
CLARKSON UNIVERSITY

Networked Networks: Uncovering Hierarchical Scales of
Spatial-Temporal Dynamics

A dissertation

by

Jie Sun

Department of Mathematics and Computer Science

Submitted in partial fullfillment of the requirements

for the degree of

Doctor of Philosophy

Applied Mathematics

Date

Accepted by the Graduate School

Date Dean

CLARKSON UNIVERSITY

The undersigned have examined the dissertation entitled Networked Net-

works: Uncovering Hierarchical Scales of Spatial-Temporal

Dynamics presented by Jie Sun a candidate of the degree of Doctor of Philos-

ophy and hereby certify that it is worthy of acceptance.

Date Erik Bollt (Advisor)

Examining Committee

Erik Bollt Date

Daniel ben-Avraham Date

Takashi Nishikawa Date

Joseph Skufca Date

Aaron Luttman Date

Networked Networks: Uncovering Hierarchical Scales of

Spatial-Temporal Dynamics

Copyright c© 2009

by

Jie Sun

Abstract

Networked Networks: Uncovering Hierarchical Scales of

Spatial-Temporal Dynamics

by

Jie Sun

Doctor of Philosophy in Applied Mathematics

Clarkson University

The first, and main part of the thesis is the exploration of coupled oscillator net-

works (OSN). OSN are often used as models for complicated systems that consist

of interacting components. It is desirable to have reduced order models for OSNs.

However, the type of averaging which leads to a reduced order model has not been

well dened in the eld of dynamical systems. In this thesis we develop analysis on how

to reduce order modeling an OSN. For an OSN, usual clustering methods for graphs

do not necessarily define meaningful dynamical relevant groups. We show that the

interplay between dynamical and structural heterogeneity is key to uncovering the

spatial scales. Motivated by the idea of shadowing, we develop a novel way to assess

the quality of a reduced order model of an OSN especially for chaotic oscillators.

The second part of this thesis is about a computational approach for efficiently

computing important network statistics of an evolving network. Instead of starting

from scratch, we develop updating schema updates important network statistics upon

structural changes to the network. Both local statistics such as degree and global

statistics such as path lengths can be updated efficiently, allowing us to analyze

the actual evolution of network statistics, explore new properties of time dependent

networks and search for common features of different types of such networks.

The third part of the thesis emphasized on various problems in network modeling,

including the problem of how to compress sparse graphs, a new class of network

model called sequence networks, and a new notion of connectedness called greedy

connectedness (or connectivity) for networks that are embedded in metric spaces.

1

Contents

Contents i

List of Figures vi

List of Tables x

Acknowledgements xi

1 Introduction 1

1.1 Dynamics on Networks: Multi-scale Modeling of Spatial-Temporal Sys-
tems . 1

1.2 Dynamics of Networks: A Computational Approach for Analyzing
Time Dependent Networks . 2

1.3 Network Modeling: Graph Compression, Sequence Nets, and Greedy
Connectivity . 3

1.3.1 Graph Compression . 3

1.3.2 Sequence Nets . 3

1.3.3 Greedy Connectivity . 3

1.4 Multiscale Graphical Illustration of the Contents 4

2 Dynamics on Networks: Coupled Oscillators, Synchronization 6

2.1 Coupled Oscillator Network . 9

2.1.1 Equations of Motion . 9

2.1.2 Graph Laplacian . 10

2.2 Complete Synchronization: Master Stability Function Analysis 11

2.2.1 Variational Equations . 11

i

2.2.2 Master Stability Function: Derivation 13

2.2.3 Master Stability Function: Examples 13

2.3 Nearly Synchronization: Generalized Master Stability Functions . . . 15

2.3.1 Motivation . 15

2.3.2 Near Synchronous State (NSS) 18

2.3.3 Inhomogeneity in the Variational Equations 18

2.3.4 Generalized Master Stability Equations and Functions 19

2.3.5 Conditions for Stable Synchronization 21

2.3.6 Examples of Application . 23

2.3.7 Brief Conclusion . 23

2.4 Application: Optimizing the Synchronization of Kuramoto Oscillators 26

2.4.1 Motivation and Problem Statement 26

2.4.2 Example of Coupled Kuramoto Oscillators 28

3 Network of Networks: Multi-scale Dynamics on Networks 32

3.1 Multi-scale Dynamics on Networks 32

3.2 Coarse-grain Modeling of Multi-scale Dynamics on a Network 34

3.3 Uncovering Spatial Scale by Time Series? A Counter Example to Pop-
ular Intuition. 39

3.4 Finding the Right Partition: Structural vs. Dynamical Heterogeneity 45

3.5 Difficulty for Coupled Chaotic Oscillators 46

4 Modeling of Chaotic Oscillators: Preliminaries 50

4.1 Parameter Estimation from Measurements 50

4.1.1 Least Square Approach . 50

4.1.2 Example of a Quadratic Map 52

4.2 What is Shadowing? . 54

4.2.1 Sensitive Dependence on Machine Precision: Is Chaos a Fiction? 54

4.2.2 Infinite Shadowing for Hyperbolic Systems 57

4.2.3 Finite Shadowing for Non Hyperbolic Systems 61

4.3 Optimal Shadowing . 62

4.3.1 Pseudo Shadowing: A Rescue for Imperfect Computers 62

4.3.2 Optimal Shadowing: Theorems and Algorithms for 1D Maps . 63

ii

4.4 Measuring Quality of Modeling via Shadowing 68

4.4.1 Shadowing Distance vs. Shadowing Time 68

4.4.2 Ensemble Average Criteria . 70

5 Model Reduction of Coupled Chaotic Oscillators: A Shadowing Ap-
proach for Judging Model Quality 72

5.1 A Shadowing Approach for Measuring Model Quality for Chaotic Systems 72

5.1.1 Difficulty in Judging a Chaotic Model 72

5.1.2 Judging a Chaotic Model via Shadowing 74

5.2 Judging Quality of a Model Reduction 74

5.3 Model Reduction of Coupled Chaotic Oscillators 77

5.3.1 Problem Statement . 77

5.3.2 Example of Coupled Logistic Maps 80

5.4 Discussion and Open Problems . 83

6 Dynamics of Networks: Updating Schema for Local Statistics 86

6.1 Introduction . 86

6.2 Local Graph Statistics . 88

6.3 Updating Local Statistics . 90

6.3.1 Connecting a New Node . 90

6.3.2 Adding an Edge between Existing Nodes 91

6.3.3 Deleting an Existing Edge . 96

6.4 Algorithmic Representation and Complexity 98

6.4.1 Algorithmic Representation of the Update Schema 98

6.4.2 On Computational Complexity 101

6.5 Examples of Application . 102

6.5.1 Evolution of Degree and Clustering Coefficient 102

6.5.2 Evolution of Modularity . 104

6.6 Discussion and Open Problems . 105

7 Dynamics of Networks: Evolution of Global Statistics 108

7.1 Global Statistics: Exact Update vs. Approximation 109

7.1.1 Shortest Paths in Networks 109

iii

7.1.2 Eigenvalues and Eigenvectors of Networks 111

7.2 Updating Path Lengths of Evolving Networks 112

7.2.1 Breadth-First-Search . 112

7.2.2 Updating All-Pair Shortest Paths 116

7.2.3 Updating Average Path Length 121

7.2.4 Application to Other Global Statistics 123

7.3 Approximating Spectrum Perturbations 124

7.3.1 Defining the Spectral Impact 125

7.3.2 Classical Perturbation Results and Approximation in Practice 126

7.3.3 Spectral Impact of Nodes, Edges, and General Subgraphs . . . 128

7.3.4 Numerical Results . 130

7.3.5 Related Problems for Future Work 133

8 Information of Networks: Graph Compression by Exploiting Sym-
metry 134

8.1 Introduction . 134

8.1.1 Motivation . 134

8.1.2 Yale Sparse Matrix Format . 135

8.2 Adjacency Matrix and Edge List . 136

8.3 A Motivating Example and the Idea of Redundancy 138

8.4 Information Redundancy and Compression of Sparse Matrices 142

8.4.1 How to Choose Pairs of Vertices to Reduce Information 142

8.4.2 On Greedy Optimization of The α, β, Orbit 145

8.5 Greedy Algorithm for Compression 148

8.6 Examples of Application to Graphs 149

8.6.1 A Simple Benchmark Example: Lattice Graph 150

8.6.2 Compressing a Watts-Strogatz Small-World Graph 151

8.6.3 Real-World Graphs . 152

8.7 Discussion and Open Problems . 152

9 Sequence Networks 155

9.1 Background . 155

9.1.1 Threshold Graph . 155

iv

9.1.2 Creation Sequence . 156

9.2 Generalization: Sequence Networks 158

9.3 Classification of Two-Letter Sequence Networks 160

9.3.1 Classification . 160

9.3.2 Alphabetical Ordering . 164

9.4 Properties of Two-Letter Sequence Networks 165

9.4.1 Degree, Clustering, Distance, and Betweenness 165

9.4.2 Laplacian spectrum . 166

9.5 Relationship to Generalized Threshold Graphs 168

9.6 Discussion and Open Problems . 170

10 Greedy Connectivity of Embedded Networks 172

10.1 Geographical Graphs . 172

10.2 Greedy Connectivity: Definition and Properties 174

10.2.1 Path and Connectivity in Graphs 174

10.2.2 Greedy Paths and Greedy Connectivity 176

10.2.3 Probabilistic Paths . 178

10.3 Greedy Connectivity: Computation 179

10.3.1 Brute-Force Approach . 179

10.3.2 Geographical Breadth-First-Search (BFS) for Greedy Paths . . 180

10.4 Greedy Connectivity for some Network Models 183

10.4.1 Circular Embedding . 183

10.4.2 Circularly Embedded Lattices 183

10.4.3 Circularly Embedded Random Graphs 184

10.4.4 Lattice Rewiring Model: the Interplay between Short and Long
Range Connections . 187

10.5 Discussion and Open Problems . 189

11 Conclusion 190

v

List of Figures

1.1 A graphical representation of the interconnections between chapters. . 4

1.2 A ‘reduced order’ representation of the figure shown in Fig. 1.1. . . . 5

2.1 Synchronization of two coupled Lorenz oscillators: z components. . . 7

2.2 Synchronization of two coupled Lorenz oscillators: convergence of states. 7

2.3 Brandt geese flock over Baywood. 8

2.4 TaiChi . 9

2.5 Master stability functions for a linear system. 15

2.6 Master stability function for Rossler equations with x coupling. . . . 16

2.7 Synchronization of coupled Rossler oscillators. 16

2.8 Synchronization error of two coupled mismatched Lorenz oscillators. . 17

2.9 Generalized master stability function for Lorenz equations with iden-
tity coupling. 24

2.10 Comparison of predicted synchronization error with actual error. . . . 25

2.11 Problem of optimizing the synchrony of mismatched oscillators for
given structural constraints. 27

2.12 Evolution of the cost function for Kuramoto oscillators using simulated
annealing. 30

2.13 Comparing the order parameter for different configurations of Ku-
ramoto oscillators. 31

3.1 Illustration of the problem of multi-scale modeling for network dynamics. 33

3.2 Motivation of multi-scale dynamics on networks. 35

3.3 Partition into groups of a benchmark OSN and its resulting CGOSN. 38

3.4 Multiscale Kuramoto time series. 40

3.5 Multiscale model of a benchmark network. 41

vi

3.6 Comparing time series from a OSN and its CGOSN, group 1. 42

3.7 Partition into two clusters in different ways. 43

3.8 Time series clustering vs. structural partition. 44

3.9 Cost function for Kuramoto partition. 47

3.10 Cost function for Kuramoto partition, another example. 48

3.11 Difficulty in judging the reduced order model for coupled chaotic os-
cillators. 49

4.1 Least square parameter estimation for quadratic maps: different types
of noise. 53

4.2 Least square parameter estimation for quadratic maps: converge of two
parameters. 54

4.3 Typical orbits of the 2x mod 1 map converge to zero (in a finite binary
machine). 55

4.4 Orbits start from the same initial condition computed with different
machine precision. 56

4.5 Noisy 2x mod 1 map in Matlab. 58

4.6 Illustration of δ pseudo orbit and ε shadowing orbit. 59

4.7 Illustration of pseudo shadowing. 64

4.8 Comparison of the forward and backward method in finding shadowing
orbits. 67

4.9 Comparison of parameter estimation based on least square criteria and
shadowing criteria. 69

4.10 Judging model quality via optimal shadowing time. 70

4.11 Shadowing of an ensemble of pseudo orbits. 71

5.1 Comparing models directly in the function space. 73

5.2 Illustration of the difficulty in judging a model by comparing orbits
directly. 75

5.3 Illustration of the model reduction process via shadowing criteria. . . 76

5.4 Illustration of open questions regarding the model reduction of coupled
chaotic oscillators (5.2). 78

5.5 Difference between complete (identical) and nearly synchronization. . 80

5.6 Shadowing error of reduced order model for coupled oscillator networks. 82

5.7 Dependence of shadowing error on λ. 83

vii

5.8 Interplay between dimensionality reduction error and shadowing error. 84

6.1 Evolution of the degree distribution of a randomly growing network. . 87

6.2 Schematic addition of an edge. 91

6.3 Modularity change upon the addition of an edge. 96

6.4 Schematic removal of an edge. 96

6.5 Evolution of degree distribution of a random growing network. 103

6.6 Evolution of the average clustering coefficient C of a growing Barabasi-
Albert network. 104

6.7 Spy plot at three specific instances for the adjacency matrices of a
random growing network. 105

6.8 Evolution of modularity Q for a random growing network. 106

7.1 Example of a shortest path in a small graph. 109

7.2 Example of a BFS tree in a small graph. 115

7.3 The sets V + upon edge addition. 119

7.4 The size of n+ under random edge addition. 119

7.5 Worst case scenario of the update schema upon addition of an edge. . 120

7.6 The sets V − upon edge removal. 121

7.7 Updating the number of offsprings in a BFS tree. 123

7.8 Results for approximating the SI of an Erdos-Renyi network G1. . . . 131

7.9 Results for approximating the SI of three examples of real-world net-
works. 132

8.1 A drawing of a planar embedding of an example graph. 136

8.2 An extreme example which shows similarity between vertices. 138

8.3 Similar subgraphs of the original graph. 139

8.4 Construct from the subgraph and parameter α = (1, 2). ’Copy’ from
node 1 to node 2. 140

8.5 Add and delete links according to β = {−3, 10}. 140

8.6 Reconstruction of the original graph using a subgraph and the param-
eters α and β. 141

8.7 Compression results for lattice graphs. 150

8.8 Compression results for WS graphs. 151

8.9 Compression process for Metabolic network (DA05). 152

viii

9.1 Example of threshold graphs. 156

9.2 Layer representation of threshold graph. 160

9.3 Combined time reversal and permutation symmetry for sequence net-
works. 161

9.4 Distinct types of connected non-trivial two-letter sequence networks. . 163

9.5 Diagrammatic representation of rules for two-letter sequence networks. 163

9.6 Alphabetical ordering of threshold graphs. 164

9.7 Second smallest eigenvalues of all connected R8 sequence networks. . 167

9.8 Largest eigenvalues of all connected R8 sequence networks. 168

10.1 Blenheim Palace Garden Maze. 173

10.2 Greedy connectedness of circular lattices. 185

10.3 Greedy connectedness of circularly embedded random graphs. 187

10.4 Greedy connectedness of small world graphs. 188

ix

List of Tables

6.1 Comparison of Computational Complexity 101

7.1 Examples of real world networks. 131

8.1 Compression results for some networks. 152

x

Acknowledgements

I would like to first thank my family, especially my parents Wenbin Sun (father)

and Yueqin Zhu (mother) for their love and support, without which I would have

hardly achieved anything. My grandparents have also been an important source of

motivation for my study and research. Special thank to my wife Xi Chen for her

accompany, and her parents for being supportive.

During my graduate study and reseach, my advisor Professor Erik Bollt has been

giving me tremendous help in my study and research. He has shown me not only how

to become a mathematician and scientist, but also how to become a great person. I

am grateful to all his patience, encouragement, and support. Professor Daniel ben-

Avraham has co-advised me in a few research projects through which I not only get

to learn from his wisdom but also his view of science and life. I want to thank him

for spending time shaping me into a real scientist like himself, and his green teas

in reminding me of my country (China). I also want to thank Professor Takashi

Nishikawa for co-advising me in the research projects about dynamics on networks

and sharing with me his research experience. Professor Joseph Skufca also has given

me a lot of advice in research. I appreciate all the useful discussion with him.

I am indebted to two of my collaborators, Dr. Attilio Milanese and Dr. James

Bagrow, both of which are former Clarkson students. During a project we worked

on together, I learned a lot from Dr. Milanese, especially his expertise in numerical

simulation and the art of computer programming. Dr. Bagrow has also been helpful

in my research especially in complex networks.

I wish to thank Michael Felland and Professor Scott Fulton for educating me in

some fundamentals of advanced mathematics which have impacted my research. I also

wish to thank my current lab mates Jiongxuan Zheng, Ranil Basnayake, Sean Kramer,

and Dr. Rana Parshad; and former students Dr. Hernan Rozenfeld, Dr. Naratip San-

titissadeekorn, and Dr. Chen Yao. In particular, Dr. Chen Yao gave me a lot of help

when I first came to the USA.

Warmest thanks are also due to the Department of Mathematics and Computer

Science of Clarkson University, which supported me as a teaching assistant during

my first year in graduate school; and Army Research Office (51950-MA) from which

xi

I receive a research assistantship since my second year, working on a project under

the supervision of Professor Erik Bollt.

A special thank to Professor Mason Porter who I visited with Professor Erik Bollt

in the September and October of 2009. I like to thank the Mathematical Institute of

the University of Oxford for their hospitality and Army Research Office (51950-MA)

for financial support of this trip.

Finally, let me thank Professors Erik Bollt, Daniel ben-Avraham, Takashi

Nishikawa, Joseph Skufca, and Aaron Luttman for serving as committee members

of my thesis; and Sean Kramer and Claudette Foisy for their comments on my thesis

draft. Of course, I will be the only one who is responsible for all the typo and mistakes

appearing in this thesis.

xii

Chapter 1

Introduction

1.1 Dynamics on Networks: Multi-scale Modeling

of Spatial-Temporal Systems

Coupled oscillator networks (OSN) are often used as models for complicated dy-

namical systems that consist of interacting components which evolve in time. Al-

though it is usually assumed that the oscillators are identical, an OSN may in general

(and in practice) contain oscillators that are not identical. Furthermore, those non

identical oscillators may connect through some highly nontrivial topology. It is de-

sirable and useful to have reduced order models for OSNs.

However, the type of averaging which leads to a reduced order model has not been

well defined in the field of dynamical systems. Specifically, how to judge how good

an ‘average model’ is in the case of an OSN consisting of non identical oscillators is

not straightforward. Direct comparison of some average time series generated by an

OSN and time series coming from its average model might be misleading specifically

in the case of chaotic systems.

Motivated by the idea of shadowing, we have developed a novel way to assess the

quality of a reduced order model of an OSN. Based on our approach, a model’s quality

can be naturally measured for either modeling an OSN by a single oscillator in the

1

case of complete synchronization or nearly synchronization, or by another simplified

OSN with fewer oscillators, which eventually lead to hierarchical scales of the OSN in

a dynamical sense. Numerical examples including coupled quadratic maps, coupled

Henon oscillators, and coupled Kuramoto oscillators will be shown to illustrate our

approach.

Those will be discussed in Chapters 2, 3, and 4.

1.2 Dynamics of Networks: A Computational Ap-

proach for Analyzing Time Dependent Net-

works

Large complex networks have been studied extensively in the past ten years as

one important tool for the study of complex systems. Many useful statistics (degree,

clustering, path length, spectrum, and so on) have been used to analyze networks

surrounding us: social, biological, and technical networks. Efficient computation is

key to allowing such analysis for a large network. However, when a network is slowly

evolving in time, computing even cheap statistics might be costly, since the time

variable could be large. It is appealing to fill this gap and have a tool to analyze the

dynamics of a network.

In this thesis we introduce a new computational approach called updating schema

for efficiently computing important network statistics of an evolving network. Instead

of starting from scratch, the updating schema updates important network statistics

upon structural changes to the network. Both local statistics such as degree and

global statistics such as path lengths can be updated efficiently, allowing us to analyze

the actual evolution of network statistics, explore new properties of time dependent

networks and search for common features of different types of such networks.

Those will be discussed in Chapters 6 and 7.

2

1.3 Network Modeling: Graph Compression, Se-

quence Nets, and Greedy Connectivity

1.3.1 Graph Compression

Given a large network representing some structural information of a real system,

how do we efficiently represent such a network? Although matrices (or lists) can be

conveniently used, it is unclear whether there exists a better, or optimal, data struc-

ture specifically for representing graphical structures. This problem is discussed in

Chapter 8, where a heuristic approach is proposed, based on reducing the information

storage by exploiting symmetry.

1.3.2 Sequence Nets

A threshold graph is a type of graph where nodes are assigned hidden weights

and edges are present only between nodes whose sum of weights exceed a prescribed

threshold. Interestingly, threshold graph can be represented equivalently by a se-

quence of numbers representing nodes, and a deterministic rule on how to connect

the nodes. We propose and study a new class of networks called sequence networks

based on the observation that a sequence plus a rule can be used to generate graphs.

Sequence networks (to be discussed in Chapter 9) have many attractive features such

as modular structures which allow high compression, easily computable structural

measures—including the possibility of design—and a high degree of compressibility.

1.3.3 Greedy Connectivity

Is a connected graph indeed good for communication or navigation? A maze is an

example of a connected graph which is designed to be challenging to navigate; on the

other hand, a map of a city provides sufficient information for commutation, even if

the density of roads might be lower than that of a maze. The key difference comes from

the fact that geographical coordinates of places in a city are usually useful, while those

3

of a maze are usually of little use. To describe such graphs and their connectedness in

a more abstract/rigorous sense, we introduce a concept called greedy connectedness

for geographical graphs and study some of its amusing properties in Chapter 10.

1.4 Multiscale Graphical Illustration of the Con-

tents

Figure 1.1. A graphical representation of the interconnections between
chapters. -

4

Figure 1.2. A ‘reduced order’ representation of the figure shown in Fig. 1.1.
-

5

Chapter 2

Dynamics on Networks: Coupled

Oscillators, Synchronization

Chaos is known to cause systems to be long-term unpredictable. One consequence

is that for any chaotic system, any two typical trajectories which differ even slightly

at certain time will eventually diverge from each other. Following this rationale, it

seems reasonable to conclude that in reality any two chaotic oscillators will typically

generate different trajectories that are uncorrelated, unless they start with the exact

same initial condition at the exact same time, and external perturbations affect the

two systems in exact the same ways. Indeed, the fact that even chaotic systems

can synchronize was a surprise. In a paper by Pecora and Carroll in 1990 (PC90),

the authors showed that a key factor in achieving synchronization between chaotic

oscillators is effective coupling. For example, take two Lorenz oscillators and add

an appropriate linear diffusive coupling between them, then we observe that their

difference converges to zero, often exponentially as t goes to infinity. See Fig. 2.1 and

Fig. 2.2 for illustrations.

As simple (and maybe artificial) as it seems, the phenomena of synchronization

is observed in such a wide range of areas in science and engineering, including laster,

electronic circuits, robotic motions, and a few more (SS93; PRK01; BKO+02); such

6

0 2 4 6 80

20

40

60

t

z1
z2

Figure 2.1. Synchronization of two coupled Lorenz oscillators: z compo-
nents. - Shown in the figure are the time series of z components of two coupled
Lorenz oscillators. The motion of oscillator 1 is governed by the Lorenz equations
described by: [ẋ1, ẏ1, ż1] = [10(−x1 + y1), x1(28− z1)− y1, x1y1 − 8

3
z1], plus an exter-

nal force from oscillator 2: [0.15x2, 0.15y2, 0.15z2]; and similarly for oscillator 2. In
this example the two oscillators start with initial conditions: [10, 10, 10] and [0, 0, 0]
respectively; yet they manage to synchronize.

0 2 4 6 8
10−15

10−10

10−5

100

t

|x1−x2| |y1−y2| |z1−z2|

Figure 2.2. Synchronization of two coupled Lorenz oscillators: convergence
of states. - See Fig. 2.1 for description. Here we show that the x, y, z components
of the two oscillators indeed convergences exponentially in this case.

7

beautiful synchronized patterns are also seen in nature and social life. See Fig. 2.3

and Fig. 2.4 for examples.

Figure 2.3. Brandt geese flock over Baywood. - The geese form a beautiful
pattern and yet fly highly coherently toward their destination. Picture adopted from:
http://baywoodnavy.org/Perlstein/slides/
Brandt%20geese%20flock%20over%20Baywood.jpg

In all the above examples, the different individuals (a chaotic oscillator, a bird, or a

human being) certainly cannot guarantee that they always follow exactly the motion

of the others. Nevertheless, the systems seem to be able to regulate themselves

whenever small perturbations occur, bringing the individuals back into synchrony.

This feature is nontrivial because of the fact that there is no global coordinator (at

least for the second and third examples). In many typical situations, the individuals

are only able to communicate locally to a finite number of neighbors, and yet achieves

excellent synchronization.

In this chapter we study synchronization in terms of coupled oscillator network, a

system of differential (or difference) equations coupled through some underlying net-

work structure (which encodes the possible communications between individuals). In

section 1 we review the definition of a coupled oscillator network; in section 2 we re-

view the well-known master stability function approach, a powerful tool in analyzing

the stability of complete synchronization; in section 3 we develop generalized version

of the master stability functions to allow the stability analysis go beyond identical

case; in section 4 a famous example of phase oscillators, namely the Kuramoto oscil-

8

http://baywoodnavy.org/Perlstein/slides/Brandt%20geese%20flock%20over%20Baywood.jpg
http://baywoodnavy.org/Perlstein/slides/Brandt%20geese%20flock%20over%20Baywood.jpg

Figure 2.4. TaiChi - Tai Chi, a traditional Chinese martial art, was per-
formed during the Opening Ceremony for the 2008 Beijing Summer Olympics
at the National Stadium on August 8, 2008 in Beijing, China. Despite the
large number of martial artists participated as shown, their movements (at
least seen from the picture) are surprisingly consistent. Picture adopted from:
http://en.beijing2008.cn/ceremonies/photos/openingceremony/
performances/n214517049.shtml

lators, is studied, with emphasis on designing, for a given set of mismatched phase

oscillators, an optimal placement for the purpose of achieving optimal synchrony.

2.1 Coupled Oscillator Network

2.1.1 Equations of Motion

To capture the property of a complex system that consists of interacting individ-

uals who themselves move in time, a typical mathematical model need to take into

account the dynamics of individuals, and how they interact. To this end, the follow-

ing equations are proposed, similar to (PC98), but allows the individual dynamics to

be different:

ẇi = f(wi, µi)− σ
n∑
j=1

lijh(wj), i = 1, 2, . . . , n, (2.1)

9

http://en.beijing2008.cn/ceremonies/photos/openingceremony/performances/n214517049.shtml
http://en.beijing2008.cn/ceremonies/photos/openingceremony/performances/n214517049.shtml

where f : <m×p → <m is the parameterized dynamics of an isolated unit; wi ∈ <m

is the dynamical variable for the ith unit; µi ∈ <p is the corresponding parameter;

L ∈ <n×n is the graph Laplacian (unnormalized) 1; h : <m → <m is a uniform

coupling function; and σ ∈ < is the uniform coupling strength (usually > 0 for

diffusive coupling).

Note that we can represent the whole system conveniently by using Kronecker

product representation:

ẇ = f(w,µ)− g · L⊗H(w), (2.2)

where w= [wT1 , w
T
2 , ...w

T
N]T is a column vector of all the dynamic variables, and like-

wise for µ and f ; and ⊗ is the usual Kronecker product (or direct product) (Ber92).

The question of interest is that, under what conditions can the highly complicated

coupled oscillator system exhibit coherent behavior, i.e., the oscillators completely

synchronize, or more precisely,

lim
t→∞
||wi − wj|| = 0,∀i, j. (2.3)

2.1.2 Graph Laplacian

For a given undirected graph with associated adjacency matrix A = [aij]n×n,

where aij is the weight on the edge between nodes i and j, the graph Laplacian L is a

square matrix of the same size of A, whose entries are defined as: lij = −aij if i 6= j;

and lii =
∑

j aij. Note that the assumption that L being symmetric is the same as

assuming A being symmetric, i.e., the graph being undirected. In this case, L is semi

positive definite, and has diagnalization form:

L = PΛP T , (2.4)

where

Λ = diag([λ1, λ2, ..., λn]) (2.5)

1We only deal with graph Laplacians that are constant, and symmetric (and thus semi-positive
definite) for the reason of clarity. Treatment of general constant graph Laplacians can be found by
techniques proposed in (NM06b; NM06a); when the graph Laplacian is time dependent, see (SBR06)
and the references therein

10

is a diagonal matrix whose diagonal elements are the eigenvalues of L, ordered in a

nondecreasing way, so that λ1 ≤ λ2 ≤ ... ≤ λn; P is an orthonormal matrix whose

columns are the corresponding eigenvectors.

One can check that by definition, L always has 0 as one of its eigenvalues, with

the corresponding eigenvector [1, ..., 1]T . Indeed 0 has to be the smallest eigenvalue

of L, since L is semi positive definite. Furthermore, λ2 (which is also known as the

algebraic connectivity of a graph (Fie89)) determines whether the graph is connected

(i.e., there is a path between any pair of nodes) or not. The graph is connected if and

only if λ2 > 0. We will, in the following, assume that this is always the case, unless

specified.

2.2 Complete Synchronization: Master Stability

Function Analysis

2.2.1 Variational Equations

In the simplest case where µ1 = µ2 = ... = µn, a now famous approach named

master stability function (MSF) analysis (PC98) was introduced by Pecora and Car-

roll in 1998, which allows one to answer the question of how synchronization stability

depends on the dynamics, coupling form, and network topology. In the following we

review this MSF approach.

It is convenient to rewrite equation in this case, where now we have:

ẇi = f(wi)− σ
∑
j=1

lijh(wj), i = 1, 2, . . . , n, (2.6)

Note that in this case, if one plugs in, at any time t?, w1 = w2 = ... = wn in the

above equation, the second term will become zero, for each i. Since the system is

autonomous, we have, w1(t) = w2(t) = ... = wn(t), for any t > t?. In particular, if

we do so when t? = 0, i.e., start with the situation that all the oscillators are of the

same state, then they continue to be so.

11

Such ideal situation rarely happens in any physical settings, due to various reasons

(perturbation of various forms). Suppose the system is perturbed from its ideal

synchrony, so that for oscillator i, we have:

wi = s+ ηi (2.7)

where s represents a collective variable, and η is the perturbation term. Assuming

that ηi � 1, linearization around the synchronous state s, we have, for oscillator i,

η̇i = Df(s)ηi − σ
∑
j

[
lijh(s) +Dh(s)ηj

]
= Df(s)ηi − σDh(s)

∑
j

lijηj (2.8)

Putting the variational equations together, and omit the argument s for conve-

nience, we have:

η̇ =
[
In ⊗Df − σ · L⊗Dh

]
η, (2.9)

i.e., a homogeneous linear system. Making use of the fact that L = PΛP T , usual

change of coordinates ζ = (P T ⊗ In)η leads to:

ζ̇ =
[
In ⊗Df − σ · Λ⊗Dh

]
, (2.10)

the uncoupled set of equations (in the eigen-basis):

ζ̇i = [Df − σλiDh]ζi (2.11)

Since λ1 = 0, we have, for i = 1,

ζ̇1 = [Df]ζ1, (2.12)

a linearized equation around the state of the dynamics governed by ṡ = f(s), indi-

cating the infinitesimal motion tangent to the trajectory s.

Thus, if all the other ζi → 0, then all the transverse perturbation dies out, and

a slightly perturbed state will come back to the synchronous state s. This requires

that the solution of Eq. (2.11) goes to zero for all i ≥ 2.

Note that since the input of Df and Dh is the state variable of the synchronous

state s, which is governed by ṡ = f(s), those homogeneous equations would have

12

variable coefficients, in which case the ‘eigenvalues’ of Df and Dh has little to do

with the actual behavior of the solution, unlike in the case of constant coefficient

linear equations.

Nevertheless, for chaotic orbits that have well-defined Lyapunov exponents, the

requirement that ζi → 0 is equivalent as requiring the largest Lyapunov exponent of

the flow of Eq. (2.11) associated with the motion ṡ = f(s) being negative. Thus, the

local synchronization stability can be determined by checking the largest Lyapunov

exponent of Eq. (2.11) for all i ≥ 2. Synchronization is locally stable if and only if

for each i ≥ 2, the corresponding largest Lyapunov exponent is negative.

2.2.2 Master Stability Function: Derivation

Having noticed that for given form of the individual dynamics f and coupling

function h, the form of Eq. (2.11) is the same except for the term σλi, Pecora and

Carroll in (PC98) introduced a stability function called master stability function Θ

as a function of α, where Θ(α) equals the largest Lyapunov exponent of the flow

ζ̇ = [Df(s)− αDh(s)]ζ (2.13)

associated with ṡ = f(s).

This function can be studied for given f and h, regardless of the structure of the

network. Once this function is given, for an arbitrary coupled oscillator network with

f and h being the individual dynamics and coupling function, its synchronization

stability can be determined by simply checking whether Θ(σλi) < 0 for all i ≥ 2, if

it is, then synchronization is locally stable; and not if not.

2.2.3 Master Stability Function: Examples

Let us first look at a simple example, where f is a linear operator, represented by

the matrix: 
−2 0 0

0 −1 0

0 0 0.5

 (2.14)

13

so that without coupling, two oscillators starting from different initial conditions will

typically diverge from each other, with distance proportional to e0.5t. Suppose that

we have three different coupling functions h1, h2, h3, which are again linear operators,

described by:

h1(w) =


1 0 0

0 1 0

0 0 1

w, (2.15)

h2(w) =


0 1 0

1 0 0

0 0 1

w, (2.16)

and

h3(w) =


0 0 1

0 1 0

1 0 0

w, (2.17)

respectively. The master stability equation for f and hk will have the form:

ṡ = [Df − αDhk]s, (2.18)

which is a homogeneous linear equation with constant coefficients, and so the master

stability function Θk(α) is simply the largest eigenvalue of the matrix [Df − αDhk].
This function is computed for all three coupling functions, and shown in Fig. 2.5. Note

that for certain coupling functions, increasing the coupling strength might actually

destroy the stability of synchronization (case h2); and there are specific coupling

function for which synchronization stability is simply not attainable (case h3).

Turn to chaotic systems, consider f being governed by the Rossler equa-

tions (Ros76):

ẋ = −y + z,

ẏ = x+ 0.2y,

ż = 0.2 + (x− 7)z, (2.19)

with coupling function h([x, y, z]T) = [x, 0, 0]T . The corresponding MSF is computed

by numerical technique suggested in (WSSV85) and shown in Fig. 2.6. In Fig. 2.7 we

14

0 0.5 1 1.5 2
−2

−1

0

1

2

!

"1 "2 "3

Figure 2.5. Master stability functions for a linear system. - Here f is a
linear operator represented by the matrix diag([−2,−1, 0.5]). Shown in the figure are
master stability functions for three different coupling functions h1, h2, h3 as described
by Eq. (2.15), Eq. (2.16),and Eq. (2.17) respectively. The master stability equation
can be derived simply according to Eq. (2.18), and thus the function Θk(α) in this
case is simply the largest eigenvalue of the matrix [Df − αDhk].

show an example of two coupled Rossler oscillators with different coupling strengths:

σ = 0, 1, 2, 3. Correspondingly, the synchronization stability can be determined by

Θ(λiσ) (i ≥ 2) for each system. In this case we have λ1 = 0, λ2 = 1. By looking at

Fig. 2.6, it is clear that the cases where σ = 1, 2 (so α = 2, 4) correspond to stable

synchronization; and the cases where σ = 0, 3 (so α = 0, 6) correspond to unstable

synchronization.

2.3 Nearly Synchronization: Generalized Master

Stability Functions

2.3.1 Motivation

System (2.1) has been studied mostly in the case in which the parameter µi is the

same for each individual oscillator, often resulting in complete synchronization where

15

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

!

"(!)
Zero

Figure 2.6. Master stability function for Rossler equations with x coupling.
- This picture shows the master stability function for the Rossler equations (2.19)
with coupling function h([x, y, z]T) = [x, 0, 0]T .

0 10 20 30 40 50
10−10

10−5

100

!=1
!=2

0 10 20 30 40 50

100

102

!=0 !=3

Figure 2.7. Synchronization of coupled Rossler oscillators. - We show different
dynamic behavior for two coupled Rossler oscillators with x coupling when changing
the coupling strength σ. In both panels the horizontal axis is t, while the vertical
axis shows |x1(t) − x2(t)| in different cases. In the upper panel we show the cases
where σ is 1 and 2, which correspond to α being 2 and 4 in Fig. 2.6. In these cases
synchronization is stable, and the rate of converge can be estimated by the value of
Θ(α) in Fig. 2.6. On the other hand, when σ is 0 or 3, synchronization becomes
unstable, since in those cases α would be 0 and 6, corresponding to positive values of
Θ.

16

max
i,j
||wi(t)− wj(t)|| → 0 as t→∞.

The stability of such states can be analyzed by master stability functions (MSF), as

illustrated in the previous section.

However, a noiseless system with exactly the same parameters is impossible in

practice. What happens if the oscillators are non-identical? What if they are nearly

identical? Fig. 2.8 serves as an illustration.

0 2 4 6 8

10−6

10−4

10−2

100

t

|x1−x2| |y1−y2| |z1−z2|

Figure 2.8. Synchronization error of two coupled mismatched Lorenz oscil-
lators. - Here we show how synchronization is affected by parameter mismatch. The
system consists of two coupled Lorenz oscillators as described in Fig. 2.1 with the only
difference is that here the parameter 28 of oscillator 1 is changed to be 27.9, while
that of oscillator 2 becomes 28.1. The picture shows that, after initial contraction,
the trajectories of the two oscillators level off and do not converge to 0, as opposed
to the case shown in Fig. ??.

It is known that parameter mismatch among the individual oscillators can cause

bursts due to the instability of typical periodic orbits embedded in the synchronized

chaotic attractor (ROH04); even within a stable region where no bubbling will oc-

cur, the states of different units will still not approach exactly the same function

of time, but instead come close to each other within a neighborhood of the identi-

cal synchronization state (ROH04). This phenomena was first reported in (PC90)

for two coupled Lorenz oscillators, where the variations of individual units from the

identical synchronization manifold was found to scale linearly with respect to the

magnitude of parameter mismatch when the mismatch is small. In (ROH04), a vari-

17

ational equation analogous to our Eq. (2.23) was used to study the progressive loss

of synchronization stability due to bursting, which is also a relevant and interesting

phenomenon. In this section we show how the master stability framework can be

generalized for systems with near-identical parameters and derive stability conditions

for stable near-synchronization. Again, we emphasize that the graphs under con-

sideration are undirected as described by us in (SBN09d), while theory for directed

networks are similar, and can be found by our recent paper (SBN09c).

2.3.2 Near Synchronous State (NSS)

Assume that the parameters µi in Eq. (2.1) are close to each other and do not

change with time. Let the average parameter be µ̄ ≡ 1
n

∑n
i=1 µi and the parameter

mismatch be δµi ≡ µi − µ̄. With appropriate choices of coupling strength g and

network structure L, the system can have a near synchronous state (NSS) in which

maxi,j ||wi(t)− wj(t)|| ≤ c as t → ∞ for some small constant c ≥ 0. When the

system undergoes such near-synchronization, the trajectories of individual units are

well approximated by the average trajectory w̄ ≡ 1
n

∑n
i=1 wi, which is governed by

˙̄w =
1

n

n∑
i=1

ẇi =
1

n

n∑
i=1

f(wi, µi), (2.20)

With this equation, we can discuss dynamics of the bulk, or coarse scale behavior.

2.3.3 Inhomogeneity in the Variational Equations

Define the variation on each individual unit to be ηi ≡ wi − w̄ for i = 1, 2, ..., n.

The variational equations is then

η̇i =
[
f(w̄ + ηi, µ̄+ δµi)−

1

n

n∑
j=1

f(w̄ + ηj, µ̄+ δµj)
]

−σ
n∑
j=1

lijh(w̄ + ηj). (2.21)

18

Assuming that the variations ηi and the parameter mismatch δµi are small, we expand

around w̄ and µ̄ to obtain

η̇i = Dwf(w̄, µ̄)ηi − σ
n∑
j=1

lijDh(w̄)ηj

+Dµf(w̄, µ̄)δµi. (2.22)

We have used
∑n

j=1 ηj ≡
∑n

j=1wj − n · w̄ = 0 and
∑n

j=1 δµj ≡
∑n

j=1 µj − n · µ̄ = 0 in

the derivation. Putting all the ηi and δµi in column vectors η and δµ, respectively,

and omitting the arguments (w̄, µ̄) for simplicity, we obtain the variational equation

for the NSS:

η̇ =
[
In ⊗Dwf − σ · L⊗Dh

]
η +

[
In ⊗Dµf

]
δµ. (2.23)

When all the parameters µi are the same, the second term in the Eq. (2.23)

disappears, and what is left is a homogeneous ODE system for η, which may be diag-

onalized to obtain an equation analogous to the well-known master stability equation

(PC98).

We now focus on the case in which, if there were no parameter mismatch, the

system would undergo stable identical synchronization, i.e., the variation η would go

to zero asymptotically. This situation occurs if the system represented by f, h, L and

σ are in the stable regime (PC98). Because of the inhomogeneous part
[
In⊗Dµf

]
δµ

due to parameter mismatch, the variational system (2.23) in general may not be

asymptotically stable. We will show, however, that when the parameter mismatch is

small, there may exist a NSS where η stays close (although not equalling) to zero.

Indeed, we will show that the variational system is stable (i.e. the solution η is

bounded as t→∞) and the bound for the solution depends linearly on the norm of

the parameter mismatch δµ.

2.3.4 Generalized Master Stability Equations and Functions

We may uncouple the variational equation as in the identical case by diagonalizing

the graph Laplacian L: L = PΛP T for some orthonormal matrix P . Making the

change of variable ζ = (P T ⊗ Im)η, we obtain

ζ̇ =
[
In ⊗Dwf − σ · Λ⊗Dh

]
ζ +

[
P T ⊗Dµf

]
δµ. (2.24)

19

The homogeneous part in Eq. (2.24) has block diagonal structure and we may write

for each eigenmode i ≥ 2

ζ̇i =
[
Dwf − σλiDH

]
ζi +Dµf ·

n∑
j=1

uijδµj, (2.25)

where uij is the jth component of the ith eigenvector of L, i.e., uij = pji. The vector∑n
j=1 uijδµj is the weighted average of parameter mismatch vectors, with the weights

given by the components of the eigenvector associated with λi. It may also be thought

of as an inner product of the parameter mismatch vector and the corresponding

eigenvector.

From Eq. (2.25), we define a generalized master stability equation for nearly iden-

tical coupled dynamical systems:

ξ̇ =
[
Dwf − α ·DH

]
ξ +Dµf · ψ, (2.26)

where we have introduced two auxiliary parameters, a scalar α and ψ ∈ <p. Once

the stability of Eq. 2.26 is determined as a function of α and ψ, the stability of

the ith eigenmode can be found by simply setting α = σλi and ψ =
∑n

j=1 uijδµj.

The problem is thus decomposed into two separate parts: one that depends only

on the individual dynamics and the coupling function, and the other that depends

only on the graph Laplacian and parameter mismatch. Note that the latter not only

depends on the spectrum of L as in (PC98), but also on the combination of the

eigenvectors and parameter mismatch. Thus, we have reduced the stability analysis

of the original mn-dimensional problem to that of m-dimensional problem with one

additional parameter, combined with an eigenproblem.

Note that to analyze the stability of the original system using the master stability

equation, we need the associated average trajectory w̄, which can only be obtained by

solving the original system, and is impractical for large networks. We found, however,

that in practice as we will confirm in examples below (or, if one is interested in details,

should look into Chapters 4 and 5 of the thesis about shadowing) one may instead

use a trajectory s of a single auxiliary average unit: ṡ = f(s, µ̄). If the average

trajectory is near to be uniformly hyperbolic, the it can actually be shadowed by

a true trajectory from the system ṡ = f(s), a concept to be discussed in the next

chapter.

20

The associated generalized master stability function (GMSF) Ω(α, ψ) is then de-

fined to be the asymptotic value of the norm of ξ as a function of α and ψ, given that

α leads to asymptotic stable solution of the homogeneous part. Since P is orthonor-

mal, we can predict the square-sum synchronization error in the original system (2.1)

from Ω(α, ψ):

n∑
i=1

||ηi(t)||2 =
n∑
i=2

||ζi(t)||2
t→∞−−−→

n∑
i=2

Ω(αi, ψi)
2, (2.27)

where αi and ψi correspond to the ith eigenmode and || · || denotes the Euclidean

norm.

2.3.5 Conditions for Stable Synchronization

In the previous section we have derived a generic stability equation (2.26) for

analyzing the stability of synchronization of coupled dynamical system (2.1). To

analyze the stability, we now assume that the largest Lyapunov exponent of the

synchronous trajectory associated with the homogeneous variational equation

ξ̇ =
[
Dwf − αDh

]
ξ (2.28)

is negative for a given α, so that without parameter mismatch the error mode cor-

responding to this specific α goes to zero exponentially. In this case, the solution ξ∗

of Eq. (2.28) can be written as: ξ∗(t) = Φ(t, 0)ξ(0), where Φ(t, τ) is the fundamental

transition matrix 2, satisfying

||Φ(t, τ)|| ≤ γe−λ(t−τ) (2.29)

for t ≥ τ and some finite positive constants γ and λ. We should note that in the

case of generalized synchrony, the loss of stability of the invariant manifold need not

proceed monotonically and uniformly in space. It is known that parameter mismatch

can cause bursting due to increasing instability of embedded transversely unstable

periodic orbits which cause short-time positivity of Lyapunov exponents (ROH04;

KLK02), and this can be correspondingly interpreted from Eq. (2.29). Such transition

has been called bubbling bifurcation (VHO+96b; VHO96a) due to basin riddling.

2This transition matrix, as a function of two time variables t and τ , can be obtained by the
Peano-Baker series, as long as Dwf − αDh is continuous. See (Rug96) (Ch. 3, p. 40).

21

The solution to Eq. (2.26) can then be expressed by (Per96)

ξ(t) = Φ(t, 0)ξ(0) +

∫ t

0

Φ(t, τ)b(τ)dτ , (2.30)

where b(τ) ≡ Dµf(s(τ), µ̄) · ψ. Under the condition of Eq. (2.29), we can show that

ξ(t) given by Eq. (2.30) is bounded by the following inequality:

||ξ(t)|| ≤ ||Φ(t, 0)|| · ||ξ(0)||+
∫ t

0

||Φ(t, τ)||dτ · sup
t
||b(t)||

≤ γe−λt||ξ(0)||+ γ

λ
(1− e−λt) sup

t
||b(t)||

→ γ

λ
sup
t
||b(t)|| as t→∞. (2.31)

Thus, the inhomogeneous master stability equation is stable, i.e., the solution to

Eq. (2.26) is bounded asymptotically as long as i) the homogeneous system is expo-

nentially stable, or equivalently, the maximal Lyapunov exponent is negative; and ii)

the inhomogeneous part b(τ) ≡ Dµf(s(τ), µ̄) · ψ is bounded.

Eq. (2.29) and Eq. (2.30) also allow us to analyze quantitatively the magnitude of

asymptotic error of a near-identical system. If the magnitude of parameter mismatch

is scaled by a factor c, keeping all other parameters fixed, it follows from Eq. (2.30)

that the corresponding solution will be

ξ̃(t) = Φ(t, 0)ξ(0) + c

∫ t

0

Φ(t, τ)b(τ)dτ , (2.32)

where ξ(t) denotes the variation evolution of the original unscaled near-identical sys-

tem. Now the first term of both Eq. (2.30) and Eq. (2.31) goes to zero exponentially

according to Eq. (2.29), so that asymptotically we have ξ̃(t) = cξ(t), i.e., the variation

is scaled by the same factor correspondingly.

The above analysis allows us to conclude that the extended master stability func-

tion, as a function of α and ψ, scales linearly with respect to ψ for fixed value of

α if for that α with ψ = 0 the associated master stability equation have an expo-

nentially stable solution. Applying this to the variational equations Eq. (2.25), it

follows that if the mismatch pattern is fixed, with magnitude scaled by a factor ε > 0,

then the second term in Eq. (2.25) is scaled by ε for every i, resulting in each ||ζi||
scaled by ε. Thus, by applying Eq. (2.27), we conclude that the synchronization error√∑n

i=1 ||ηi(t)||2 =
√∑n

i=2 ||ζi(t)||2 is scaled by the same factor ε for t � 1. This is

22

referred to as the linear dependence on the magnitude of parameter mismatch, for a

fixed mismatch pattern.

2.3.6 Examples of Application

We consider each individual unit w = [x, y, z]T governed by the Lorenz equations:

ẋ = 10(y − x),

ẏ = x(r − z)− y,

ż = xy − 8

3
z, (2.33)

with mismatch between units in the parameter r, i.e., r corresponds to µ in Eq. (2.1).

So we have

Dwf =


−σ σ 0

r − z −1 −x
y x −β

 (2.34)

and Dµf = [0, x, 0]T . The coupling function h is taken to be h(w) = w, so that

Dh(s) = I3 (∀s). With these choices of f and h, we numerically integrate Eq. (2.26)

for a range of α and ψ and estimate the asymptotic norm of ξ(t), which gives Ω(α, ψ)

shown in Fig. 2.9. As shown in Fig. 2.10 for examples of two random networks with

100 and 200 vertices, this estimated Ω(α, ψ), combined with Eq. (2.27) gives fairly

good predictions for the actual synchronization error in the full system (2.1). In

addition, Fig. 2.10 confirms that the actual synchronization error scales linearly with

the magnitude of the parameter mismatch, as predicted by our analysis.

2.3.7 Brief Conclusion

In this section we have analyzed the stability of synchronization in a network of

coupled near-identical dynamical systems. We have shown that the well-known mas-

ter stability approach can be extended to this general case, allowing us to solve the

part of the problem that depends on the individual node dynamics, independently

of the network structure and the parameter mismatch pattern over the network. We

23

5

25

45
−0.02

0.02
0.04

−0.04
0

0

0.02

0.04

!"

#

0 0.01 0.02 0.03

Figure 2.9. Generalized master stability function for Lorenz equations with
identity coupling. - Density plot of the generalized master stability function Ω(α, ψ)
associated with arbitrary networks of near-identical Lorenz systems. It is estimated

by
√

1
T

∫ T
0
||ξ(t)||2dt with T = 200 (||.|| denotes the Euclidean norm), where ξ(t) is

obtained by numerically integrating Eq. (2.28) with a time step of 0.001 and discarding
initial transient. Here we have used the coupling function, h(w) = w.

24

0 0.02 0.04 0.06 0.08 0.10

5

10

15

20

!

actual error: network 1
by MSF
actual error: network 2
by MSF

Figure 2.10. Comparison of predicted synchronization error with actual
error. - Networks 1 is a realization of a random network consisting of 100 vertices
and 513 randomly placed undirected edges, with no self loops. Likewise, network
2 is another realization with 200 vertices and 958 edges. The parameter mismatch
for each network has a fixed pattern, with varying magnitude controlled by ε. It is
generated by first choosing δi for each i independently from the standard Gaussian
distribution, and then assigning the parameter ri by ri = 28(1 + εδi) for a given ε.

The error prediction
√∑4

i=2 Ω(αi, ψi)2 (solid line for network 1 and dashed line for

network 2) was computed using Ω displayed in Fig. ??. Actual error (squares for

network 1 and triangles for network 2) was estimated by
√

1
T

∫ T
0

∑4
i=1 ||ηi(t)||2dt with

T = 100 computed from numerical integration of the full system (2.1) after discarding
initial transient. We used σ = 2 in all calculations.

25

wish to point the reader to (ROH04), where mismatched oscillator synchronization is

discussed and which somewhat parallels to this work. In particular, our development

is in the spirit of a master stability function formalism for non-identical synchro-

nization. We have demonstrated the validity of our analysis using a few example

networks of coupled Lorenz systems. When applied to the special case of Kuramoto

model (Kur84) with arbitrary network structure in the strong coupling regime, our

analysis reduces to that found in (MM07). The GMSF gives simplified, accurate, and

practical estimate of the magnitude of variation in a near-identical system, provided

that the corresponding identical system undergoes stable synchronization according

to the original MSF analysis. Furthermore, our results highlight the relevance of

the Laplacian eigenvector structure, in addition to the full eigenvalue spectrum, in

determining the amount of dynamical variation due to parameter mismatch among

individual dynamics. This suggests that detailed knowledge of the graph structure

may be important for the design of robust and reliable systems.

2.4 Application: Optimizing the Synchronization

of Kuramoto Oscillators

2.4.1 Motivation and Problem Statement

Now that we have a theoretical tool (GMSF) to analyze the synchronization error

when the oscillators are nearly identical, a question follows: if we are given a set of

mismatched oscillators, and presumably the form of the coupling function, what is

the optimal way to connect them so that the synchronization error is minimized?

If no other constraint is introduced, then a solution would be to make them

all connected to one another, forming a complete graph. Such solutions are not very

interesting, of course. To add a bit challenge, we further require that a graph structure

is given, and all we are asked is to place the oscillators in certain ways to the nodes

of the graph. Fig. 2.11 serves as a simple illustration of the problem.

Formally, in view of Eq. (2.1), the problem can be casted mathematically as:

26

Figure 2.11. Problem of optimizing the synchrony of mismatched oscillators
for given structural constraints. -

27

given matrix L, form of f and h, and a set of parameters µi, what is the optimal

permutation Π : V → V such that under this permutation, the coupled system:

ẇi = f(wi, µΠ(i))− σ
n∑
j=1

lijh(wj, i = 1, 2, . . . , n, (2.35)

yields optimal synchronization.

Since the GMSF defines a function J for each permutation Π, the problem is

thus equivalent to finding a permutation which minimizes the function value of J .

Although a brute-force search is infeasible, since the possible number of permutations

is huge, having defined such an appropriate measure makes it possible to find good

solutions by using some optimization techniques.

2.4.2 Example of Coupled Kuramoto Oscillators

To illustrate with an example, consider in the following a system of coupled oscil-

lators with form slightly different from our original form 2.1:

θ̇j = ωj + σ
n∑
k=1

akj sin(θk − θj). (2.36)

Here θ is also known as a phase variable which takes value in [0, 2π]. Oscillators

defined by Eq. (2.35) are known as Kuramoto oscillators (Kur84). To measure the

synchrony, one can define parameters r and ψ by the following equation:

reiψ =
1

n

n∑
j=1

eiθj (2.37)

where i is the imaginary unit satisfying i2 = −1. The real number r measures in

some sense how coherent the oscillators evolve in time, and is usually known as the

order parameter for such a system. Such coupled system has been studied extensively

during the past twenty five years, with initial focus on the case for all to all coupling

(i.e., aij = 1 whenever i 6= j) where a mean-field approach can be applied (Str00);

to the study of such systems in more general networks (see ref. (ADK+08) for more

details).

28

Although there is no explicit formulae for computing r, when σ is large and the

system becomes close to be coherent, Eq. (2.35) may be approximated by:

θ̇j = ωj + σ
n∑
k=1

akj(θk − θj)

= ωj − σ
n∑
k=1

lkjθk (2.38)

where L = [lkj]n×n is defined similarly as before, which can be decomposed as: L =

PΛP T where the diagonals of Λ are the eigenvalues λ1, ..., λn of L, ordered in a

nondecreasing way. For convenience, we require that
∑

i ωi = 0, which is equivalently

as saying that the system is described in a rotation frame with speed of rotation

equalling ω̄ ≡ 1
n
ωi.

In this case, the GMSF can be computed directly through eigenvalues and eigen-

vectors, to yield

R ≡
n∑
i

(θi − θ̄)2 t→∞−−−→
n∑
i=2

[(P Tω)i
λi

]2

(2.39)

given that λi > 0 whenever i ≥ 2. Here ω = [ω1, ..., ωn]T , and (P Tω)i is the projection

of ω to the i− th eigenvector of L.

If we further assume without loss of generality that at time t = 0,
∑

i θi = 0, then

the quantity R relate to r in the following way, approximately, when θ1 ≈ θ2 ≈ ... ≈
θn ≈ 0. Assuming that θ ≡ maxi |θi| << 1, we have:

r2 =
1

n2

[
(cos θ1 + ...+ cos θn)2 + (sin θ1 + ...+ sin θn)2

]
≈ 1

n2

[
(n− 1

2
[θ1

2 + ...+ θn
2])2 + (θ1 + ...+ θn)2

]
≈ 1

n2

[
n2 − (θ1

2 + ...+ θn
2)
]

=
1

n2
(1−R2). (2.40)

Thus, maximizing r is equivalent as minimizing R in this case.

Since no better measure that is available analytically for relating the synchrony

with the distribution ω and network topology, we will use R as a our cost function as

a reasonable choice. Note that when possible permutation is allowed, the function R

29

will depend on the permutation matrix Π, for given ω and L, as:

R(Π) ≡
n∑
i=2

[(P TΠω)i
λi

]2

. (2.41)

Solving Eq. (2.41) is in general infeasible. We here adopt an optimization tech-

nique called simulated annealing (Fis05) to find approximate solutions that are rea-

sonable.

To illustrate by an example, consider a collection of Kuramoto oscillators

with frequency ωi distributed independently according to the Gaussian distribution

N(0, (π
10

)2). The underlying graph is a random graph with n = 100 nodes and

m = 267 randomly placed edges. In Fig. 2.12 we show the minimum value of R

found after t steps as a function of t, the number of steps in the simulated annealing

process. We take the output of this algorithm to be an approximately optimal so-

lution, and compare its order parameter to other configurations, shown in Fig. 2.13.

0 2 4 6 8 10
x 105

0

1

2

3

4

step

J

0 5 10
x 104

0

1

2

3

4

Figure 2.12. Evolution of the cost function for Kuramoto oscillators using
simulated annealing. - The algorithm was terminated after 105 steps, by when
there seems to be no decrease of the function value. The inset shows the function value
for the first 104 steps. Details of implementing the simulated annealing algorithm
include appropriate choice of initial temperature, annealing process, and stopping
criteria, which is not discussed in this thesis due to the limitation of space.

30

0 0.1 0.2 0.3 0.4 0.5
0.6

0.7

0.8

0.9

1

!

random
pos deg−freq
GMSF−opt

Figure 2.13. Comparing the order parameter for different configurations of
Kuramoto oscillators. - The curves show the order parameter r, as defined in
Eq. (2.37), as a function of the coupling strength σ when the frequencies ωi are dis-
tributed either randomly (black squares) or with positive degree-frequency correlation
(blue crosses), or according to the optimal output of simulated annealing algorithm
(red stars). The curves are obtained by an average of 100 realizations with different
initial conditions, and r is computed by taking the time average of t = 50 to t = 100.

31

Chapter 3

Network of Networks: Multi-scale

Dynamics on Networks

3.1 Multi-scale Dynamics on Networks

When a system exhibits complicated spatial-temporal dynamics, it is often de-

sirable to reduce the dimension of the problem, if possible. This idea of dimen-

sionality reduction has been found in other branches in science, for example, the

principle component analysis based on singular value decomposition; or clustering of

data points (DHS00). When a system is composed of coupled oscillators interacting

with each other in nontrivial ways, it is natural to ask, how can we apply coarse-grain

analysis to extract a simplified model while maintaining useful information about the

whole system? Fig. 3.1 shows an example of such a problem. Suppose that there

are dynamics on the network shown in the picture. It looks complicated in the finest

scale; however, in a somehow median scale we see six clusters interacting with each

other. The main object of Chapters 3, 4, and 5 is to quantify, when dynamics is

introduced on some nontrivial network topology, reduced order models, and how to

judge quality of such a model.

In this Chapter (Chapter 4) we develop theory for analyzing problems of multi-

scale modeling of network dynamics. Consider the following differential equations

32

Figure 3.1. Illustration of the problem of multi-scale modeling for network
dynamics. - A coupled oscillator network may exhibit hierarchical scales depending
on both network topology and dynamics on individual nodes. In the picture it is
easy to see clusters. However, in general it may require a complicated computational
approach to reveal such clustering, and when dynamics is considered, understanding
the interplay between the network topology and heterogeneity of individual dynamics
is a bit challenging (Bol06).

33

which describes an oscillator network (OSN):

θ̇i = fi(θi) + σ
n∑
j=1

aijh(θj − θi), (3.1)

here fi are the individual dynamics, h(x) is a coupling function, σ > 0 is the coupling

strength, and the network is characterized by the adjacency matrix A = [aij]n×n.

For example, if we use Kuramoto oscillators coupled through a network shown

in Fig. 3.2, the time series seem to form clusters which coincide with the network

structure. If we zoom in further, a finer clustered structure is revealed from the time

series, which correspond to a finer partition of the network. How to model those

coarse scale dynamics? How to define an appropriate average among oscillators in a

network? Such questions will be investigated in the next few sections.

3.2 Coarse-grain Modeling of Multi-scale Dynam-

ics on a Network

To define a reduced order model for network dynamics, it is crucial to have an

appropriate partition of the nodes into groups where each group represent a collection

of oscillators which are nearly coherent. The partition of nodes in a network which

results in different groups is often referred to as, in the language of complex network

study, problem of finding communities1, where the groups are phrased as communi-

ties. This type of clustering of nodes were first used in social network research, and in

recent years studied a lot for large networks by statistical physicists due to the semi-

nal work by Newman (New06). See (POM09) as a beautiful modern introduction to

this topic, and the references therein for more details. This concept of communities

naturally lead to the coarse-graining of networks, studied in (Kim04) for a model in-

troduced in (RCb02); in (MGK06) to develop computational tool for simulate coupled

oscillators with fewer variables; in (GD07; GD08) where spectral coarse-grain was in-

troduced to group nodes with respect to their similarity in eigenvector components;

and very recently in (PKJ09) for biological feedback networks.

1In the study of complex networks, communities are often referred to (in a non rigorous sense)
as densely connected groups of nodes.

34

Figure 3.2. Motivation of multi-scale dynamics on networks. - In the left
we show a network which exhibits multi-scale topological structure. The network is
constructed as follows: first construct 3 complete graphs each consist of 10 nodes,
label them from 1 to 30; then, connect nodes i to nodes 10 + i and 20 + i for each
i ∈ {1, . . . , 10}, also connect for those i, nodes 10 + i to 20 + i, this corresponds to
the triangle like part in the upper left of the network shown in the figure. Make a
copy of this network (lower left) and connect these two networks by one edge. Then,
by similar process, generate a subgraph of 40 nodes (right part of the network), and
connect with each of the 30 nodes subgraph with one edge. The Kuramoto oscillators
follow Eq. (3.1) where θi is a phase variable (θi ∈ [0, 2π]) fi = ωi are the natural
frequencies of each oscillator, and h(x) = sin(x). Here the natural frequencies of
the oscillators are chosen in such a way that in the upper left group have natural
frequencies [−3.25 ∗ ones(1, 10),−3 ∗ ones(1, 10),−2.75 ∗ ones(1, 10)]; the lower left
group: [−1.25 ∗ ones(1, 10),−1 ∗ ones(1, 10),−0.75 ∗ ones(1, 10)]; and the middle
right group: [2.4∗ones(1, 10), 2.8∗ones(1, 10), 3.2∗ones(1, 10), 3.6∗ones(1, 10)]. The
coupling strength is chosen as σ = 0.5. The right part of this figure shows, on the
top, time series of all the oscillators; and on the bottom, time series of the oscillators
from the 40 node square-like subgraph.

35

For a graph G = (V,E), a partition of the network into groups, or communities

is analogous to a quotient operation on the vertex set of a graph, and can be char-

acterized by a projection function P : V → Ṽ , which defines an equivalence relation

between elements in V . By convention, the elements for the set V and Ṽ are rep-

resented by natural numbers, so that V = {1, 2, . . . , n} and Ṽ = {1, . . . , K} where

1 ≤ K ≤ n. The projection of a node i under P is denoted by Pi. Two nodes i and

j in V belong to the same group ` if they belong to the same equivalence class under

the projection P , or more precisely, Pi = Pj = `.

Define, for each ` ∈ {1, . . . , K}, C` ≡ {i : P (i) = `}, i.e., C` is the set of nodes

belonging to group `. Using this notation, by rearranging the sum from 1 to n, the

equation Eq. (3.1) for an OSN may be written as:

θ̇i = fi(θi) + σ
n∑
j=1

aijh(θj − θi)

= fi(θi) + σ
K∑
k=1

∑
j∈Ck

aijh(θj − θi). (3.2)

When there is strong coherence between oscillators belonging to the same groups,

the following coarse-grained oscillators will be useful. Define, for each ` ∈ Ṽ ,

φ` ≡
1

|C`|
∑
i∈C`

θi (3.3)

Then, the equation governing φ` is simply:

φ̇` =
1

|C`|
∑
i∈C`

fi(θi) + σ
n∑
j=1

1

|C`|
∑
i∈C`

aijh(θj − θi). (3.4)

With the assumption that θi ≈ φPi for each i ∈ V , we replace each θi in the above

equation with a coarse variable φPi , and then replace all the φ by ψ to differ from

the equation that exactly governs the dynamics of φ. This leads to the following

equation, for ` ∈ Ṽ :

ψ̇` =
1

|C`|
∑
i∈C`

fi(ψ`) + σ

n∑
j=1

1

|C`|
∑
i∈C`

aijh(ψPj − ψPi)

=
1

|C`|
∑
i∈C`

fi(ψ`) + σ

K∑
k=1

1

|C`|
∑
i∈C`

∑
j∈Ck

aijh(ψPj − ψPi) (3.5)

= g`(ψ`) +
K∑
k=1

b`kh(ψk − ψ`), (3.6)

36

where we have defined, for convenience,

g`(ψ`) ≡
1

|C`|
∑
i∈C`

fi(ψ`) (3.7)

and

b`k ≡
1

|C`|
∑
i∈C`

∑
j∈Ck

aij. (3.8)

Notice that Eq. (3.6) has exactly the same form as Eq. (3.2), except that the

f replaced by g, aij replaced by b`k, and the indices run in a different range.

Thus, Eq. (3.6) defines another oscillator network, with fewer nodes (k = 1, . . . , K).

Eq. (3.6) will be referred to as the coarse-grained oscillator network (CGOSN) (with

respect to the projection function P) of the original OSN. The dynamics of this

CGOSN is usually similar as the individual dynamics fi if all the fi are close to

each other in some sense; and the b`k defines an adjacency matrix B = [b`k]K×K

for a network consisting of K nodes, each represent a group of the original network

characterized by A.

Since we will use Kuramoto oscillators for most of the examples for this section, it

is convenient to write the above equations in the specific form of coupled Kuramoto

oscillators, in which case Eq. (3.2) becomes:

θ̇i = ωi + σ
n∑
j=1

aij sin(θj − θi) = ωi + σ
K∑
k=1

∑
j∈Ck

aij sin(θj − θi), (3.9)

where θi is the phase of oscillator i, θi ∈ [0, 2π]; ωi is the natural frequency of oscillator

i, and the rest can be read from the equation. The average oscillator of a group C`

defined by Eq. (3.3) has its own dynamics (analogous to Eq. (3.4)):

φ̇` =
1

|C`|
∑
i∈C`

ωi + σ

n∑
j=1

1

|C`|
∑
i∈C`

aij sin(θj − θi). (3.10)

The corresponding CGOSN is simply described by, for each ` ∈ {1, . . . , K},

ψ̇` =
1

|C`|
∑
i∈C`

ωi + σ

n∑
j=1

1

|C`|
∑
i∈C`

aij sin(ψPj − ψPi)

= g`(ψ`) +
K∑
k=1

b`kh(ψk − ψ`), (3.11)

37

where

g`(ψ`) ≡
1

|C`|
∑
i∈C`

ωi, b`k ≡
1

|C`|
∑
i∈C`

∑
j∈Ck

aij. (3.12)

For example, the network shown in Fig. 3.2 has a clear community structure, and

it produces time series which seem to form three distinct clusters. If we partition the

network such that Ṽ = {1, 2, 3}, and

C1 = {1, . . . , 30}, C2 = {31, . . . , 60}, C3 = {61, . . . , 100}, (3.13)

Then the coarse scale network (described by B in Eq. (3.6)) can be obtained as

Figure 3.3. Partition into groups of a benchmark OSN and its resulting
CGOSN. - In this example we partition the nodes of the original OSN (left) into
three groups, shown in the middle, where the white numbers 30, 30, and 40 indicate
the number of nodes in the three groups. Below we show the resulting CGOSN,
where each node represent an average of a group of nodes, and the weight on an
edge (`, k) in this coarse-grained network equals the average number of links from
group ` to group k. The matrix beside the network is the adjacency matrix for the
coarse-grained network.

the process shown in Fig. 3.3: first sum over the nodes in each group, then average;

the weight on an edge (`, k) in B equals the number of edges from group ` to group

k, divided by the total number of nodes in group `. Thus, even when the original

38

network A is undirected, this coarse scale network B can in general be a directed

network. Once the coarse scale network is found, the corresponding dynamics can be

obtained according to Eq. (3.6).

In Fig. 3.4 we compare the dynamics from the original OSN for the network shown

in Fig. 3.3, its average time series of each group, and the time series obtained from the

dynamics of the corresponding CGOSN, respectively. The CGOSN provides a reduced

order model, which perfectly captures the coarse scale behavior of the original network

dynamics.

The projection of a given OSN need not be unique. For example, for the network

dynamics shown in Fig. 3.3 and Fig. 3.4, we could have partitioned the nodes into 10

distinct groups, instead of three. The two different partitions are shown in Fig. 3.5.

Similarly as the comparison shown in Fig. 3.4, we show time series generated by the

CGOSN corresponding to the partition into 9 groups in Fig. 3.6. Again, the CGOSN

successfully reduce the complexity of the original model, and in the meanwhile pro-

duces time series that match with the ones from the original OSN.

3.3 Uncovering Spatial Scale by Time Series? A

Counter Example to Popular Intuition.

A common belief when performing time series analysis in the field of complex

networks is that, correlation between two time series indicate a strong connection

between the two sources who generate them. Thus, clustering by time series shall

lead to communities in a network, which provides a way to uncover topological scale

of a network by simply looking at some time series generated from some coupled

dynamics run on the network (ADP06). In this section, we show a counter example

where clustering of time series provides totally different result as one might guess

from the network structure.

Consider a network of Kuramoto oscillators as described by Eq. , where the net-

work structure is shown in the upper part of Fig. 3.7. Here the network consists of

two complete subgraphs (each of 10 nodes) with two edges connecting in between.

39

0 5 10 15 20 250

3.1416

6.2832

0 5 10 15 20 250

3.1416

6.2832

0 5 10 15 20 250

3.1416

6.2832

Figure 3.4. Multiscale Kuramoto time series. - Upper panel shows the time
series of a coupled Kuramoto oscillators where the network topology is shown in the
left panel in Fig. 3.5. Middle panel shows the average time series within each group.
In the lower panel we show time series generated from a reduced order model where
the model consists of three nodes coupled through the network shown in the right
panel of Fig. 3.5.

40

Figure 3.5. Multiscale model of a benchmark network. - This figure shows two
different scales of the original network (on the left), which correspond to two different
coarse-scale network model, one consists of 3 nodes (shown in the middle), and the
other 9 nodes (shown on the right).

Indeed, what is hidden behind this surprise/puzzle is the heterogeneity of the

dynamics. For this example, we have chosen, for all the nodes in the upper half,

natural frequency −1, and for those in the lower half, natural frequency +1 (with

coupling strength σ = 0.1). Thus, even though a complete subgraph usually forms a

strong community in many situations, when dynamics is involved, for example, in this

case, within each of these subgraphs there is strong heterogeneity in the individual

dynamics between nodes, and this heterogeneity has dominated the homogeneity in

the structure, and lead to the clustering of time series correlate with the partition

according to dynamical homogeneity, instead of structural homogeneity.

Finding dynamical relevant clusters for an OSN is indeed important for the multi-

scale modeling of spatio-temporal dynamics, since it is only after the knowledge of

a partition can we form a CGOSN to reduce the order of complexity of the original

model. However, although the dynamical clusters might be the same as what struc-

tural partitions provide, as in the examples in the previous section; in general they

might have nothing to do with structural clusters, as in the example of this section.

How to find those dynamical clusters when complicated dynamics is involved, as well

as nontrivial network structures, would be the main goal of next section.

41

0 2 4 6 8 100

3.1416

6.2832

0 2 4 6 8 100

3.1416

6.2832

0 2 4 6 8 100

3.1416

6.2832

Figure 3.6. Comparing time series from a OSN and its CGOSN, group 1.
- Comparison of time series from group 1 (the upper left group) of the network
shown in the left of Fig. 3.5 and those from the upper left part of a coarse-grained
network shown in the middle of Fig. 3.5. Similar pictures are observed for the other
two groups, and will not be shown in the thesis.

42

Figure 3.7. Partition into two clusters in different ways. - Here the network
consists of two complete subgraphs (each of 10 nodes) with two edges connecting in
between. A natural partition of this network is two groups where each group contains
a complete subgraph; indeed, the time series as shown in Fig. 3.8 clearly shows two
distinct clusters, which is a strong indication that there are two densely connected
clusters in the network. However, as we will discuss later (and shown in Fig. 3.8 and
Fig. 3.9), the more appropriate partition with the dynamics we have chosen on this
network is the one on the right, which takes half of the nodes from each complete
subgraph to form one group, the the rest the other.

43

0 10 20 30 40 500

3.1416

6.2832

0 10 20 30 40 500

3.1416

6.2832

0 10 20 30 40 500

3.1416

6.2832

Figure 3.8. Time series clustering vs. structural partition. - In the upper
panel we show time series of Kuramoto oscillators coupled through a network shown
in Fig. 3.7. Here we use blue solid lines to represent time series from the upper half
of the left complete subgraph; red dotted lines to represent those from the lower half
on the left; black solid lines for the upper half on the right; and green dashed lines for
the lower half on the right. The time series seem to form two clusters. On the other
hand, the network has a clear structural partition shown in the lower left of Fig. 3.7.
According to this partition, we show time series from group 1 in the middle panel and
group 2 in the lower panel. Surprisingly, the oscillators in each group do not evolve
even close as each other, but rather, seem to be uncorrelated. In this example, if
we partition according to the lower right of Fig. 3.7, then the oscillators within each
group do seem to follow single coarse trajectories.

44

3.4 Finding the Right Partition: Structural vs.

Dynamical Heterogeneity

As discussed in the previous section, finding a good dynamical relevant partition is

important, and non-trivial. Although a general theory has not been developed by any-

one, we here will propose an empirical treatment which serves as a first step towards

a deeper understanding of the problem. This treatment is based on the variational

equations to be discussed below. We present this analysis for Kuramoto oscillators

for convenience, the generalization to other systems seem to be straightforward, and

will be omitted from the thesis.

Suppose that we partition a OSN using a projection function P into K distinct

groups denoted by C1, . . . , CK . If the partition is good, it shall follow that for each

i ∈ V , θi ≈ φPi . Define

ξi ≡ θi − φPi , (3.14)

where φPi is the average of oscillators in the group Pi, as defined before in Eq. (3.3).

Then, following from Eq. (3.3) and Eq. (3.10), we have:

ξ̇i =
(
ωi −

1

|C`|
∑
j∈C`

ωj

)
+ σ

n∑
j=1

(∑
i∈C`

aij
|C`|
− aij

)
sin(θj − θi). (3.15)

The dynamical heterogeneity is characterized by the first term in the above equation,

and will be denoted in the later, for oscillator i in a given OSN and a given partition,

by

∆D
i ≡ ωi −

1

|C`|
∑
j∈C`

ωj; (3.16)

on the other hand, by a mean-field like assumption so that the term sin(θj − θi) is

replaced by some common constant for each i, what is relevant in the second term

will be purely dependent on the network structure and the partition, so the structural

heterogeneity will be defined as:

∆S
i ≡ σ

n∑
j=1

(∑
i∈C`

aij
|C`|
− aij

)
. (3.17)

In an ideal situation where both ∆D
i and ∆S

i are 0 for each i, the partition is perfect

45

which leads to identically synchronized clusters2, and the stability of sycnronization of

each individual group/cluster can be analyzed by means of MSF discussed in Chapter

2. This will happen specifically when the OSN consists of disconnected components

where each component consists of identical oscillators [a theorem can be proven for

this situation, and is left as an exercise for the readers.] In general, the numbers will

not be identically 0, and a partition is a good one if both ||∆D
i || and ||∆S

i || are small.

We next illustrate how to judge the quality of a partition by means of a cost

function defined as, for a given OSN and a partition P ,

∆ ≡
n∑
i=1

(
||∆D

i ||2 + ||∆S
i ||2
)
. (3.18)

To find a reasonably good partition is then equivalent as minimizing this cost function

in the space of partition functions. Two examples shown in Fig. 3.9 and Fig. 3.10

confirm that the minimum of this function indeed reveals appropriate dynamical

relevant partition of an OSN.

3.5 Difficulty for Coupled Chaotic Oscillators

Although the multi-scale modeling approach discussed in this chapter works well

for systems such as coupled Kuramoto oscillators by direct inspection (i.e. compare

time series from the original OSN and its CGOSN), whether or not similar analysis

carry through for chaotic systems is a more difficult problem, and will be discussed in

detail in the next two chapters. Fig. 3.11 shows an example illustrating the difficulty

in judging the model quality of a reduced order model for a coupled chaotic oscillator

network.

2In this case the Golubitsky coloring is equivalent as the perfect partition, where both the dy-
namical and structural heterogeneity becomes zero (GSBC99; SGP03). In general, when no such
perfect symmetry can be found, our approach serves as a practical method to find a good, although
not necessarily perfect partition of the network.

46

Figure 3.9. Cost function for Kuramoto partition. - For the OSN described in
Fig. 3.7 where the individual oscillators are Kuramoto oscillators, where the frequency
for nodes shown in blue and black are set to be −1, and those in red and green to
be +1, with coupling strength σ = 0.1. If we assume that the nodes in the same
color always belong to the same group, then the projection function P can be written
by a row vector as P = Q ⊗ [1, 1, 1, 1, 1] where Q = [q1, q2, q3, q4]. If we further
assume that the maximum number of groups is two, then all possible partitions can
be represented by binary sequences of length 4 in Q. There are at most 16 of them
(including degenerate cases). The cost function for each of them is shown (by blue
cross) in the figure; curved arrows point to the partition associated with the function
value in the figure where groups are indicated by dotted ellipses.

47

Figure 3.10. Cost function for Kuramoto partition, another example. - The
notation is similar as what was described in Fig. 3.9, where here the example is an
OSN described in Fig. 3.2.

48

0 5 10 15
−20

−10

0

10

20

0 5 10 15
−20

−10

0

10

20

Figure 3.11. Difficulty in judging the reduced order model for coupled
chaotic oscillators. - Here the network structure is the one shown in Fig. 3.3,
but with identical Lorenz oscillators instead of Kuramoto oscillators, and the cou-
pling function in Eq. 3.2 is simply h(x) = x, where the coupling strength σ = 1.
In the upper panel we show the time series of the x components of all the oscilla-
tors. They again form three distinct clusters. Following the coarse-grain approach
discussed in Section 2, we have a three-node coarse network. The picture shown in
the lower panel shows the difference between time series for the x component from
oscillators from one group of the original OSN (in green solid lines) and the one from
its CGOSN (in blue dashed line). Different from the pictures we have seen for Ku-
ramoto oscillator case, here the time series from CGOSN differs, after a short time
period, from the ones from the original OSN. This might not be surprising after all,
since all the oscillators are chaotic, and thus any tiny error in the model will lead to
the divergence between time series from the model (CGOSN) to the original OSN.
However, because of this, whether the CGOSN model is a good one in this case is in
question.

49

Chapter 4

Modeling of Chaotic Oscillators:

Preliminaries

In Chapter 4 we start with the problem of how to model a dynamical system

from measurements (section 4.1); and review a classical concept called shadowing,

and illustrate its relevance to the problem of modeling (section 4.2); then propose

the concept of optimal shadowing, and show how it can be used to define a unique

measure for model quality. The concepts introduced in this chapter will be used in

Chapter 5 for the problem of multi-scale modeling in the case of chaotic oscillators.

4.1 Parameter Estimation from Measurements

4.1.1 Least Square Approach

In this section we briefly discuss the modeling of dynamical systems from empirical

data. Given discrete measurements {xt}Tt=1, suppose that we know the form of the

dynamics governing the evolution of xt, described by a function f : Rm × Rp → Rm,

so that the input of f has the form (x, µ). Here x is the state variable, and µ is a

parameter of the function f independent of x and does not change in time.

50

If the data were noiseless, i.e., xt+1 ≡ f(xt, µ) for some parameter µ, then we

would have: 

f(x1, µ)

f(x2, µ)

.

.

.

f(xT−1, µ)


=



x2

x3

.

.

.

xT


. (4.1)

In the above matrix form equation, we are looking for a solution µ in terms of the

data {xt}Tt=1. In general the equation may be nonlinear, and an exact solution is

unlikely to be found. However, if the function f depends linearly on the parameter

µ, i.e.,

f(x, µ) = F (x)µ (4.2)

where F (x) = [fij(x)] is an m× p matrix, and µ = [µ1, ..., µp]
T is a p× 1 vector rep-

resenting the parameter, then a simple approximate solution can be easily obtained,

as shown below.

In this case (i.e., where f has the form (4.2)) , Eq. (4.1) can be written as:

F (x1)

F (x2)

.

.

.

F (xT−1)




µ1

...

µp

 =



x2

x3

.

.

.

xT


, (4.3)

or simply in matrix form:

Fµ = b (4.4)

where F (an mT × p matrix) and b (an mT × 1 vector) represent the corresponding

matrices in accordance with Eq. (4.3).

Eq. (4.4) is simply a set of linear equations, with unknown µ to be solved. However,

in most interesting cases we have mT � p, and thus the system (4.4) is highly

overdetermined. When noise is present in the system, i.e., f(xt, µ) 6= xt+1, usually

there is no solution that can satisfy Eq. (4.4) exactly. A classical approach in this

51

situation is the method of least squares, which can be used to find an approximate

solution that minimizes the quantity:

||Fµ− b||2 (4.5)

where ||.||2 represents the Euclidean norm of a vector (Dem97).

Specifically, the singular value decomposition (SVD) (Dem97) of the matrix F :

F = UΣV T (4.6)

can be used to construct a solution:

µ = V Σ−1UTb (4.7)

which minimizes (4.5).

Note that the minimization of Eq. (4.5) is the same as minimizing the total squares

of the step-wise error ||xt+1 − f(xt, µ)||2:

J(µ) ≡
T−1∑
t=1

||xt+1 − f(xt, µ)||22. (4.8)

4.1.2 Example of a Quadratic Map

We illustrate the least square parameter estimation mentioned above by an ex-

ample. Consider time series {xt}5000
t=1 generated by the discrete model:

xt+1 = 3.99xt(1− xt) + δηt (4.9)

where ηt is a random noise term, distributed either uniformly on the interval [−1, 1]

(uniform noise) or according to a standard normal distribution; δ controls the mag-

nitude of this noise. Suppose that all we have is the discrete measurements {xt}5000
t=1

and the form of the model

xt+1 = µxt(1− xt), (4.10)

where the goal would be to estimate µ.

Putting these into the form of Eq. (4.3), we can use Eq. (4.7) to solve for µ.

Fig. 4.1 shows that for two different types of noise (either uniform or Gaussian as

52

10−10 10−8 10−6 10−4 10−210−12
10−10
10−8
10−6
10−4
10−2
100

!

Uniform Noise
Gaussian Noise

Figure 4.1. Least square parameter estimation for quadratic maps: different
types of noise. - Time series {xt}5000

t=1 generated by the discrete model xt+1 =
3.99xt(1− xt) + δηt where ηt is a random noise term, distributed either uniformly on
the interval [−1, 1] (uniform noise) or according to a standard normal distribution;
δ is a scalar, determining the level of noise. Shown is the difference between the
estimated parameter using least square method and the ’true’ parameter 3.99 in both
cases (black squares for uniform noise case and blue crosses for Gaussian noise case).

described in the previous paragraph), the estimated parameter converges to the one

used to generate the time series, 3.99, as the noise level δ goes to zero.

Note that if the underlying model has a more general form f(x) = µ1x − µ2x
2,

similar methods can be used to estimate µ = [µ1, µ2]T . Fig. 4.2 shows the difference

between µ1, µ2 and the actual parameters 3.99 used in the noisy model Eq. (4.9) where

ηt is uniformly distributed in [−1, 1]. Both of the estimated µ1 and µ2 converge to

3.99 as noise approaches zero.

Although it does not seem too complicated for time series generated by discrete

dynamics, the generalization to measurements from a continuous system (ODE or

PDE) is not as simple. For analysis of the performance (convergence of estimated

parameter to actual parameter relying on noise and grid size, etc.) of using least

square like methods for such problems, the readers are referred to a recent paper by

Yao and Bollt (YB07) and the references therein.

53

10−10 10−8 10−6 10−4 10−210−12

10−10

10−8

10−6

10−4

10−2

!

|µ1−3.99|

|µ2−3.99|

Figure 4.2. Least square parameter estimation for quadratic maps: converge
of two parameters. - Parameter estimation for the model xt+1 = µ1xt − µ2xt

2 by
least square method (4.7) from time series generated by xt+1 = 3.99xt−3.99xt

2 + δηt,
where δ is the magnitude of the noise and ηt are uniformly distributed on [−1, 1].

4.2 What is Shadowing?

4.2.1 Sensitive Dependence on Machine Precision: Is Chaos

a Fiction?

Dynamical systems that possess chaotic behavior are known to have sensitive

dependence on initial conditions. For example, consider the following simple chaotic

map:

xt+1 = 2xt mod 1. (4.11)

It is known that for almost every initial condition chosen from the interval [0, 1], its

orbit is chaotic, i.e., bounded, not asymptotically periodic, and has a positive Lya-

punov exponent (equals 2). However, if one were to test this in any computer as

long as the computer represents numbers in binary basis and its machine precision

is finite, numerically there is simply no chaotic orbit. For example, in Matlab (ver-

sion R2008a) (Mat), choose any initial condition from [0, 1], and iterate according to

Eq. (4.11), then after about 50 iterates, xt becomes identically 0, i.e., the orbit con-

verges to a boring periodic orbit {0, 0, ...}. See Fig. 4.3 as an illustration. Since the

computer typically represents a number in a finite binary representation, the length of

54

the binary sequence of a number determines the number of steps it takes for the orbit

of that number to converge to 0, since Eq. (4.11) simply shifts the binary sequence

of a number one position at a time. Thus, one can indeed prove that for any binary

computer, any orbit starting from initial conditions in [0, 1] eventually converges to

0, and this convergence is usually surprisingly fast, as shown in Fig. 4.3.

0 20 40 60 800

0.5

1

t

x0=0.2
y0=!/4

Figure 4.3. Typical orbits of the 2x mod 1 map converge to zero (in a finite
binary machine). - Numerical computation of orbits from the discrete dynamics
xt+1 = 2xt mod 1. Here the (blue) squares represent the orbit starting from x1 = 0.2,
and (red) ”+” correspond to another orbit starting from y1 = π

4
, both orbits are com-

puted in Matlab with double precision. After about 50 iterations, both trajectories
converge to the orbit {0, 0, ..., 0, ...}.

Thus, the trajectories shown in Fig. 4.3 do not represent any true orbit from

Eq. (4.11). It is obvious that starting from x1 = 0.2, the trajectory should land

precisely on a period-4 orbit {0.2, 0.4, 0.8, 0.6}; and perhaps less obviously, the tra-

jectory starting from y1 = π
4

should indeed be a chaotic orbit (in general, any orbit

starting with an irrational number is a chaotic orbit), rather than becoming 0 after

just several iterates.

This type of problem also occurs if we try to compute the same orbit with different

numerical accuracy. Fig. 4.4 shows that, even if we use the same software and start

with the same initial condition, the trajectories will typically diverge if they are

numerically computed upon different machine precision.

The big question/puzzle arises now. If a computer is never capable of producing

an orbit which comes exactly from a chaotic system, how can we trust anything that

55

0 10 20 30
0

0.5

1

t

xd
t

xs
t

0 10 20 30
10−10

10−5

100

t

|xd
t −xs

t |

Figure 4.4. Orbits start from the same initial condition computed with
different machine precision. - Numerically computed orbits from the discrete
dynamics xt+1 = 2xt mod 1 starting from initial condition π

4
using either double

precision, denoted by {xdt }30
t=1 (plotted in red stars) or single precision ({xst}30

t=1, black
triangles) arithmetic shown in the upper panel. In the lower panel we show the
difference between the two numerical orbits in a log plot. The divergence of these
two trajectories is exponential, as expected from the fact that the map 2x mod 1 is
uniformly expanding.

56

comes out of compute simulations of chaotic systems, either a picture shown on the

screen, or a number reported from calculations, such as Lyapunov exponents? If a

chaotic system as simple as that described by Eq. (4.11) already suffers from such

problems, how can we ever trust any ’chaotic like’ patterns generated by computers

for more complicated systems? Is chaos in reality simply a scientific fiction?

Starting from the next subsection, this whole section is devoted to the introduction

of a concept called shadowing which addresses some of the above problems. The

idea of shadowing was first introduced by Anosov (Ano67) and Bowen (Bow75) for

uniformly hyperbolic systems (also known as Axiom A diffeomorphisms), and later on

used by others (HYG87; HYG88; NY88; CKY88; GHYS90; SGY97; Sau02; Hay02)

for more general chaotic systems that are not necessarily hyperbolic, but usually in

dimensions no more than 2. This concept and massive amount of work in various

aspects of the problem of shadowing has been nicely summarized in the books (Pil99)

and (Pal00).

4.2.2 Infinite Shadowing for Hyperbolic Systems

As pointed out in the above subsection, for any given discrete dynamical system

described in some form:

wt+1 = f(wt); (4.12)

In reality, any orbit {xt}Tt=1 generated according to Eq. (4.12) will not satisfy the

equation exactly, but instead, follows:

xt+1 = f(xt) + ηt, (4.13)

where ηt represents the error made at computing xt+1 from xt. For example, in a

typical computer program, ηt represents the truncation error due to finite machine

precision. In the following we shall assume that

δ ≡ ||η||∞ = sup
t
||ηt||2 � 1. (4.14)

An orbit that satisfies Eq. (4.12) and Eq. (4.13) is usually called a δ pseudo orbit,

emphasizing the fact that it is not exact, and the norm of the step-wise error ηt is

uniformly bounded by the small positive number δ.

57

Our computers generate such pseudo orbits, for small δ. The orbits shown in

Fig. 4.3 and Fig. 4.4 are indeed all δ pseudo orbits, although none of them seem to be

interesting. We shall show an interesting pseudo orbit in Fig. 4.5, generated as follows:

start with the initial condition x1 = π
4
; at each time step, compute a number 2xt ± η

mod 1, where η is the Matlab machine precision; ”+” and ”−” are chosen with equal

probability. This random process generates a pseudo orbit, shown in Fig. 4.5 (in red

crosses); for comparison, the orbit starting with π
4

and computed by simply typing

in yt+1 = 2yt mod 1 in Matlab is shown in black squares. The orbit {xt}, although

seems to be more noisy, looks more promising than the ’exact’ one {yt} (which goes

to 0 after a few iterates). Indeed one can check that even after a long number of steps

the pseudo orbit generated as indicated here will still not be asymptotically periodic;

it is very likely to be chaotic. One can play this trick for almost every initial condition

chosen from the interval [0, 1] and obtain a chaotic pseudo orbit. The question then

is, how much can we rely on those chaotic like pseudo orbits?

0 20 40 60 80 1000

0.5

1

t

Figure 4.5. Noisy 2x mod 1 map in Matlab. - Shown in the figure is a noisy 2x
mod 1 orbit generated as follows: start with initial condition x1 = π

4
, at each time

step, compute a number 2xt ± η mod 1, where η is the Matlab machine precision;
” + ” and ”− ” are chosen with equal probability.

Given a δ pseudo orbit x = {xt}Tt=1, a true orbit y = {yt}Tt=1 is an orbit which

satisfies

yt+1 = f(yt). (4.15)

That is, a true orbit is a pseudo orbit with δ = 0. The true orbit y is said to ε shadows

58

the pseudo orbit x if the following holds:

||yt − xt||2 < ε, ∀t ∈ {1, ..., T}, (4.16)

i.e., ||x− y||∞ ≡ supt ||xt − yt||2 < ε. See Fig. 4.6 for illustration.

Figure 4.6. Illustration of δ pseudo orbit and ε shadowing orbit. - In the upper
picture we illustrate the concept of a δ pseudo orbit, an orbit which suffers from finite
step-wise-error ||xt+1−f(xt)||2 bounded by the number δ for all t. In the lower picture
the idea of a shadowing orbit is illustrated. An ε shadowing orbit is a true orbit (or a
0 pseudo orbit) which ε shadows the pseudo orbit, i.e., ||x−y||∞ ≡ supt ||xt−yt||2 < ε.

It can be shown that for f being the discrete dynamics (4.11), any δ pseudo orbit

can be shadowed by a true orbit with ε no larger than 2δ. This is conveniently proved

by using symbolic dynamics, and will be left as an exercise. [Hint: the dynamics

(4.11) is conjugate to a Bernoulli shift, regarding numbers in [0, 1] in their binary

representation. A shadowing orbit can be found by feeding the errors made at each

step to appropriate binary digits of the initial condition. For those of you who are

not familiar with those concepts, (Jos05) can be a good reference.]

Thus, although the chaotic-like orbit shown in Fig. 4.6 is not a true orbit starting

from the initial condition as we specified, there exists a true orbit that lies close to

(or by technical language, shadows) it, step by step. Since the resolution of our screen

probably is not high enough to differ between the two orbits, it is safe in this case to

say that what we observe is a chaotic orbit.

In general, the existence of a shadowing orbit for a pseudo orbit with infinite

59

length (i.e., T = ∞) is guaranteed when the pseudo orbit is generated from a uni-

formly hyperbolic system with small enough step-wise-error. The original form of this

shadowing result was reported in (Bow75). Here we review a modern variant of it

which is based on the contraction mapping theorem for bounded linear operators on

Banach spaces (Pal00).

Lemma 4.1 (Infinite Shadowing (Pal00)) Let S be a compact hyperbolic set for

a C1 diffeomorphism f : U → Rm. Then there exist positive constants δ0, σ0 and M

depending only on f and S such that if g : U → Rm is a C1 diffeomorphism satisfying

||f(x)− g(x)||+ ||Df(x)−Dg(x)|| ≤ σ for x ∈ U (4.17)

with σ ≤ σ0, any δ pseudo orbit of f in S with δ ≤ δ0 is ε−shadowed by a unique

true orbit of g with ε = M(δ + σ).

Definition 4.1 (Hypberbolic Set (Pal00)) A compact set S ⊂ U is said to be

hyperbolic if

1. S is invariant, that is, f(S) = S;

2. there is a continuous splitting Rn = Es(x)⊕Eu(x), x ∈ S such that the subspaces

Es(x) and Eu(x) have constant dimensions; moreover, these subspaces have the

invariance properties

Df(x)(Es(x)) = Es(f(x)), Df(x)(Eu(x)) = Eu(f(x)) (4.18)

and there are positive constants K1, K2 and λ1 < 1, λ2 < 1 such that for k ≥ 0

and x ∈ S

Dfk(x)ξ ≤ K1λ
k
1||ξ|| for ξ ∈ Es(x) (4.19)

and

Df−k(x)ξ ≤ K2λ
k
2||ξ|| for ξ ∈ Eu(x). (4.20)

60

4.2.3 Finite Shadowing for Non Hyperbolic Systems

Although it becomes evident that infinite shadowing exists for uniformly hyper-

bolic systems, it took a while for mathematicians to realize that those systems are in

some sense not generic. Indeed, the opposite might as well be true: most interesting

chaotic systems seem to be non hyperbolic. For non hyperbolic systems, the proof

used in (Ano67; Bow75; Pil99; Pal00) does not work anymore, and there is currently

no general result about the existence of infinite shadowing (it is likely that there sim-

ply is no infinite shadowing in general for such systems, as observed in many examples

reported in the literature (Pil99; Pal00)). Instead, the best one can do is to check,

for a given, finite pseudo orbit, whether a shadowing orbit exists.

Lemma 4.2 (Finite Shadowing (Pal00)) Let f : Rm → Rm be a C2 map and

{x(t)}Tt=1 be a δ pseudo orbit. For a given right inverse L−1 of the linear operator

L : (Rm)T → (Rm)T−1, defined for u = {u(t)}Tt=1 ∈ (Rm)T by

(Lu)t = ut+1 −Df(xt)ut for t = 1, ..., T − 1, (4.21)

set

ε = 2||L−1||δ, (4.22)

where the norm of L−1 is the operator norm with respect to the supremum norm on

(Rm)T and (Rm)T−1. Next let

M = sup{||D2f(v)|| : v ∈ Rm, ||v − xt|| ≤ ε for some t = 1, ..., T.} (4.23)

Then if

2M ||L−1||2δ ≤ 1, (4.24)

the δ pseudo orbit {x(t)}Tt=1 of f is ε−shadowed by a true orbit of f .

Note that this lemma provides a sufficient, but not necessary condition on shad-

owing. In practice, if one is given a pseudo orbit with considerable step-wise error

δ, it is likely that this lemma does not hold directly, while there still exists a shad-

owing orbit. A practical (but not yet rigorous) approach to get around it is through

61

pseudo shadowing, a concept to be discussed in the following, or look at Fig. 4.7 as

an example.

4.3 Optimal Shadowing

4.3.1 Pseudo Shadowing: A Rescue for Imperfect Computers

Some important work regarding shadowing, such as (FS91) relies on using mod-

ern computers to compute, for a given pseudo orbit, a shadowing orbit. For example,

given a δ pseudo orbit, the method in (FS91) is intended to find a true orbit which

minimizes the l2 distance from the pseudo orbit. Specifically, gradient descent types

of method were suggested for numerically finding an approximate solution to the

minimization problem (RJ02; Jud08). However, as we mentioned many times be-

fore, our computers usually have finite machine precision. A numerically computed

”shadowing” orbit is unlikely to be a true orbit, but may very well be another pseudo

orbit with a smaller δ.

The concept of pseudo shadowing is meant to resolve this problem, a similar idea

was also mentioned in a recent work by Judd (Jud08). Recall that for a given discrete

dynamical system f : Rm → Rm, a sequence of numbers {xt}Tt=1 is called a δ pseudo

orbit if for any t ∈ {1, ..., T − 1}, ||xt+1− f(xt)||2 < δ. A true orbit {yt}Tt=1 is an orbit

which satisfies: ||yt+1 − f(yt)||2 = 0 for each t. The true orbit is said to ε shadows

the pseudo orbit {xt}Tt=1 if,

||y − x||∞ ≡ sup
t
||yt − xt||2 < ε. (4.25)

Now suppose that we are given a δ pseudo orbit x = {xt}Tt=1, while the finite

shadowing lemma does not hold directly; instead, we are only able to find another

δ̃ pseudo orbit {yt}Tt=1 with δ̃ < δ, and such that

||y − x||∞ < ε̃. (4.26)

For this δ̃ pseudo orbit {yt}Tt=1, it is possible that the finite shadowing lemma holds,

with ε being the shadowing distance from a true orbit {zt}Tt=1 (exists but not computed

62

explicitly) to this δ̃ pseudo orbit, so that

||z − y||∞ < ε. (4.27)

Then we may conclude, by the triangle inequality

||z − x||∞ ≤ ||z − y||∞ + ||y − x||∞ < ε+ ε̃, (4.28)

that the original δ pseudo orbit {xt}Tt=1 can be shadowed by a true orbit with shad-

owing distance no larger than ε+ ε̃.

The δ̃ pseudo orbit {yt}Tt=1 plays an important role in the above process of proving

shadowability of general pseudo orbits, and will be referred to as a pseudo shadowing

orbit of the original pseudo orbit.

As an example, Fig 4.7 shows how direct use of the finite shadowing lemma might

be misleading, and how the idea of pseudo shadowing might be useful in practice for

showing the existence of a shadowing orbit for given noisy orbits.

4.3.2 Optimal Shadowing: Theorems and Algorithms for 1D

Maps

Since shadowing can be applied to any noisy orbit regardless of the source of

noise, it becomes interesting to ask, what is the best possible shadowing orbit for

a given observed orbit? For example, given x = {xt}Tt=1 and assume that this data

comes from a discrete dynamical system: f : Rm → Rm. One may find a shadowing

orbit with shadowing distance ε not necessarily impressive. For example, for any

sequence of numbers x = {xt}Tt=1 where each xt ∈ [0, 1], even if T = ∞, for any

f : [0, 1] → [0, 1], there is a true orbit y = {yt}Tt=1 of f which shadows x, with

shadowing distance no larger than ε = 1 (Trivial!). It only becomes interesting if the

shadowing orbit shadows the pseudo orbit with a small enough ε. But how small can

this ε be for general systems? When we do find a shadowing orbit, how can we be

sure that it is not a trivial one? What is the minimal possible ε for a given pseudo

orbit? Such questions are important in bounding the error of using noisy orbits to

compute statistics for certain dynamical systems, and for measuring model quality, a

topic to be discussed in the next section.

63

0 200 400 600 800 1000

10−6

10−5

10−4
! x

0 200 400 600 800 1000

10−15
10−10
10−5

t

! y

Figure 4.7. Illustration of pseudo shadowing. - In this example a pseudo orbit
x = {xt}Tt=1 is generated by starting with x1 = 0.9501 and following the rule: xt+1 =
3.9999xt(1 − xt) + ηt, where ηt are independent random noise distributed uniformly
on the interval [−10−4, 10−4]. The orbit x is a pseudo orbit with δx ≈ 10−4; using
the equations (4.21), (4.22), (4.23), and (4.24), it can be approximated that εx =
2||L−1

x ||δx ≈ 0.0245, and 2Mx||L−1
x ||2δx ≈ 23.9624 > 1, so the shadowing lemma

does not apply. However, we are able to find another pseudo orbit y = {yt}Tt=1

(details of computing such an orbit are omitted), with δy ≈ 3.6561× 10−6, and ||x−
y||∞ ≈ 0.0027. Now for this y orbit, we have: εy = 2||L−1

y ||δy ≈ 4.9315× 10−4, and
2My||L−1

y ||2δy ≈ 0.2661 < 1. Thus the orbit y can be shadowed by a true orbit, with
εy < 5 × 10−4, and by the triangle inequality of pseudo shadowing, we can conclude
that the original orbit x can also be shadowed by some true orbit, with shadowing
distance smaller than εx + εy ≈ 0.0032.

64

In this subsection we introduce this problem of optimal shadowing, and show some

theoretical and computational results for 1D discrete dynamical systems. General-

izations to higher dimensions and to continuous systems are possible, but will not be

discussed in this thesis.

Given an orbit x = {xt}Tt=1, and a dynamical system f : Rm → Rm, a true orbit

y = {yt}Tt=1 (recall that a true orbit is one such that yt+1 = f(yt) for all t) is called

an optimal shadowing orbit if for any other true orbit z = {zt}Tt=1,

||z − x||∞ ≥ ||y − x||∞. (4.29)

The shadowing distance ||y−x||∞ from an optimal shadowing orbit y to the observed

pseudo orbit x is referred to as the optimal shadowing distance, denoted by εopt ≡
||y − x||∞.

In the following we assume that f is a continuous 1D map, i.e., f ∈ C0(S) where

S is a compact subset of R. Given a pseudo orbit x = {xt}Tt=1, define, for ε > 0, the

following sequence of intervals {It}Tt=1:

1. I1 = [x1 − ε, x1 + ε]

2. It+1 = f(It) ∩ [xt+1 − ε, xt+1 + ε] for t = 1, 2, ..., T − 1.

Then the pseudo orbit x can be shadowed by a true orbit from f with shadowing

distance no larger than ε if and only if IT 6= ∅. [Why? Hint: the true orbit has to ε

shadows p, so it is necessary to constrain each interval in the way above. The existence

of a shadowing orbit is obvious when the condition holds.] The above criteria will be

referred to as the forward iteration criteria.

Note that one may also use the following backward iteration criteria, based on f−1

(preimage of f). Define

1. JT = [xT − ε, xT + ε]

2. Jt = f−1(Jt+1) ∩ [xt − ε, xt + ε] for t = 1, 2, ..., T − 1.

In this case, the pseudo orbit x is ε shadowable if and only if J1 6= ∅.

65

To find a bound for the optimal shadowing distance, we simply need a decreasing

sequence of numbers {εk}, and check the forward (or backward) shadowing criteria

until it fails for some εK . Then the optimal shadowing distance is simply bounded

by: εK < εopt ≤ εK−1. In this thesis, we always choose this decreasing sequence of

numbers {εk} in such a way that εk−1− εk < 10−15. In cases where εK−1 � 10−15, we

can simply approximate εopt by εK−1 without having to actually compute εopt.

In theory, the above two criteria are equivalent. Fig. 4.8 shows an example of

computing the optimal shadowing distance using both the forward and backward it-

eration for a given pseudo orbit and a family of quadratic maps. In this example

the two methods give approximately the same results. However, in general there is

no guarantee that the two methods will coincide, in practice, since numerical com-

putation might cause error and the type of error is usually different for forward and

backward iterations. One needs to be careful about which one to use (or maybe use

a mixture of both), depending on the nature of the dynamics of f . We have not been

able to develop rigorous results about this criteria at this time1, and in this thesis

we will use the forward iteration method without going into the details about the

computation.

We would like to comment here that the forward iteration approach is actually

a simplified version of the containment process proposed originally in (GHYS90)

by Grebogi et al., for general nonhyperbolic systems. However, in their paper the

authors were interested in establishing lower bounds for the shadowing distance, thus

terminating the process whenever f(It) ⊃ [pt+1− ε, pt+1 + ε] fails. We notice here that

the failure of satisfying this criteria does not necessarily imply a glitch point (defined

for given ε as the point where there is no shadowing orbit which is able to shadow

further).

1One possible solution is through interval arithmetic as described in (HYG87), which we have
not explored in enough depth in order to carry out a general theory about optimal shadowing.

66

0 1 2 3 4 5
x 10−6

0.7

0.8

0.9

1

1.1

1.2

1.3 x 10−3

a−3.9999

! a

Forward
Backward

Figure 4.8. Comparison of the forward and backward method in finding
shadowing orbits. - Here a pseudo orbit x = {xt}1000

t=1 is generated by xt+1 =
3.9999xt + 10−5ηt where ηt are independent random variables distributed uniformly
on [−1, 1]. In the picture we show shadowing distance from an optimal shadowing
orbit from dynamics yt+1 = axt(1 − xt) with different parameters a. Results using
both the forward (blue squares) and backward iteration (red curve) are shown. These
two methods seem to coincide at least of a small neighborhood around the ”true”
parameter 3.9999.

67

4.4 Measuring Quality of Modeling via Shadowing

Given an observed time series {xt}Tt=1, and a family of parameter-dependent mod-

els (with form f and parameter µ)

f : Rm × Rp → Rm

(x, µ) 7→ f(x, µ), (4.30)

section 3.1 describes how the Euclidean norm can be used to compare different model

qualities for different choices of µ, and the least square method can be used to select

the optimal model in the sense of minimizing the total square of step-wise errors.

However, as we see in the previous two sections, for dynamical systems that are

chaotic, it is often more interesting and important to look at the sup norm instead

of the Euclidean norm, that is, we prefer a model which is capable of producing an

orbit that follows the observed time series as close as possible and as long as possible.

Since a model is supposed to generate only true orbits, and the empirical time series

often suffers from noise from step to step, the above problem can naturally be recast

as an optimal shadowing problem. In this section we define model quality in terms

of its ability to shadow observed time series. Specifically, shadowing distance and

shadowing time may both be used as a measure for the model quality, which usually

provides different conclusions as opposed to the least square method.

4.4.1 Shadowing Distance vs. Shadowing Time

Shadowing Distance ——

For a given pseudo orbit (i.e., a noisy time series) x = {xt}Tt=1 and a candidate model

f . The model quality of f may be measured by the optimal shadowing distance using

Qε(f) = εopt(f |x). (4.31)

In Fig. 4.9 we show how the optimal shadowing distance may be used to judge

model quality. For comparison, results based on minimizing step-wise error criteria

(i.e., method of least squares) are also shown in the same figure. In general the two

measure will not be the same, although they might give close conclusions in some

68

situations.

−1 −0.5 0 0.5 1
x 10−5

1

1.5

2

2.5

3

3.5 x 10−4

a−3.9999

200!(a)
"opt(a)

Figure 4.9. Comparison of parameter estimation based on least square crite-
ria and shadowing criteria. - A pseudo orbit is generated by the process described
in the caption of Fig. 4.8, with the only difference that the noise level is set to 10−6

instead of 10−5. In this figure the black quadratic-like curve shows, for each a, the

value ξ(a) ≡
√(∑T

t=1

[
xt+1 − f(xt, a)

]2)
/T magnified by a factor of 200, while the

blue dashed curve shows the optimal shadowing distance for each model f(x, a). The
two vertical lines are used to indicate the location of the minimal points of the two
curves. Notice a slight difference between the location of the minimal points, as a
result of the difference between the two model quality criteria.

Shadowing Time ——

A δ pseudo orbit may not in general be shadowed by a true orbit for every ε > 0.

Alternatively, one may ask, for given ε, what is the largest T ∗ such that the finite

sub-orbit {xt}T
?

t=1 can be ε shadowed by f , while {xt}T
∗+1

t=1 cannot? Note that it is

important to ask for the largest T ∗, since otherwise it is easy to find a shadowing orbit

that can only shadow a few initial points of the orbit x. Using optimal shadowing

time, the quality of a model may be assessed via:

QT (f) = T ∗(f |p, ε). (4.32)

This criteria has been similarly proposed (but without concern that one should

look for the largest, instead of an arbitrary T ∗) for nonlinear model quality evaluation

specifically motivated by weather forecasting (Gil98).

69

We illustrate this also by an example, as shown in Fig. 4.10.

10−6 10−5 10−4 10−3 10−2 10−10

2500

5000

7500

10000

12500

!

T*

10−6 10−5
0

20

40

60

Figure 4.10. Judging model quality via optimal shadowing time. - In this
example we generate a long pseudo orbit similar to the process described in Fig. 4.8,
but with noise level 10−6, and length T = 50000. For this pseudo orbit, we compute,
for the model f(x) = 3.9999x(1−x), approximately the optimal shadowing time T ∗ for
different levels of shadowing distance ε. The optimal shadowing time is computed by
applying the forward iteration until IT ∗+1 = ∅, and this T ∗ is used as an approximation
to the actual optimal shadowing time, for the given ε. The inset shows the part of
this curve from ε = 10−6 to ε = 10−5. The stair shape of the curve seems to be
interesting, and motivates further exploration for an explanation.

4.4.2 Ensemble Average Criteria

When a complicated system generates time series, we may not be interested in

a single, infinite trajectory, but instead, different trajectories with finite length. For

example, if our goal is to model the weather on a monthly basis, we may prefer to

judge the model quality by looking at how many times, on different occasions, the

model successfully describes the actual weather pattern, instead of judging the model

quality by its behavior during the whole time.

Fig. 4.11 is an example showing how the ensemble average criteria may be used

as a way to judge model quality when different pseudo orbits are considered.

70

1000 2000 3000 4000 5000

0.05

0.1

0.15

0.2

0.25

0.3

!opt

2500 3000 3500 4000 4500 5000
2
4
6
8

10

x 10−5

Figure 4.11. Shadowing of an ensemble of pseudo orbits. - In this example we
generate an ensemble of 5000 different pseudo orbits by the random process described
in Fig. 4.8, but with noise level 10−6. For each of the pseudo orbits, we compute, for
the model f(x) = 3.9999x(1− x), the optimal shadowing distance using the forward
iteration method. These 5000 εopt are then sorted in decreasing order and shown in
the figure; inset is the enlarged part from index 2500 to 5000, showing that for about
half of the orbits the optimal shadowing distance is below 10−4. The average εopt for
this example is about 0.0426, and the standard deviation is about 0.0942.

71

Chapter 5

Model Reduction of Coupled

Chaotic Oscillators: A Shadowing

Approach for Judging Model

Quality

5.1 A Shadowing Approach for Measuring Model

Quality for Chaotic Systems

5.1.1 Difficulty in Judging a Chaotic Model

A common method to compare models is to measure the difference between the

function representing the model and some empirical fitting of data, under suitable

norms such as the l2 norm because of its convenience. However, for chaotic systems,

such criteria to compare the two functions for determining whether a model is good or

not may not be as useful. Fig. 5.1 shows that, two functions can have small distance

in the functional space, while exhibit dramatically different dynamical properties.

72

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

f(x) = 3.85x(1−x)
g(x) = f(x) + (1/k)*sin(kx)

Figure 5.1. Comparing models directly in the function space. - Illustration
of two functions close in the l2 sense but not as close as two dynamical systems.
Assume that the two systems are governed by the discrete dynamics xn+1 = f(xn) and
xn+1 = g(xn), where f(x) = 3.85x(1−x) (blue solid line) and g(x) = f(x)+ 1

k
sin(kx)

(red dashed line). Shown in the figure is for k = 9π. In general, ||f − g||2 ≡
(
∫ 1

0
||f(x)− g(x)||2dx)

1
2 ≤ 1

k
. The distance can be made as small as possible, by

tuning k large; however, complexity of the dynamics f , measured by topological
entropy, can be increased arbitrarily by choosing k large.

Another common way to judge model quality is by comparing trajectories, which

can easily be misleading for chaotic systems because of the sensitivity to initial con-

ditions. When random noise or modeling error is introduced, as is always the case in

any practical situations, even a seemingly perfect model may suffer from conflicting

judgements. Fig. 5.2 shows that, if one does not exercise enough care, he may come

to conflicting conclusions: on one hand, the model is in some sense perfect, since its

form matches exactly what is driven the state variable in the absence of noise; on the

other hand, the model seems to be bad, because by comparing the orbit generated

by the model, starting with the same initial point as the observed time series and

the observed orbit, there is considerable difference between the two orbits, due to the

sensitive dependence on initial conditions, a typical property of chaotic systems. In-

deed, the problem of matching numerical orbit and model generated orbit for chaotic

systems lies in the area called shadowing, a classical concept in dynamical systems

reviewed in the previous chapter.

73

5.1.2 Judging a Chaotic Model via Shadowing

Instead of judging a model by simply computing the distance between some choice

of model-generated orbit and the observed orbit, which usually leads to non-definite

answers, we ask, what is the best orbit (referred to as an optimal shadowing orbit) the

model can produce, to match the observed orbit? Given an observed orbit {pt}Tt=1,

and a candidate model g : <m → <m which describes a discrete dynamical system,

the quality of the model g for the observation is measured by the optimal shadowing

error

εopt ≡ inf
x1∈<m

||x− p||, (5.1)

where p = {pt}Tt=1 is the observed orbit, and x = {xt}Tt=1 satisfying xt+1 = g(xt) is

a model generated orbit starting at initial condition x1, and ||.|| is usually taken as

the sup norm (or max norm for finite T). For deterministic systems, this question

is equivalent to finding the initial point which leads to a true orbit which can match

the noisy orbit best, measured in some norms.

5.2 Judging Quality of a Model Reduction

Thus shadowing can further be used for the purpose of evaluating the model qual-

ity of a reduced order model of high dimensional chaotic time series. This approach

allows us to quantify the quality of a model in an appropriate way, and offers a pos-

sibility for comparing different possible reduced order models, which is not likely to

be achieved by traditional methods.

In the case of judging model reduction, since the high dimensional system and

its reduced order model necessarily generate time series of different dimensions, there

is currently no natural, canonical way of matching those models. Our approach to

solve this problem can be described by the diagram shown in Fig. 5.3. Given a

high dimensional system and its candidate reduced order model, instead of direct

comparison, we propose the following procedure to measure the model quality: first,

we generate time series from the original system, this time series is of course of high

dimensions; next, dimensionality reduction techniques will be used, to extract a low

dimensional representation of the time series (if there exist one); finally, shadowing

74

0 10 20 30 40 50
0

0.5

1

t

pt zt st

0 10 20 30 40 50
10−6

10−4

10−2

100

t

|zt−pt| |st−pt|

Figure 5.2. Illustration of the difficulty in judging a model by comparing
orbits directly. - In the upper panel, a noisy numerical orbit {pt}50

t=1 of the logistic
map xt+1 = 4xt(1 − xt) is shown (in black squares). This orbit satisfies pt+1 =
4pt(1− pt) + δt where δt is uniformly distributed, and is of the level 2−10. The (blue)
triangles are a true, noiseless orbit {zt}50

t=1 with z1 = p1 = 0.8724.... Note that
although zt is close to pt for initial times, after about 10 steps they start to diverge.
On the other hand, starting with s1 = 0.8723..., we found a true orbit {st}50

t=1, shown
in (red) crosses, which is able to match the entire observed orbit {pt}50

t=1. In the lower
panel we show the differences between {pt}, {zt} (in blue triangles) and {pt}, {st}
(in red crosses) respectively. Although generated by the same model, {zt} and {st}
apparently leads to different conclusions about the model quality. In general, since
there are infinitely many orbits the model can produce, how to judge the quality of
the model becomes a challenging problem.

75

techniques will be used, to judge how good our reduced model is, in terms of its

capability of producing an orbit that matches the low dimensional time series.

Specifically, there are two types of error measures introduced in this approach.

First is the dimensionality reduction error η, usually measured in Euclidean norm,

which accounts for the loss of information in simplifying the observation; the second

error, crucial for assessing the model quality of chaotic systems, is the shadowing

error ε, usually measured in sup norm, which corresponds to the capability of the

given model to generate one orbit that matches the observed (low dimensional) time

series.

Figure 5.3. Illustration of the model reduction process via shadowing crite-
ria. -

76

5.3 Model Reduction of Coupled Chaotic Oscilla-

tors

5.3.1 Problem Statement

To illustrate this approach, we consider the problem of judging the quality of

reduced order model of a system of coupled chaotic oscillators. Since the approach

involves the use of numerical shadowing, which is mostly convenient to describe (and

to implement) through discrete systems, we shall consider examples where individual

oscillators are governed by some discrete chaotic process.

For discrete dynamics, the coupled non-identical oscillator network can be de-

scribed by:

w
(i)
t+1 = f [w

(i)
t , µ

(i)]− σ
n∑
j=1

lijf [w
(j)
t , µ(j)], (5.2)

where {w(i)}i=1,...,n represent a set of coupled oscillators, w
(i)
t ∈ <d is the state of

oscillator i at time t; f : <d × <p → <d is assumed to be a C1 diffeomorphism

describing the individual dynamics; the second term describes the effective coupling

between different oscillators through a discrete Laplacian matrix L = [lij]n×n, with

the property that for each i,
∑n

j=1 lij = 0; and σ is the coupling strength. The

theory and methods developed in this letter can be extended to continuous systems.

The coupling function f has been chosen to have the same form of the individual

dynamics, which corresponds to the situation where each oscillator receives a direct

signal from the output of its neighbors. The second argument µ(i) in the function f

plays an important role. It allows possible mismatch of parameters between different

individual oscillators, which is usually the case for a physical setting.

For this high (n× d) dimensional coupled chaotic system, several questions are of

particular interest, as initial exploration for the general problem as we analyzed in

Chapter 2 for non chaotic systems, and will be answered in this letter. Fig. 5.4 serves

as an illustration.

1 In what sense can we model a coupled identical oscillator network by a single

oscillator?

77

Figure 5.4. Illustration of open questions regarding the model reduction
of coupled chaotic oscillators (5.2). - In the first case (represented in the top
ellipse), all the oscillators are the same; in the second case (middle ellipse) the oscil-
lators are mismatched; while in the third case, the network consists of a cluster of
identical oscillators with a few outliers. The rectangles represent individual oscilla-
tors (the width and color are set to be slightly different, to represent the difference
of individual dynamics), edges connecting them indicate the presence of coupling. In
case one, the system can be modeled by a single oscillator if these oscillators are com-
pletely synchronized. In case two and three complete synchronization is not in general
possible. However, if the oscillators (in the cluster, for case three) are nearly synchro-
nized (SBN09d; SBN09c), model reduction is possible, under certain conditions (will
be discussed in the main context).

78

2 In what sense can we model a coupled non-identical oscillator network by a single

oscillator?

3 In what sense can we model a nearly synchronized cluster by a single oscillator?

For question 1, a general criteria is to determine whether the system synchronizes

or not. When the oscillators synchronize completely, we have:

lim
t→∞
||w(i)

t − w
(j)
t || → 0, ∀i, j. (5.3)

After transient time, since µ1 = ... = µn ≡ µ, all the oscillators evolve in the same

way, and the second term in Eq. (5.2) disappears (so there will be no error in the step

of dimensionality reduction and shadowing). The motion of oscillator i is governed

by

w
(i)
t+1 = f [w

(i)
t , µ]. (5.4)

Eqs. (5.3) and (5.4) allows us to perfectly model the coupled system by a single, low

dimensional oscillator

st+1 = f [st, µ]. (5.5)

Questions 2 and 3 are intriguing. In these cases, the oscillators are unable to

completely synchronize, thus a single oscillator model may not exactly represent the

true collective behavior of the coupled system. In particular, if one chooses the

average trajectory as a representative (as a low dimensional representation of the

high dimensional time series), then this average orbit is governed by

w̄t+1 =
1

n

n∑
i=1

f [w
(i)
t , µ

(i)]− σ

n

n∑
i,j=1

lijf [w
(j)
t , µ(j)], (5.6)

which depends essentially on every single oscillator of the previous state, implying

that the dimension of the system is as high as the original coupled system. Even in the

situation where the oscillators are nearly synchronized (see Fig. 5.5 as an example),

such that

lim sup
t
||w(i)

t − w̄t|| ≈ 0, (5.7)

if one were to use mean-field approximation, for example, replace w
(i)
t with w̄t and

µ(i) with µ̄, resulting in a low dimensional model:

w̄t+1 = f [w̄t, µ̄], (5.8)

79

then at each step this inexact model generates error, so an trajectory from this low

dimensional model usually diverges from that from the actual average trajectory due

to the sentive dependence on initial conditions, a typical property of chaotic systems.

Even a perfect model would suffer from this property (see Fig. 5.2 for a simplest case).

It is the concept of shadowing which allows us to quantify the quality of this model

appropriately.

0 20 40 60 80
10−20

10−10

100

t

|x
(1

) −
x(2

) |

identical case
mismatched case

Figure 5.5. Difference between complete (identical) and nearly synchroniza-
tion. - Consider a simple two coupled logistic maps with coupling strength σ = 0.35.
In the first case both the oscillators have parameters a = 4, while in the second case
a1 = 3.999 and a2 = 4.001. The (black) squares are the differences in Euclidean norm
between the time series from the two orbits in case 1 (identical case), and the (red)
crosses are similar plot for case 2 (mismatched case). Note that in the identical, the
difference converges to 0 exponentially, which corresponds to stable complete syn-
chronization; while in the mismatched case the difference between the two oscillators
stays small, but finite, referred to as nearly synchronization.

5.3.2 Example of Coupled Logistic Maps

The approach which adopts the idea of shadowing for judging the model quality

is justified in the following examples.

Consider as an example a set of mismatched logistic maps, with individual dy-

namics:

f [x
(i)
t , a

(i)] = a(i)x
(i)
t (1− x(i)

t). (5.9)

where we x
(i)
t is the state variable of node i at time t, and a(i) ≈ 4 denotes its individual

parameter. In practice, we restrict the state variable to belong to the interval [0, 1]

so that no orbit will be unbounded. This may be achieved simply by assigning value

1 to x
(i)
t whenever its value exceeds 1.

80

We illustrate how the quality of model may be assessed by the approach illustrated

in Section 5.2 which involves the use of shadowing.

There are two scenarios to be considered:

(1) First we illustrate how the quality of a reduced order model for a network

of coupled mismatched logistic oscillators may be assessed by the idea of shadowing.

We assume that the collection of the above logistic oscillators are coupled through

an Erdos-Renyi network of n = 1000 vertices and 49893 edges with coupling strength

σ = 0.01.

(2) Second we show the reduced model assessment for a synchronized cluster in a

coupled identical oscillator network. In this example all the oscillators are identical,

with parameters a = 4. The underlying network has a densely connected cluster,

which is a Erdos-Renyi network of n = 200 vertices and m = 3919 edges. An outlier

is constructed, by adding a new node to this network, connecting to one node in the

cluster with an single edge. The coupling strength of the whole network is set as

σ = 0.025, in which case the cluster is nearly synchronized, while the whole network

is not.

In Fig. 5.6 we evaluate one-parameter family of reduced models f(x) = ax(1− x)

where a is the parameter for those two high dimensional systems by comparing their

shadowing distances. Here we use a finite trajectory of length T = 500 after transient

time. The shadowing distances are computed by the numerical technique developed

in the previous chapter.

The above two examples illustrate how one can judge the quality of a given model,

or compare different models quantitatively by using shadowing techniques.

In both examples we have used the average trajectory as a low dimensional repre-

sentative for the high dimensional time series, since the choice of average minimizes

the square distance to all other individual trajectories. However, since our goal is

to model a chaotic system, sometimes this dimensionality reduction error is not as

important as the shadowing error, what will change if relax the condition of choosing

an optimal low dimensional representative?

Consider an example of coupled oscillator network with identical logistic maps

where the parameter a = 4. The underlying network is designed to have a three-layer

81

−5 −4 −3 −2 −1 0 1 2 3 4 5
x 10−4

0

0.0025

0.005

0.0075

0.01

a−4

sh
ad

ow
in

g
di

st
an

ce

!: case 2
!: case 3

Figure 5.6. Shadowing error of reduced order model for coupled oscilla-
tor networks. - Blue stars correspond to the result for shadowing errors for one-
parameter family of reduced models f(x) = ax(1−x) for coupled mismatched logistic
oscillators through a network of n = 1000 nodes and m = 49893 randomly placed
edges. The coupling strength is σ = 0.01. Similarly, red circles correspond to similar
reduced models for a synchronized cluster from a coupled logistic oscillator network
consisting of identical logistic maps (a = 4). The network is made up with a cluster
which has 200 nodes and 3919 random edges, and one outlier that connect to one
node from the cluster.

structure, and is constructed as follows: the inner layer is a complete subgraph of

n1 = 100 nodes; then a middle layer is added, which is a random subgraph of n2 = 50

nodes generated by the Erdos-Renyi model where any two nodes are connected with

probability 0.5, also, a node from the inner layer has a link to a node from the middle

layer with probability 0.5; the outer layer consists of a single node, which connects to

5% of the nodes from the middle layer. The coupling strength is set to be σ = 0.01

in this case.

To compare the dimensionality reduction error and the shadowing error for λ ∈
[0, 1], a one parameter family of time series y(λ) = λx1 + (1− λ)x2 is used, where x1

is the average time series from the inner layer, and x2 is the average from the middle

layer. The results are shown in Fig. 5.7 and Fig. 5.8. In Fig. 5.7, the monotone

decrease of the curves with increasing value of λ corresponds to the fact that the

inner layer is more connected and thus strongly synchronized, which leads to smaller

shadowing error for larger λ. Fig. 5.8 shows that, when µ increases (i.e., more weight

is given to the dimensionality reduction error than the shadowing error), the λ which

corresponds to the minimum of the model reduction error decreases. In general, it is

82

the nature of the problem which advice the choice of µ, and result in different model

criteria.

−1 0 1 2
x 10−4

2.5

3

3.5

4

4.5

5 x 10−3

a−4

!(
")

"=0
"=0.3
"=0.6
"=1

0 0.5 1

2.06

2.08

2.1
x 10−3

"

#(")

n2/(n1+n2)

Figure 5.7. Dependence of shadowing error on λ. - This figure shows, for
different choices of λ, the shadowing error for different models which depend on the
parameter a used in the model. The inset shows the dimensionality reduction error
curve with respect to λ, which is minimized at λ = 1

3
in this case.

5.4 Discussion and Open Problems

In this chapter we propose a general approach for assessing the quality of a reduced

order model for high dimensional chaotic systems. The key in this approach is the

novel application of shadowing, combined with dimensionality reduction techniques.

This approach overcomes the usual difficulty encountered by traditional methods

which either tries to compare systems of the same size by measuring the distance in

the functional space, or measure how close an orbit generated by a model is to the

observed data.

We have illustrated the validity of our approach by examples of coupled Henon

oscillator network in the cases where the oscillators are either nearly synchronized, or

only a portion of the oscillators (not all) are synchronized. Interestingly, a parameter

83

0 0.2 0.4 0.6 0.8 1
2

2.2

2.4

2.6

2.8

3 x 10−3

!

µ
*"

(!
)+

(1
−µ

)*
#(
!)

µ=0 µ=1/3 µ=2/3 µ=1

Figure 5.8. Interplay between dimensionality reduction error and shadowing
error. - In µ = 0 case, the curve is the top one, which shows that the model reduction
error decreases monotonically with respect to the increase of λ; this trend remains for
other choices of µ such as µ = 1

3
(the second top curve) and µ = 2

3
(the second bottom

curve). However, when µ is slowly increasing to the value 1, in which case much more
emphasis is given on the dimensionality reduction error than the shadowing error,
the minimum of this curve (on the bottom) is no longer attained at λ = 1, but near
λ = 1

3
.

84

shift is found for an optimal model as opposed to the direct average of individual

dynamics.

Problems left open include, given this measure of how good a model is, how to effi-

ciently find an optimal model? How to model network dynamics in some hierarchical

sense. Results on such problems will be reported in future work.

85

Chapter 6

Dynamics of Networks: Updating

Schema for Local Statistics

6.1 Introduction

Complex networks are useful tools for modeling complicated real life objects and

their interactions. Examples include computer networks, social networks, biological

networks, etc. (AB02; BA99; DGM08; New03; PVV01; VPV02; WS98; Zho06). Re-

cently developed statistical methods (AB02) allow us to analyze large networks by

several important macroscopic statistic meant to summarize the massive amount of

information required to completely describe the network, an impossible task without

the availability of modern computers. These statistics include such things as degree

(number of connections each node has), clustering coefficient (WS98), assortativity

coefficient (New02), modularity measure (New06), etc. Fast algorithms (Net; Paj)

have been developed to compute these statistics for any given network, either repre-

sented by adjacency matrix or edge list (CLRS01).

Despite that many real world networks evolve, and even grow in time, it is only

recently that network models have allowed for this ubiquitous feature. Understanding

the evolution of such networks invariably leads quickly to computing network statistics

as they evolve in time, (KW06; GBB09). In this regard, for any evolving network, to

86

measure the corresponding evolution of network statistics, the computation based on

static network structure must be done (for the network) at each time step, resulting

in a costly (and perhaps, impractical) computation. A missing part in the study

of evolving networks is a development of a dynamic algorithm which updates the

statistics rather than recomputing the quantity from scratch.

Figure 6.1. Evolution of the degree distribution of a randomly growing
network. - This picture shows the computed evolution of degree distribution of
an evolving network constructed by simply adding edges at random, one at a time.
This computation was performed using the algorithm developed in this chapter, and
would be impractical if one were to do direct computation. The figure is adopted
from (SBBS09), and can also be found at the Physical Review E Kaleidoscope Images
(March 2009): http://pre.aps.org/kaleidoscope/March2009.

In this chapter we present an update algorithm specifically for local statistics based

on the knowledge of existing network structure and the changes to the network. Our

methods allow us to update relevant statistics of a large network by considering only

the adjustments to the network. (See Fig. 6.1 for an example of the application of

our algorithm). This philosophy represents a significant theoretical advancement in

understanding large scale networks (critical quantities and topological features), and

87

http://pre.aps.org/kaleidoscope/March2009

it also leads to efficient algorithms for tracking evolution of large scaled networks in

time.

Although it is relatively straightforward to formulate the update schema for lo-

cal statistics once one realizes that updating is usually better than re-computing, it

becomes challenging to develop similar update schema for global statistics such as

shortest paths and spectrum. Such problems will be left for discussion in the next

chapter.

The rest of Chapter 6 is organized as follows: In Section 6.2, we review the def-

inition of some network statistics and introduce notation that will be used in the

chapter for these statistics. In Section 6.3, we derive update formulas for network

statistics upon the change of network structure and we will compare the compu-

tational complexity to the use of standard methods. In Section 6.4, we provide a

simplified, algorithmic representation of our update scheme; and in Section 6.5, we

show examples of application of the update scheme. In Section 6.6, we discuss the

main results of this chapter and give some overview of potential future research.

6.2 Local Graph Statistics

We represent a network using a graph G = (V,E) where V = {1, 2, ..., n} is the

vertex set and E = {(i, j) | i and j are connected} is the edge set. Note that for

undirected graphs, it is not necessary to include (j, i) in the set E if (i, j) ∈ E,

however, including both of them allows easier generalization to directed graphs. In

this work, we limit ourselves to undirected, unweighted networks; their graphs possess

a symmetric, binary adjacency matrix A:

aij =

1, if (i, j) ∈ E;

0, otherwise.
(6.1)

Let m denote the total number of edges in G. Then

m ≡ 1

2
|E| = 1

2
||A||2F =

1

2

∑
i,j

aij, (6.2)

where |.| is the cardinality of a set.

88

Define the neighborhood N(i) of node i as the set of vertices that are adjacent to

i:

N(i) ≡ {j|(i, j) ∈ E} = {j|aij = 1} . (6.3)

Likewise, define the shared neighborhood Nij of nodes i and j as:

Nij ≡ N(i) ∩N(j). (6.4)

The degree ki of node i is the number of nodes i is adjacent to:

ki ≡ |N(i)| =
∑
j

aij =
∑
j

aji. (6.5)

The clustering coefficient of node i is defined by (WS98):

Ci ≡


24i

ki(ki−1)
, if ki ≥ 2;

0, otherwise,
(6.6)

where 4i is the number of triangles that contain i. Then the average clustering

coefficient 1 of the whole network is simply the average of all Ci’s:

C ≡ 1

n

∑
i

Ci. (6.7)

The assortativity coefficient r, which describes the correlation of the degree of

adjacent nodes of a network(New02), is computed as:

r ≡
8m
∑

(i,j)∈E kikj −
[∑

(i,j)∈E (ki + kj)
]2

4m
∑

(i,j)∈E
(
k2
i + k2

j

)
−
[∑

(i,j)∈E (ki + kj)
]2

=
8mu− v2

4mw − v2
, (6.8)

where

u ≡
∑

(i,j)∈E

kikj, (6.9)

v ≡
∑

(i,j)∈E

(ki + kj), (6.10)

w ≡
∑

(i,j)∈E

(
k2
i + k2

j

)
. (6.11)

1There is an alternative definition of the average clustering coefficient of a network in (New03),
and the formula for updating this alternative C can be derived easily based on updating the number
of triangles and triples in the network.

89

Modularity Q (New06) measures the quality of a community partition and is

typically defined as:

Q ≡ 1

2m

∑
i,j

(
aij −

kikj
2m

)
δ(gi, gj)

=
1

2m

[
SA −

1

2m
SP

]
, (6.12)

where δ(gi, gj) = 1 if nodes i and j are in the same group and zero otherwise, and

SA ≡
∑
i,j

aijδ(gi, gj), SP ≡
∑
i,j

kikjδ(gi, gj). (6.13)

Note that all the above statistics (degree, clustering coefficient, assortativity coef-

ficient, and modularity) depend on some function of the statistics of individual nodes

in a local sense. This observation is key to the efficient update of those statistics.

6.3 Updating Local Statistics

6.3.1 Connecting a New Node

The operation of adding an edge to a new node can be decomposed into two suc-

cessive operations. First, introduce an isolated node that connects to nothing in the

network; then add an edge between this node and a previously existing node. In this

subsection we discuss the effect of adding an isolated node, and leave the discussion

of adding an edge to the next subsection. We use ·̃ to represent updated statis-

tics. [Note: this section provides the derivation of update formulas. For algorithmic

representation of this scheme, the reader should look to Section 6.4.]

Since no new edge is introduced, it is easy to obtain the following updating rela-

tions:

ñ = n+ 1, m̃ = m, Ẽ = E, (6.14)

and

ãij =

aij, if i 6= n+ 1 and j 6= n+ 1;

0, otherwise.
(6.15)

90

Then for other statistics, we have:

k̃i = ki, i 6= n+ 1;

k̃n+1 = 0; (6.16)

and

C̃i = Ci, i 6= n+ 1;

C̃n+1 = 0, (6.17)

so that

C̃ =
1

ñ

∑
i

C̃i =
1

n+ 1

∑
i

Ci =
n

n+ 1
C. (6.18)

Similarly, r̃ = r since ũ = u, ṽ = v, and w̃ = w; and Q̃ = Q since S̃A = SA and

S̃P = SP .

6.3.2 Adding an Edge between Existing Nodes

Suppose apq = 0 (p 6= q and p, q are not connected), we analyze the impact

of connecting p and q on the various statistics of the network. See Fig. 6.2 for an

example.

Figure 6.2. Schematic addition of an edge. - The original graph consists of
n = 5 nodes (solid circles) and m = 6 edges (solid lines). For the original graph the
degree vector is k = [2, 3, 3, 2, 2], while the triangle vector is 4 = [1, 1, 1, 0, 0], the
clustering coefficient vector is C = [1, 1

3
, 1

3
, 0, 0], and the average clustering coefficient

is 1
3
. After an edge is added between node 2 and node 5 (dashed line), the above

statistics change to k̃ = [2, 4, 3, 2, 3], 4̃ = [1, 3, 2, 1, 2], C̃ = [1, 1
2
, 2

3
, 1, 2

3
], and the new

average clustering coefficient becomes 23
30

.

91

The goal is to derive computations that are as inexpensive as possible. We use ·̃
to represent updated statistics:

Ẽ = E ∪ {(p, q), (q, p)}, (6.19)

m̃ = m+ ∆+m = m+ 1, (6.20)

and

ãij = aij + ∆+aij = aij + δipδjq + δiqδjp, (6.21)

where we use update delta ∆+ to represent the change for statistics upon adding an

edge to the existing network. In the following part the notation ∆− will also be

used, to denote change for statistics upon deleting an existing edge. When there is

no confusion, we will not explicitly specify which edge to add or delete in the update

delta notation.

Based on the above formulas, we can derive schemes for efficiently updating net-

work statistics.

Degree(+)

The change in degree for node i is simply:

k̃i = ki + ∆+ki = ki + δip + δiq, (6.22)

where

∆+ki = δip + δiq. (6.23)

The above formula indicates that the degree changes only for vertex p and q. Thus if

we keep a list of the degree of all vertices of the network, each update takes only two

operations when a new edge is added.

Clustering Coefficient(+)

To compute the new clustering coefficient of each node, and thus the whole network,

we need the updated number of triangles at node i:

4̃i =


4i, if i /∈ {p, q} ∪Npq;

4i + 1, if i ∈ Npq;

4i + |Npq| , if i ∈ {p, q}.

(6.24)

92

Combining this with Eq. (6.22) and 4i = 1
2
Ciki(ki − 1), from Eq. (6.6), we have:

C̃i =


Ci, if i /∈ {p, q} ∪Npq;

Ci + 2
ki(ki−1)

, if i ∈ Npq;

ki−1
ki+1

Ci + 2|Npq |
ki(ki+1)

, if i ∈ {p, q}.

(6.25)

Note that whenever the denominator of a fraction is zero, we define the fraction to be

zero, such as in Eq. (6.25) and also throughout. This maintains the consistency that

Ci = 0 if ki < 2. Finally, the average clustering coefficient C becomes: C̃ = C+∆+C

where

∆+C =
2

n

∑
i∈Npq

1

ki(ki − 1)
+
∑
i∈{p,q}

(
|Npq|

ki(ki + 1)
− Ci
ki + 1

) . (6.26)

Note that to update the average clustering coefficient, we need to keep the clus-

tering coefficient for each node in order to apply the update formula. This implies an

O(n) storage complexity.

Assortativity Coefficient(+)

To compute r̃, we need ũ, ṽ, and w̃. The update formula for u is:

ũ =
∑

(i,j)∈ eE
k̃ik̃j =

∑
(i,j)∈E

k̃ik̃j + 2(kp + 1)(kq + 1)

=
∑

(i,j)∈ bE
kikj + 2

∑
i∈N(p)

ki(kp + 1)

+ 2
∑
i∈N(q)

ki(kq + 1) + 2(kp + 1)(kq + 1)

= u+ 2

 ∑
i∈N(p)

ki +
∑
i∈N(q)

ki

+ 2(kp + 1)(kq + 1)

= u+ ∆+u. (6.27)

Here Ê = E \ {(p, q), (q, p)} is the edge set that contains all edges in E except(p, q)

and (q, p), and

∆+u = 2

 ∑
i∈N(p)

ki +
∑
i∈N(q)

ki

+ 2(kp + 1)(kq + 1). (6.28)

93

Similarly, we can obtain update formula for v and w:

ṽ =
∑

(i,j)∈ eE
(k̃i + k̃j)

= v + 4(kp + kq + 1) = v + ∆+v, (6.29)

where

∆+v = 4(kp + kq + 1). (6.30)

For w we have:

w̃ =
∑

(i,j)∈ eE
(k̃2
i + k̃2

j)

= w + ∆+w, (6.31)

where

∆+w = 6 [kp(kp + 1) + kq(kq + 1)] + 4. (6.32)

Finally, the new assortativity coefficient can be updated using:

r̃ = r + ∆+r

=
8m̃ũ− ṽ2

4m̃w̃ − ṽ2

=
8 (m+ 1) (u+ ∆+u)− (v + ∆+v)

2

4 (m+ 1) (w + ∆+w)− (v + ∆+v)2 . (6.33)

Modularity(+)

For modularity, we assume that after connecting the nodes p and q, the partitions gi

do not change for any node i. Then the new modularity measure will be:

Q̃ =
1

2m̃

[
S̃A −

1

2m̃
S̃P

]
. (6.34)

We already have m̃ = m+ 1, so we can now derive updating formulas for SA and SP .

By Eq. (6.13), we have:

S̃A = SA + ∆+SA

=
∑
i,j

ãijδ(gi, gj)

=
∑
i,j

(aij + δipδjq + δiqδjp) δ(gi, gj)

= SA + 2δ(gp, gq) (6.35)

94

where ∆+SA = 2δ(gp, gq); and

S̃P = SP + ∆+SP

=
∑
i,j

k̃ik̃jδ(gi, gj)

=
∑
i,j

(ki + δip + δiq) (kj + δjp + δjq) δ(gi, gj)

= SP + 2
∑
i

ki
[
δ(gi, gp) + δ(gi, gq)

]
+ 2
[
δ(gp, gq) + 1

]
. (6.36)

However, computing the sum in Eq. (6.36) for every update is expensive. To avoid

this, define the following auxiliary statistics:

Kg ≡
∑
i

kiδ(gi, g) (6.37)

with the updating scheme

K̃g = Kg + ∆+Kg

= Kg + δ(gp, g) + δ(gq, g) (6.38)

giving

S̃P = SP + ∆+SP = SP + 2
(
Kgp +Kgq

)
+ 2
[
δ(gp, gq) + 1

]
(6.39)

where ∆+SP = 2
(
Kgp +Kgq

)
+ 2
[
δ(gp, gq) + 1

]
.

Finally, combining (6.35) and (6.39) with (6.34) gives the updating scheme for Q:

Q̃ = Q+ ∆+Q

=
1

2(m+ 1)

[
SA + 2δ(gp, gq)−

1

2(m+ 1)

(
Sp + 2[Kgp +Kgq] + 2[δ(gp, gq) + 1]

)]
.

(6.40)

From Eq. (6.40) one is able to predict whether the modularity measure Q increases

or decreases with the knowledge of the existing partition of the graph, as well as the

edge to be added. For example, if there is a preexisting partition of the graph into

two groups, and if a new edge is added in between the two groups, then ∆+Q < 0,

i.e., the modularity decreases. On the other hand, if a new edge is added to vertices

belonging to the same group, then the modularity increases if the edge is added to

the group with smaller total degree. However, adding an edge within a group does

not necessarily increase Q if the edge is added into a group with a larger total degree,

see Fig. 6.3 as an example.

95

Figure 6.3. Modularity change upon the addition of an edge. - An example
that the modularity actually decreases when a new edge is added to vertices within
the same group. The dashed oval boxes indicate the preexisting partition of the graph
into two groups. Solid lines are the edges in the original graph. Before adding the new
edge (dashed arrow), the modularity is 0.125. After a new edge is added between two
vertices in the same group (solid circles) the updated modularity becomes 0.1235.

6.3.3 Deleting an Existing Edge

Now we investigate how network statistics change when we delete an existing edge

in the network. See Fig. 6.4 for an example.

Figure 6.4. Schematic removal of an edge. - The original graph consists of n = 5
nodes (solid circles) and m = 7 edges (solid lines), with statistics k = [2, 4, 3, 2, 3],
4 = [1, 3, 2, 1, 2], C = [1, 1

2
, 2

3
, 1, 2

3
], and the average clustering coefficient 23

30
. After the

edge between node 2 and node 5 is deleted, the new statistics are: k̂ = [2, 3, 3, 2, 2],

4̂ = [1, 1, 1, 0, 0] Ĉ = [1, 1
3
, 1

3
, 0, 0], and the new average clustering coefficient is 1

3
.

Note that this is a symmetric operation to the one shown in Fig. 6.2.

Suppose apq = 1 (p 6= q and p, q are connected), and we delete the edge (p, q) ∪
(q, p), from our edge set E. We will use Â to represent the updated adjacency matrix,

96

and similarly for other statistics. Then we immediately have:

Ê = E \ {(p, q), (q, p)}, (6.41)

m̂ = m− 1, (6.42)

and

âij = aij + ∆−aij = aij − δipδjq − δiqδjp. (6.43)

Degree(−)

The change in degree for node i is: k̂i = ki + ∆−ki where

∆−ki = −δip − δiq. (6.44)

Clustering Coefficient(−)

For the new clustering coefficient, we first obtain the formula for updating the number

of triangles containing node i:

4̂i =


4i, if i /∈ {p, q} ∪Npq;

4i − 1, if i ∈ Npq;

4i − |Npq|, if i ∈ {p, q}.

(6.45)

Then we obtain the formula for updating Ci:

Ĉi =


Ci, if i /∈ {p, q} ∪Npq;

Ci − 2
ki(ki−1)

, if i ∈ Npq;

ki
ki−2

Ci − 2|Npq |
(ki−1)(ki−2)

, if i ∈ {p, q}.

(6.46)

The average clustering coefficient C is updated by: Ĉ = C + ∆−C where where

∆−C = − 2

n

∑
i∈Npq

1

ki(ki − 1)
+
∑
i∈{p,q}

(
|Npq|

(ki − 1)(ki − 2)
− Ci
ki − 2

) . (6.47)

Assortativity Coefficient(−)

The updating formulas for u, v, w are û = u + ∆−u, v̂ = v + ∆−v, ŵ = w + ∆−w,

where

∆−u = −2

 ∑
i∈N(p)

ki +
∑
i∈N(q)

ki

− 2(kp − 1)(kq − 1),

∆−v = −4 (kp + kq − 1) , (6.48)

∆−w = −6 [kp(kp − 1) + kq(kq − 1)]− 4.

97

Then the new assortativity coefficient r̂ is given by

r̂ =
8m̂û− v̂2

4m̂ŵ − v̂2
=

8(m− 1)(u+ ∆−u)− (v + ∆−v)2

4(m− 1)(w + ∆−w)− (v + ∆−v)2
. (6.49)

Modularity(−)

For modularity, we again assume that the community partitions gi are unchanged

after disconnecting the edge between p and q. It follows that

ŜA = SA + ∆−SA = SA − 2δ(gp, gq), , (6.50)

ŜP = SP + ∆−SP = SP − 2
(
Kgp +Kgq

)
+ 2 [δ(gp, gq) + 1] (6.51)

where Kg is now updated using

K̂g = Kg + ∆−Kg = Kg − δ(gp, g)− δ(gq, g). (6.52)

These now define the updating scheme for Q̂ =
(
ŜA − ŜP/2m̂

)
/2m̂.

We remark here that the operation of removing a node can be decomposed into

the removal of edges that node is adjacent to. Thus, formulae given for the deletion

of an edge can also be used for the removal of a node.

6.4 Algorithmic Representation and Complexity

6.4.1 Algorithmic Representation of the Update Schema

In this section We give pseudo-code for implementing our update

schema upon single change to the network, as described in Section 6.3.

Pseudo code of the update schema for local statistics

Given: A, a symmetric binary matrix corresponding to a simple graph.

98

Compute initial statistics:

n: number of nodes, m: number of edges;

k: degree vector, C: clustering coefficient vector, C̄: average clustering coefficient;

u, v, w, r: assortativity coefficient and related statistics, as described in Section 6.2;

SA, SP , g,K,Q: modularity measure and related statistics, as described in Section

6.2, and in Eq. (6.37).

if a new node is added to the network without any connection then

C → [C; 0], C̄ = n
n+1

C̄;

A→ [A, 0; 0];

n→ n+ 1;

k → [k; 0].

else if a new edge is added between nodes p and q then

(1) Update C:

Set: ∆+C = 0,

Let Npq denote the set of common neighbors of p and q, and

Set: Cp = Cp − 2
kp+1

Cp + 2|Npq |
kp(kp+1)

, ∆+C = ∆+C − 2
kp+1

Cp + 2|Npq |
kp(kp+1)

,

Set: Cq = Cq − 2
kq+1

Cq + 2|Npq |
kq(kq+1)

, ∆+C = ∆+C − 2
kq+1

Cq + 2|Npq |
kq(kq+1)

,

for every i ∈ Npq do

Set: Ci = Ci + 2
ki(ki−1)

∆+C = ∆+C + 2
ki(ki−1)

,

end for

Update the average clustering coefficient: C̄ = C̄ + ∆+C
n

.

(2) Update r:

Set: u = u+ 2(
∑

i∈N(p) ki +
∑

i∈N(q) ki) + 2(kp + 1)(kq + 1),

Set: v = v + 4(kp + kq + 1),

Set: w = w + 6[kp(kp + 1) + kq(kq + 1)] + 4,

Update the assortativity coefficient: r = 8(m+1)u−v2
4(m+1)w−v2 .

(3) Update Q:

Set: SA = SA + 2δ(gp, gq),

99

Set: SP = SP + 2(Kgp +Kgq) + 2[δ(gp, gq) + 1],

Set: Kg = Kg + δ(gp, g) + δ(gq, g),

Update the modularity measure: Q = 1
2(m+1)

[SA − 1
2(m+1)

SP].

(4) Update elementary statistics:

Set: A(p, q) = A(q, p) = 1,

m→ m+ 1,

Set: kp = kp + 1, kq = kq + 1.

else if an existing edge between nodes p and q is removed then

(1) Update C:

Set: ∆−C = 0,

Let Npq denote the set of common neighbors of p and q, and

Set: Cp = Cp + 2
kp−2

Cp − 2|Npq |
(kp−1)(kp−2)

, ∆−C = ∆−C + 2
kp−2

Cp − 2|Npq |
(kp−1)(kp−2)

,

Set: Cq = Cq + 2
kq−2

Cq − 2|Npq |
(kq−1)(kq−2)

, ∆−C = ∆−C + 2
kq−2

Cq − 2|Npq |
(kq−1)(kq−2)

,

for every i ∈ Npq do

Set: Ci = Ci − 2
ki(ki−1)

∆−C = ∆−C − 2
ki(ki−1)

,

end for

Update the average clustering coefficient: C̄ = C̄ + ∆−C
n

.

(2) Update r:

Set: u = u− 2(
∑

i∈N(p) ki +
∑

i∈N(q) ki)− 2(kp − 1)(kq − 1),

Set: v = v − 4(kp + kq − 1),

Set: w = w − 6[kp(kp − 1) + kq(kq − 1)]− 4,

Update the assortativity coefficient: r = 8(m−1)u−v2
4(m−1)w−v2 .

(3) Update Q:

Set: SA = SA − 2δ(gp, gq),

Set: SP = SP − 2(Kgp +Kgq) + 2[δ(gp, gq) + 1],

Set: Kg = Kg − δ(gp, g)− δ(gq, g),

Update the modularity measure: Q = 1
2(m−1)

[SA − 1
2(m−1)

SP].

100

(4) Update elementary statistics:

Set: A(p, q) = A(q, p) = 0;

m→ m− 1;

Set: kp = kp − 1, kq = kq − 1.

end if

6.4.2 On Computational Complexity

In Table. 6.1 we compare the computational complexity of using the updating

scheme and regular methods. For the update scheme, we assume that the initial

statistics are already known, so that the update value listed indicates the compu-

tations required to perform a single update to those statistics. For the standard

methods, we note that the operation count depends on the data structure used to

represent the network. The updating scheme requires O(1) operations to update for

sparse graphs and at most O(< k >), which requires significantly less work than

regular methods when graph size becomes large.

Table 6.1. Comparison of Computational Complexity

Statistics Adjacency Matrix Edge List Updating Scheme

degree (one node) O(n) O(< k >) O(1)
degree (network) O(n2) O(< k > n) O(1)

clustering coefficient (one node) O(< k > n) O(< k >3) O(< k >)
clustering coefficient (network) O(< k > n2) O(< k >3 n) O(< k >)

assortativity coefficient O(n2) O(< k > n) O(< k >)
modularity measure O(n2) O(< k > n) O(1)

Our primary focus is developing efficient algorithms for applications to problems

of dynamic networks, and the computation savings is significant. For example, given a

network of n vertices and m edges, if one edge is added to this network, the computa-

tion of network statistics needs to be remade using traditional methods (corresponding

to columns 2 or 3 in Table. 6.1); On the other hand, our update scheme provides an

efficient way to update these statistics which requires a far less number of operations

(corresponding to column 1 in Table. 6.1).

101

One may also consider the process of building a network, which can be viewed

simply as an edge-adding algorithm from a starting set of a graph withN nodes and no

edges. It takes <k>n
2

steps to create the network. The update formulas for the degree

and modularity indicate that computing the entire time sequence of statistics has the

same computational complexity as doing the single computation for the final state

(using the edge list). In the formula for the clustering coefficient it is more efficient

to calculate each value along the way rather than doing a single computation of the

final state, although we also need additional storage to track the clustering coefficient

for each node. Computing the entire time vector of assortativity coefficients requires

an additional factor < k > computations, which is (typically) a minor price.

6.5 Examples of Application

In this section we show implementation of the above formula to obtain the evo-

lution of some network statistics. We will focus on the case of adding edges between

existing nodes, the other two operations will be very similar. The statistics we will

calculate are the degree distribution, the average clustering coefficient and the mod-

ularity measure, although again, the evolution of other statistics can be obtained in

the same manner by using the updating scheme. The evolving network models we

choose are not intended to mimic real-world nets, but to show the efficiency of the

updating scheme.

6.5.1 Evolution of Degree and Clustering Coefficient

In Fig. 6.5 we show the evolution of the degree distribution of a typical realization

of a growing random graph (Bol01), obtained as follows: start with a random graph

of n = 1000 nodes, with average degree < k >= 10. At each time step, randomly

choose two nodes that are not connected, and make an edge between them, until

the average degree of the network reaches <̃ k > = 20. The total number of time

steps is 5000, which is O(n) in this case. Note that using the updating scheme

to obtain the evolution of degree in this case requires O(n2) operations (mostly for

102

initial calculation) while using regular method would require O(n3) operations (using

adjacency matrix).

Figure 6.5. Evolution of degree distribution of a random growing network.
- The number of vertices is 1000 in the network. Initially the connection probability
of any pair of edge is 0.01, by adding random edges in the network, this probability
increases to 0.02 in the end. We show two views of the evolution of the degree
distribution as with respect to the process of add successive random edges. In the left
panel we see that for any given time, the empirical distribution shows the underlying
Poission process, and the peak is moving to larger degree side as time increases. The
right panel simply provides an alternate view of the same data, providing clearer
visualization of hidden portions of the 3-d surface.

In Fig. 6.6 we show the evolution of the average clustering coefficient of a typical

realization of a Barabasi-Albert network (BA99). The initial network is a random

network with n = 100 vertices and every pair of vertices is connected with probability

p = 0.5. Then, 5000 new vertices are added in the current network successively. Each

time a new vertex is introduced, it connects to two preexisting vertices according to

the preferential attachment rule (BA99), which corresponds to two time steps shown

in Fig. 6.6. The update scheme allows us to efficiently compute the evolution curve

shown in Fig. 6.6, instead of recomputing the average clustering coefficient at each

time step, which would have raised the computational requirement by about five

orders of magnitude.

103

Figure 6.6. Evolution of the average clustering coefficient C of a growing
Barabasi-Albert network. - In the left panel we show the evolution of the average
clustering coefficient C at each time instance. In the right panel we show the change of
average clustering coefficient ∆C. Note that to obtain this curve of the evolution of C,
we only need to compute C for the initial network once, which requires O(< k >3 n)
operations, and then adopt our update formula, which requires O(< k >) operations
per step; While if one uses direct computation, it would require O(< k >3 n) to
compute each single step, and is highly inefficient. The structure in the right side
graph is only observeable because we compute the change at each time step and would
be obscured if we were to compute the change over larger time increments.

6.5.2 Evolution of Modularity

We start from an initial network with clear partition, constructed as follows:

generate an empty graph of n vertices, and prescribe a partition of the set {1, 2, ..., n}
into two groups such that the group sizes are n1, n2. Randomly connect any pair of

vertices in group 1 with probability p1, and those in group 2 with probability p2;

then randomly connect a vertice in group 1 to a vertice in group 2 with probability

pbetween. Probability pbetween is chosen to be smaller than p1 and p2, creating a clear

community structure. In our example, we choose n = 1000, with group 1 composed

of nodes {1, ..., 500}, with the rest of the nodes forming group 2. We let p1 = p2 = 0.2

and pbetween = 0.05. For the evolutionary process, we add random edges between

the groups until the probability of connecting between groups is the same as the

probability of connecting inside the groups (resulting in a completely random network

in the end). In Fig. 6.7 we plot the adjacency matrix of the graph at three specific

time instances. As more in-between edges are added, the original partition is less valid

104

(the block diagonal structure becomes more vague). Correspondingly, the evolution

of the modularity measure is shown in Fig. 6.8.

Figure 6.7. Spy plot at three specific instances for the adjacency matrices
of a random growing network. - The left panel correponds to the initial network
(p1 = p2 = 0.2 and pbetween = 0.05), where there is a clear community structure.
The middle panel corresponds to the time when pbetween reaches 0.1 where the com-
munity structure becomes less apparent. The right panel is the end of the growing
process such that pbetween = 0.2 and the network is totally random with no community
structure.

6.6 Discussion and Open Problems

In this chapter we derive update formulae for important local network statistics

(degree, clustering coefficient, assortativity coefficient, and modularity) as theoretical

and computational tools for analyzing evolving networks. The update formulae are

based on a singe edge or node updating. An arbitrary change to the graph structure

can be viewed as a sequence of these unitary changes, with statistics updated by

sequential applications of the formula we present in this paper. We also show several

examples to illustrate the use of the updating scheme, allowing us to efficiently track

the evolution of network statistics in situations where traditional methods to compute

those statistics would be impractical.

The derivation of the update formula in this chapter requires that the statistics

depend locally on network structure, for example, the update formula for the clus-

tering coefficient only requires the knowledge of local information of the vertices that

are going to be connected.

It becomes intriguing when the statistics we wish to update depends potentially

105

0.05 0.1 0.15 0.2

0

0.1

0.2

0.3

Pbetween

Q

Figure 6.8. Evolution of modularity Q for a random growing network. -
Three red squares correspond to the time instances that are shown in Fig. 6.7.

on all the edges of a graph, for example, shortest paths, and eigenvalues of an ad-

jacency matrix. There exists related theory that can be used to bound the change

of some global statistics when a the change in a graph is considered as a perturba-

tion. For example, the perturbation to the spectra and eigenvectors (including the

Fiedler vector) of the graph Laplacian upon adding or deleting a few edges in the

graph may be obtained by results such as those in (Fie89) and (Dem97) based on

Gershgorin theorem. However, in practice such bounds may be far from being sharp

in the sense that the actual change happens to the statistics may be far from what

the perturbation theory predicts. Thus, direct/naive use of the existing theory from

linear algebra would provide little insight into the actual evolution of networks. In the

next chapter (Chapter 7) we will make an attempt to tackle some of the difficulties.

In particular, we will develop an update schema for efficiently computing path lengths

in an evolving network. For spectrum related statistics, an exact update formula is

impractical to find, since computing eigenvalues in general requires numerical proce-

dures which suffer from small errors; instead we develop approximation formulae for

the actual perturbation, and have shown by numerical examples that in many cases

the developed approximation is satisfactory.

On the other hand, the examples of update schema of those local statistics shown

106

in this chapter motivate us to find a systematic way to update all graph statistics,

in some sense. One possibility is to classify graph statistics into different orders,

and derive framework for update graph statistics in general, including both local and

global situation.

107

Chapter 7

Dynamics of Networks: Evolution

of Global Statistics

In the previous chapter, and (SBBS09), updating schema for some important

network statistics such as degree, clustering coefficient, assortativity, and modularity

were reported, based on the use of local information from the network. However,

efficient updating schema for statistics that rely on global information, such as the

shortest paths from one vertex to another, or the spectra of the graph adjacency

matrix or graph Laplacian can not be obtained by similar approach.

In this Chapter (Chapter 7) we introduce methods to update global statistics

such as the path lengths and spectral radius of an adjacency matrix. The update

formulae for all-pair shortest paths, although usually faster in practice, might, in

the worst case scenario, cost as much as a re-computation. On the other hand,

if we are only interested in update the average path length, instead of all the path

lengths, an asymptotic better algorithm can be found, as long as the diameter (defined

as the length of a longest path in a graph) of the graph scale sub-linearly as the

number of nodes. In the case of spectrum related statistics, the best one can hope

is approximation formulae, since the computation of eigenvalues and eigenvectors

of a matrix would in general suffer from numerical error to begin with. Based on

classical perturbation results, we have developed useful approximation formulae to

108

measure the impact of changing an arbitrary subgraph on the spectral radius of the

adjacency matrix. Similar techniques can be easily adopted to develop formulae for

other spectrum related statistics, such as the eigenvalues of the graph Laplacian.

7.1 Global Statistics: Exact Update vs. Approxi-

mation

7.1.1 Shortest Paths in Networks

Shortest paths in networks play important roles in many contexts. For a simple

graph G = (V,E), a path (Die06) is a sequence of nodes (i1, . . . , il+1) such that for

each k ∈ {1, . . . , l}, (ik, ik+1) ∈ E. The length of a path (i1, . . . , il+1) is simply l. A

path between nodes s and t is a path such that in the above notation, i1 = s and

il+1 = t, or the other way around. A path (i1, . . . , il+1) from node s to t is called a

shortest path if for any other path (i′1, . . . , i
′
l′+1), its length l′ ≥ l; that is, a shortest

path (connecting two certain nodes) is a path with minimal length. A shortest path

between two given nodes is unique in trees (a tree is a loop-less graph), but not true

in general. See Fig. 7.1 for illustration of these concepts.

Figure 7.1. Example of a shortest path in a small graph. - For this small
graph with 7 nodes, an example of a path can be (2, 4, 7, 5, 2, 1, 3), of length 6. This
path contain a loop (2, 4, 7, 5, 2, and thus can not be a shortest path. A shortest path
connecting nodes 1 and 7 (dashed circles) is highlighted by bold lines, which is the
path (1, 2, 5, 7). Note that there are more than one shortest paths connecting nodes
1 and 7, namely, the paths (1, 2, 5, 7) and (1, 2, 4, 7), both of length 3.

Computing shortest paths between two nodes in a graph usually requires the full

109

knowledge of all the structure of the graph, since potentially any edge in the graph

may be present in the shortest path. For simple graphs, a classical technique called

breadth-first-search (BFS) can be used to compute shortest paths between a given

node to all other nodes, with computational complexity (CLRS01; KT05) O(m+ n)

where n,m are the number of nodes and edges in the graph, respectively. The shortest

path lengths between all pairs of nodes can thus be obtained by performing BFS at

all nodes in a graph, in O(mn + n2) operations. Details of BFS on such problems

shall be reviewed in section 7.2.

As a global property, many real world networks studied so far are known to have

low path lengths compared to their size, usually scale logarithmically as the number

of nodes (AB02; New03; WS98); a popular technique for nonlinear dimensionality re-

duction constructs a graph whose shortest paths reveals the natural distances between

data points on the underlying nonlinear manifold (TSL00), such technique can also be

adopted for the modeling of chaotic attractors (Bol07); a novel approach to the graph

isomorphism problem also relies on the computation of shortest paths (BBSb08);

navigation on networks also usually relies on information about the shortest path

structures (Kle00a; Kle00b). Furthermore, shortest paths are how they change when

network changes is also relevant to statistical physics as a relevant problem in the

study of percolation (LPC+07).

A natural problem one may encounter, in practice, is that, when small changes are

introduced to the graph, how much the current information can be used, to avoid the

re-computation of shortest paths of the whole network, a costly task indeed. It is also

crucial to have an efficient algorithm so that in modeling the evolution of networks

one is able to compare the evolution of average path length of the model to real world

data.

We, in this thesis, aim at developing efficient (although not necessarily optimal)

algorithms to compute shortest paths in a similar manner as other update schema

(see Section 7.2.2 for details). In the case of updating all-pair shortest path lengths,

we illustrate by an example that in the worst case the actual change can indeed be

O(n2) for a simple sparse graph and thus any algorithm that is able to update all

path lengths has to scale no better than O(n2). However, if we only want to compute

the average path length, there exists algorithm (Section 7.2.3) which runs in O(dmn)

110

time, where dm is the diameter of the graph under consideration (usually dm ∼ log(n)

for small world networks).

7.1.2 Eigenvalues and Eigenvectors of Networks

Another important class of statistics related to large networks is spectrum-related

statistics, such as the spectral radius of an adjacency matrix, denoted in the following

simply by λ when no confusion occurs.

For an uncorrelated network 1, define µ ≡ 〈k
2〉
〈k〉 where 〈.〉 denotes average. There

is an interesting connection between λ and µ in large uncorrelated networks, as shown

in (CLV03), that: λ ≈ µ if µ > k̄max log n where n is the number of vertices, and k̄max

is the averaged maximum degree over many realizations. The intuition is that: λ and

µ are ’sort of’ positively correlated, and the larger λ (or µ) is, the more ’connected’

the network is.

Furthermore, it was shown in (ROH06b) that the critical coupling strength for a

large network of coupled phase oscillators to achieve synchronization is proportional to

1
λ
; the threshold for epidemic in an uncorrelated network is 1

µ
, and that of a correlated

network is proportional to 1
λ

where here the λ is for a connectivity matrix which relates

to the original adjacency matrix (BP02b); regarding percolation and robustness of

networks, the critical fraction of nodes that need to be removed to disintegrate the

network is related to µ as: pc = 1− 1
µ−1

(CEbH00). The list continues in various other

problems across science and engineering, see (DGM08; Mac00; ROH06a; ROH07) and

the references therein.

From another point of view, one of the most important and fundamental problems

in complex networks, both from a theoretical and applicative viewpoint, is that of

measuring centrality. Various measures of centrality have been proposed, to account

for different quantitative properties of the underlying network. Examples are degree

centrality, shortest path and random walk betweenness, clustering coefficient and

eigenvector component (ER05; New03). One of the most common applications of

such measures is probably the ranking of vertices of a network, in particular in the

1By uncorrelated we mean that the joint probability distribution of the node degrees are
independent.

111

context of web search engines (Kle99; LM05). Many of these centrality measures are

connected with the spectral radius of the adjacency matrix of the graph.

For a real world network that evolve in time, little is known about how its spec-

trum changes accordingly, and its consequences. Such measures would be impor-

tant, as theory in problems such as synchronization of a complex interacting system

usually described by large network of coupled oscillators may hold only in specific

cases (PSBS06; SB04; SBR06) and not in general. How current theory on static net-

works can be extended to time dependent networks is an important problem. The

difficulty comes, again, partly because computing eigenvalues of large matrices is al-

ready expensive (at least O(n)); when a network changes, tracking the exact change

in some eigenvalue even just for one step requires considerable amount of time. Al-

though an exact update is unlikely to be found, classical perturbation results for

eigenvalues can be used in novel ways to approximate the change, for example, of the

spectral radius of an adjacency matrix upon structural modification to the network

even when the perturbation is not infinitesimal (see Section 7.3 for details). This

type of technique can also be adopted for other statistics such as the eigenvalues of a

graph Laplacian (MSN09).

7.2 Updating Path Lengths of Evolving Networks

Motivated by such problems discussed in the beginning of this chapter and various

applications, we present an updating schema for shortest paths in a network. These

schema update the distance and predecessor matrices of the corresponding graph

upon elementary operations consisting of either addition or deletion of a single edge.

Arbitrary changes can be decomposed into these elementary operations.

7.2.1 Breadth-First-Search

Compute a shortest path from one node to another is a classical problem in graph

theory. A widely used technique for this problem in the case of simple graphs is called

breadth-first-search (BFS) (CLRS01; KT05). Here we briefly review this approach.

112

Suppose that we want to find the shortest path lengths from a given node s to

all other nodes in a given simple graph G = (V,E). Denote the shortest path length

between nodes i and j by d(i, j) (d(i, j) is also referred to as the distance between

nodes i, j). By convention we let the d(i, i) = 0 for all i, and if there is no path

between i and j, its distance is d(i, j) is defined to be ∞.

It is obvious that the distance from s to all its neighbors is 1. To compute the

distance to more nodes, one basically start to consider the neighbors of neighbors

which do not connect directly to s, excluding s itself; those will have distance 2 to

s. Then this process is repeated until all the nodes that can be reached from s have

been explored, and by then the distances from s to all these nodes will be obtained,

and the distances from s to all nodes that cannot be explored in this process are all

∞. If the graph is connected, then indeed all the nodes in the graph will be explored

in the above process, otherwise the set of nodes defined above form a component of

the graph.

Formally, this type of iterative search is called a breadth-first-search (BFS), and

can be summarized more precisely in the following:

Given: G = (V,E), an undirected, unweighted, and loop-less graph where |V | = n

and |E| = m

Goal: Find the shortest path lengths from a node s to all the other nodes and the

corresponding paths.

Let: d = [di]1×n and π = [πi]1×n be two vectors to represent the solution, where

di represents the distance from node s to i, and πi the predecessor of i on some

shortest path from s.

Set: b = [0, ..., 0] an 1− by − n vector.

Set: A list L = {s}, ds = 0, πs = 0, and bs = 1.

while L 6= ∅ do

Set C = L; Set L = ∅.
for all nodes j ∈ C do

Find all the neighbors of node j, forming a set N(j).

for all nodes k ∈ N(j) do

if bk = 0 then

113

Set dk = dj + 1 and πk = j, bk = 1.

Add k to the list L.

end if

end for

end for

end while

for all i such that bi = 0 do

Set di =∞ and πi =∞.

end for

Note that the while loop runs through all edges in the graph at most once for each,

and all other operations are all of order n, the algorithm thus can be shown to have the

computational complexity O(m+n) where n and m are the number of nodes n = |V |
and edges m = |E| respectively. In the case of sparse graphs where m = O(n), the

complexity would simply be O(n), i.e., linearly dependent on the number of nodes in

the graph.

Fig. 7.2 illustrates the process of BFS by using a small graph as an example. Using

the BFS algorithm described above, consider node 1 as the base node, one obtains

the vectors d = [0, 1, 1, 2, 2, 2, 3, 3, 4, 4] and π = [0, 1, 1, 2, 2, 3, 5, 5, 8, 8] in this case.

A BFS tree obtained by starting at a node s in a graph is referred to as a BFS tree

rooted at node s. Note that a BFS tree rooted at a node need not be unique. In fact,

for node 1 in the graph shown in Fig. 7.2, we could have replaced the edge (2, 5) by

(3, 5) and obtain another BFS tree rooted at node 1. Nonetheless, the shortest path

lengths between nodes are always unique, regardless the different possible choices of

BFS trees.

To compute the path lengths between all pairs of nodes, one simply needs to

perform the BFS algorithm at each individual node. Thus the computational cost

for obtaining the shortest paths for all pairs of nodes becomes O(mn+n2), following

the fact that a single BFS requires O(m+ n) operations, and there are n nodes in a

graph.

We will use a matrix D = [dij] to represent the distances between nodes, where dij

114

Figure 7.2. Example of a BFS tree in a small graph. - The upper left shows
the example graph, where the upper right shows a BFS tree rooted at node 1. The
lower panel shows, stage by stage, the process of BFS starting at node 1. The solid
lines are edges included in the BFS tree, where the dashed lines indicate edges from
the original graph which do not belong to the BFS tree.

equals the shortest path length between nodes i and j; and another matrix Π = [πij]

to store the predecessors, where πij denote the predecessor of node j on the shortest

path from i in a BFS tree rooted at node i. So for example, the matrices D and Π

for the graph shown in Fig. 7.2 are:

D =

1

2

3

4

5

6

7

8

9

10



0 1 1 2 2 2 3 3 4 4

1 0 2 1 1 2 2 2 3 3

1 2 0 3 2 1 3 3 4 4

2 1 3 0 2 3 3 3 4 4

2 1 2 2 0 1 1 1 2 2

2 2 1 3 1 0 2 2 3 3

3 2 3 3 1 2 0 2 3 3

3 2 3 3 1 2 2 0 1 1

4 3 4 4 2 3 3 1 0 2

4 3 4 4 2 3 3 1 2 0



, Π =

1

2

3

4

5

6

7

8

9

10



0 1 1 2 2 3 5 5 8 8

2 0 1 2 2 5 5 5 8 8

3 1 0 2 6 3 5 5 8 8

2 4 1 0 2 5 5 5 8 8

2 5 6 2 0 5 5 5 8 8

3 5 6 2 6 0 5 5 8 8

2 5 6 2 7 5 0 5 8 8

2 5 6 2 8 5 5 0 8 8

2 5 6 2 8 5 5 9 0 8

2 5 6 2 8 5 5 10 8 0



,

(7.1)

where row indices have been put (in bold) on the left hand side of both matrices for

convenience.

115

7.2.2 Updating All-Pair Shortest Paths

Motivated by problems and applications mentioned at the beginning of this chap-

ter, we present an updating schema for efficiently computing shortest paths for graphs

that change in time. The schema presented in this section update the distance and

predecessor matrices of the corresponding graph upon elementary operations con-

sisting of either addition or deletion of a single edge. Arbitrary changes can be

decomposed into these elementary operations.

Consider a sparse undirected graph G = (V,E) with no self-loops, where V,E are

the vertex and edge sets respectively. Let n = |V |,m = |E|, then m = O(n) since the

graph is sparse. It is also assumed that the graph is connected throughout the section;

for graphs that are not connected, one shall adopt our algorithms for each connected

component of the graph. Since finding the connected component only requires O(n)

operations, the results obtained in this paper would not be affected. We will use A to

represent the adjacency matrix associated with G, and D = [dij]n×n be the distance

matrix, where

dij ≡ length of the shortest path between i and j; (7.2)

And let Π = [πij]n×n be the predecessor matrix which encodes the actual shortest

paths between all pairs of nodes, where

πij ≡ the predecessor of j on some shortest path from i. (7.3)

By convention, set dii ≡ 0 and πii ≡ 0 for each i. We use (i, j) to denote the edge

connecting vertices i and j, and i→ j to denote the shortest path from i to j. There

may be multiple shortest paths from i to j. We are only concerned with any one of

them that has been discovered.

As discussed in the previous section, obtaining D and Π for a given unweighted

graph requires O(n2) operations when the graph is sparse. Our goal is to develop an

efficient algorithm that utilizes the current information of the network to efficiently

compute the new distances and shortest paths upon small change to the network.

116

Adding or removing a leaf vertex

Suppose a new vertex is introduced, labeled as n + 1, which only connects to a

vertex p in the existing network (1 ≤ p ≤ n) with edge weight w. Such a vertex is

usually referred to as a leaf in the graph. Since the path from vertex n + 1 to any

other vertex must go through its only neighbor p, and no other paths will use this

edge, the new distance matrix can be easily obtained, as follows:

D̃ =

[
D d:,p + 1

dp,: + 1T 0

]
, (7.4)

where d:,p and dp,: are the pth column and row of D, respectively; and 1 ≡ [1, . . . , 1]T.

It follows that for shortest paths,

Π̃ =

[
Π p1

πp,: + (n+ 1)eT
p 0

]
, (7.5)

where πp,: is the pth row of Π, and eT
p ≡ [0, . . . , 0, 1, 0, . . . , 0] with the 1 at its pth

position. The above update requires O(n) operations.

To delete a leaf vertex p, the inverse operations are performed, and simply delete

the pth row and column of D and Π.

Adding an edge between unconnected vertices

Suppose vertices p and q are not connected in G, and an edge is added between

them, resulting in a new graph G̃, with corresponding adjacency matrix Ã, distance

matrix D̃, and predecessor matrix Π̃.

Updating the distance and predecessor matrices consists of the following steps:

1. Identify the following sets:

V +
p ≡ { i ∈ V | dip + 1 < diq} ,

V +
q ≡ {j ∈ V | djq + 1 < djp} .

(7.6)

This step requires O (n) operations. Note that it is always true that p ∈ V +
p , q ∈

V +
q .

117

It can be shown 2 that the distance between any pair of vertices (i, j) may

change only if (i, j) ∈ (V +
p × V +

q) ∪ (V +
q × V +

p). An important consequence is

that any new shortest path only consists of vertices in V +
p ∪ V +

q .

2. Update the shortest paths.

Let i ∈ V +
p . Update the ith row of D, Π according to:

d̃i,V +
q

= dip + 1 + dq,V +
q
,

π̃i,q = p,

π̃i,V +
q −{q} = πq,V +

q −{q}. (7.7)

Similarly we can update the rows for which j ∈ V +
q : simply replace i by j, p by

q, and q by p in Eq. (7.7).

The evaluation of Eq. (7.7) runs through all pairs of vertices (i, j) ∈ (V +
p ×V +

q)∪
(V +

q × V +
p). Let n+ = 1

2

(∣∣V +
p

∣∣ +
∣∣V +
q

∣∣), then this step requires O
(
n2

+

)
operations.

Hence, the total operations for the update is O
(
n+ n2

+

)
.

Fig. 7.3 shows a simple example of the sets defined by Eq. (7.6). Fig. 7.4 provides

simulations of the size of n+.

This update schema, although not necessarily optimal, might be the best one can

hope, since there are examples where n+ actually scales as n, and the number of

distances change in the graph is actually of O(n2). Such an example can be simply

constructed, see Fig. 7.5.

Removing an existing edge

Suppose (p, q) is an edge inG. The graph after the deletion of edge (p, q) is denoted

as Ĝ, with associated adjacency matrix Â, distance matrix D̂, and predecessor matrix

Π̂.

2The proof is based on extensive use of the triangle inequality property of distances between
vertices, and the fact that any sub-path of a shortest path is itself a shortest path. The details are
boring and thus omitted from the thesis.

118

Figure 7.3. The sets V + upon edge addition. - Solid lines are unchanged edges
in the original graph (unweighted), while the dashed line with arrowheads connecting
vertices p = 6 and q = 7 is the edge added. V +

p = {2, 3}, and V +
q = {9, 10, 11, 12}

(shaded circles) by Eq. (7.6), which denote the vertices that use the newly added edge
to construct shortest paths to q and p respectively.

Figure 7.4. The size of n+ under random edge addition. - Shown are simulations
for Erdos-Renyi (ER) graphs, averaged over 100 runs, where random unconnected
pairs of vertices were connected and n+ was computed (shaded regions indicate ±
one standard deviation). Insets show the full distribution at the annotated points.
As the edge density increases, shortcuts become less important, and n+ decreases.

119

Figure 7.5. Worst case scenario of the update schema upon addition of an
edge. - Consider a ring graph of n nodes with one edge missing, as illustrated in
the picture. When this edge (dashed line) is added to the graph, the sets V +

p and V +
q

are both of size n
2
; on the other hand, the actual change in the distance matrix is also

of order n2. Trivial as it seems, this example shows that, update is not necessarily
better than re-compute, at least in the asymptotic case.

1. Identify the following sets (in O (n) operations):

V −p ≡ { i ∈ V | dip + 1 = diq} ,

V −q ≡ {j ∈ V | djq + 1 = djp} .
(7.8)

Similarly as the case of addition, it can be shown that the distance between any

pair of vertices (i, j) may change only if (i, j) ∈ (V −p × V −q) ∪ (V −q × V −p), and

any new shortest path only consists of vertices in V −p ∪ V −q .

2. Update the shortest paths.

Denote the subgraph of G induced by V −p ∪ V −q by G−, and let n− = 1
2

(∣∣V −p ∣∣+∣∣V −q ∣∣). We obtain the shortest paths between vertices in this subgraph G−

(i.e., distance and predecessors for this induced subgraph) by standard BFS

algorithm. This step thus costs O
(
n2
−
)

operations.

Thus, the number operations needed for the updates in the case of removal is

O
(
n2
−
)
.

Fig. 7.6 shows a simple example of sets (7.8).

Again, consider the case illustrated by Fig. 7.5, in the worst case, n− ∼ n, and up-

date might require O(n2) operations, although the leading constant could be smaller

than that of performing a re-compuation.

120

Figure 7.6. The sets V − upon edge removal. - Solid lines are unchanged
edges in the original graph (unweighted), while the dashed line with arrowheads
connecting vertices p = 6 and q = 7 is the edge removed. V −p = {1, 2, 3}, and
V −q = {8, 9, 10, 11, 12} (shaded circles) by Eq. (7.8), which denote the vertices that
could have used the removed edge for its shortest paths to q and p respectively.

7.2.3 Updating Average Path Length

In the following we discuss how to update simply the average path length without

going into the details of updating al the shortest path lengths. This may be achieved

by introducing a new count during the BFS process. This count will be denoted by

a matrix C = [cij]n×n, where

cij ≡ # offsprings of node j in the BFS tree rooted at node i. (7.9)

When an edge (p, q) is added to a graph, for each i, there are three possibilities

(analogous to the definition of sets V + and V − described in the last subsection):

1. |dip − diq| ≤ 1

In this case the addition of edge (p, q) will not affect the distance from i to the

other nodes.

2. dip + 2 ≤ diq

In this case, in the BFS tree rooted at i, node q and all its offsprings will go

through the newly added edge (p, q) in their shortest paths to the root i. The

121

number of these nodes is precisely ciq + 1, by definition. The change of the

summation of distances from i to all other nodes follows:∑
j

dij →
∑
j

dij + (dip − diq)(ciq + 1). (7.10)

Also, the i− th row of C will change. The update of this row can be performed

by tracking the shortest paths from nodes p, q to the root i:

Let (p, j1, . . . , jx, i) and (q, k1, . . . , ky, i) be the shortest paths from p and q to

i in the original graph, respectively. These paths can be obtained easily from

reading the i− th row of the matrix Π. We update row i of C as follows:

For each l ∈ {p, j1, . . . , jx} : cil → cil + ciq + 1;

For each l ∈ {k1, . . . , ky} : cil → cil − ciq − 1. (7.11)

These updates require at most O(dm) operations, where dm is the maximum

shortest path length, also known as the diameter of the graph.

Meanwhile, the update for Π matrix only requires changing one entry π(i, q)→
p.

3. diq + 2 ≤ dip This case is similar as the case where |dip − diq| ≤ 1.

To summarize, once we have the matrices C and Π, and distances dip, diq for all

i, the average path length 〈dij〉 can be simply updated without updating the whole

matrix D. For each i, update the i−th row of C and Π only requires O(dm) operations

where dm is the diameter of the graph; thus, update the whole C and Π matrices in

the worst case requires O(dmn) operations. On the other hand, computing dip, diq for

all i needs O(n) operations.

Thus, we can conclude that the above approach updates the average path length

in O(dmn) operations. In cases where dm ∼ log n, we have an O(n log n) update.

Fig. 7.7 illustrates the effect of adding an edge on the matrix C. The application of

this approach to physical problems can be found in (SBB+09).

122

Figure 7.7. Updating the number of offsprings in a BFS tree. - Consider
the graph shown in the left panel where black lines are the edges. Now suppose that
we add an edge between nodes 3 and 8, denoted by a blue double arrow. The two
pictures in the right panel shows the corresponding change of the BFS tree rooted
at node 1, where dashed lines are the edges in the graph that are not present in the
BFS tree. Bold numbers beside the nodes are the number of offsprings in this tree.
For the new BFS tree the number is only shown where changes occur.

7.2.4 Application to Other Global Statistics

Eccentricity and Diameter

The eccentricity εi of a vertex i is simply:

εi ≡ max
j

[dij] . (7.12)

To update these, simply maintain {εi} for all vertices and, when dij → d̃ij (or d̂ij),

check if d̃ij > εi, and replace εi accordingly.

Likewise, the diameter D of the graph is the largest eccentricity:

D ≡ max
i

[εi] . (7.13)

This can be updated similarly. For each update dij → d̃ij, if d̃ij > εi, check if d̃ij > D
and update D accordingly.

Network Portraits

Define a network portrait (BBSb08) as the matrix B with elements:

bl,k ≡ # of starting nodes with k nodes at a distance l. (7.14)

123

It has been shown (BBSb08) that these portraits encode a great deal of information

about the network. Unfortunately, they are expensive to calculate, equivalent to

computing the entire distance matrix D. If the network is evolving, generating a new

portrait after each alteration will continually require O(n2) additional computations.

This prohibitive cost can be mitigated using the shortest paths updating schemes

presented here.

To update the portrait, define an auxiliary data structure, a “histogram vector”

si:

si(d) ≡ # of nodes at distance d from node i, (7.15)

which can be constructed initially alongside the original distance matrix. Upon each

distance update, the corresponding s can be updated at O(1) cost:

dij → d̃ij ⇒

si(dij)→ si(dij)− 1,

si(d̃ij)→ si(d̃ij) + 1;
(7.16)

and likewise for dij → d̂ij. The simultaneous update for dji follows from symmetry

(for undirected networks).

Finally, B can be updated using s:

dij → d̃ij ⇒

bdij ,si(dij) → bdij ,si(dij) − 1,

bedij ,si(edij) → bedij ,si(edij) + 1;
(7.17)

where si(dij) is the value before the update. Thus we can take advantage of the

shortest paths updating schema to update the portrait at O(1) cost, while using, e.g.,

only O(n lnn) additional storage (for a small-world network).

7.3 Approximating Spectrum Perturbations

In this section we discuss how to approximate the change of spectrum of a graph

when small changes occur. For convenience of presentation we have assumed that

the graphs under consideration are undirected and unweighted. Generalization can

be found in (MSN09).

124

7.3.1 Defining the Spectral Impact

Let G = (V,E) be a simple graph (undirected and unweighted and without self-

loops), where V is the set of vertices, and E the set of edges. For convenience, the

vertices in V can be labelled with integers 1, . . . , n.

Let A ∈ Rn×n be the adjacency matrix of a simple graph (not necessarily simple),

where its entry aij is defined to be 1 if there is an edge connecting nodes i and j, and

0 otherwise. Thus A is non-negative. If it is also irreducible (LT85), then the Perron-

Frobenius theorem (LT85; Mac00) can be used to show that its largest eigenvalue λ

is simple and positive, and there exist a positive eigenvector associated with it. In

this case, denote the normalized eigenvector by v, so that

Av = λv, ‖v‖2 = 1. (7.18)

In general, the condition of non-negativity is equivalent to requiring the weights of the

edges of the underlying graph to be non-negative; on the other hand, the condition

of irreducibility corresponds to the graph being strongly connected. In this section,

the graphs under consideration all share these properties.

In (ROH06a) the dynamical importance Iij of an edge from i to j was defined

as the amount of relative decrease the removal of this edge causes on λ, i.e., if after

removing such an edge λ becomes λ−∆λij, then Iij ≡ ∆λij/λ. Hence the dynamical

importance of an edge quantitatively captures the effect that the removal of such

an edge has on the largest eigenvalue of the graph adjacency matrix. An analogous

definition was introduced for the dynamical importance of vertices, where Ik is the

importance of node k. Approximations of these dynamical importances, based on

perturbation techniques, are given in (ROH06a); in case of simple graphs, Iij and Ik

can be approximated, respectively, by

Īij =
vivj
λ

(7.19)

and

Īk = v2
k, (7.20)

where the subscript i indicates the i-th component of the vector.

In this thesis, the notion of dynamical importance is extended to measure the

spectral impact (SI) upon the removal of an arbitrary subgraph, and of the addition

125

of an arbitrary set of links. Formulae for approximating the SI will be given in the

case of simple graphs. The readers are referred to the paper (MSN09) for general

cases, including similar approach for the graph Laplacian.

The spectral impact is defined as 3

IB ≡
λ|A+B − λ|A

λ|A
, (7.21)

where A denotes the adjacency matrix of the original graph, λ|A is the corresponding

spectral radius, while B is the adjacency matrix of a subgraph of Kn (complete graph

of n nodes), with weighted edges. Note that in the case of removing a subgraph of

A, the entries of B will be non-positive.

7.3.2 Classical Perturbation Results and Approximation in

Practice

Classical perturbation results for eigenvalues can be found, for example,

in (Dem97; GV96; LT85; Wil65). Here we review some of the main results by

Wilkinson (Wil65).

Let A and C be two n−by−n real symmetric matrices satisfying |aij| < 1, |cij| < 1

for all i, j. Let λ1 be a simple eigenvalue of A. The problem is to find the perturbation

to this eigenvalue upon small change in A. By expanding the characteristic equation

in terms of ε, the corresponding eigenvalue of the matrix A+ εC may be written as,

for sufficiently small ε:

λ1(ε) = λ1 + k1ε+ k2ε
2 + . . . , (7.22)

where the coefficient k1 can be obtained from:

k1 = vT1 Cv1, (7.23)

where v1 is the normalized eigenvector associated with λ1. For k2, all the eigenvalues

and eigenvectors of A comes into play, even in the symmetric case:

k2 =
n∑
i=2

(vTi Cv1)2

λ1 − λi
. (7.24)

3Here positive values correspond to an increase in λ, and negative values correspond to a decrease.

126

Since the second order term k2ε
2 involves the computation of all eigenvalues and

eigenvectors of a matrix, it can be of little help in practice.

Rewrite Eq. (7.22) in a Taylor like expansion:

λ1(ε) = λ1 + ∆λ = λ1 + ∆1 + ∆2 + . . .

= λ1 + ε λ′|A +
ε

2

2

λ′′|A + . . . , (7.25)

where by the classical results, we have the first order approximation:

∆λ ≈ ∆1 = ε λ′|A = εvT1 Cv1, (7.26)

and for more accuracy, a second order approximation:

∆λ ≈ ∆1 + ∆2 = ε λ′|A +
ε

2

2

λ′′|A

= ε
[
vT1 Cv1

]
+
ε

2

2[
2

n∑
i=2

(vTi Cv1)2

λ1 − λi

]
. (7.27)

Since computing the second derivative term using known perturbation results

would require knowledge of all the eigenvalues and eigenvectors of A (Wil65), as

mentioned before, the second order approximation formulae is impractical. Hence, a

further approximation is introduced, as

λ′′|A ≈
λ′|A+εC − λ′|A

ε
. (7.28)

The term λ′|A+εC takes into account the change in the eigenvector from v to v+ ∆v.

We propose to estimate v+∆v by means of one iteration of the power method. Here,

the assumption is that v and v + ∆v are close to be parallel, hence a single iteration

of the power method is satisfactory. The spectral gap of A+ εC is not critical for this

application. Starting from the unperturbed eigenvectors, as

v + ∆v ≈ (A+ εC)v

‖(A+ εC)v‖2

=
λv + εCv

‖λv + εCv‖2

=

=
λv + εCv√

λ2vTv + 2ελvTCv + ε2vTCTCv

≈ λv + εCv

λ
, (7.29)

where ε terms in the denominator have been neglected. Thus

∆v ≈ ε

λ
Cv. (7.30)

127

Therefore, the derivative λ′|A+εC can be approximated as

λ′|A+εC = (v + ∆v)T C (v + ∆v)

≈ vTCv + vTC∆v + ∆vTCv ≈

≈ vTCv +
2ε

λ
vTCCv, (7.31)

having neglected terms containing ∆v in the denominator, and the product ∆vTC∆v

in the numerator. Thus, an improved approximation for ∆λ is given by

∆λ ≈ ∆1 + ∆2 ≈ vT εCv +
1

λ
vT ε2C2v. (7.32)

7.3.3 Spectral Impact of Nodes, Edges, and General Sub-

graphs

Changing an Arbitrary Subgraph

In most interesting problems in the context of networks, discrete changes take place,

instead of infinitesimal perturbations. In such cases, A → A + B and the entries of

B are finite. Furthermore, the non-zero entries of B are usually of the same order

of magnitude as the non-zero entries of A. If, however, the modifications introduced

to the network are limited, then ‖B‖2 � ‖A‖2, and Eqs. (7.26) and (7.26) would be

valid, with εC replaced by B. The other approximations we have made are likely

to be valid also if the modification is small, and this is supported by the fact that

Eq. (7.32) improves significantly over Eq. (7.26) for the example networks we will see

below.

For a general change in the adjacency matrix from A to A+B, we thus have:

∆λ ≈ ∆1 = vTBv, (7.33)

while the second order one is recast as

∆λ ≈ ∆1 + ∆2 ≈ vTBv +
1

λ
vTB2v. (7.34)

Correspondingly, the SI IB defined in Eq. (7.21) has first order approximation

ÎB =
1

λ
vTBv, (7.35)

128

and second order one
ˆ̂
IB =

vTB(v +Bv/λ)

λ
. (7.36)

Equation (7.35) is linear in B: therefore, the change can be decomposed into the

sum of elementary changes, as B =
∑

iBi, where Bi can represent, for example, a

modification of a single edge. The corresponding first order approximation for the SI

is obtained from the individual contributions, as ÎB =
∑

i ÎBi . On the other hand,

Eq. (7.36) has a linear and a quadratic dependence on B and linear superposition

cannot in general be used. However, if all the products of elementary changes BiBj

are zero matrices (for example, if Bi’s represent the disconnected components of the

subgraph), then
ˆ̂
IB =

∑
i

ˆ̂
IBi .

Removing an Edge

From Eqs. (7.35) and (7.36), the SI upon the removal of an edge (i, j) can be simply

approximated at first and second order as:

ÎBij = −2vivj
λ

, (7.37)

and

ÎBij = −
(2vivj

λ
+
v2
i + v2

j

λ2

)
, (7.38)

based on the fact that Bij is a matrix with entry being nonzero only at positions

(i, j) and (j, i).

Removing a Node

Removing a node, indexed by k, in a simple graph corresponds to removing all edges

touching it. In this case, the first order approximation reads

Îk = −2v2
k, (7.39)

while the second order one yields

ˆ̂
Ik =

(
−1 +

dk
λ2

)
v2
k, (7.40)

where dk ≡
∑n

i=1 aki is the in-degree of vertex k.

The last two equations show well that, in the case of removing a node, first and

second order approximations yield rather different results, with Eq. (7.39) estimating

an SI more than double than the one of Eq. (7.40). This difference comes from the

129

fact that, in the case of removing node k, the k-th component of the new dominant

eigenvector becomes zero, regardless of its previous value, thus the change in v is not

negligible.

7.3.4 Numerical Results

The accuracy of various approximations are assessed using both synthetic and

real world graphs, shown in the following. As an example of artificial networks, the

Erdos-Renyi random graph (Bol01) is used, with n = 1000 nodes and probability of

connection p = 0.01. The particular realization used is labelled, for convenience, G1,

and has 5004 undirected links, without self-loops. The largest degree is dmax = 20,

the minimum is dmin = 2, the average dmean = 10.01. The largest (in magnitude)

eigenvalues of the corresponding adjacency matrix are computed to be λ = 11.0741,

λ2 = −6.53518 and λ3 = 6.50196. The approximation to SI is shown in Fig. 7.8.

Note that for both the first and second order estimates the plots are almost mono-

tonic, indicating that the ranking of nodes, edges, and triangles defined by the SI are

accurately estimated by these formulae.

The approximation of SI is analyzed also on three real-world networks, referred

to, for convenience, as G2, G3 and G4. Basic properties of such networks are reported

in Table 7.1, along with the pertinent references. G2 is a biological example, G3

is a social interaction case, while G4 can be regarded as an instance having both

an engineering and social character. Figure 7.9 shows – for these three networks

– the eigenvector components, the real and approximated SI for removing an edge

and removing a node. The eigenvector components are shown in order of increasing

magnitude; in several cases, the smallest components appear to be rather small and

fall below the axis limit on the figure. The presence of components in the dominant

eigenvector spanning several order of magnitudes amounts to large discrepancies in

the importance of edges, for example. When the removal of edges is analyzed, both the

first and second order approximations for the SI are satisfactory. On the other hand,

if removal of nodes is considered, the second order formula of Eq. (7.40), containing

a correction for the degree of the node, yield results more accurate than Eq. (7.20).

In this case, the SI is as large as -7%.

130

Figure 7.8. Results for approximating the SI of an Erdos-Renyi network G1. -
(a) Eigenvector components sorted in increasing order. The true SI is plotted against
its approximation (both in percentage) for the removal of (b) edges, (c) triangles, and
(d) nodes. The black plus symbols correspond to the first order approximation (7.35),
the red squares to the improved approximation (7.36), and the blue circles to the
approximation in Ref. (ROH06a).

Table 7.1. Examples of real world networks.

G2, yeast protein interaction network (BZC+03)
2361 vertices, 13828 arcs
dmin = 1, dmean = 5.86, dmax = 65
λ = 19.4861, λ2 = 16.1340, λ3 = 14.3339
G3, network of e-mail interchanges (GDD+03)
1133 vertices, 5451 edges
dmin = 1, dmean = 9.62, dmax = 71
λ = 41.4940, λ2 = 33.9272, λ3 = 30.0687
G4, US power grid (Tsa) 1133 vertices, 6594 edges
dmin = 1, dmean = 2.67, dmax = 19
λ = 7.4831, λ2 = 6.6092, λ3 = 5.5728

131

Figure 7.9. Results for approximating the SI of three examples of real-world
networks. - Shown are the approximation of SI to networks: G2 (upper row), G3

(middle row) and G4 (lower row) in Table 7.1. The left column [(a), (d), and (g)]
shows the eigenvector components sorted in increasing order. The middle column
[(b), (e), and (h)] shows the true SI vs approximated SI for the removal of edges,
while the right column [(c), (f), and (i)] shows the same plot for the removal of nodes.
The meaning of the symbols is the same as in Fig. 7.8.

132

7.3.5 Related Problems for Future Work

In this section, we have defined the spectral impact of an arbitrary addi-

tion/removal of links as the resulting relative change in the largest eigenvalue of

the adjacency matrix. Based on the standard perturbation method for eigenvalue

problems and further approximation for the second order term, we obtained an im-

proved first-order approximation formulae for the spectral impact. Using Erdos-Renyi

random graph, as well as examples of large complex networks from biological, social,

and technological applications, we confirmed the accuracy of the formulae for the

addition and/or removal of nodes, links, triangles, and another network motif.

Our approximation works in certain class of networks. How different network

topology affect the accuracy of this approximation? What does this mean in practice?

Another related question is, how ’small’ the perturbation B should be, and what is

the appropriate measure for ’small’, in a more rigorous sense?

In view of accident control in large networks, when sudden change (such as the

removal of multiple edges or nodes in different places) happens and it is impossible to

fix those immediately, there may exist certain strategy to change other parts of the

network instead. What is the optimal way of doing that when λ is involved?

Also, designing networks that satisfy certain spectrum properties is an important

problem for studying dynamics on networks (HSS06; HS08; SNb08). Our formula-

tion may be used to develop gradient descent like algorithms to target the desired

spectrum, numerically.

The ranking of subgraphs in terms of spectrum properties. Our formulation can be

used directly to define an order topology on the set of subgraphs, given any graph and

indicated eigenvalue (not necessarily the largest one). How does this order topology

interplay with the other network properties? Is there a difference between different

types of networks? Our improved formula suggests a nonlinear effect: i.e., the impor-

tance of two nodes/edges is not simply the addition of their respective importance

values. How does this nonlinear effect correlate with the topological structure, such

as communities in networks?

133

Chapter 8

Information of Networks: Graph

Compression by Exploiting

Symmetry

8.1 Introduction

8.1.1 Motivation

As mentioned before in this thesis, large complex networks have been studied

extensively in the past ten years in the fields of mathematics, physics, computer sci-

ence, biology, sociology, etc (BA99; AB02; New03; WS98; Wat99). Various networks

are used to model and analyze real world objects and their interactions with each

other. For example, in sociology, airports and airflights that connect them can be

represented by a network (Paj); in biology, yeast reactions is also modeled by network

(BZC+03); etc.

The mathematical terminology for a network is conveniently described in the

language of graph theory (Wes00). A common encoding of graphs uses an adjacency

matrix, or an edge list, when the adjacency matrix is sparse. However, even for a

134

large network the edge list contains a large information storage. In the case that some

important network is transfered frequently between computers, it will save time and

cost if there is a scheme to efficiently encode, and therefore compress the network first.

Fundamentally we find it a relevant issue to ask how much information is necessary

to present a given network, and how symmetry can be exploited to this end.

In this chapter we will demonstrate one way to reduce the information storage of

a network by using the idea that habitually graphs have many nodes that share many

common neighbors (SBb08). So instead of recording all the links we could rather just

store some of them and the difference between neighbors. The ideal compression ratio

using this scheme will be η = 2
<k>

where < k > is the average degree of the network,

compared to the standard compression using Yale Sparse Matrix Format (EGSS82)

which gives ηY = 1
2

+ 1
<k>

. In practice this ratio is not attainable but the real

compression ratio is still better than using YSMF as shown by our results.

8.1.2 Yale Sparse Matrix Format

Before going into our approach and data representation for sparse graphs, we first

review a fundamental data representation for general sparse matrices, called the Yale

Sparse Matrix Format (YSMF) (EGSS82). We illustrate first the standard form of

YSMF by a simple example. Consider the matrix

A =


0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

 ,

it can be encoded using YSMF by a collection of 3 arrays:

V A = [1, 1, 1, 1, 1, 1, 1, 1],

IA = [1, 2, 5, 7, 9],

JA = [2, 1, 3, 4, 2, 4, 2, 3],

where V A contains the values of all non-zero entries of A, listed in the order from

left to right then top to bottom of the matrix A; IA encodes the number of non-zero

135

entries of each row of A, IA(1) := ||A(1, :)||1 and IA(i+ 1) := IA(i) + ||A(i, :)||1 (for

i = 1, ..., N); and JA contains the column indices of non-zero entries in A, listed in

the same order as entries in V A.

However, for simple graphs, the corresponding adjacency matrices are symmetric

and binary, thus it is sufficient to store only the upper (or lower) half of the matrix.

Without loss of generality, we consider the upper half of A, so that A(i, j) = 0

whenever i > j. The array V A will consist of all 1’s and thus is not necessary; also in

IA we can let IA(i) = ||A(i, :)||1 instead of the above definition so that IA contains

exactly N entries; while JA is the same as the standard form of YSMF, which now

contains M entries where M is the number of edges of the graph.

Thus, for an adjacency matrix of a simple graph, it requires N + M entries to

be stored using YSMF, which requires N+M
2

information units by the definition in

the early sections in this paper. Compare to the original information storage M , we

obtain the compression ratio M+N
2M

.

8.2 Adjacency Matrix and Edge List

A graph G = (V,E) is a set of vertices (or nodes) V = {v1, v2, ..., vN} together

with edges (or links) E = {(vi, vj)} which are the connected pairs. Graphs are often

used to model networks. It is sometimes convenient to call the vertices that connect

to a vertex i in a graph to be the neighbors of i. We will only consider undirected

and unweighted graph in this chapter.

Figure 8.1. A drawing of a planar embedding of an example graph. -

136

A drawing as in Figure 8.1 allows us to directly visualize the graph (i.e. the nodes

and the connections between them), but a truism that anyone who works with real

world graphs from real data knows is that commonly those graphs are so large that

even a drawing will not give any insight. Visualizing structure in graphs of such sizes

(N > 100 to 1000) begs for some computer assistance.

An adjacency matrix is a common, although inefficient data representation of a

graph. The adjacency matrix AG of a graph G = (V,E) is a N × N square matrix

where N is the number of vertices of the graph and the entries ai,j of AG are defined

by:

aij =

1, if nodes i and j are connected;

0, otherwise.
(8.1)

For example, the adjacency matrix AG for the graph in Figure 8.1 is

AG =


0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

 . (8.2)

However, in the case that the number of edges in a graph are so few that the

corresponding adjacency matrix is sparse, the edge list (or adjacency list) will be

used instead. The edge list is a list of all the pairs of nodes that form edges in a

graph. It is essentially the same as the edge set E for a graph G = (V,E). Using

edge list EG to represent the same graph as above we will have:

EG = {{1, 2}, {2, 3}, {3, 4}, {2, 4}}. (8.3)

Note here that in the edge list we actually record the label of nodes for each edge

in the graph, so for undirected graph, we can exchange the order for each pair of

nodes.

We will only consider sparse simple graphs, whose adjacency matrices will thus

be binary sparse matrices, and the standard information storage for such graphs or

matrices will be the information units that are needed for the corresponding edge list

(or two dimensional arrays).

137

We now sharpen the definition for the unit of information in our context. From

the perspective of information theory (CT06), a message which contains N different

symbols will require log2N bits for each symbol, without any further coding scheme.

The edge list representation is one example of a text file which contains N different

symbols (often represented by natural numbers from 1 to N) for a graph containing

N vertices. Note that the unit of information depends only on the number of symbols

that appear in the message, i.e. the number of vertices in a graph, so for any given

graph this will be a fixed number. Thus, when we restrict the disscussion to any

particular graph, it is convenient to assume that each pair of labels in the edge list

requires one information unit without making explicit what is the size of that unit.

For example, the above graph (shown in Fig. 8.1) requires 4 information units. In

this chapter we will focus on how to represent the same graph using fewer information

units than its original representation.

8.3 A Motivating Example and the Idea of Redun-

dancy

As a motivating example, let us consider the following graph (Fig. ??)and its edge

list.

Figure 8.2. An extreme example which shows similarity between vertices.
-

Note that here the neighbors of node 1 are almost the same as those of node 2.

The edge list EG for this graph will be:

E = {{1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9},

{2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 8}, {2, 9}, {2, 10}}. (8.4)

138

This requires 14 information units for the edge list. However, if we look back to

the graph, we note that in this graph there are many common neighbors between

node 1 and node 2, so there is a great deal of information redundancy. Considering

the subgraphs, the neighbors of node 1 are almost the same as the neighbors of node

2, except that node 3 links to 1, but not 2, while node 10 links to 2, but not 1.

Figure 8.3. Similar subgraphs of the original graph. - Here the subgraph
containing node 1 (on the top) is very similar to the one dominated by node 2 (on
the bottom).

Taking the redundancy into account, we generate a new way to describe the same

graph, exploiting the graphs. In the graph of Fig. 8.2, we see that the subgraph

including vertices 1, 3, 4, 5, 6, 7, 8, 9 is very similar to the subgraph including vertices

2, 4, 5, 6, 7, 8, 9, 10, see Fig. 8.3. We exploit this redundancy in our coding.

We store the subgraph which only consists of node 1, and all its neighbors. Then,

we add just two more parameters,

α = (1, 2) (8.5)

and

β = {−3, 10} (8.6)

that allows us to reconstruct the original graph. Here the ordered pair α = (1, 2) tells

us that in order to reconstruct the original graph we need to first copy node 1 to node

139

2. By copy, we mean the addition of a new node into the exsiting graph with label 2,

and then linking all the neighbors of node 1 to the new node 2. See Fig. 8.4.

Figure 8.4. Construct from the subgraph and parameter α = (1, 2). ’Copy’
from node 1 to node 2. -

The set β = {−3, 10} tells us that we should then delete the link that connects

the new node 2 and 3 and add a new link between 2 and 10. See Fig. 8.5.

Figure 8.5. Add and delete links according to β = {−3, 10}. -

After all these operations we see that we successfully reconstruct the graph with

fewer information units, in this case, nearly half as many as the original edge list. So

instead of equation (8.4), we may use the edge list of the subgraph

ESG = {{1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}} (8.7)

140

as well as two sets

α = (1, 2)

β = {−3, 10} (8.8)

to represent the same graph.

Figure 8.6. Reconstruction of the original graph using a subgraph and the
parameters α and β. -

The above example suggests that by exploiting symmetry of the graph, we might

be able to reduce the information storage for certain graphs by using a small subgraph

as well as α and β as defined above.

However, there remains the question of how to choose the pair of vertices so

that we actually reduce the information, and which is the best possible pair? It is

important to answer these questions since most of the graphs are so large that we

never will be able to see the symmetry just by inspection as we did for the above toy

example.

In the following we answer the first question, and partly the second, by using a

greedy algorithm. In section 4 we will define information redundancy for a binary

sparse matrix and show that it reveals the neighbor similarity between vertices in a

graph which is represented by its corresponding adjacency matrix. Then in section

5 we will give a detailed description of our algorithm which allows us to implement

our main idea. Then in section 6 we will show some examples of these applications

followed by discussion in section 7.

141

8.4 Information Redundancy and Compression of

Sparse Matrices

Throughout this paper, we describe our methods in terms of manipulations of ad-

jacency matrices to describe corresponding manipulations to the graphs. We choose

this approach for pedagogical reasons, particularly regarding presentation of the anal-

ysis of information redundancy and algorithmic complexity. However, we emphasize

that all of the necessary manipulations can and should be done in practice in terms

of the more efficient edge list representation.

8.4.1 How to Choose Pairs of Vertices to Reduce Information

The graphs we seek to compress are typically represented by large sparse adjacency

matrices. An edge-list is a specific data structure for representing such matrices, to

reduce information storage. We will consider the edge-list form to be the standard

way of storing sparse matrices, which requires M units of information for a graph

with M edges. There are approaches of compressing sparse matrices, among which

the most general is the Yale Sparse Matrix Format (YSMF, discussed in section 8.1.2),

which does not make any assumption on the structure of the matrix and only requires

1
2
(M + N) units of information. There are other approaches, such as (TY71) which

emphasize not only the storage but also the cost for data access time. We will focus

on the data storage, so the YSMF will be considered as a basic benchmark approach

for compression of a sparse matrix, to which we will compare our results. The YSMF

yields the compression ratio (see Appendix):

ηY =
M +N

2M
=

1

2
+

1

< k >
(8.9)

where < k >= 2M
N

is the average degree of the graph.

We will show our approach of compressing the sparse matrices by first illustrating

how the redundancy of a binary sparse matrix will be defined regarding to our specific

operation on the matrix.

Generally, the adjacency matrix is a binary sparse matrix, A = [aij] where aij

equals 0 or 1 indicating the connectivity between node i and j. For a simple graph

142

consisting of M edges this matrix has 2M nonzero entries, but since it is symmetric

only half of them are necessary to represent the graph, which yields M units of

information for the edge-list.

Now, if two nodes i and j in the graph share a lot of similar neighbors, in the

adjacency matrix row i and row j will have a lot of common column entries, and

likewise for column i and column j (due to the symmetry of the matrix).

Suppose that we apply the operation to the graph, mentioned in the last section,

by choosing α = (i, j) and the corresponding β, we will not need row j and column

j in the matrix, to represent the graph. The number of nonzero entries in row j and

column j is 2kj where kj is the degree of node j in the graph. By doing that, the

number of nonzero entries in the new adjacency matrix becomes 2M − 2kj, which

requires M − kj units of information. However, the extra information we have to

record is encoded in α and β. α always has two entries, which requires 1 unit of

information, and the units of information for β depend on the number of different

neighbors between node i and node j. If i and j have ∆ij different neighbors, the size

of β will be

|β| = ∆ij, (8.10)

and the units of information for β will thus be 1
2
∆ij. Taking both the reduction of

the matrix and the extra information into account, the actual information it requires

after the operation is

M − kj + 1 +
1

2
∆ij = M − (kj − 1− 1

2
∆ij). (8.11)

This is true for i different from j. We could extend the operation to allow

α = (i, i), (8.12)

meaning a self-match, then we will put all the neighbors of i into the corresponding

set β, and then delete these links associated with i. Then by a similar argument we

find that after this operation we need

M − ki + 1 +
1

2
ki = M − (

1

2
ki − 1) (8.13)

units of information using the new format.

143

Note that here we need to clarify exactly the meaning of different neighbors since

in the case that i and j are connected i is a neighbor of j but j is not, and likewise

for j. However, this extra information can be simply encoded in α by making the

following rule: α = (i, j) means when we reconstruct we do not connect i and j

and α = (i,−j) means we connect i and j when we reconstruct. Then we can write

∆ij = ‖A(i, :)− A(j, :)‖1 − 2aij.

From the above discussion we see that if we define

rij =

kj − 1− 1
2
∆ij, if i 6= j;

1
2
ki − 1, if i = j.

(8.14)

then by choosing α = (i, j), rij measures exactly the amount of information it reduces.

We call rij the information redundancy between nodes i and j. Note here that in

general this redundancy is not symmetric in i and j, since for any pair of nodes ∆ij is

symmetric but the degree of these two nodes can be different, and deleting the node

with higher degree will always reduce more units of information compared to deleting

the lower degree node.

We form the redundancy matrix R by setting the entry in row i and columnn j

to be rij. We perform the shrinking operation for the pair with maximum rij, thus

saving the maximum amount of information.

For example, again using the graph from section 2, the adjacency matrix is:

A =



0 0 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0



, (8.15)

144

and the corresponding redundancy matrix is:

R =



2.5 5 −3 −2.5 −2.5 −2.5 −2.5 −2.5 −2.5 −4

5 2.5 −4 −2.5 −2.5 −2.5 −2.5 −2.5 −2.5 −3

3 2 −0.5 0.5 0.5 0.5 0.5 0.5 0.5 −1

2.5 2.5 −0.5 0 1 1 1 1 1 −0.5

2.5 2.5 −0.5 1 0 1 1 1 1 −0.5

2.5 2.5 −0.5 1 1 0 1 1 1 −0.5

2.5 2.5 −0.5 1 1 1 0 1 1 −0.5

2.5 2.5 −0.5 1 1 1 1 0 1 −0.5

2.5 2.5 −0.5 1 1 1 1 1 0 −0.5

2 3 −1 0.5 0.5 0.5 0.5 0.5 0.5 −0.5



, (8.16)

The maximum entry in R is r12 = r21 = 5, indicating that either choice of

α = (1, 2) or α = (2, 1) will give the maximum information reduction, and the

corresponding β can be obtained by recording the column entries in row 1 and row 2

according to our rule.

In the above discussion we only consider a one step shrinking operation on the

graph and find out the direct relationship between the maximum information re-

duction and the redanduncy matrix. But we know that after deleting one node the

resulting graph is still sparse and so could be compressed further by our scheme.

The question is then how to successively choose α and β to obtain the best overall

compression.

8.4.2 On Greedy Optimization of The α, β, Orbit

Let αt = (it, jt) denote the operation at step t, t = 1, 2, ..., T (here the sign for jt

would not affect our analysis so by convience we just write jt). In order to analyze

the multi-step effect, we first consider how the adjacency matrix A is affected by the

orbit {αt}. Let A0 = A be the original adjacency matrix. Let At be the corresponding

adjacency matrix after applying αt and the entries in it be At(i, j). On deleting node

jt we actually set row and column jt to be zero in At−1 and all the other entries are

145

unchanged, to obtain the new matrix At, i.e.

At(i, j) =

At−1(i, j), if i 6= jt and j 6= jt;

0, if i = jt or j = jt.
(8.17)

So by induction we see that

At(i, j) =

A0(i, j), if i /∈ {j1, ..., jt} and j /∈ {j1, ..., jt};

0, if i ∈ {j1, ..., jt} or j ∈ {j1, ..., jt}.
(8.18)

Then we analyze how the redundancy matrix R changes. Use Rt to represent the

redundancy matrix, kt(i) the degree of node i, and ∆t(i, j) the number of different

neighbors of node i and j, associated with the graph of At. Since our goal is to achieve

compression, once a node is deleted in the graph it is useless for future operations.

So we will set Rt(i, j) = 0 if i or j has been deleted before, i.e.

Rt(i, j) = 0 if i ∈ {j1, ..., jt} or j ∈ {j1, ..., jt}. (8.19)

Now for those i and j that have not been deleted, i.e. i, j /∈ {j1, ..., jt}, by equation

8.14 we see that Rt(i, j) = kt(j) − 1 − 1
2
∆t(i, j) for i 6= j and Rt(i, i) = 1

2
kt(i) − 1.

Since At is obtained by deleting row and columnn jt in At−1, the degree of each node

changes according to:

kt(i) = kt−1(i)− At−1(i, jt) (8.20)

and ∆ij changes according to

∆t(i, j) = ∆t−1(i, j)− |At−1(i, jt)− At−1(j, jt)| (8.21)

Thus, we conclude that for i 6= j

Rt(i, j) = kt−1(j)− At−1(j, jt)− 1− 1

2
[∆t−1(i, j)− |At−1(i, jt)− At−1(j, jt)|]

= kt−1(j)− 1− 1

2
∆t−1(i, j)− At−1(j, jt) +

1

2
|At−1(i, jt)− At−1(j, jt)|

= Rt−1(i, j) + [
1

2
|At−1(i, jt)− At−1(j, jt)| − At−1(j, jt)] (8.22)

146

and for i = j

Rt(i, i) =
1

2
kt(i)− 1

=
1

2
(kt−1(i)− At−1(i, jt))− 1

= Rt−1(i, i)− 1

2
At−1(i, jt). (8.23)

By induction, we obtain that for i 6= j:

Rt(i, j) = R0(i, j) +
t∑

τ=1

[
1

2
|Aτ−1(i, jτ)− Aτ−1(j, jτ)| − Aτ−1(j, jτ)] (8.24)

and for i = j:

Rt(i, i) = R0(i, i) +
t∑

τ=1

[−1

2
Aτ−1(i, jτ)]. (8.25)

By use oft the fact that i, j /∈ {j1, ..., jt}, by equation 8.17, we can simplify the

above two expressions to yield,

Rt(i, j) =

R0(i, j) +
∑t

τ=1[1
2
|A0(i, jτ)− A0(j, jτ)| − A0(j, jτ)], if i 6= j;

R0(i, i) +
∑t

τ=1[−1
2
A0(i, jτ)], if i = j.

(8.26)

Note that if we choose a pair (it, jt) at step t, the information we save is measured

by Rt−1(it, jt). Thus, for any orbit {αt = (it, jt)}Tt=1 satisfying it, jt /∈ {j1, ..., jt−1} for

t = 2, 3, ..., T (we call such an orbit a natural orbit), the total information reduction

(or information saving) will be:

s({αt}Tt=1) =
T∑
t=1

Rt−1(it, jt)

=
T∑
t=1

[R0(it, jt) + c(it, jt, t)] (8.27)

where c is defined by:

c(i, j, t) =


∑t

τ=1[1
2
|A0(i, jτ)− A0(j, jτ)| − A0(j, jτ)], if i 6= j;∑t

τ=1[−1
2
A0(i, jτ)], if i = j.

(8.28)

147

So the compression problem can be stated as:

Find max
{αt}Tt=1

s({αt}Tt=1). (8.29)

One more thing to mention is that the length of the orbit, T , is also a variable,

which could not be larger than N since there are only N nodes in the graph and it is

meaningless to delete an ‘empty’ node which does not even exist.

8.5 Greedy Algorithm for Compression

From the previous section we see that for a given adjacency matrix, the final com-

pression ratio depends on the orbit {αt}Tt=1 we choose, and the compression problem

becomes an optimization problem. However, to find the maximum of s and the corre-

sponding best orbit is not trivial. One reason is that the number of natural orbits is

of order N !, which makes it impractical to test and try for all possible orbits. Another

reason which is crucial here is that for any given orbit of length T , evaluating s costs

O(T 2) operations, making it hard to find an appropriate scheme to search for the true

maximum or even the approximate maximum. Instead, we use a greedy algorithm to

find an orbit which gives a reasonable compression ratio, and which is easy to apply.

The idea of the greedy algorithm is that at each iteration step we choose the pair

of nodes it and jt which maximizes Rt−1(i, j) over all possible pairs, and we stop if

the maximum value is non-positive. Also we need to record α and β according to the

graph.

Here we summarize the greedy algorithm as pseudocode. Given the adjacency

matrix A of a graph (N nodes and M edges).

1. Initialization:

(a) Set A0 = A.

(b) Calculate R0(i, j) for all i, j = 1, ..., N . This forms the redundancy matrix

R0 = R.

(c) Set t = 1.

148

2. Greedy compression:

(a) Let Rt−1(it, jt) be the largest element in Rt−1.

If Rt−1(it, jt) > 0

record αt = (it, jt),

then go to step 2(b).

Else,

Terminate.

(b) Set βt according to the difference between the two rows of αt in At−1,

Update At−1 to At according to (8.17);

Update Rt−1 to Rt according to (8.22) and (8.23) for i, j 6= jt;

Set Rt(i, j) = 0 for i or j = jt.

(c) Set t = t+ 1 and go to step 2(a).

The compressed version of the matrix will consist of: the final matrix AT , the orbit

(α1, ..., αT) and the vectors {β1, ..., βT}, which will allow us to reconstruct A = A0

and any intermediate matrix At during the compression process.

The computational complexity of this greedy algorithm is dominated by the ini-

tialization of the redundancy matrix R, which requires O(MN) operations 1. The

subsequent operations will each require only an update of R according to formula

(8.22) and (8.23), result in O(N) operations per step. Thus the overall cost of the

greedy algorithm will be O(MN) and the average cost per step is O(MN
T

) where T is

the number of shrinking steps (T < N).

8.6 Examples of Application to Graphs

In this section we will show some examples of our compression scheme on several

networks. We begin with the lattice graph, which is expected to be readily com-

pressible due to the high degree of overlapping between neighbors of nodes. As a

secondary example, we add some random alterations, and apply our method to the

1Here O(MN) comes from the fact that we are comparing N2 pair of vertices, and each com-
parison requires O(M

N) operations (in efficient format like the edge-list) since the matrix is sparse.
Thus the cost for initializing R is O(N2 · M

N) = O(MN)

149

corresponding Watts-Strogatz network. Finally we show some results for real-world

networks.

8.6.1 A Simple Benchmark Example: Lattice Graph

One of the most symmetric graphs is the lattice graph, a one-dimensional chain

where each site is connected to k
2

nearest neighbors to its right and left. In this case

< k >= k represents the degree of each vertex in the lattice graph. The total number

of nodes is N >>< k >, the corresponding adjacency matrix is sparse.

We implement our algorithm for lattice graph with different < k >. The results

are shown in Fig. 8.7. Here we take N = 500.

0 10 20 30 400

0.2

0.4

0.6

0.8

1

<k>

!

!k actual
!k = 2/<k>
!k = 3/<k>
!k = 1/2+1/<k>

Figure 8.7. Compression results for lattice graphs. - Stars indicate the final
compression ratios for the lattice graphs with < k > 2 to 40. The compression limit
is indicated by the bottom curve given by ηk = 2

<k>
, and we find that for < k >

large the compression ratio is close to the empirical formula: ηk = 3
<k>

(upper curve).

For comparison, we plot the result using YSMF (broken line): ηk = 1
2

+ 1
<k>

. For
< k >> 2, our algorithm always achieves a better result than the YSMF and the
advantage increases with increasing < k >.

150

8.6.2 Compressing a Watts-Strogatz Small-World Graph

It is not surprising that the lattice graphs are easy to compress since these graphs

are highly symmetric and nodes have lots of overlaps in their neighbors. However, in

the case that we don’t have such perfect symmetry, we still hope to achieve compres-

sion. Here we apply our algorithm to the WS graphs. The WS graph comes from the

famous Watts-Strogatz model for real-world networks by showing the so called small-

world phenomenon. The WS graph is generated from a lattice graph by the usual

rewiring of each edge with some given probability p from the uniform distribution.

We apply our algorithm to WS graphs with different p to explore how p affects

the compression behavior. Results are shown in Fig. 8.8.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

!

!p
!0 for lattice

!Y by YSMF

Figure 8.8. Compression results for WS graphs. - Here the base lattice graph
is with N = 500 and < k >= 40. The stars show the compression results by our
algorithm. The lower line is the compression ratio for the lattice N = 500 and < k >=
40 and the upper line is the ratio from the YSMF. We see that as p increases there is
less and less overlapping between neighbors in the network and the compression ratio
increases. For p ∼ 0.5, we obtain worse result than YSMF.

151

8.6.3 Real-World Graphs

In the following we show the compression results for some real world graphs: a

C.elegans metabolic network (DA05) (Fig. 8.9), a yeast network constructed from

yeast reactions (BZC+03), an email network (GDD+03), and an airline network of

flight connections (Paj). In the Table 1 we summarize the compression results for

these real world graphs.

Figure 8.9. Compression process for Metabolic network (DA05). - Compres-
sion ratio η during each step (left), and information redundancy ρ each step (right).

Network N < k > ηY η η∗
Lattice N < k > 1

2
+ 1

<k>
3

<k>
2

<k>

Yeast (BZC+03) 2361 6.08 0.66 0.50 0.33
Metabolic (DA05) 453 9.01 0.61 0.43 0.22
Email (GDD+03) 1133 9.62 0.60 0.49 0.21
Airline (Paj) 332 12.81 0.58 0.31 0.16

Table 8.1. Compression results for some networks.

8.7 Discussion and Open Problems

From the previous section we see that our algorithm works for various kinds of

graphs and gives a reasonable result. The ideal limit of our method for a graph with

N nodes, M edges and average degree < k >= 2M
N

, which is relative large, is 2
<k>

.

This is obtained when each βt during the compression process is empty, meaning that

152

most of the nodes share common neighbors, in which case we only need to record all

the αt, requiring N
2

units of information and yields

η =
N

2M
=

2

< k >
. (8.30)

Notice that trees do not compress, since for trees < k >= 2, so on average the

overlap in neighbors will be even smaller (likely to be 0), and a possible way to achieve

compression is by self-matching for large degree nodes, for example, the hubs in a

star graph. For comparison, the YSMF always gives the compression ratio

ηY =
1

2
+

1

< k >
(8.31)

which does not compress trees, and has a lower bound 1
2
, while our method in principle

approaches 0 as < k >→ ∞. Actually the compression ratio using YSMF can be

achieved by choosing a special orbit in our approach which only contains self-matches

α, i.e.

{αt}Tt=1 = {(i, i)}Ni=1. (8.32)

In this case the neighbors of each node will be put into corresponding β sets and since

any αi contains the same pair of numbers (i, i) we can just use one i to represent the

pair, resulting in a total N+M
2

information units. So our approach can be considered

as a generalization of the YSMF.

However, as we observed in our compression results, the compression ratio given by

8.30 is in general not attainable since it is only achieved for the ideal case that nearly

every node in the graph shares the same neighbors, and yet the graph needs to be

sparse! However, for lattices we observe that the actual compression ratio achieved by

our algorithm is about 3
<k>

, which is of the same order as the ideal compression ratio.

For WS graphs, when the noise p is small, our algorithm achieves better compression

ratio than YSMF, and the compression ratio is nearly linearly dependent on p for

p < 0.5. For p > 0.5 the graph resembles Erdos-Renyi random graphs (Bol01), there

is no symmetry between nodes to be used and thus our approach does not give good

result, as compared to the YSMF.

For real world graphs, the results by our algorithm are better than using YSMF,

but not as good as we observed for lattice graphs. This suggests that in real world

graphs nodes, in general, share certain amount of common neighbors even when the

153

total number of links is small. This kind of overlap in neighbors is certainly not as

common as we see in lattice graphs since real world graphs in general have more

complicated structures. The problem of compressing a general sparse graph has close

connection to the problem of defining appropriate entropy measure for certain class

of random graph models. The paper (CS09) addresses such problem for Erdos-Renyi

graphs. Finding a general approach for graphs that seem to be more similar as real

world networks is still an open problem.

154

Chapter 9

Sequence Networks

9.1 Background

9.1.1 Threshold Graph

A threshold graph G = (V,E) (V = {1, 2, ..., n}) is the type of graph where each

node i ∈ V in the graph is assigned some (hidden) weight xi, and an edge exists

between node i and j if and only if the sum of their weights xi + xj exceeds a certain

threshold θ, i.e.,

(i, j) ∈ E ⇔ xi + xj > θ. (9.1)

Fig. 9.1 shows, for the given weights {0.5, 0.4, 0.2, 0.2, 0.1}, different threshold graphs

for the different choices of the threshold θ. Note that when the threshold increases,

the graph changes from a complete graph where every one is connected, to an empty

graph where no edge exists.

The original threshold graph model and its variants have been studied extensively

in the area of graph theory and linear algebra (Gol80; HIS81; Mer94; Mer03), and later

on used by statistical phycists to develop various models for complex networks (BP03;

CCDM02; KMRS05; MMK04).

155

Figure 9.1. Example of threshold graphs. - Here the numbers are the weights
xi. Two nodes are connected, for a given θ, if and only if xi +xj > θ. On the left, for
θ = 0, the corresponding threshold graph is a complete graph, whereas on the right
(when θ = 1) no edge appears; in the middle we have a nontrivial threshold graph,
for θ = 0.5.

9.1.2 Creation Sequence

In 2006, Hagberg et al. reported an interesting observation that a threshold graph

can be represented compactly by a sequence of numbers (HSS06), called the creation

sequence. The creation sequence is a binary sequence of numbers S = (s1, ..., sn). For

a given creation sequence of length n, a graph of n nodes is constructed, where the

presence of specific edges are determined by the creation sequence: for nodes i < j,

(i, j) ∈ E ⇔ sj = 1. (9.2)

For example, the threshold graphs in Fig. 9.1 correspond to the creation sequences

S =


(00.1, 10.2, 10.2, 10.4, 10.5), for θ = 0;

(00.2, 00.2, 10.4, 00.1, 10.5), for θ = 0.5;

(00.5, 00.4, 00.2, 00.2, 00.1), for θ = 1.

(9.3)

Here the subscripts are used to specify the correspondence between numbers in the

creation sequence and weights on nodes, in general such subscripts are unnecessary.

For a given threshold graph with weights {x1, ..., xn} (without loss of generality,

suppose that x1 ≤ x2 ≤ ... ≤ xn) and threshold θ, its unique creation sequence can

be obtained by performing the following algorithm (HSS06):

156

• Let i = 1, j = n, and k = n.

1. If xi + xj ≤ θ

Set sk → 0, k → k − 1 and set i→ i+ 1.

Otherwise (i.e., if xi + xj > θ)

Set sk → 1, k → k − 1 and set j → j − 1.

2. Terminate when k = 1, and set s1 → 0; Otherwise, go to step 1.

[You may want to try it for the threshold graphs shown in Fig. 9.1 and check with

the results stated in Eq. (9.3).]

Note that the first digit in the creation sequence is arbitrary (either choice of 0

or 1 yields the same graph). Other than the first digit, the creation sequence for a

given threshold graph is unique. Also, by definition, for a given creation sequence one

can construct a unique threshold graph that corresponds to it. Thus, by the above

argument, a one-to-one correspondence exists between the space of threshold graphs

and their creation sequences.

The creation sequence uniquely encodes a threshold graph, with only n storage

units. Moreover, it was shown in (HSS06) that computation of important network

statistics such as degree, clustering, betweenness, and Laplacian spectrum can be

performed directly on the creation sequence, usually in linear time.

Such advantages can be further utilized for the design of large networks to satisfy

certain statistical properties, such as the degree distribution and eigen-ratio (defined

as the ratio of the second smallest eigenvalue versus the largest eigenvalue) of the

graph Laplacian.

However, since the type of creation sequence is introduced specifically for threshold

graphs, the limitation is obvious. For example, the diameter of a threshold graph is

either 1 or 2, regardless of the number of nodes in the graph.

In this chapter we will introduce a broader class of networks that can be con-

structed from a sequence of letters, called sequence networks (SNb08). With this

generalization, a wider range of graphs can be described by the sequence represen-

tation which allows high compressibility and fast computation of statistics and more

flexibility to model more general graphs as opposed to the class of threshold graphs.

157

In section 9.2 we define sequence networks in a general sense and show how a thresh-

old graph can be map into a special class of two-letter sequence networks. We fully

classify all the two-letter and three-letter sequence networks and study some exam-

ples of sequence networks in sections 9.3 and 9.4. Discussion and open problems are

included in section 9.5.

9.2 Generalization: Sequence Networks

In view of the construction of a graph given some creation sequence, such as the

rule determined by (9.2), the key is to decide, for each letter (0 or 1 in the binary

case), which nodes to connect to. For example, a creation sequence S = {s1, ..., sn}
can be used to construct a threshold graph by starting with an empty graph with

only one node and set k = 2, and the following recursive construction rule:

1. If sk = 1

Add a node (indexed by k) to the existing graph;

Connect node k with all other nodes i = 1, 2, ..., k − 1.

Otherwise (i.e., sk = 0)

Add a node (indexed by k) to the existing graph.

2. If k < n

Set k → k + 1;

Otherwise

Terminate.

Using this algorithm, one can easily verify that the creation sequences in Eq. (9.3)

indeed generate graphs shown in Fig. 9.1.

The key in this construction is the rule specified by the if statement in step 1,

which basically says that whenever a node k with sk = 1 is added to the existing

graph, it connects to all the preexisting nodes whereas when a node k with sk = 0

is added, it connects to nothing (although it might be connected later on by newly

added nodes).

158

In the following of this chapter, we will switch our notation for creation sequence

from binary numbers 0 and 1, to letters A and B, to avoid confusion which might

occur in the indexing of a node (usually by a natural number) and the indexing of

the type of a node (specified by sk where k is the index of that node). So for example,

a creation sequence previously presented as (0, 0, 1, 0, 1) will now (and later on) be

denoted by (A,A,B,A,B). Similarly when there are more than two letters.

From a binary sequence of numbers S = (s1, ..., sk), one can follow a similar

construction but with different rules of connecting nodes sk = A and sk = B. For

example, one could specify that when node of type A is added, it connects to all the

existing nodes of type A; and when a type B node is added; it connects to all the

nodes of type B. This construction rule will in general result in a disconnected graph

of two cliques (a clique is a complete subgraph), corresponding to nodes of type A

and B respectively. Such a rule can be represented by the following rule matrix where

the first and second indices correspond to A and B:

R3 =

(
1 0

0 1

)
(9.4)

where the first row R3(1, :) = (1 0) indicates that nodes of type A, when added, con-

nects to existing A’s, but not B’s; while the second row R3(2, :) = (0 1) indicates that

nodes of type B, when added, do not connect to existing A’s, but to B’s. Therefore,

the rule matrix used to generate threshold graphs from creation sequences can be

specified by:

R4 =

(
0 0

1 1

)
. (9.5)

In general, when a creation sequence is made up of two letters, there are 24

possible rule matrices, since a 2− by− 2 matrix has 4 entries, each can be either 0 or

1. When the number of letters increase, there is a lot more different rule matrices. For

example, there are possibly 29 = 512 rule matrices for three-letter sequence networks,

and 216 = 65536 ones for four-letter sequence networks, etc.

159

9.3 Classification of Two-Letter Sequence Net-

works

As discussed in the previous section, for graphs that can be constructed from

sequences S = (s1, s2, . . . , sn) of the two letters A and B, there are 16 possi-

ble rules. Fig. 9.2 gives an example of the graph obtained from the sequence

(A,A,A,B,B,A,A,B), applying the threshold rule
(

0 0
1 1

)
.

Figure 9.2. Layer representation of threshold graph. - Threshold graph:
(a) The threshold graph resulting from the sequence (A,A,A,B,B,A,A,B), and
(b) its box representation, highlighting modularity. Nodes are added one at a time
from bottom to top, A’s on the left and B’s on the right.

In this section we fully classify all the two-letter sequence networks, and show

that most of them can be reduced to one of the three basic fundamental two-letter

sequence network types.

9.3.1 Classification

To start with, we shall disregard the four rules that fail to connect between A and

B (and thus fail to generate connected graphs)

R0 =

(
0 0

0 0

)
, R1 =

(
1 0

0 0

)
, R2 =

(
0 0

0 1

)
, R3 =

(
1 0

0 1

)
, (9.6)

160

for they yield simple disjoint graphs of the two types of nodes: R0 yields isolated

nodes only, R3 yields one complete graph of type A and one of type B, R1 yields a

complete graph of type A and isolated nodes of type B, etc.

The list of remaining rules can be shortened further by considering two kinds of

symmetries: (a) permutation, and (b) time reversal. Permutation is the symmetry

obtained by permuting between the two types of nodes, A ↔ B. Thus, a permuted

rule (R11 ↔ R22 and R12 ↔ R21) acting on a permuted sequence (s̄1, s̄2 . . . , s̄n) yields

back the original graph, where s̄k stands for the inverted type: s̄k = A if sk = B,

and vice versa. Time reversal is the symmetry obtained by reversing the arrows

(“time”) in the connectivity rules, or taking the transpose of R. The transposed

rule (or equivalently, the transpose rule matrix RT) acting on the reversed sequence

(sn, sn−1, . . . , s1) yields back the original graph. The two symmetry operations are

their own inverse and they form a symmetry group. In particular, one may combine

the two symmetries: a rule with R11 ↔ R22 applied on a reversed sequence with

inverted types (s̄n, s̄n−1, . . . , s̄1) yields back the original graph, see Fig. 9.3.

Figure 9.3. Combined time reversal and permutation symmetry for se-
quence networks. - The graphs resulting from R4 applied to the sequence
(A,A,A,B,B,A,A,B) (a), and from R6 applied to the reverse-inverted sequence
(A,B,B,A,A,B,B,B) (b), are identical.

All of the four rules

R4 =

(
0 0

1 1

)
, R5 =

(
1 1

0 0

)
, R6 =

(
1 0

1 0

)
, R7 =

(
0 1

0 1

)
, (9.7)

are equivalent and generate threshold graphs. R4 is the rule for threshold graphs

exploited by Hagberg et al., (HSS06), and R5 is equivalent to it by permutation. R6

161

is obtained from R4 by time reversal and permutation (Fig. 9.3), and R7 is obtained

from R4 by time reversal.

The two rules

R8 =

(
0 0

1 0

)
, R9 =

(
0 1

0 0

)
, (9.8)

are equivalent, by either permutation or time reversal, and generate non-trivial bi-

partite graphs that are different from threshold graphs (Fig. 9.4).

The rule R10 =
(

0 1
1 0

)
generates complete bipartite graphs. However, the com-

plete bipartite graph Kp,q can also be produced by applying R8 to the sequence

(A,A, . . . A,B,B, . . . B) of p A’s followed by q B’s, so the rule R10 is a “degenerate”

form of R8. One could see that this is the case at the outset, because of the sym-

metrical relations A → B, B → A: these render the ordering of the A’s and B’s in

the graph’s sequence irrelevant. By the same principle, R11 =
(

0 1
1 1

)
and R12 =

(
1 1
1 0

)
are degenerate forms of R4 and R5, respectively. They yield threshold graphs with

segregated sequences of A’s and B’s.

The two rules

R13 =

(
1 1

0 1

)
, R14 =

(
1 0

1 1

)
, (9.9)

are equivalent, by either permutation or time reversal, and generate non-trivial graphs

different from threshold graphs and graphs produced by R8 (Fig. 9.4). Finally, the

rule R15 =
(

1 1
1 1

)
is a degenerate form of R13 (or R14) and yields only complete graphs

(which are threshold graphs, so R15 is subsumed also in R4).

To summarize, R4, R8, and R13 are the only two-letter rules that generate dif-

ferent classes of non-trivial connected graphs. There is yet another amusing type of

symmetry: applying R8 and R13 to the same sequence yields complement, or inverse

graphs — nodes are adjacent in the inverse graph if and only if they are not con-

nected in the original graph. The figure-background symmetry manifest in the rules

R8 and R13 (0 ↔ 1) is also manifest in the graphs they produce (Fig. 9.4a,c). On

the other hand, the inverse of threshold graphs are also threshold graphs. Also, the

complement of a threshold rule applied to the complement (inverted) sequence yields

back the original graph. In this sense, threshold graphs have maximal symmetry. R8-

162

Figure 9.4. Distinct types of connected non-trivial two-letter se-
quence networks. - All three graphs are generated from the same sequence,
(A,A,A,B,B,A,A,B), applying rules R8 (a), R4 (b), and R13 (c). Note the figure-
background symmetry of (a) and (c): the graphs are the inverse, or complement of one
another (see text). The inverse of the threshold graph (b) is also a (two-component)
threshold graph, obtained from the same sequence and applying the rule R5 (R4’s
complement).

graphs are typically less dense, and R13-graphs are typically denser than threshold

graphs.

The connectivity rules have an additional useful interpretation as directed graphs,

where the nodes represent the letters of the sequence alphabet, a directed link, e,g.,

from A to B indicates the rule A→ B, and a connection of a type to itself is denoted

by a self-loop (Fig. 9.5). Because the rules are the same under permutation of types,

there is no need to actually label the nodes: all graph isomorphs represent the same

rule. Likewise, time-reversal symmetry means that graphs with inverted arrows are

equivalent as well. Note that the direction of self-loops is irrelevant in this respect,

so we simply take them as undirected.

Figure 9.5. Diagrammatic representation of rules for two-letter sequence
networks. - (a) All of the 22 possible connections between nodes of type A and B.
(b) Three equivalent representations of the threshold rule R4. The second and third
diagram are obtained by label permutation and time-reversal, respectively. (c) Di-
agrams for R8 and R13. Note how they complement one another to the full set of
connections in part (a).

163

9.3.2 Alphabetical Ordering

A very special property of sequence networks is the fact that any arbitrary en-

semble of such networks possesses a natural ordering, simply listing the networks

alphabetically according to their sequences. In contrast, think for example of the

ensemble of Erdos-Renyi random graphs of n nodes, where links are present with

probability p: there is no natural way to order the 2n graphs in the ensemble.

Plotting a structural property against the alphabetical ordering of the ensemble

reveals some inner structure of the ensemble itself, yielding new insights into the

nature of the nets. As an example, in Fig. 9.6 we show λ2, the second smallest

eigenvalue, for the ensemble of connected threshold nets containing n = 8 nodes

(there are 27 = 128 graphs in the ensemble, since their sequences must all start with

the letter A). Notice the beautiful pattern followed by the eigenvalues plotted in this

way, which resembles a fractal, or a Cayley tree: the values within the first half of the

graphs in the x-axis repeat in the second half, and the pattern iterates as we zoom

further into the picture.

0 50 1000

2

4

6

8

10

order

! 2

Figure 9.6. Alphabetical ordering of threshold graphs. - This figure shows the
second smallest eigenvalues of threshold networks with n = 8 nodes, plotted against
their alphabetical ordering.

164

9.4 Properties of Two-Letter Sequence Networks

Structural properties of the new classes of two-letter sequence nets, R8 and R13,

are as easily derived as for threshold nets. Here we focus on R8 alone, which forms

a subset of bipartite graphs. The analysis for R13 is very similar and often can be

trivially obtained from the complementary symmetry of the two classes.

All connected sequence networks in the R8 class must begin with the let-

ter A and end with the letter B. A sequence of this sort may be represented

more compactly (HSS06) by the numbers of A’s and B’s in the alternating layers,

(nA1 , nB2 , . . . , nBl). We assume that there are n nodes and l layers (l is even). We

also use the notation nA =
∑
nAi and nB =

∑
nBi for the total number of A’s and

B’s, as well as

n−Aj =
∑
i<j

nAi ; n+
Aj

=
∑
i≥j

nAi , (9.10)

and likewise for n±Bj . Finally, since all the nodes in a layer have identical properties

we denote any A in the i-th layer by Ai and any B in the j-th layer by Bj. With this

notation in mind we proceed to discuss several structural properties.

9.4.1 Degree, Clustering, Distance, and Betweenness

Degree: Since A’s connect only to subsequent B’s (and B’s only to preceding A’s)

the degree k of the nodes is given by

k(Aj) = n+
Bj

; k(Bj) = n−Aj . (9.11)

Clustering : There are no triangles in R8 nets so the clustering of all nodes is zero.

Distance: Every A is connected to the last B, so the distance between any two

A’s is 2. Every B is connected to the first A in the sequence, so the distance between

any two B’s is also 2. The distance between Bi and Aj is 1 if j < i (they connect

directly), and 3 if j > i (Bi links to A1, that links to Bl, that links to Aj).

Betweenness centrality : Because of the time-reversal symmetry between A and B,

it suffices to analyze B nodes only. The result for A can then be obtained by simply

reversing the creation sequence and permuting the letters.

165

The vertex betweenness b(v) of a node v is defined as:

b(v) =
1

2

∑
s 6=t6=v

σst(v)

σst
(9.12)

where σst is the number of shortest paths from node s to t (s 6= t), excluding the

cases that s = v or t = v. σst(v) is the number of shortest paths from s to t that

goes through v. The factor 1
2

appears for undirected graphs since each pair is counted

twice in the summation.

The betweenness of B’s can be calculated from lower layers to higher layers re-

cursively. In the first B-layer

b(B2) =
1
2
nA1(nA1 − 1)

nB
, (9.13)

and

b(Bj) = b(Bj−2) + nAj−1

1
2
(nAj−1

− 1) + n−Aj−1

n+
Bj

+ nAj−1

n−Bj
n+
Bj

, (9.14)

for j > 2. The second term on the rhs accounts for the shortest paths from layer Aj−1

to itself and all previous layers of A, and the third term corresponds to paths from

Aj−1 to Bj to Ai (i < j− 1) to Bj−2. Although this recursion can be solved explicitly

it is best left in this form, as it thus highlights the fact that the betweenness centrality

increases from one layer to the next. In other words, the networks are modular , where

each additional B-layer dominates all the layers below.

9.4.2 Laplacian spectrum

Laplacian spectrum: Unlike threshold networks, for R8 networks the eigenvalues

are not integer, and there seems to be no easy way to compute them. Instead, we focus

on the second smallest and largest eigenvalues, λ2 and λn, alone, for their important

dynamical role: the smaller the ratio r ≡ λn/λ2 the more susceptible the network is

to synchronization (BP02a; NM06b).

Consider first λ2. For R8 it is easy to show that both the vertex connectiv-

ity and edge connectivity are equal to min(nA1 , nBl). Then, following an inequality

in (Moh91),

2(1− cos(
π

n
)) min(nA1 , nBl) ≤ λ2 ≤ min(nA1 , nBl) . (9.15)

166

The upper bound seems stricter and is a reasonable approximation to λ2 (see Fig. 9.7).

0 50 100 1500

1

2

3

4

order

! 2

Figure 9.7. Second smallest eigenvalues of all connected R8 sequence net-
works. - This figure shows the second smallest eigenvalues of all connected R8

networks with n = 8 against their alphabetical ordering (solid curve), and their up-
per and lower bounds (broken lines).

For λn, using Theorem 2.2 of (Moh91) one can derive the bounds

n

n− 1
max(nA, nB) ≤ λn ≤ n , (9.16)

but they do not seems very useful, numerically. Playing with various structural prop-

erties of the networks, plotted against their alphabetical ordering, we have stumbled

upon the approximation

λn ≈ n−
(

2
nA · nB
n

− 〈k〉
)
, (9.17)

where 〈k〉 is the average degree of the graph, see Fig. 9.8. The approximation is exact

for bipartite complete graphs (l = 1) and the relative error increases slowly with n;

it is roughly at 10% for n = 60.

167

0 50 100 1505.5

6

6.5

7

7.5

8

8.5

order

! N

Figure 9.8. Largest eigenvalues of all connected R8 sequence networks. -
Plot of largest eigenvalue of all connected R8 networks with n = 8 against their
alphabetical ordering (solid curve), and its approximated value (broken line).

9.5 Relationship to Generalized Threshold Graphs

As discussed in the early sections of this chapter, threshold graphs can be rep-

resented by the so called creation sequence under the rule matrix R4 (9.5). From

the classification for two-letter sequence networks, we see that besides the threshold

graph, there are only 2 more types of sequence networks and they are complementary

to each other. Consider, for example, creation sequences according to R8:

R4 =

(
0 0

1 1

)
. (9.18)

One question is, is there any threshold model corresponding to this sequence network

as the common threshold graph to its creation sequence? Here we propose one possible

way to construct such a threshold model and show that there is a unique creation

sequence under rule R8 correspond to this model.

The model is described in the following. Suppose the nodes are {1, 2, ..., n} with

weights

0 ≤ x1 ≤ x2 ≤ ... ≤ xn < 2θ. (9.19)

where θ is the prescribed threshold.

168

The connection between nodes i and j is determined by:

i connects to j iff |xi − xj| > θ (9.20)

so that given the weights and the threshold, we can generate the corresponding graph.

To avoid confusion with the usual threshold graph, we call this type of graph to be

θ−-graph, and the usual threshold graph will be classified as θ+-graph. To see how

the same graph can be obtained by the creation sequence under R8, we first classify

the nodes into two types A and B according to their weights:

i ∈ A iff 0 ≤ xi < θ; otherwise i ∈ B. (9.21)

Now for convenience, rewrite the weights of the nodes to be

0 ≤ u1 ≤ u2 ≤ ... ≤ unA ≤ θ < v1 ≤ v2 ≤ ... ≤ vnB < 2θ (9.22)

where the first nA weights correspond to A nodes and the rest to B nodes, and

nA + nB = n.

To obtain a creation sequence of a threshold graph of this type under rule R8, we

proceed as follows:

• Let S = {s1, s2, ..., sn} be a creation sequence, with sk = A or B.

• Set i = 1, j = 1.

• For k = 1, 2, ..., n, do:

If |xi − xj| > θ

Set Sk = A and i = i+ 1;

Otherwise

Set Sk = B and j = j + 1.

• End.

It is understood that if the ui are exhausted before the end of the loop, the remainding

B nodes are automatically affixed to the end of the sequence (and similarly for the

vj).

169

For example, the R8 sequence network (A,A,A,B,B,A,A,B) corresponds to

a θ−-graph with weights on nodes {0.1, 0.2, 0.3, 0.5, 0.7, 1.6, 1.7, 2} and connection

threshold θ = 1.2. And we can obtain the creation sequence from the weights and

threshold using the above algorithm, as you may check.

Consider now the converse problem: given a graph created from the sequence

(s1, s2, . . . , sN) with the rule R8, we derive a (non-unique) set of weights {xi} such that

connecting any two nodes with |xi − xj| > θ results in the same graph. Rewrite first

the creation sequence into its compact form (NA1 , NB2 , ..., NBl), and assign weights p

for nodes A in layer p, weights n+q for nodes B in layer q, and set the threshold at θ =

n. For example, the sequence (A,A,A,B,B,A,A,B) has a compact representation

(3, 2, 2, 1), with l = 4 layers, so the three A’s in layer 1 have weights 1, the two B’s

in layer 2 have weights 6, the two A’s in layer 3 have weights 3, and the single B

in layer 4 has weight 8. The weights {1, 1, 1, 6, 6, 3, 3, 8}, with connection threshold

θ = 4, reproduce the original graph.

Sequence networks obtained from the rule R13 can be also mapped to difference

threshold graphs in exactly the same way, only that the criterion for connecting

two nodes is then |xi − xj| < θ, instead of |xi − xj| > θ, as for R8. This type of

networks may be a particularly good model for social networks, where the weights

might measure political leaning, economical status, number of offspring, etc., and

agents tend to associate when they are closer in these measures.

The mapping of sequence networks to generalized threshold graphs may be helpful

in the analysis of some of their properties, for example, for finding the isoperimetric

number of a sequence graph (Moh91).

9.6 Discussion and Open Problems

In this chapter we have introduced a new class of networked called sequence net-

works, obtained from a sequence of letters and fixed rules of connectivity. We have

classified all the two-letter sequence networks, which contain threshold networks, and

in addition two newly discovered classes. The classification for three-letter sequence

networks is not as ease, and can be found in (SNb08).

170

By making use of the layer representation and alphabetical ordering, structural

properties of the newly discovered two-letter sequence networks have been analyzed.

The diameter of sequence networks grows linearly with the number of letters in

the alphabet and for a three-letter alphabet it is already 3 or 4, comparable to many

everyday life complex networks. Realistic diameters might be achieved with a modest

expansion of the alphabet.

There remain numerous open questions: Applying symmetry arguments we have

managed to reduce the class of 2-letter networks to just 3 types and 3-letter networks

to just 30 types (SNb08), but we have not ruled out the possibility that some over-

looked symmetry might reduce the list further. How to classify higher order (i.e., with

more letters) sequence networks other than the brute-force approach is still unclear.

The question of which sequences lead to connected networks can be studied by

inspection for small alphabets, but we have no comprehensive approach to solve the

problem in general. We have shown how to map sequence networks to generalized

types of threshold nets, in some cases — Is such a mapping always possible? Is there a

systematic way to find such mappings for any sequence rule? What kinds of networks

would result if the connectivity rules applied only to the q (where q is finite) preceding

letters, instead of to all preceding letters, or replacing the deterministic connectivity

rule by some probabilistic process?

171

Chapter 10

Greedy Connectivity of Embedded

Networks

10.1 Geographical Graphs

For some networks there are underlying structural constraints other than the ex-

plicit connections between nodes. For example, a social network is often influenced

by geographical locations: people in the same neighborhood or who go to work at

the same place are more likely to be friends. In fact, the study of how mail/message

can be sent from a person to a given randomly chosen target (Mil67; DMW03) shows

that most of the time people choose to send mails/messages to friends who live geo-

graphically closer to the target.

The idea of embedding a network in some metric space has been proposed to

construct scale-free networks in lattices (RCb02), to explore local navigability of

complex networks (BKC09), and so on. The key advantage of having some knowledge

of an underlying metric space for the nodes is to allow efficient navigation without

global coordination (Kle00a; Kle00b; CCSb09; CD09).

Motivated by such applications, in this chapter we define a geographical graph

to be a graph with additional metric structure on the set of edges, and study the

172

so called greedy connectedness of some benchmark network models such as lattice,

Erdos-Renyi networks, and Watts-Strogatz like networks. The greedy connectedness

(to be defined in the following section) takes into the account the fact that when

global information is not available, a node may not able to find its path to some

target, even if there indeed exists one. We found that this concept is best explained

by a real world example shown in Fig. 10.1.

Figure 10.1. Blenheim Palace Garden Maze. - A maze can be thought of a
connected graph. However, can everyone finds his way out, even if we know the
geographical location of the exit?

When nodes in a graph are embedded in a coordinate space, the metric defined

on the edges is simply induced by the distance between points/vectors in the corre-

sponding coordinate space.

Definition 10.1 (Geographical graph) A geographical graph G̃ = (V,E; Φ) is

a graph G = (V,E) with additional geographical structure which defines a metric space

Φ for the set of nodes V . The metric will be denoted by φ, which is a function

φ : V × V → R+ ∪ {0}

(i, j) 7→ φ(i, j).

173

Thus, by the properties of metric, we have: φ(i, i) = 0; φ(i, j) = φ(j, i) > 0 whenever

i 6= j; and φ(i, j) ≤ φ(i, k) + φ(k, j) for any i, j, k ∈ V .

10.2 Greedy Connectivity: Definition and Proper-

ties

10.2.1 Path and Connectivity in Graphs

Paths and shortest paths play important role in graph theory, and also in many

applications as discussed in Chapter 7. In this subsection we review some definition

and results regarding paths. Much of the results (although stated slightly differently)

can be found in many classical graph theory books, for example, (Die06; Wes00).

First let us define a path in a graph G = (V,E) (here and in the following, this

notation of a graph will be adopted without special declaration).

Definition 10.2 (Path) A sequence of numbers p = (i1, . . . , i`+1) is a path of length

` (the path length is simply |p| − 1) if

{i1, . . . , i`+1} ⊂ V, (10.1)

and for each k ∈ {1, . . . , `},

(ik, ik+1) ∈ E. (10.2)

Here the nodes i1 and i`+1 are called endpoints of the path.

Lemma 10.1 A sub-path of a path is also a path. On the other hand, given

two paths (i1, . . . , i`+1) and (j1, . . . , jk), if i`+1 = j1, then the sequence of nodes

(i1, . . . , i`+1, j2, . . . , jk) also forms a path.

Note that the nodes appearing in a path can repeat. Thus, a path can contain loop(s).

The following lemma is based on the observation that by repeating a path (or think

of ‘gluing’ two paths together), one obtains a longer path between two nodes.

174

Lemma 10.2 (Number of Paths between Connected Nodes) In a given

graph, suppose there is one path between two nodes s and t, then there are in-

finitely many path with different lengths between the same pair of nodes s and

t.

A path in a graph can be thought of as a spatial trajectory from one node to another.

This trajectory can be infinitely long, which contains repeated patterns of nodes which

reminds us of periodic orbits from dynamical systems. Indeed, the relationship be-

tween dynamical systems and graphs can be explored through symbolization (MH38),

usually accomplished through generating partitions (PCB06), another exciting con-

cept in dynamical systems.

Definition 10.3 (Shortest Path) Let Pst denote the set of all paths with endpoints

s and t. The shortest path connecting nodes s and t is a path pm ∈ Pst such that

∀p ∈ Pst,

|pm| ≤ |p|. (10.3)

The length of a shortest path between s and t is then |pm| − 1, and will be denoted by

dst. The shortest path length is also referred to simply as path length for convenience.

In a general graph, from one node s to another node t there may be multiple shortest

paths with the same path length. However, in a tree (a tree is a graph with no loops),

all shortest paths are unique. The following lemma is also useful in some proofs

relating shortest paths.

Lemma 10.3 A sub-path of a shortest path is also a shortest path.

Thus, if (i1, . . . , i`+1) is a shortest path, then ∀j, k ∈ {1, . . . , ` + 1} where j < k, the

path (ij, . . . , ik) is also a shortest path (connecting the nodes ij and ik).

Remark 10.1 Any node appearing in a shortest path can only appear once, since

otherwise, by the above lemma, we may obtain another shortest path with smaller

path length.

175

Definition 10.4 (Connectedness of Nodes) In an undirected graph, two nodes s

and t in a graph are called connected if there is a path starting at s and end at t.

Connectedness defines an equivalence relationship on the set of nodes. A component

in a graph is a maximal connected subgraph.

If a graph has more than one components, then there exists pair of nodes which cannot

be reached from each other using edges in the graph. This motivates the definition

of connectedness of a graph.

Definition 10.5 (Connectedness of a Graph) A graph G = (V,E) is con-

nected if there is a unique component (equals the graph itself).

In the next subsection we shall explore some properties of greedy paths in graphs,

and compare them especially with the properties of paths and shortest paths.

10.2.2 Greedy Paths and Greedy Connectivity

Definition 10.6 (Greedy Path) In a geographical graph G̃ = (V,E; Φ), a path p =

(i1, . . . , i`+1) is a greedy path from node i1 to node i`+1 of length ` if For each

k ∈ {1, . . . , `},

φ(ik+1, i`+1) ≤ φ(j, i`+1) ∀j s.t. (ik, j) ∈ E. (10.4)

Remark 10.2 By definition, a greedy path is automatically a path. The converse is

not true.

Remark 10.3 (Symmetry Breaking of Greedy Path) For a graph that is undi-

rected, unlike paths/shortest paths, a greedy path from a node s to t does not guarantee

the existence of greedy path going backwards (from t to s).

Remark 10.4 (Transitivity Breaking of Greedy Path) Unlike paths/shortest

paths, a path (i1, . . . , i`, j1, . . . , jk) may not be a greedy path even if both (i1, . . . , i`)

and (j1, . . . , jk) are.

176

Definition 10.7 (Greedy Connectedness) A geographical graph is greedily

connected if ∀(i, j) ∈ V × V , there is a greedy path p = (i1, . . . , i`+1) with i1 = i

and i`+1 = j.

Due to the above two lemma, even in an undirected geographical graph, there is no

well defined components induced by the greedy connectedness. Next we explore the

relationship between connectedness and greedy connectedness.

Lemma 10.4 (Greedy connectivity and connectivity) Greedy connectedness

⇒ connectedness. More precisely, if a geographical graph is greedily connected, then

it is also connected.

Remark 10.5 Connectedness does not necessarily imply greedy connectedness.

Lemma 10.5 (Sub-paths of a greedy path) Suppose p = (i1, . . . , i`+1) is a

greedy path, then ∀k ∈ {1, . . . , `}, the path (ik, . . . , i`+1) is also a greedy path.

Remark 10.6 Unlike in the case of paths, a sub-path of a greedy path may not be a

greedy path.

Remark 10.7 For a greedily connected graph, adding edges does not guarantee greedy

connectedness of the graph.

Lemma 10.6 (Uniqueness of greedy paths) Let G̃ = (V,E; Φ) be a geographical

graph. Suppose that Φ is a 1− to− 1 function on E, i.e., ∀(i, j), (i′, j′) ∈ E,

φ(i, j) = φ(i′, j′)⇒ (i, j) = (i′, j′), (10.5)

then all greedy paths in the graph are unique.

177

Remark 10.8 The uniqueness property is quite general. For example, if we embed

the set V in Rn where points (coordinates for nodes) are drawn from a continuous

distribution, then the condition for uniqueness holds with high probability. Thus,

greedy paths are generically unique with respect to the choice of embedding of nodes

into a metric space. To be more rigorous, we need assumptions about the space of Φ

under consideration.

10.2.3 Probabilistic Paths

In this subsection and following, we will use the word path to mean either a

shortest path or greedy path, rather than general paths. However, when it comes to

special circumstances, we shall differ between whether a path is a shortest path or a

greedy path, to avoid confusion.

Define first the quantity P (`,m) by

P (`,m) ≡ probability that two sites of geographical distance m

is connected through a greedy path of length `. (10.6)

In practice, there are various factors causing failures when we attempt to follow

a long path to send a message for example. These factors can be taken into account

by a simple but yet crucial analytical treatment.

Suppose that for each edge in a path there is a constant probability of failure,

defined by e−µ for a given µ ≥ 0, then for long paths this factor accumulates in an

exponential sense whenever µ > 0. This key feature captures the fact that the longer

a path is in practice, the less possible we will be able to follow the whole path.

Therefore, we define, for a given µ, the following quantity:

Pµ(m) ≡
∑
`

P (`,m)e−µ`

≡ probability that two sites of geographical distance m

is connected under success rate e−µ. (10.7)

The overall connectivity of a graph under the failure rate e−µ is then assessed by

178

the quantity

〈Pµ〉 =

∑
mNm · Pµ(m)∑

mNm

(10.8)

where Nm is the number of pairs of sites at geographical distance m.

10.3 Greedy Connectivity: Computation

In this section we assume that the geographical graph satisfies the condition

Eq. (10.5), so that all greedy paths are unique.

10.3.1 Brute-Force Approach

For a given geographical graph G̃ = (V,E; Φ), it is obvious how to find a greedy

path from one node to the other by simply following the definition of a greedy path.

The approach is presented in pseudo code below:

Brute-Force Approach for Finding a Greedy Path between Two Nodes

Given: G̃ = (V,E; Φ), a geographical graph.

Goal: Find a greedy path between nodes s and t.

Let: p = (s) be a vector to contain the path.

Let: i = s and stop = 0.

while (i 6= t) & (stop = 0) do

Find j ∈ E s.t., φ(j, t) < φ(k, t) for all k 6= j and k ∈ E
if φ(j, t) > φ(i, t) then

Set stop = 1.

else

Add node j to the end of the sequence p and set i = j.

end if

end while

if i=t then

179

Output p as the greedy path.

else

No greedy path found.

end if

The brute-force approach is simple to implement and understand, but it costs

O(|E|) operations to find a path between any pair of nodes. Thus, to find all greedy

paths in a graph we need to run the algorithm |V |2 times. The total number of

operations needed would thus be O(|V | · |E|2). For a sparse, connected graph where

|E| = O(|V |), the number of operations simplifies to O(|V |3).

In the next subsection we will show that there exists a much faster way to compute

all the greedy paths in a geographical graph, which only requires O(|V | · |E|+ |V |2)

operations, or O(|V |2) when the graph is sparse.

10.3.2 Geographical Breadth-First-Search (BFS) for Greedy

Paths

In this subsection we show that the popular Breadth-First-Search for finding usual

shortest paths can be used to find all greedy paths to a given node in a geographical

graph. The approach is called geographical BFS.

In the following we provide Matlab code for computing all greedy paths to a

target node t in a geographical graph. The idea is to perform a breadth-first-search

like algorithm starting from the target node, explore from closer to farther away in

the geographical distance sense all the other nodes to check the existence of greedy

paths to the target.

We have assumed that any greedy path, if exist, is always unique. In practice, for

circularly embedded graphs such as lattices, this can be achieved by perturbing the

position of each node by some small amount.

Modified Breadth-Force Search for All Greedy Paths to a Given Node

180

function [d,p] = GreedySearch(A,X,t)

%% Assumptions:

% A is unweighted (& undirected?)

%% Breadth-first-search in the Geographical induced Metric

% A: adjacency matrix (A(i,j)==1 iff there is an edge from i to j)

% X: coordinate mapping

% X(:,i) (i-th column of X) is the coordinate of node i

% t: targeting node

%% Edges in the graph

n = length(A);

A = sparse(A);

Nbs = cell(n,1);

for i = 1 : n

Nbs{i} = find(A(:,i));

end

%% Initial set up

p = -ones(1,n); % p(i) is the next node in the greedy path from i to t

d = -ones(1,n); % d(i) is the greedy path length from i to t

burn = zeros(1,n); % burn(i) = 1 iff i has been explored

%% Geographical distances to the target t (using Euclidean norm)

phi = X - kron(ones(1,n),X(:,t)); % phi(i) is the geo.dist to t

phi = sqrt(sum(phi.*phi)); % distance to the target

[B,IX] = sort(phi); % sorting from closer to farther away

% IX(1) is the index of the node who is closest to t (i.e., t)

% IX(2) is the index of the second closest node to t

% (...)

181

%% Before search

d(t) = 0;

p(t) = 0;

burn(t) = 1;

%% Start search from closer to farther away to the target t

for i = 1 : n-1

k = IX(i);

if burn(k)==0

burn(k) = 1;

end

for indj = 1 : length(Nbs{k})
j = Nbs{k}(indj);

if burn(j)==0

if d(k)>=0

d(j) = d(k) + 1;

p(j) = k;

end

burn(j) = 1;

end

end

end

%%

This algorithm costs as much as the usual BFS, which requiresO(|V |+|E|) operations.

To find all greedy paths, we simply need to run the algorithm |V | times. Thus,

the problem of finding greedy connectedness of an unweighted geographical graph

G̃ = (V,E; Φ) can be solved computationally in O(|V | · |E| + |V |2) operations; or

O(|V |2) when the graph is sparse.

182

10.4 Greedy Connectivity for some Network Mod-

els

In this section we explore numerically the greedy connectivity of some network

models under different success rates (a concept introduced in Section 10.2.3).

10.4.1 Circular Embedding

We will study a specific type of embedding called circular embedding. This

embedding simply embeds the space of nodes on a circle in R2. To be precise, if

V = {1, . . . , n}, then node i will be put at position

xi =
(

cos(
i

n
2π), sin(

i

n
)2π)

)
∈ R2, (10.9)

and φ can be defined either as φ(i, j) = min(|i− j| mod n, |j− i| mod n) or simply

φ(i, j) = ||xi − xj|| where ||.|| is the usual Euclidean distance; both definition will

yield the same results for greedy paths, since they are isomorphic metrics.

For a circularly embedded graph of 2L nodes, the range of geographical distance

m is from 1 to L, whereas the range of greedy path length ` is also from 1 to L. Nm

is always 4L. So for circularly embedded graphs,

Pµ(m) ≡
L∑
`=1

P (`,m)e−µ` (10.10)

and

〈Pµ〉 ≡
∑

mNm · Pµ(m)∑
mNm

=

∑L
m=1 4L · Pµ(m)∑L

m=1 4L
=

1

L

L∑
m=1

Pµ(m). (10.11)

10.4.2 Circularly Embedded Lattices

A lattice GL(L, d) is a circular graph where there are 2L nodes, each connect to

d of its nearest neighbors at each side. A circularly embedded lattice G̃L(L, d) is a

lattice GL(L, d) embedded as Eq.(10.9).

183

The equation for P (`,m) in this case reads

P (`,m) = δ`,dm
d
e (10.12)

where dxe is the least integer which is greater or equal to x. Then, for Pµ(m), we

have

Pµ(m) ≡
L∑
`=1

P (`,m)e−µ` =
L∑
`=1

δ`,dm
d
ee
−µ` = e−µd

m
d
e. (10.13)

Finally,

〈Pµ〉 =
1

L

L∑
m=1

Pµ(m)

=
1

L

[d∑
m=1

e−µ +
2d∑

m=d+1

e−2µ + · · ·+
bL
d
cd∑

m=(bL
d
c−1)d+1

e−b
L
d
cµ +

L∑
m=bL

d
cd+1

e−(bL
d
c+1)µ

]

=
d

L

[
e−µ + e−2µ + · · ·+ e−b

L
d
cµ +

L− bL
d
cd

d
e−(bL

d
c+1)µ

]
. (10.14)

Assuming for convenience that L
d

is an integer, then the above equation can be further

simplified as:

〈Pµ〉 = 〈Pµ〉 =
d

L

L
d∑

k=1

e−kµ =


d
L
e−µ 1−e−

L
d
µ

1−e−µ , if 0 < e−µ < 1;

1, if e−µ = 1.
(10.15)

Fig. 10.2 shows numerically simulated 〈Pµ〉 compared with theory given by

Eq. (10.15).

10.4.3 Circularly Embedded Random Graphs

A random graph GR(L, d) is a graph where there are 2L nodes, and every pair of

nodes are connected by an edge with probability d
L

. A circularly embedded random

graph G̃R(L, d) is a random graph GR(L, d) embedded as Eq.(10.9).

For this model, the master equation for P (`,m) can be derived as, for 1 ≤ `,m ≤

184

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e−µ

d=8
d=4
d=2
d=1
Theory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e−µ

L=100
L=200
L=400
L=800
Theory

Figure 10.2. Greedy connectedness of circular lattices. - Left panel shows simu-
lation and theoretical results of 〈Pµ〉 according to Eq. (10.15) for circularly embedded
lattices of fixing L = 100; right panel shows 〈Pµ〉 for lattices of fixed d = 8.

L:

P (`,m) = λP (`− 1, 0) + (1− λ)ωP (`− 1, 1) + (1− λ)3ωP (`− 1, 2)

+ · · ·+ (1− λ)2m−3ωP (`− 1,m− 1)

= λP (`− 1, 0) + ω
m−1∑
k=1

(1− λ)2k−1P (`− 1, k). (10.16)

Here

λ ≡ d

L
, ω ≡ 1− (1− λ)2 = λ(2− λ). (10.17)

The boundary conditions for this equation are:
P (0, 0) = 1;

P (0,m) = 0, if m ≥ 1;

P (`,m) = 0, if ` > m.

(10.18)

Next we use the above master equation to derive a recurrence equations on between

185

Pµ(m) as follows:

Pµ(m) ≡
L∑
`=1

P (`,m)e−µ` =
m∑
`=1

P (`,m)e−µ`

= λ

m∑
`=1

P (`− 1, 0)e−µ` + ω
m∑
`=1

m−1∑
k=1

(1− λ)2k−1P (`− 1, k)e−µ`

= λe−µ + ω

m−1∑
k=1

(1− λ)2k−1

m∑
`=1

P (`− 1, k)e−µ`

= λe−µ + ω
m−1∑
k=1

(1− λ)2k−1e−µ
k+1∑
`=1

P (`− 1, k)e−µ(`−1)

= λe−µ + ω
m−1∑
k=1

(1− λ)2k−1e−µPµ(k).

That is, for 2 ≤ m ≤ L:

Pµ(m) = e−µ
[
λ+ ω

m−1∑
k=1

(1− λ)2k−1Pµ(k)
]
.

Thus, we have the recurrence equations for Pµ(m), as:

Pµ(m)− Pµ(m− 1) = e−µω(1− λ)2m−3Pµ(m− 1)

⇒ Pµ(m) =
[
1 + e−µω(1− λ)2m−3

]
Pµ(m− 1). (10.19)

The initial condition Pµ(1) can be computed as

Pµ(1) = P (1, 1)e−µ` = λe−µ`. (10.20)

Therefore, the general formula for Pµ(m) can be obtained, as:

Pµ(m) = λe−µ
m∏
k=2

[
1 + e−µω(1− λ)2k−3

]
. (10.21)

Finally,

〈Pµ〉 =
1

L

L∑
m=1

Pµ(m)

= λe−µ
1

L

L∑
m=1

m∏
k=2

[
1 + e−µω(1− λ)2k−3

]
. (10.22)

186

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

d=8
d=4
d=2
d=1
Theory

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

L=100
L=200
Theory

Figure 10.3. Greedy connectedness of circularly embedded random graphs.
- Left panel shows simulation and theoretical results of 〈Pµ〉 according to Eq. (10.22)
for circularly embedded random graphs of fixing L = 100; right panel shows 〈Pµ〉 for
such graphs of fixed d = 8. Horizontal axis is the value of e−µ. All numerical curves
are averaged over 100 random realizations.

10.4.4 Lattice Rewiring Model: the Interplay between Short

and Long Range Connections

In the previous two subsections we have numerically shown that a random graph

always has worse greedy connectedness than a lattice, when both are circularly em-

bedded. It seems that randomness would cause the decrease of greedy connectedness

in general. Is this true?

In the following we show that although complete randomness might be the worst

case for greedy connectedness, as shown in the example of a Erdos-Renyi graph,

an appropriate level of randomness can indeed improve the greedy connectedness

significantly. The example is shown in Fig. 10.4.

The increasing parts of the two curves at small ε region where µ > 0 indicates

the importance of randomness in an ordered world to allow efficient local navigation.

The fact that there is always a unique maximum of the curve whenver µ > 0 is

also interesting, and can be analyzed theoretically by means of master equations on

〈P (µ)〉 (CCSb09), but will not be discussed in this thesis.

187

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!

<P
(µ

)>
!

e−µ=1
e−µ=0.98
e−µ=0.96

Figure 10.4. Greedy connectedness of small world graphs. - Here we start
with a circular lattice of n = 200 nodes and k = 4. For given ε (horizontal axis), we
rewire each edge in the lattice with probability ε. The vertical axis corresponds to
〈P (µ)〉 as defined in Eq. (10.8). Here three curves are shown for different choices of
µ. The plotted curves are average over 20 different realizations.

188

10.5 Discussion and Open Problems

In this chapter we introduce the concept of greedy connectedness of geographi-

cal graphs. We have shown a few interesting properties of greedy paths and greedy

connectedness which are different from those of usual paths and connectedness. Fur-

thermore, we introduce the concept of failure rate for paths in graphs, which can be

used to model communications in realistic situations. To compute greedy paths, we

develop an efficient algorithm based on classical BFS. Numerical study of the greedy

connectedness of a few network models are also shown for circularly embedded lat-

tices, random networks, and Watts-Strogatz networks. We have found that there is a

maximum of the greedy connectedness in Watts-Strogatz networks for any non zero

failure rate, and this maximum usually takes place at a small rewriting probability,

which seems to be realistic.

Despite its theoretical relevance, the application to practical problems is promis-

ing: a deeper understanding of what can improve/worsen greedy connectedness in a

more rigorous sense is useful for the design of communication systems.

189

Chapter 11

Conclusion

In this thesis we have focused on several different aspects of the general area of

complex systems modeling. The three main areas we have studied are: dynamics on

networks, dynamics of networks, and network modeling.

(1) Dynamics on networks.

In this area we have studied an important problem about synchronization in sys-

tems of coupled chaotic oscillators where the oscillators were not necessarily governed

by the same dynamics, a big assumption usually made in the area. We developed a

generalized master stability function approach to analyzing the stability of synchro-

nization in this case (Chapter 2) and (SBN09d; SBN09c). Furthermore, an important

question regarding how to reduce the complexity of a spatio-temporal system was

raised and analyzed in Chapter 3 and (SBN09b). The difficulty of judging the quality

of a reduced order model arises when the individual components of the systems are

governed by chaotic oscillators. In Chapter 4 we reviewed a concept called shadowing

and developed new analysis about how optimal shadowing can be used to measure

the quality of model for chaotic systems. Such techniques were used in Chapter 5 for

the study of model reduction of coupled chaotic oscillators (SBN09b).

(2) Dynamics of networks.

Real world networks change from time to time. However, the majority of the

research in this area has been focusing on network properties that are static. Part of

190

the difficulty of modeling a time dependent network comes from the fact that com-

puting network statistics for a time varying graph topology is costly by traditional

methods. Motivated by such problems, we developed efficient algorithms based on up-

date formulae of network statistics to track the evolution of large, evolving networks.

Those statistics included local statistics such as degree, clustering coefficient, assor-

tativity coefficient, and modularity (Chapter 6) and (SBBS09); and global statistics

such as shortest paths (SBB+09) and spectral radius of adjacency matrices (MSN09)

(Chapter 7).

(3) Problems related to network modeling.

Various problems have attracted us. In Chapter 8 we proposed a method based on

symmetry reduction to efficiently represent a graph, aiming at the optimal compres-

sion of graphical structures, a seemingly simple, but yet unsolved problem (SBb08).

In Chapter 9 we proposed a new class of networks called sequence networks (SNb08),

which are networks generated by deterministic rules applying to a sequence of num-

bers. Those networks have beautiful analytical properties such as low storage require-

ments and fast computations, as well as the advantage of being easy to design. In

Chapter 10 (and (Sb09)) we introduced the concept of geographical graphs to model

graphs that are embedded in some metric spaces, and define a new type of connected-

ness of such graphs, called greedy connectedness. Greedy connectedness under finite

failure rate captures the key feature that in real life, paths are not perfectly robust.

Numerical study in a few examples suggested that an ordered network with some

randomness is optimal for such situations.

Conducted works that were not discussed in the thesis include (SGL07), (SBN09a),

and (SBPD09).

191

References

[AB02] R. Albert and A.-L. Barabasi. Statistical mechanics of complex networks. Rev.

Mod. Phys., 74:47, 2002.

[ADK+08] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou. Synchroniza-

tion in complex networks. Physics Reports, 469:93–153, 2008.

[ADP06] A. Arenas, A. Diaz-Guilera, and C. J. Perez-Vicente. Synchronization reveals

topological scales in complex networks. Phys. Rev. Lett., 96:114102, 2006.

[Ano67] D. V. Anosov. Geodesic flows on closed riemannian manifolds with negative

curvature. Proc. Steklov Inst. Math., 90, 1967.

[BA99] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.

Science, 286:509, 1999.

[BBSb08] J. P. Bagrow, E. M. Bollt, J. D. Skufca, and D. ben-Avraham. Portraits of

complex networks. Euro. Phys. Lett., 81:68004, February 2008.

[Ber92] S. K. Berberian. Linear Algebra. Oxford University Press, New York, 1992.

[BKC09] M. Boguna, D. Krioukov, and K. C. Claffy. Navigability of complex networks.

Nature Physics, 5:74–80, 2009.

[BKO+02] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. Zhou. The

synchronization of chaotic systems. Phys. Rep., 366:1, 2002.

[Bol01] B. Bollobas. Random Graphs. Cambridge University Press, 2 edition, 2001.

192

[Bol06] E. M. Bollt. Modeling spatiotemporal systems on arbitrary networks by uncov-

ering spatial scales and component interactions: Uncovering hierarchical scale

interactions for problems of mathematical epidemiology. Proposal to the US

Army Research Office, 2006.

[Bol07] E. M. Bollt. Attractor modeling and empirical nonlinear model reduction of

dissipative dynamical systems. International Journal of Bifurcation and Chaos,

17:1199, 2007.

[Bow75] R. Bowen. ω−limit sets for axiom a diffeomorphisms. J. Diff. Eqns., 18:333–

339, 1975.

[BP02a] M. Barahona and L. M. Pecora. Synchronizaiton in small-world systems. Phys.

Rev. Lett., 89:054101, 2002.

[BP02b] M. Boguna and R. Pastor-Satorras. Epidemic spreading in correlated complex

networks. Phys. Rev. E, 66:047104, 2002.

[BP03] M. Boguna and R. Pastor-Satorras. Class of correlated random networks with

hidden variables. Phys. Rev. E, 68:036112, 2003.

[BZC+03] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling,

N. Zhang, G. Li, and R. Chen. Topological structure analysis of the protein-

protein interaction network in budding yeast. Nucleic Acids Res., 31:2443–

2450, 2003.

[CCDM02] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Munoz. Scale-free net-

works from varying vertex intrinsic fitness. Phys. Rev. Lett., 89:258702, 2002.

[CCSb09] S. Carmi, S. Carter, J. Sun, and D. ben-Avraham. Asymptotic behavior of the

kleinberg model. Phys. Rev. Lett., 102:238702, June 2009.

[CD09] C. C. Cartozo and P. De Los Rios. Extended navigability of small world

networks: Exact results and new insights. Phys. Rev. Lett., 102:238703, 2009.

193

[CEbH00] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin. Resilience of the internet

to random breakdowns. Phys. Rev. Lett., 85:4626, 2000.

[CKY88] E. M. Coven, I. Kan, and J. A. Yorke. Pseudo-orbit shadowing in the family

of tent maps. Trans. Amer. Math. Soc., 308:227–241, 1988.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press and McGraw-Hill, 2 edition, 2001.

[CLV03] F. Chung, L. Lu, and V. Vu. Spectra of random graphs with given expected

degrees. Proc. Natl. Acad. Sci. USA, 100:6313, 2003.

[CS09] Y. Choi and W. Szpankowski. Compression of graphical structures. In IEEE

International Symposium on Information Theory (ISIT), pages 364–368, 2009.

[CT06] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-

Interscience, 2 edition, July 2006.

[DA05] J. Duch and A. Arenas. Community detection in complex networks using

extremal optimization. Phys. Rev. E, 72:027104, 2005.

[Dem97] J. W. Demmel. Applied Numerical Algebra. SIAM, 1997.

[DGM08] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical phenoma in

complex networks. Rev. Mod. Phys., 80(4):1275–1335, October 2008.

[DHS00] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-

Interscience, 2 edition, October 2000.

[Die06] R. Diestel. Graph Theory. Springer, 3 edition, 2006.

[DMW03] P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search

in global social networks. Science, 301(5634):827–829, 2003.

[EGSS82] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse

matrix package i: the symmetric codes. Int. J. Nuer. Methods Eng., 18:1145,

1982.

194

[ER05] E. Estrada and J. A. Rodriguez-Velazquez. Subgraph centrality in complex

networks. Phys. Rev. E, 71:056103, 2005.

[Fie89] M. Fiedler. Laplacian of graphs and algebraic connectivity. Combinatorics and

Graph Theory, 25:57–70, 1989.

[Fis05] G. Fishman. A First Course in Monte Carlo. Duxbury Press, 1 edition,

October 2005.

[FS91] J. D. Farmer and J. J. Sidorowich. Optimal shadowing and noise reduction.

Physica D, 47:373–392, 1991.

[GBB09] A. Gautreau, A. Barrat, and M. Barthelemy. Microdynamics in stationary

complex networks. Proc. Natl. Acad. Sci. USA, 106(22):8847–8852, June 2009.

[GD07] D. Gfeller and P. De Los Rios. Spectral coarse graining of complex networks.

Phys. Rev. Lett., 99:038701, 2007.

[GD08] D. Gfeller and P. De Los Rios. Spectral coarse graining and synchronization

in oscillator networks. Phys. Rev. Lett., 100:174104, 2008.

[GDD+03] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. Self-similar

community structure in a network of human interactions. Phys. Rev. E, 68:

065103(R), 2003.

[GHYS90] C. Grebogi, S. H. Hammel, J. A. Yorke, and T. D. Sauer. Shadowing of

physical trajectories in chaotic dynamics: containment and refinement. Phys.

Rev. Lett., 65:1527–1530, 1990.

[Gil98] I. Gilmour. Nonlinear model evaluation: l-shadowing, probabilistic prediction

and weather forecasting. PhD thesis, Mathematical Institute, University of

Oxford, 1998.

[Gol80] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic

Press, 1980.

195

[GSBC99] M. Golubitsky, I. Stewart, P-L. Buono, and J. J. Collins. Symmetry in lo-

comoter central pattern generators and animal gaits. Nature, 401:693–695,

October 1999.

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations. The Jonhs Hopkins

University Press, 3 edition, 1996.

[Hay02] W. B. Hayes. Shadowing high-dimensional hamitonian systems: The gravita-

tional n-body problem. Phys. Rev. Lett., 90(5):054104, 2002.

[HIS81] P. L. Hammer, T. Ibaraki, and B. Simeone. Threshold sequences. SIAM J.

Alg. Disc. Meth., 2:39, 1981.

[HS08] A. Hagberg and D. A. Schult. Rewiring networks for synchronization. Chaos,

18:037105, 2008.

[HSS06] A. Hagberg, P. J. Swart, and D. A. Schult. Designing threshold networks with

given structural and dynamical properties. Phys. Rev. E, 74:056116, 2006.

[HYG87] S. H. Hammel, J. A. Yorke, and C. Grebogi. Do numerical orbits of chaotic

processes represent true orbits? J. Complexity, 3:136–145, 1987.

[HYG88] S. H. Hammel, J. A. Yorke, and C. Grebogi. Numerical orbits of chaotic

processes represent true orbits. Bull. Amer. Math. Soc., 19:465–470, 1988.

[Jos05] J. Jost. Dynamical Systems: Examples of Complex Behavior. Springer, 1

edition, September 2005.

[Jud08] K. Judd. Shadowing pseudo-orbits and gradient descent noise reduction. Jour-

nal of Nonlinear Science, 18(1):57–74, February 2008.

[Kim04] B. J. Kim. Geographical coarse graining of complex networks. Phys. Rev. Lett.,

93(16):168701, 2004.

[Kle99] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal

of the ACM, 46(5):604–632, September 1999.

196

[Kle00a] J. M. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.

[Kle00b] J. M. Kleinberg. The small-world phenomenon: An algorithmic perspective.

In F. Yao and E. Luks, editors, Proceedings of the 32nd ACM Symposium on

Theory of Computing, pages 163–170. ACM, Portland, OR, 2000.

[KLK02] S-Y. Kim, W. Lim, and Y. Kim. Effect of parameter mismatch and noise on

weak synchronization. Progress of Theoretical Physics, 107:239, 2002.

[KMRS05] N. Konno, N. Masuda, R. Roy, and A. Sarkar. Rigorous results on the threshold

network model. J. Phys. A: Math. Theor., 38:6277, 2005.

[KT05] J. M. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2005.

[Kur84] Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer-Verlag,

New York, 1984.

[KW06] G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network.

Science, 311:88–90, 2006.

[LM05] A. N. Langville and C. D. Meyer. A survey of eigenvector methods for web

information retrieval. SIAM Review, 47(1):135–161, 2005.

[LPC+07] E. Lopez, R. Parshani, R. Cohen, S. Carmi, and S. Havlin. Limited path

percolation in complex networks. Phys. Rev. Lett., 99:188701, 2007.

[LT85] P. Lancaster and M. Tismenetsky. The Theory of Matrices with Applications.

Academic Press, 2 edition, 1985.

[Mac00] C. R. MacCluer. The many proofs and applications of perron’s theorem. SIAM

Review, 42(3):487–498, 2000.

[Mat] Mathworks. URL http://www.mathworks.com.

[Mer94] R. Merris. Laplacian matrices of graphs: a survey. Linear Algebra Appl.,

197&198:143–176, 1994.

197

[Mer03] R. Merris. Split graphs. Eur. J. Comb., 24:413–430, 2003.

[MGK06] S. J. Moon, R. Ghanem, and I. G. Kevrekidis. Coarse graining the dynamics

of coupled oscillators. Phys. Rev. Lett., 96:144101, 2006.

[MH38] M. Morse and G. A. Hedlund. Symbolic dynamics. American Journal of

Mathematics, 60:815–866, 1938.

[Mil67] S. Milgram. The small world problem. Psychol. Today, 2:60–67, 1967.

[MM07] P. N. McGraw and M. Menzinger. Analysis of nonlinear synchronization dy-

namics of oscillator networks by laplacian spectral methods. Phys. Rev. E, 75:

027104, 2007.

[MMK04] N. Masuda, H. Miwa, and N. Konno. Analysis of scale-free networks based on

a threshold graph with intrinsic vertex weights. Phys. Rev. E, 70:036124, 2004.

[Moh91] B. Mohar. The laplacian spectrum of graphs. In Graph Theory, Combinatorics,

and Applications, volume 2, pages 871–898. Wiley, 1991.

[MSN09] A. Milanese, J. Sun, and T. Nishikawa. Spectral impact of structural modifi-

cations in complex networks. (Manuscript in preparation), November 2009.

[Net] NetworkX. URL https://networkx.lanl.gov/wiki.

[New02] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701,

2002.

[New03] M. E. J. Newman. The structure and function of complex networks. SIAM

Review, 45:167–256, 2003.

[New06] M. E. J. Newman. Modularity and community structure in networks. Proc.

Natl. Acad. Sci. USA, 103:8577–8582, 2006.

[NM06a] T. Nishikawa and A. E. Motter. Maximum performance at minimum cost in

network synchronization. Physica D, 224:77, 2006.

198

[NM06b] T. Nishikawa and A. E. Motter. Synchronization is optimal in non-

diagonalizable networks. Phys. Rev. E, 73:065106(R), 2006.

[NY88] H. E. Nusse and J. A. Yorke. Is every approximate trajectory of some process

near an exact trajectory of a neaby process? Comm. Math. Phys., 114:363–379,

1988.

[Paj] Pajek. URL http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

[Pal00] K. Palmer. Shadowing in Dynamical Systems. Kluwer Academic Publishers,

2000.

[PC90] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Phys.

Rev. Lett., 64:821, 1990.

[PC98] L. M. Pecora and T. L. Carroll. Master stability functions for synchronized

coupled systems. Phys. Rev. Lett., 80:2109, 1998.

[PCB06] S. D. Pethel, N. J. Corron, and E. M. Bollt. Symbolic dynamics of coupled

map lattices. Phys. Rev. Lett., 96:034105, 2006.

[Per96] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag,

New York, 2 edition, 1996.

[Pil99] S. Yu. Pilyugin. Shadowing in Dynamical Systems (Lecture Notes in Mathe-

matics). Springer, October 1999.

[PKJ09] S. Pigolotti, S. Krishna, and M. H. Jensen. Symbolic dynamics of biological

feedback networks. Phys. Rev. Lett., 102:088701, 209.

[POM09] M. A. Porter, J.-P. Onnela, and P. J. Mucha. Communities in networks. Notices

of the AMS, 56(9):1082–1097, 1164–1166, 2009.

[PRK01] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A universal

concept in nonlinear sciences. Cambridge University Press, Cambridge, 2001.

199

[PSBS06] M. Porfiri, D. J. Stilwell, E. M. Bollt, and J. D. Skufca. Random talk: Random

walk and synchronizability in a moving neighborhood network. Physica D, 224

(1-2):102–113, 2006.

[PVV01] R. Pastor-Satorras, A. Vazquez, and A. Vespignani. Dynamical and correlation

properties of the internet. Phys. Rev. Lett., 87:258701, 2001.

[RCb02] A. F. Rozenfeld, R. Cohen, and D. ben-Avraham. Scale-free networks on

lattices. Phys. Rev. Lett., 89:218701, 2002.

[RJ02] D. Ridout and K. Judd. Convergence properties of gradient descent noise

reduction. Physica D, 165:26–47, 2002.

[ROH04] J. G. Restrepo, E. Ott, and B. R. Hunt. Spatial patterns of desynchronization

bursts in networks. Phys. Rev. E, 69:066215, 2004.

[ROH06a] J. G. Restrepo, E. Ott, and B. R. Hunt. Characterizing the dynamical impor-

tance of network nodes and links. Phys. Rev. Lett., 97:094102, 2006.

[ROH06b] J. G. Restrepo, E. Ott, and B. R. Hunt. The emergence of coherence in

complex networks of heterogeneous dynamical systems. Phys. Rev. Lett., 96:

254103, 2006.

[ROH07] J. G. Restrepo, E. Ott, and B. R. Hunt. Approximating the largest eigenvalue

of network adjacency matrices. Phys. Rev. E, 76:056119, 2007.

[Ros76] O. E. Rossler. An equation for continuous chaos. Physics Letters A, 57(5):

397–398, 1976.

[Rug96] W. J. Rugh. Linear System Theory. Prentice Hall, New Jeresy, 2 edition, 1996.

[Sau02] T. D. Sauer. Shadowing breakdown and large errors in dynamical simulations

of physical systems. Phys. Rev. E, 65:036220, February 2002.

200

[SB04] J. D. Skufca and E. M. Bollt. Communication and synchronization in dis-

connected networks with dynamic topology – moving neighborhood networks.

Mathematical Biosciences and Engineering, 1:2, 2004.

[Sb09] J. Sun and D. ben-Avraham. Greedy connectivity: A new notion of connec-

tivity for space embedded networks. (Manuscript in preparation), December

2009.

[SBb08] J. Sun, E. M. Bollt, and D. ben-Avraham. Graph compression – save informa-

tion by exploiting redundancy. J. Stat. Mech., page P06001, June 2008.

[SBB+09] J. Sun, J. P. Bagrow, E. M. Bollt, J. D. Skufca, and E. Lopez. Efficient com-

putation of path lengths for evolving networks. (Manuscript in preparation),

November 2009.

[SBBS09] J. Sun, J. P. Bagrow, E. M. Bollt, and J. D. Skufca. Dynamic computation of

network statistics via updating schema. Phys. Rev. E, 79:036116, March 2009.

[SBN09a] J. Sun, E. M. Bollt, and T. Nishikawa. Constructing generalized synchroniza-

tion manifolds by manifold equation. SIAM J. Appl. Dyn. Syst., 8(1):202–221,

January 2009.

[SBN09b] J. Sun, E. M. Bollt, and T. Nishikawa. Judging quality of model reduction via

shadowing criteria. (Manuscript in preparation), November 2009.

[SBN09c] J. Sun, E. M. Bollt, and T. Nishikawa. Master stability functions for coupled

nearly identical dynamical systems. Euro. Phys. Lett., 85:60011, April 2009.

[SBN09d] J. Sun, E. M. Bollt, and T. Nishikawa. Synchronization stability of coupled

near-identical oscillator network. In Jie Zhou, editor, Complex 2009, Part I,

LNICST, volume 4, pages 900–911. Springer Berlin Heidelberg, June 2009.

[SBPD09] J. Sun, E. M. Bollt, M. A. Porter, and M. S. Dawkins. Synchronization of

cows. (Manuscript in preparation), December 2009.

201

[SBR06] D. J. Stilwell, E. M. Bollt, and D. G. Roberson. Sufficient conditions for fast

switching synchronization in time-varying network topologies. SIAM J. Appl.

Dyn. Syst., 5(1):140–156, March 2006.

[SGL07] J. Sun, Y. Ge, and S. Li. Evolving network with different edges. Phys. Rev.

E, 76:046108, October 2007.

[SGP03] I. Stewart, M. Golubitsky, and M. Pivato. Symmetry groupoids and patterns

of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst., 2(4):609–646,

2003.

[SGY97] T. D. Sauer, C. Grebogi, and J. A. Yorke. How long do numerical chaotic

solutions remain valid? Phys. Rev. Lett., 79(1):59–62, 1997.

[SNb08] J. Sun, T. Nishikawa, and D. ben-Avraham. Sequence nets. Phys. Rev. E, 78:

026104, August 2008.

[SS93] S. H. Strogatz and I. Stewart. Coupled oscillators and biological synchroniza-

tion. Scientific American, 269:102, 1993.

[Str00] S. H. Strogatz. From kuramoto to crawford: exploring the onset of synchro-

nization in populations of coupled oscillators. Physica D, 143:1–20, 2000.

[Tsa] P. Tsaparas. URL http://www.cs.helsinki.fi/u/tsaparas/MACN2006/1\

verb1data-code.html1.

[TSL00] J. B. Tenenbaum, Vin de Silva, and J. C. Langford. A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290:2319, 2000.

[TY71] R. Tarjan and A. Yao. Storing a sparse table. Commun. ACM, 22:606, 1971.

[VHO96a] S. C. Venkataramani, B. R. Hunt, and E. Ott. Bubbling transition. Phys. Rev.

E, 54:1346, 1996.

[VHO+96b] S. C. Venkataramani, B. R. Hunt, E. Ott, D. J. Gauthier, and J. C. Biefang.

Transitions to bubbling of chaotic systems. Phys. Rev. Lett., 77:5361, 1996.

202

[VPV02] A. Vazquez, R. Pastor-Satorras, and A. Vespignani. Large-scale topological

and dynamical properties of the internet. Phys. Rev. E, 65:066130, 2002.

[Wat99] D. J. Watts. Small Worlds: The Dynamics of Networks between Order and

Randomness. Princeton University Press, August 1999.

[Wes00] D. B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September

2000.

[Wil65] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,

Oxford, UK, 1965.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393:440, 1998.

[WSSV85] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determing lyapunov

exponents from a time series. Physica D, 16:285–317, 1985.

[YB07] C. Yao and E. M. Bollt. Modeling and nonlinear parameter estimation with

kronecker product representation for coupled oscillators and spatiotemporal

systems. Physica D, 227:78–99, 2007.

[Zho06] S. Zhou. Understanding the evolution dynamics of internet topology. Phys.

Rev. E, 74:016124, 2006.

203

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Dynamics on Networks: Multi-scale Modeling of Spatial-Temporal Systems
	Dynamics of Networks: A Computational Approach for Analyzing Time Dependent Networks
	Network Modeling: Graph Compression, Sequence Nets, and Greedy Connectivity
	Graph Compression
	Sequence Nets
	Greedy Connectivity

	Multiscale Graphical Illustration of the Contents

	Dynamics on Networks: Coupled Oscillators, Synchronization
	Coupled Oscillator Network
	Equations of Motion
	Graph Laplacian

	Complete Synchronization: Master Stability Function Analysis
	Variational Equations
	Master Stability Function: Derivation
	Master Stability Function: Examples

	Nearly Synchronization: Generalized Master Stability Functions
	Motivation
	Near Synchronous State (NSS)
	Inhomogeneity in the Variational Equations
	Generalized Master Stability Equations and Functions
	Conditions for Stable Synchronization
	Examples of Application
	Brief Conclusion

	Application: Optimizing the Synchronization of Kuramoto Oscillators
	Motivation and Problem Statement
	Example of Coupled Kuramoto Oscillators

	Network of Networks: Multi-scale Dynamics on Networks
	Multi-scale Dynamics on Networks
	Coarse-grain Modeling of Multi-scale Dynamics on a Network
	Uncovering Spatial Scale by Time Series? A Counter Example to Popular Intuition.
	Finding the Right Partition: Structural vs. Dynamical Heterogeneity
	Difficulty for Coupled Chaotic Oscillators

	Modeling of Chaotic Oscillators: Preliminaries
	Parameter Estimation from Measurements
	Least Square Approach
	Example of a Quadratic Map

	What is Shadowing?
	Sensitive Dependence on Machine Precision: Is Chaos a Fiction?
	Infinite Shadowing for Hyperbolic Systems
	Finite Shadowing for Non Hyperbolic Systems

	Optimal Shadowing
	Pseudo Shadowing: A Rescue for Imperfect Computers
	Optimal Shadowing: Theorems and Algorithms for 1D Maps

	Measuring Quality of Modeling via Shadowing
	Shadowing Distance vs. Shadowing Time
	Ensemble Average Criteria

	Model Reduction of Coupled Chaotic Oscillators: A Shadowing Approach for Judging Model Quality
	A Shadowing Approach for Measuring Model Quality for Chaotic Systems
	Difficulty in Judging a Chaotic Model
	Judging a Chaotic Model via Shadowing

	Judging Quality of a Model Reduction
	Model Reduction of Coupled Chaotic Oscillators
	Problem Statement
	Example of Coupled Logistic Maps

	Discussion and Open Problems

	Dynamics of Networks: Updating Schema for Local Statistics
	Introduction
	Local Graph Statistics
	Updating Local Statistics
	Connecting a New Node
	Adding an Edge between Existing Nodes
	Deleting an Existing Edge

	Algorithmic Representation and Complexity
	Algorithmic Representation of the Update Schema
	On Computational Complexity

	Examples of Application
	Evolution of Degree and Clustering Coefficient
	Evolution of Modularity

	Discussion and Open Problems

	Dynamics of Networks: Evolution of Global Statistics
	Global Statistics: Exact Update vs. Approximation
	Shortest Paths in Networks
	Eigenvalues and Eigenvectors of Networks

	Updating Path Lengths of Evolving Networks
	Breadth-First-Search
	Updating All-Pair Shortest Paths
	Updating Average Path Length
	Application to Other Global Statistics

	Approximating Spectrum Perturbations
	Defining the Spectral Impact
	Classical Perturbation Results and Approximation in Practice
	Spectral Impact of Nodes, Edges, and General Subgraphs
	Numerical Results
	Related Problems for Future Work

	Information of Networks: Graph Compression by Exploiting Symmetry
	Introduction
	Motivation
	Yale Sparse Matrix Format

	Adjacency Matrix and Edge List
	A Motivating Example and the Idea of Redundancy
	Information Redundancy and Compression of Sparse Matrices
	How to Choose Pairs of Vertices to Reduce Information
	On Greedy Optimization of The ,, Orbit

	Greedy Algorithm for Compression
	Examples of Application to Graphs
	A Simple Benchmark Example: Lattice Graph
	Compressing a Watts-Strogatz Small-World Graph
	Real-World Graphs

	Discussion and Open Problems

	Sequence Networks
	Background
	Threshold Graph
	Creation Sequence

	Generalization: Sequence Networks
	Classification of Two-Letter Sequence Networks
	Classification
	Alphabetical Ordering

	Properties of Two-Letter Sequence Networks
	Degree, Clustering, Distance, and Betweenness
	Laplacian spectrum

	Relationship to Generalized Threshold Graphs
	Discussion and Open Problems

	Greedy Connectivity of Embedded Networks
	Geographical Graphs
	Greedy Connectivity: Definition and Properties
	Path and Connectivity in Graphs
	Greedy Paths and Greedy Connectivity
	Probabilistic Paths

	Greedy Connectivity: Computation
	Brute-Force Approach
	Geographical Breadth-First-Search (BFS) for Greedy Paths

	Greedy Connectivity for some Network Models
	Circular Embedding
	Circularly Embedded Lattices
	Circularly Embedded Random Graphs
	Lattice Rewiring Model: the Interplay between Short and Long Range Connections

	Discussion and Open Problems

	Conclusion

