicit in the overall scheme.

There haven been several major thrusts into data-driven machine learning of dynam-
ical systems, notably including, neural networks [15], and including a special case called
reservoir computing or echo-state machines, [43, 31, 38]. This present work is premised
on kernel learning methods [49] with ridge regression regularization [51, 25, 60]. Kernel
learning allows for general all purpose machine learning methods that include the fa-
mous kernel support vector machines, [49, 28]. This approach has excellent and efficient
properties that have proven useful in many scientific applications from image analysis,
engineering, and neurology, to ecology, [5, 12, 62]. We describe here that this approach
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from machine learning applies naturally to the problem of modelling the a flow of a dy-
namical system, as learned from input data. Notably we emphasized that regularized
[56, 53] kernel methods offer benefits over other related works in forecasting for such
systems [?]. The theoretical foundations are premised on an application of the Mercer’s
theorem [54, 49], and reproducing kernel Hilbert spaces (RKHS) [11]. As we recall here,
the concept relies on feature maps whereby the observations of orbit segments in the
phase space are lifted to a high-dimensional, or even infinite-dimensional feature space
wherein the problem may be described as linear. This lifting can effectively overcome
the otherwise detailed embedding part of time-series forecast if the data set is a scalar
observation from a multivariate process. Generally, the computational danger of such
a high-dimensional regression in practice is known to suffer from issues of over-fitting,
where when too many model features are chosen. Therefore regularization is a concept
of inverse problems theory by Tikhonov regularization [58] that generally mitigates the
problem. Specifically, the ridge regression, that is a least squares objective together with
a least squares regularization turns out to be computationally very convenient within the
kernel learning theory formalism.

We assume data which may be the full state observation from the dynamical system,
Eq. (1), or a time-delay embedding [55, 48] thereof. In either case, we require data as
a large set of input-output pairs observed from the corresponding flow, ((¢,x), (¥, 2)) =
((t,x), (¥, Sy(x)). In practice, this will be a finite sample, {(¢;,}, x;, St;(a:i)}fil, and we
write, z; = z(t;), z; € 2, the phase space. For convenience, this data may well be
derived from one long single orbit, t; < t] =ty < th = t3 < ... < ty_; = tn, or
otherwise from several short orbit segments, or even just as stated in terms of single input
output pairs of solution segments. We assume that the flow function, S;(z) has a power
series representation, in terms of a basis of functions of monomials g, (z) of the vector of
variables, x € (),

Si(z) = Z A gn(T). (2)

The coefficients a,, can be fitted simply within the kernel learning formalism, and the
regularized version of the scheme will avoid the problem of overfitting. The data set
must be “long enough” to support the method of estimation, as a general failing of any
data-driven machine learning method is that it will tend to do much better in terms of
interpolation than extrapolation. Generalizing to out of sample forecasts will tend to fare
much better when the point to be forecasts is close to other observed inputs. So the
quality of results can be quite brittle, depending as much upon curating a representative
data set as the details of the method used, a statement that was also observed in [10].
In Sec. 2 we will review all the background of regression necessary for forecasting a
flow. In Sec. 2.1 we will set the standard notation relevant for the standard least squares
stated in matrix notation as we need here. In Sec. 2.2, multi-variate polynomial regression
will be reviewed, with the description of how ridge regression regularization is standard
to state in the matrix formulation Sec. 2.3 to avoid overfitting, and it is straightforward
to do so also in the matrix formulation. Finally with this as background, we will review
in Sec. 2.4 the kernel trick, and how the otherwise high-dimensional and computationally
intensive version of ridge regression just reviewed can be simply posed to equivalently work
the problem entirely in the observation space. With this theory reviewed and in hand,
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we will move in Sec. 3 to cover several progressively more intensive examples, starting
with logistic map where the input-output space each being one-dimensional allow for
a complete plotting of the outcome and errors, and also closed form representation of
moments allow for more detailed analysis of error. Then we offer the Lorenz equations as
a 3-d ODE, the Kuramoto-Sivashinsky system as an example of spatiotemporal chaos in
a PDE and finally a breathing-heart rate data set from experiments.

2 Kernel Ridge Regression

In this section, we review in turn material from very standard linear regression, multi-
variate regression, multivariate polynomial regression, then Tikhonov-ridge regularized
regression, each of these as precursor to the method that is central here. This review of
standard theory prepares for the presentation toward the kernelized formulation of the
forecasting problem along with intrinsic efficiencies. Applications illustrating dynamical
systems problems and forecasting will be described in the subsequent Sec. 3.

2.1 Least Squares

The standard linear regression problem, proceeds from input-output pairs, (z,y), first
stated for simplicity in a scalar case, x,y € R. The goal is to derive parameters, intercept
and slope by, by, so that a model line y = L(x) = by + byx is fitted to best describe the
data, {(z;,y:)}Y,. Best fitting is stated in a least-squares sense by the loss function,

J(0) =D _ly = bo = byl (3)

Similarly, for multivariate data, x € R? y € R, (which includes the scalar case if d = 1)
then, for parameters column vector b = (bg; by; ..; by) the fitting hyperplane,

y= L(x) = by + biwy + ... + bgwg = b'[1; 1], (4)

the last part written as a matrix product, or equivalent to a dot product b- [1;z] between
the parameter column vector b = (bg; by; ..; bg) € R and the data column vector [1; 2] =
[1;21; 295 ...; 24) € R4 We have been overloading the notation on the subindex for the
component index and also for the data vector number. For now forward, we will write
7; to refer to a single i'*-indexed vector of N data point x; = [x1,;79,;...;74] € RL In
matrix form, fitting all the data by a linear hyperplane model with respect to all the data,
is collected in a data matrix,

X = [x1|xo|...|xn] = [(L;20)[(1; 29)]...|(1; 2y)] € REFN (5)

whose columns are the column vector data points z; € R, but with a scalar “1” appended,
x; := (1;2;) € R¥? to allow for the offset (bias) term associated with the by parameter.
Likewise, an output data matrix,

Y =[]yl lyn] € RV, (6)
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allows the hyperplane for all the data, gives the model equations as,
Y =B'X +e (7)

[ is the d+1 x 1 array of parameters. Since X is (d+1)x N and N > d+1, there generally
does not exist a unique solution to Y = 'X, The 1 x N vector € may be thought of either
as noise, or errors. A typical analysis of variance analysis [17] assumes € is normal. A
general candidate vector of parameters b for 8 has least squares loss function,

N
1 1
TO) = IV =YX = 53— ¥xo? (5)
i=1
If we state the optimal parameter,
b* = argmin J(b), 9)

b

then it is standard to show [17, 27] that the corresponding normal equations,
YX'=b XX, (10)
result in the least squares solution, written symbolically in terms of the inverse if it exists,
bt = (XXH)IXY! (11)

The accepted way to solve the normal equations in a stable and generally well defined
way is better to resort to the Penrose-pseudoinverse in terms of the singular value decom-
position, [27], rather than forming the explicit inverse of a large matrix, (X X*)~!, which
may well be ill-conditioned, so written, X', [27]. However, with this understanding we
will continue to write formally these pseudoinverses in terms the matrix inverse form of
the statement.

2.2 Polynomial Regression

A polynomial least squares solution describes an optimal linear combination of monomial
basis functions, ¢,(z) : R? — R. For example,
¢;(w:) = el al s alls ot ot fa = . (12)

Clearly, if j = 0, then follows the constant term from the basis function, ¢,(x) = 1 as the
full model. In this slightly more general form, a data point (a vector x) is observed by
features as the functions collected into a p x 1 column vector of p features,

z = ®(x) = [91(2); da(); ..; dp ()] (13)

Using notation,

®; = O(xy), (14)
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and counting, ®; : R? — RP from the d-dimensional data space to the p-dimensional
feature space, then the data matrix of feature maps, stated in terms of the full data set
is written,

D = [P Dy]...|DN], (15)

as a p X N matrix.
From a polynomial model matrix equation, compare to Eq. (7),

Y = ['® + e, (16)

the best least squares fit of a multi-variate polynomial therefore follows the loss function,

compare to Eq. (8),
N

J) = IY = VD5 =) (y—b'd;)*. (17)

i=1
Allowing p = d + 1 and ¢,(z) = 1 and ¢;(z;) = x;,_,, then 1 < j < d + 1 recovers the
hyperplane special case. The general polynomial least squares solution follows by similar

arguments as Eq. (11).
b* = (90" oY (18)

Now contrast the sins choosing between underfitting and overfitting, and the difficulty
of choosing the model of appropriate complexity, which leads to solution of this problem
in inverse problems theory by regularization. The choice of how large to make p is very
important to the quality and kind of output. See this issue highlighted in Fig. 1. If p is
chosen too small, then the data is over simplified, and the optimal fit is nonetheless poor.
The underlying process is misrepresented. But if p is chosen too large, and note that for
a large enough p then there may be an exact fit, with a curve (hyper-surface if multi-
variate) that “wiggles” so as to run through every point. In that case, we have literally
modelled the details of a specific detailed sample of noisy data, rather than simplifying to
the underlying process. The overfitted model will not generalize to other out of sample
data.

2.3 Tikhonov Regularization and Ridge Regression

A good model fit requires that either the correct model complexity (polynomial degree)
p should be correctly pre-chosen, which is not a simple task on its own, or otherwise an
automatic way to compromise the model fit (called data fidelity) must be made to prevent
overfitting so that models will generalize well to out of sample forecasts. See Fig. 1. We
will pursue Tikhonov regularization from inverse problems theory [19] to balance between
data fidelity and the competing regularity of the fit. A Tikhonov regularization is written
as a loss function compromising between two terms,

J(b) = D(b) + AR(D). (19)

For the multivariate polynomial least squares problem, the choice D(b) is by Eq. (17),

J(b) = %HY—thI)Hng)\R(b). (20)
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Figure 1: Overfitting is a classic problem in regression modelling. Here, data from a
source, y = @ + ¢, for a normal random variable, e ~ A(0,0.1) generates the N = 25
data points shown. (Top Left) Underfitting, due to a polynomial model that is too low.
Linear. (Upper Right) Overfitting due to a high degree polynomial model, d = 16 begins
to attempt to run through all the data points, modelling the noise rather than the process,
specializing to the data, but the fitted model will not do as well with out of sample (new)
data. (Bottom) A “reasonably” good fit.

The specific form of the regularization term is usually amongst a number of popular
choices, each emphasizing different traits of what may be considered a likely model, such
as continuity, smoothness, sparsity, or total variation, [59], and each leading to different
specific solution. Notably, one popular choice is Lasso regression that emphasizes sparsity,
R(b) = ||bl|1, [47]. Instead, however, we will focus here on ridge regression, [27, 39], that
can emphasize smoothness,

R(b) = [|Cb]l2, (21)

in terms of a Laplacian matrix C'. For now we will focus on C' = I, the identity matrix,
so that,

1 1
J() = IV = bP|E -+ S\blZ, (22
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defines the ridge regression problem. This regularity term penalizes large b values, that
result if p, the polynomial complexity, were chosen too large. A classic picture of this com-
promise in ridge regression is captured in Fig. 1, the intermediate fit due to intermediate

R(b) = [[bll2.
Ridge regression is also popular over other regularizers for reasons of computational
simplicity, in terms of elementary matrix computations. While Y = b'® is generally

ill-posed, adapting from [27] to state for the general polynomial problem here, since,

Io'e — Y3 = |2 - Y3, (23)
then,
b = argmin (@ VAT — ('30) [} = argmin [0 — Y[ + AJbl3,  (24)
has normal equations,
(@D + )b = ®'Y?, (25)

whose solution is extremal when,
b = (D' + \) ' OY". (26)

Notice the similarity between this ridge regression solution, and the standard least squares
solution, Eq. (17) and how they coincide if A = 0 is chosen. Regularizing due to A\ > 0,
computationally has the effect stabilize the inverse, with eigenvalues bounded away from
zero. Also, if instead of y € R is a scalar, but a vector such as y € R? so that z and y
might be in the same d-dimensional phase space, then the resulting least squares problem
and solution retain the same forms, only in terms of the Frobenius-norm. The matrix
version of the standard vector 2-norm, Eq. (26) becomes, J(b) = |y — b'®||% + A||b]|%.
Then follows, b* from Eq. (26) but with y a matrix of data, and b* is a matrix of parameters
solving the Frobenius norm ridge problem.

2.4 The Kernel Trick

While the feature space may be very high-dimensional, and correspondingly the data
matrices in Eq. (26) are very large, the matrix computations Eq. (26) can be inferred
indirectly and much more efficiently through a kernel function. The famous “kernel trick,”
[49, 28] realizes that whenever ® appears in Eq. (26), so does its transpose. Consequently,
the fitting problem in a very high-dimensional feature space can be inferred without ever
explicitly lifting the data beyond its relatively low-dimensional observation space.

First, Eq. (26) can be rewritten,

b = (PP + \I)TOY" = O(D'D + \I) 1Y (27)
This follows a matrix identity,
(D' + AI)7'® = &(d'D + ), (28)

shown by multiplying both sides on the left by (®®*+ AI) and both sides on the right by
(®'® + AI). The utility is that ®P’ is p x p, and ®'®, called the Gram matrix, is NxN,
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and so there is a computational complexity savings if p > N. Furthermore, the Gram
matrix need not be explicitly formed through lifting to features, x — ®(x), but rather by
the Gram matrix computed through a kernel function.

The ridge regularized least square forecast for a given z is,

y(z) = b ®(z) = Y(D'D + \)1d'D(z), (29)

not assuming z is one of the data points, z € {z;}. Notation ®(x) refers to Eq. (13), the
p-dimensional feature map of x. This describes that the forecast y(z) must lie in the span
of the data observations,

=) o ®(a;), (30)
where «; are the N component elements of the vector,
a=(0'd+ ). (31)

The beautiful kernel trick follows the observation that in Eq. (29), ®, the data matrix
of features never appears alone, but rather only in terms of the Gram matrix as ®'®
(sometimes called the kernel matrix).

Consequently ®'® can be written as a kernel function, and decomposed as rows to
columns as inner products in the feature space. The point is that all of the values resulting
from inner products in the high dimensional feature space can be computed through a
kernel function, and much more computationally efficiently and stability than explicitly
lifting the vectors x to ®(z).

Specifically, we rewrite Eq. (29),

y=Y (K + ) 'k(x), (32)

where, k(z) is a vector,
[k(2)]; = k(x;,x),i=1,2,.., N (33)

of entries indexed across the data {z;}¥, and K is an N x N matrix,
[Klij = k(zi, ;). (34)

Both of these are written in terms of a kernel function, k : R? x R — R.

Underlying the utility of the concept of this kernel trick, and kernel learning theory
(including the famous kernel support vector machines), [49, 28] are the functional analysis
theoretical Mercer’s theorem and also reproducing kernel Hilbert spaces. We review the
relevant parts of this theory here. The outcome may be stated roughly that given a kernel
function, evaluation of inputs into the function correspond to inner products in another,
high-dimensional or even infinite dimensional Hilbert space. A function k: X x X — R is
defined to be a kernel if and only if it is continuous, symmetric and positive semi-definite.
By Mercer’s theorem, [49], such a function implicitly computes inner products,

k(u,v) =< u,v >= &(u)'®(v), (35)

corresponding to a feature map ® : X — H in a Hilbert space H. Connecting to the discus-
sion above, X = R? is chosen to be the observation space, and H = RP. Mercer’s theorem
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gives that the feature maps are eigenfunctions of a functional, Ty [f](u) = [, k(u,v)f(v)dv,
and f € L*(X), positive semi-definite in these terms means,

< [T f >r00)= / k(u,v)f(v)dvdu > 0 for all f € L*(X), (36)
X

The kernel function is symmetric if k(u,v) = k(v,u), for all u,v € X, and it is positive
semidefinite if the Gram matrix is positive semidefinite for every input data. Then there
are eigenfunctions ¢; € Lo(X) and eigenvalues \; > 0 of T}, so that for all u,v € &,

B, 0) = 3 M) o) (37)

and the series converges uniformly, [49]. Notice this is the infinite dimensional analog of
the spectral decomposition theorem for positive semi-definite matrices, [27]. The feature
map,

O(x) = [¢1(2); P2(); -], (38)

of eigenfunctions, ¢, : X — R produces a mapping ® : X — [2 when H = Ly(X).

For practical application of this kernel learning theory, the central point for us is that
the feature map ® need never be explicitly computed, formed, or even known to the user.
We need only that it exists, thanks to Mercer’s theorem. Likewise if dim(#H) > d this
may represent a significant computational savings. The specific feature map follows the
chosen kernel. For example perhaps a most simple example is the polynomial kernel,

flu,v) = (1 +u'v)d. (39)
For example, if u,v € R? and ¢ = 2, we see that,

fu,v) = (1 +uivr +ugv)? = (14 2uyv; + 2upvy + 2urugvve +uiv? +usvi) = ®(u)' ®(v),
(40)
where,

O (u) = [1;V2u1; V2us; V2uyug; ud; udl, (41)

that is a p = 6 dimensional feature map corresponding to this choice of the polynomial
kernel. The dimension of,

(d+q)(d+q—1)..(d+1)
q!

p=Cd+q,q) = , (42)
grows quickly with g, relative to d, as Od?). Another common and useful form is the

Gaussian kernel,
1 B llu—vll3

e 207 43
V2mo? (43)

that corresponds to an infinite dimensional feature space H = Lo(X), by a feature map
that, as it turns out, has a known explicit form written in terms Hermite polynomials,
[21], but again we do not need to know that Hermite polynomial form. That said, the

k(u,v) =
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curse of overfitting is avoided by regularizing and eigenvalue stabilizing properties of A > 0
due to ridge regression. We get the best of both worlds with ridge

In summary, the magic of the kernel trick reveals that computing data input into
a positive semi-definite kernel is equivalent to computing inner products in what may
be a very high or even infinite-dimensional feature space. This offers the flexibility for
regression to fit complex functions, but the danger being that of overfitting. However
in summary, kernel ridge regression enjoys the best of both worlds, flexibility of high-
dimensional fitting and regularity to prevent overfitting. In the next section we test these
methods for the target problem of this paper which is fitting and forecasting time series.

3 Example Results

We demonstrate the concepts in terms of forecasting data from several example dynamical
systems of progressively higher dimensionality and complexity. These serve as benchmark
problems, and then we conclude with demonstration of the method for experimental data
for heart and breathing in human subjects.

3.1 Logistic Map

The logistic map,
Toa1 = fxn) = ax, (1 — ) (44)

is a discrete time map of the unit interval, z,, € [0, 1], that is widely used in the pedagogy
of dynamical system, [16, 3, 8]. It makes a good first example here since the one-iterate
discrete-time map is a quadratic, which composed makes higher order polynomials. That
is, the r-th iterate, f"(z) is a 2"th-degree polynomial. When a = 4 the map is well known
to be chaotic and 2"th-degree polynomial is 2"-to-one.

For this simulation, we iterated the logistic map with a small noise added at each
iterate f(z)+v, v ~ 107 through N = 5000 iterates to create a sample data set as a long
noisy orbit. See a sample of these in Figs. 2, 3. The by means of kernel ridge regression, we
make t = 1,2, ..., 5 progressively into the future forecasts, choosing A = 10.7* to regularize
the forecasts. These forecasts are shown in red (top) versus the true orbit in blue, and
as the point and its kth-iterate forecast in the bottom. For ¢t = 1 iterate, the forecast is
almost perfect and the blue and red time series curves are almost overlaid, and the delay
map appears almost like the parabola, az(1 — x). This illustration uses the Gaussian
kernel which implicitly has many terms in the ®(z) beyond just quadratic, even if we do
not need to explicitly know what they are, but the regularizer prevents overfitting. As
k is increased from 2 through 5 we see the forecasts becomes successively worse, but the
regularizer causes a smoothing that prevents the large variations typical of overfitting.
Results are very similar for a polynomial kernel of high degree.

Fig. 4 summarizes errors of forecasting into the future, as we see mean log error squared
grows with ¢, < |log(error)?| >. This is perhaps a rare example where we can exactly
compute the expected value of this error in closed form, using the invariant density [36, 8],

px) = m (45)
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Figure 2: Forecast Logistic Map, Eq. (44) through increasing time. Time series data, x,,
for time range shown, n = 1000, ..., 1050 from a N = 1000 time step sample. True data
is shown in blue, and forecast in red. Forecasts for t = 1,2,..,5 steps into the future.
Observe error grows with increasing time horizon, so that by k = 5 the forecast is poor.
By t = 4, and then even more so by k = 5, the forecast becomes poor. Thereafter, the
theoretical variance, o = ﬁi ~ 0.35, is approximately realized related to Eq. (47). See

Fig. 3 and also Fig. 4, showing an error plot.
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Figure 3: Forecast Logistic Map, Eq. (44) through increasing time. Fitting from time-
series data shown in Fig. 3. The delay maps from the forecast (red) data shown. For
t = 1,2,..,5 the delay maps look to be very close to the true quadratic, quintic, and
octant, corresponding to iterates of the Logistic map. By t = 4, and then even more SO
by k = 5 the forecast becomes poor. Thereafter, the theoretical variance, o = 5 f ~ (.35,

is approximately realized related to Eq. (47). See Fig. 4, showing an error plot.
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Figure 4: Forecast error growth of the logistic map, with increasing time horizon. £ vs.
< log(lerror|?) >, and average along the orbit. Compare to Figs. 2, 3. Also compare the
limiting value to the theoretical variance, Eq. (47).

This is why we have chosen the example as the first benchmark problem. Then we can
exchange time averages with space averages versus the invariant density since this example
is an ergodic process, [45, 8] the Birkhoff-averages concept applies. The mean value along
an orbit is,

1
x 1
T >= ——dr = —. 46
/0 my/z(1 — ) 2 (46)
The theoretical standard deviation from the mean of a long orbit follows,
1 2
- <> 1 1
o(x) = (/ Co <o) gy L (47)
o my/x(l—x) 2v/2
In Fig. 4, we see just that, where by k& = 6 the error has grown to full saturation,
as the population numerical error, < |error|* >~ 0.3457 is close to theoretical standard
deviation 0 = —1= ~ 0.353553... of a random orbit around its mean when all forecastability

2v2
has been lost, by t = 5. This saturation is seen in both Figs. 2, 3 and 4.
3.2 Forecasting the Chaotic Lorenz System
We now consider the Lorenz system [37, 3]:
i = 100y — ),
= x(28—z) — v,
z = zy—(8/3)z. (48)
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Figure 5: Forecasts of Lorenz Equations, Eq. (48). A = 107, (Top) Time-Series of z(t)
coordinate, blue is true solution at z(t + 7), 7 = 10 shown at time ¢. Green is x(t + 7)
shown at time ¢ + 7, (appears shifted to the right), and red is forecast values which are
seen near the true solution. (Middle) Zoom into smaller time range shown for detail,
and errors can be seen more clearly as the difference between the blue and red curves.
(Bottom) The full phase trajectory of the ODE shown in (x(t),y(t), 2(¢)) in the time
range t € [0, 100], and the red forecast solution. Contrast to Fig. 6 where A = 1073 plots
are shown.
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x(t)

x(t)

Figure 6: Forecasts of Lorenz Equations, Eq. (48). A = 1073, (Top) Time-Series of x(t)
coordinate, blue is true solution at z(t + 7), 7 = 10 shown at time ¢. Green is x(t + 7)
shown at time ¢ + 7, (appears shifted to the right), and red is forecast values which are
seen near the true solution. (Middle) Zoom into smaller time range shown for detail,
and errors can be seen more clearly as the difference between the blue and red curves.
(Bottom) The full phase trajectory of the ODE shown in (z(t),y(t),2(t)) in the time
range ¢ € [0,100], and the red forecast solution. Contrast to Fig. 5 where A = 107" plots
are shown.
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The Lorenz system has been a popular paradigm in the study of chaotic systems and in
fact, it can even be physically realized by an electronic circuit [13]. The chaotic attractor
in the phase space {x(t),y(t),z(¢t)} is shown in Figs. 5-6. Also shown are regularized
forecasts of the z(t) time series, for two different choices of regularity, A = 107°,1073
chosen. We see that increasing the regularity less so emphasizes the variations of the true
solution, as otherwise those high ordered polynomial terms that become de-emphasized
are omitted in the compromise to prevent over-fitting.
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Figure 7: Forecasts of the Kuramoto-Shivasinsky equations, (Left) “True” computed so-
lution form PDE solver of Eq. (49),  vs time ¢ of the solution, but rather than x € [0, 27]
we index the horizontal axis by N = 2000 discretized sites as the dimensionality of the
associated machine learning problem. (Middle) Forecast into the future from initial con-

dition near that of solution on the left, tracks through 150 time units before amplitude
death. (Right) log(|error]).

3.3 Spatiotemporal Chaos in the Kuramoto-Sivashinsky System

The machine learning methods herein are also capable of handling a high-dimensional sys-
tem, including a PDE which in principle is infinite-dimensional, but in practice the finite
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data sampled there from is finite-dimensional. The Kuramoto-Sivashinsky PDE’s are a
classic example often put forward to the study of spatiotemporal chaos and pattern forma-
tion, which we use here to demonstrate forecasting, [14, 29]. The Kuramoto-Sivashinsky
(KS) system was developed as a description of flame front flutter [35] has become some-
what of a paradigm of spatiotemporal dynamics, and also one used in particular the
study of low-dimensional behavior in high dimensional systems [14, 29] and one for which
the inertial manifold theory can be carried far forward analytically, [32, 34, 33, 46], and
numerically with the approximate inertial manifold theory [23, 22]. As is typical with
inertial manifold theory, there is an apparent very large gap between the minimally prov-
able dimensionality of the inertial manifold, and the apparent dimension of the observed
attractor.
The KS equations may be written,

Uy = (U2)x — Ugy — VUgzza, T € [07 27]7 <49>

and these may be periodically extended, u(x,t) = u(x + 2m,t). These equations represent
an example of an evolution equation, PDE, which can be written formally as an ODE in
a Banach space as follows [14, 29, 4]. Let,

o0

u(a,t) = Y b(t)e™. (50)

k=—00

Assuming a real u forces b, = by. Substitution yields infinitely many ODEs for the time
varying Fourier coefficients,

b = (K — vk )by + ik > bubi—m. (51)

k=—o00

Restricting to pure imaginary solutions yields, by = tay for real a; gives,

ar, = (k* — vk®)ay, + ik Z A Ul (52)

k=—o00

and restricting to odd solutions, u(z,t) = —u(—=x,t) gives a_; = ag. Finally, for compu-
tational reasons, it is always necessary to truncate at the N* term, which here means
defining a;, =0 if &k > N.

Assuming a sufficiently large number of modes in our truncation so as to ensure that
the data is a good topological model of the attractor allows us to simulate realistic pat-
terns, and so in Fig. 7, we show a 128 mode model simulation. In Fig. 7 are shown x
space vs. t time and while x € [0, 27|, instead we index the horizontal axis by N = 2000
discretized sites as the dimensionality of the associated machine learning problem. We
see the forecast well approximates the true solution for time, until roughly ¢ > 150 when
abruptly, the forecast becomes poor, and in a manner here of amplitude death. Corre-
spondingly, the log(|error|) shows an abrupt increase. In this example, the regularized
kernel ridge regression methodology of machine learning as shown itself well capable of
handling even very high dimensional spatiotemporal chaotic problems.
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3.4 Nonlinear Time-Series Forecasting for Experimental Physi-
ology Data-Set

Finally, consider a real world experimental data set, from a physiology application that
has also become popular in the field of time-series analysis, [44, 30], consisting of heart
rate, and breathing rate, over 2500 time samples. See Fig. 8. For each, the observed
scalar measurement, x(t) is developed into a time-delay coordinate embedding, X (t) =<
x(t),z(t —7),...,x(t — dr) >, as is standard practice in nonlinear forecasting, [20, 42, 26,
18, 6]. Standard practice in time-delay forecasting is to state an embedding coordinate
system, with d “large enough” to embed, but not too large for fitting purposes, and 7
chosen to “spread” the data into a useful informative observation, and that last phrase in
practice has come to mean in terms of mutual information, [24]. The details of finding each
of these important parameters has been the subject of a great deal literature, [57, 52, 1, 2].

While normally it would be important to not choose too large of an embedding dimen-
sion, as this too lends to a larger model complexity, the regularizer associated with the
kernel method of this work automatically mitigates this issue. So in the spirit of choosing
a delay dimension sufficiently large, we allow ourselves to overshoot, by choosing d = 10
likely larger than minimal, and 7 was chosen as the sampling rate shown. Standard anal-
ysis, based on false nearest neighbors suggests 5 dimensions may be sufficient, so d = 10 is
convenient. Normally this might make for difficulty in forecasting for overfitting reasons,
due to the infinite series implicit in a Gaussian kernel method, but regularized here with
A = 0.01, discovered by cross validation, makes for excellent forecasting properties. See
Fig. 8 where excellent forecasting of experimental time series is demonstrated.

4 Conclusions

Machine learning has become a major thrust in the data sciences and many have realized
that these tools offer great promise in dramatically advancing what has always been a
major goal in the scientific application of dynamical systems, which is a data-driven way
to produce good forecasts of future outcomes. We have outlined here where one major
thrust in machine learning, based in kernel learning theory can in particular be adapted
to handle competing challenges between overfitting the inherent noise, and underfitting
or otherwise oversimplifying models. That is, we show that methods of regularized kernel
learning are especially well suited to the task of forecasting. Essentially the flow operator
associated with a differential equation is a function, and that function may be well approx-
imated in terms of linear combinations of features lifted into a high dimensional Hilbert
space. Doing so without explicitly realizing those feature maps as a basis set, is the power
promised by kernel trick, and doing so without overfitting is the special aspect associated
with the regularized method. We have reviewed all the technical details associated with
kernel methodology and the kernel trick, leading from standard regression, through poly-
nomial regression, and Tikhonov regularization, and then the kernelized variant. We have
illustrated the success of this approach across several examples of chaotic dynamical sys-
tems of increasing complexity and dimensionality. By illustrating in complete with a low
dimensional logistic map example, we can show the nature and reason for progressive fail-
ure of fitting into forecasting into the future toward the Lyapunov time horizon, and we
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Figure 8: Heart rate and breathing rate forecasting. 2500 data points were forecast, from
the time series in the nonlinear time series forecasting classic physiological data base,
[44, 30]. Heart rate in this figure and simultaneous and coupled breathing rate data in
Fig. 9: Top shows long time series, and bottom, a subset of the time samples for clarity
of viewing. Using an over-embedded time delay embedding, and a regularized kernel
method, forecasts are shown in red and are close versus the true observations in blue.
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Figure 9: Heart rate and breathing rate forecasting. 2500 data points were forecast, from
the time series in the nonlinear time series forecasting classic physiological data base,
[44, 30]. Breathing rate in this figure and simultaneous and coupled heart rate data in
Fig. 8: Top shows long time series, and bottom, a subset of the time samples for clarity
of viewing. Using an over-embedded time delay embedding, and a regularized kernel
method, forecasts are shown in red and are close versus the true observations in blue.
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can compare to the theoretical limit associated with the ergodic average. Finally we have
illustrated the method in terms of real world experimental data set derived from heart rate
and breathing data collected from human subjects. We believe that the promise offered
by this and other machine learning methods offers a bright new generation of tools be-
yond what was a first wave decades ago built explicitly upon embedding theory and local
models, now with much more of a black box and simple approach. Future applications
abound for forecasting across sciences, but also for phenomological modelling as well as
possibly for control problems that always require an aspect of forecasting.
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