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In this paper we present, the design and modeling of the novel nonlinear limiter control feedback
control plant [Myneni et al., 1999; Corron et al., 2000; Corron & Pethel, 2002], applied for the
first time here in an aeroelastic system, and actuated as a jet reaction torquer control of a
wing with potentially chaotic dynamics. This study will provide a better understanding of the
nonlinear dynamics of the open/closed-loop aeroelasticity of flexible wings with either steady or
unsteady aerodynamic loads. The limiter control can be applied to either the plunging or pitching
characteristic of the wing or to both of them. We show that the control can effectively suppress
Limit Cycle Oscillations (LCO) and chaos well beyond the nominal flutter speed. This could lead
to a practical implementation of the control mechanism on actual and future generation aircraft
wings via implementation of a combination of propulsive/jet type forces, micro surface effectors
and fluidic devices. Analysis of this control produced favorable results in the suppression of
LCO amplitude and increased flutter boundaries for plunging and pitching motion. The limiting
control has asymptotically zero power, and is simply implemented, making it a feasible solution
to the problem of the chaotic dynamics of the oscillating airfoil.
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can affect their survivability [Marzocca et al., 2001,

The tendency to reduce weight, increase structural
flexibility and operating speed certainly increases
the likelihood of the flutter occurrence within the
aircraft operational envelope. Moreover, combat
aircraft can experience, during their operational
life, dramatic reductions of the flutter speed that
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2002a, 2002b; Librescu et al., 2002, 2003a, 2003b;
Qin et al., 2002]. The mission profile of the next gen-
eration of UAV will probably lead to a configuration
requirement of an adaptable airframe to best meet
the varying flight conditions. It is conceivable that
the changes in geometry that occur would also incur
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aeroelastic instabilities, such as flutter, at points of
transition during the mission.

Conventional methods of examining aeroelas-
tic behavior have relied on a linear approrima-
tion of the governing equations of the flowfield and
the structure. However, aerospace systems inher-
ently contain structural and aerodynamic nonlinear-
ities [Dowell, 1978] and it is well known that with
these nonlinearities present, an aeroelastic system
may exhibit a variety of responses that are typi-
cally associated with nonlinear regimes of response,
including Limit Cycle Oscillation (LCO), flutter,
and even chaotic vibrations [Dowell et al., 2003].
These nonlinearities result from unsteady aerody-
namic sources, such as in transonic flow condition
or at high angle of attack, large deflections, and
partial loss of structural or control integrity. Aeroe-
lastic nonlinearities have been identified in [Lee
et al., 1999] and analyses, focusing on LCO behav-
ior and flutter boundaries, have been performed
on similar airfoils, as well as aeroelastic panels
[Berggren, 2004; Shahrzad & Mahzoon, 2002; Coller
& Chamara, 2004; Epureanu et al., 2004]. Previous
work has shown that airfoils operating past the flut-
ter boundary produce LCO that increase in ampli-
tude with increased speed, limiting the safe flight
boundary [Toumit & Darracq, 2000].

The interest toward the development and
implementation of active control technology was
prompted by the new and sometimes contradic-
tory requirements imposed on the design of the
new generation of the flight vehicle that mandated
increasing structural flexibilities, high maneuver-
ability, and at the same time, the ability to operate
safely in severe environmental conditions. In the last
two decades, the advances of active control technol-
ogy have rendered the applications of active flutter
suppression and active vibrations control systems
feasible [Marzocca et al, 2001; Mukhopadhyay,
2003]. A great deal of research activity devoted
to the aeroelastic active control and flutter sup-
pression of flight vehicles has been accomplished.
The state-of-the-art advances in these areas are pre-
sented in [Horikawa & Dowell, 1979; Vipperman
et al., 1998]. The reader is also referred to a
sequence of articles [Mukhopadhyay, 2000] where
a number of recent contributions related to the
active control of aircraft wing are discussed
at length.

Early studies have shown that the flutter insta-
bility can be postponed and consequently the flight
envelope can be expanded via implementation of

a linear feedback control capability. However, the
conversion of the catastrophic type of flutter bound-
ary into a benign one requires the incorporation of
a nonlinear feedback capability given a nonlinear
aeroelastic system. In recent years, several active
linear and nonlinear control capabilities have been
implemented. Digital adaptive control of a linear
aeroservoelastic model [Friedmann et al., 1997], u-
method for robust aeroservoelastic stability analysis
[Lind & Brenner, 1999], gain scheduled controllers
[Barker & Balas, 2000], neural and adaptive con-
trol of transonic wind-tunnel model [Scott & Pado,
2000; Guillot & Friedmann, 2000] are only few of
the latest developed active control methods. Lin-
ear control theory, feedback linearizing technique,
and adaptive control strategies have been derived
to account for the effect of nonlinear structural stiff-
ness [Ko et al., 1997; Zhang & Singh, 2001]. A model
reference variable structure adaptive control sys-
tem for plunge displacement and pitch angle control
has been designed using bounds on uncertain func-
tions [Zeng & Singh, 1998]. This approach yields a
high gain feedback discontinuous control system. In
[Xing & Singh, 2000], an adaptive design method for
flutter suppression has been adopted while utilizing
measurements of both the pitching and plunging
variables.

This paper will present a simple and yet effec-
tive limiter jet reaction torquer control that would
enable an increase in flutter speed, enhance the
aeroelastic response, and suppress LCO and chaotic
dynamics, preventing catastrophic failure. The non-
linear approach of lifting surfaces of aeronautical
and space vehicles permits determination of the
conditions under which undamped oscillations can
occur at velocities below the flutter speed, and also
of the conditions under which the flight speed can
be exceeded beyond the flutter instability, with-
out catastrophic failure, i.e. when a stable LCO
takes place. The next generation of aircraft will
not be mission specific, but will instead be able
to adapt to many different situations and require-
ments, so the use of these controls to expand the
safe flight boundary of an aircraft opens large
opportunities in this direction. These facts empha-
size the importance of at least two issues: (i) various
nonlinear effects should be included in the aeroe-
lastic analysis; (ii) implementing adequate con-
trol methodologies will enable one to expand the
flight envelope by increasing the flutter speed, or
to enhance the aeroelastic response by attenuat-
ing the excessive vibrations, but also to convert
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the unstable LCO into a stable one [Librescu &
Marzocca, 2005].

More insight into the wealth of the limiter con-
trol developed by Corron et al. [Corron et al., 2000;
Corron & Pethel, 2002; Myneni et al., 1999] and
applied to this important aeroelastic problem is
provided here. Limiter control uses small pertur-
bations, in the form of a novel nonlinear feedback
control plant, to neutralize system instabilities.
While their techniques were primarily developed
for electronic communications systems [Corron &
Pethel, 2002], this technique has been successfully
applied to a chaotic mechanical system by Corron
et al. [2000] and their chaotic driven pendulum
experiment has proved its effectiveness. This pio-
neering work has shown that this dynamic limiting
technique enables to selectively control unstable
periodic orbits via minimal perturbations. Lim-
iter control offers several advantages of system
simplicity and feasibility, in particular simplicity for
effective practical engineering, over previous para-
metric feedback methods more traditionally used in
the field of controlling chaos, as reviewed and com-
pared in [Bollt, 2003]. While other forms of non-
linear control of aeroelastic structural systems have
previously been researched [Librescu & Marzocca,
2005], the feasibility of limiter control as applied
to a nonlinear airfoil, is explored in this paper.
In Sec. 2, the mathematical model of the plung-
ing/pitching airfoil will be introduced, as well as
the limiter control. Section 3 outlines the results
of the applied control on the airfoil in steady and
unsteady flows, focusing on LCO suppression and
flutter boundary extension. A brief summary of the
conclusions can be found in Sec. 4.

2. Mathematical Model
2.1.

A classical two degrees-of-freedom in pitch and
plunge airfoil will be used to evaluate the limiter
control. The schematic for this spring restrained,
rigid wing model is shown in Fig. 1, where the
springs represent the wing’s structural bending and
torsion stiffness. This model is referred to as a typ-
ical section, that can either represent a 2-D wind
tunnel model, or a section of a finite wing. The
equations of motion are formulated from Lagrange’s
equations using potential and kinetic energies
and generalized aerodynamic forces [Hodges &
Pierce, 2002]. The nonlinear aeroelastic governing
equations are

Aeroelastic model

2
. . . wp, Qn
ph + pxad + Cph + u(—) h=—-—=5+Qch
Wey mpbiws
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pxah + pria + Cote + prio + ———a
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where h and « are the plunge and pitching angle dis-
placement, and Q. and Q. represent the limiter
control in plunge and pitch, respectively. In addition
to the well-known structural terms, see [Marzocca
2002a, 2002b; Librescu et al., 2003a, 2003b], the
aerodynamic lift and moment forces are represented
by Qn, Qs respectively. The lift and moment are
derived by summing the forces in each degree of
freedom in equilibrium.

Fig. 1.

2-DOF pitching and plunging airfoil.
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A model with unsteady aerodynamics will also
be considered. The lift and moment are expressed
as [Fung, 1969

Qn(r) = —Crabpl? / " (r— )
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where ¢(7) is the Wagner function and is approxi-
mated by [Jones, 1940]:

¢(T> =1- Ale_blT — Age_bw— (5)

where A; = (0.165;0.335) and b; = (0.0455;0.300).
It should be remarked that in Egs. (3) and (4), the
coupling of plunging and pitch motions, referred
to as aerodynamic coupling, appears explicitly.
The unsteady aerodynamic lift and moment are
split into circulatory and noncirculatory compo-
nents. The integral terms appearing in Eqgs. (3)
and (4) correspond to the circulatory effect and are
expressed, in the time domain, in terms of Wagner’s
function (also referred to as the heredity function).
The remaining group of terms belong to the noncir-
culatory effects, and are referred to as added mass.
These account for the inertia effects in the fluid, and
are functions of the motion and the geometry of the
airfoil section [Scanlan & Rosenbaum, 1951]. In the
next sections a steady and an unsteady model for
the airfoil will be presented.

2.2.

From the mathematical point of view, the non-
linear aeroelastic governing equations, Egs. (1)
and (2), will be coupled with a nonlinear feed-
back limiter control [Corron et al., 2000; Corron
& Pethel, 2002; Myneni et al., 1999]. Such control
can stabilize desired orbits, and in this paper it is

Control methodology

implemented toward suppressing LCO and chaotic
motions [Bollt, 2003]. This technique has already
been successfully applied to chaotic mechanical sys-
tems and experiments have proved its effective-
ness. The limiter control technique [Corron et al.,
2000; Corron & Pethel, 2002] enables us to selec-
tively control unstable periodic orbits via mini-
mal perturbations. Furthermore, recent results have
further extended the limiter control to allow for low-
energy control in electronic devices. The jet reaction
torquer/morphing control can be mathematically
described via a simple state dependent, but oth-
erwise constant addition to the uncontrolled aeroe-
lastic system, written in general multivariable form
as [Bollt, 2003]:

z =F(z,p) + G(z,1) (6)

where z = F(z,p) represents the dynamics of the
uncontrolled aeroelastic system. G(z,t) represents
the constant addition to the unperturbed dynam-
ics and may be posed as combination of charac-
teristics (indicator) functions, both spatially and
temporally:

co N
G(z.t) =33 duii, (Oxa (ki (7)
n=0 i=1
For each fixed i, d,,; is a time-independent coeffi-
cient, and xy, and x4, are characteristic (indicator)
functions of time and space, respectively. x;, and
X4, are described as:

1 ift, <t <t,.
ot ={ + ®)

0 else

1 ift e A;

0 else

il = { (9
where A; represents a region and the variable k;
is a constant vector addition, or direction the force
should be applied, to the vectorfield whose influ-
ence tends to push the LCO in the general direction
of k;. This should be chosen appropriately to sup-
press the LCO and chaotic motions. This concept is
demonstrated in Fig. 2. A qualitative explanation of
this control is that when the dynamics of the system
enter the region, A;, for example when the airfoil
reaches a predefined deflection limit, the control is
applied to push it back to that limit. For the form
of the limiter control mechanism, shown below for
both plunging and pitching, we choose

Qcn = gnt (h — 0p) (10)
Qc,a = gaH(a - 50() (11)
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Fig. 2.

Position versus velocity plot of a simple limit cycle (a) without control, (b) with a control value, k;, that decreases

the LCO amplitude, (c¢) with a control value that completely damps-out the system. The shaded area represents the direction
of the control value k; and the magnitude of G(z,¢). A; represents the region for which the control is applied.

This form of the control is applied in Eqs. (12)
and (12). In other words the characteristic func-
tions in Eq. (7) are simplified here as the Heavy-
side function, H. The control gain, or direction
of the pushing force, is represented by g, and g,,
while the control perturbation is given as §, and
dq- For this model the control gain can be either
positive or negative since the force addition can
come from either direction. When applied to the
corresponding plunge or pitch governing equation
this control produces the desired vector addition.
Some explanatory cases will be presented in the
next section for the 2-D wing model first control-
ling the plunging characteristics, followed by the
pitching for both steady and unsteady models. Both
models governing equations were numerically solved
using Mathematica, which utilizes a combination of
a nonstiff Adams method and a stiff Gear method.
The Adams scheme is implicit and the Gear
method is based on a backward difference scheme
[Wolfram, 1999].

3. Results and Discussion
3.1.

A linear model of the airfoil in steady flow will be
analyzed first. The following parameters were used:
pw=128,b=0.118, ( = 0.2, wy, = 34.6, w, = 88,
r2 = 0.3, ¢ = 20 and y, = 0.15, from [Shahrzad &
Mahzoon, 2002]. For the steady flow the governing

Steady model

equations become:
12.8h + 1.926 + 0.2h + 1.97h

2
_ ! <£> (5.568 + 0.0942) + Q¢ (12)

7 \ bwg
1.92h + 3.84¢ + 1.26 + 3.84a + 4.240°

2
_ 1 <i> (1.4845c + 0.0084) + Qe (13)
7T\ bw, ’

Figure 3 shows the phase portraits for the steady
model before and after flutter speed. For the steady
model the flutter speed was found to be 17.22m/s,
which is consistent with the value obtained by
[Shahrzad & Mahzoon, 2002]. These phase portraits
show that after flutter speed a limit cycle is reached,
with amplitude of 0.17 radians for pitching.

Before we applied any control, we analyzed the
effect of the nonlinear stiffness factor, €, on LCO
amplitude. As shown in Fig. 4, increasing this stiff-
ness factor significantly decreases the LCO ampli-
tude, while the flutter speed remains constant. As
a limiting case, € = 0, a straight vertical line at the
flutter speed will be obtained.

Analysis of the steady model’s flutter speed
behavior, under plunge control, shows no signif-
icant change. As the control gain, g, and the
control perturbation, dj, vary, the flutter speed
remains almost constant at its uncontrolled value.
This is in agreement with the findings reported in
[Librescu & Marzocca, 2005]. Under pitch control,
a considerable change in flutter speed is observed.
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Fig. 3. Phase plots depicting the LCO of the airfoil under
steady flow conditions: (a) before flutter, converging to zero,
U = 15m/s, (b) after flutter with LCO behavior, U =
17.5m/s.
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Fig. 4. Velocity versus LCO amplitude for various nonlinear
stiffness factors, €.

The potential of pitch control in the steady model
is highlighted in Fig. 5. The amplitude of the
LCO versus the free stream velocity for a plung-
ing/pitching airfoil with a freeplay structural non-
linearity in pitch, subjected to an incompressible
flow is presented. When this airfoil’s flutter speed
Ur is exceeded, the airfoil experiences a stable LCO
and a chaotic behavior. This analysis shows that the
limiter control is capable of suppressing LCO and
also the chaotic dynamics of such an airfoil, even
well beyond the flutter speed. Notice the Hopf bifur-
cation that occurs at flutter speed, Upr. Before this
point the system is converging, however above flut-
ter speed a stable LCO appears. At approximately
U = 25, the system becomes chaotic as shown in
the magnified region. The plots shown below the
curve represent the system with the applied con-
trol. The stable limit cycle is now converging and
the chaotic region has also been suppressed. Sub-
jecting the steady airfoil model to pitch control at
a velocity close to flutter speed can significantly
damp out the system. In Fig. 6, the pitching time
histories are shown for a velocity of 17.3m/s with
and without control. The uncontrolled airfoil slowly
approaches a limit cycle. The time history displays
the amplitude of vibration shortly before reaching
the LCO (approximately at 7 = 1800) and includ-
ing the LCO. By applying pitch control g, = —1,
the oscillations stop before 7 = 350 (2.3 seconds).

3.1.1.

The effect of pitching control gain, g,, and con-
trol perturbation, d,, on flutter speed is shown in
Fig. 7. This effect is very complex, but there exist
combinations of g, and ., for which the control
is most effective in extending the flutter boundary.
One can see that, for control gains between —0.1
and 0.1, an increase in the negative direction at a
very small control perturbation value extends the
flutter boundary. As the magnitude of the control
gain increases in the positive direction, the oppo-
site behavior is observed. Focusing on the larger
range, it is apparent that for gains with an ampli-
tude larger than 0.1, the flutter speed will gradu-
ally drift to the uncontrolled flutter speed and then
continually decline for positive gains and steadily
decline for negative gains. In the negative direc-
tion, any gain with a magnitude larger than 0.1
decreases the flutter speed, while gains between 0
and —0.1 produce a useful increase in the flutter
speed.

Flutter analysis
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LCO appears. After approximately U = 25, a chaotic region exists. The phase portraits and time histories above and below
the curve represent the uncontrolled and controlled systems, respectively.

Figure 7 also shows the behavior of the flut-
ter speed as we vary the control perturbation, .
Focusing primarily on the left-hand side of the
graph, one can observe that the lowest value of
0o, produces the desired result. The flutter speed
is greatly increased in the smaller control gain
magnitude range. For larger perturbations the flut-
ter speed is not improved, but decreased, further
limiting the safe flight boundary. Considering the
0., value as delay, these results are consistent with
[Librescu & Marzocca, 2005]. It was shown that
small time delay in the control could be advanta-
geous, whereas large time delay could destabilize
the system. Perturbations larger than 0.05 produce
flutter speed that is equivalent to the value of the
uncontrolled boundary. Since J, is a perturbation
to the angle of attack, its value should remain small
and on the order of magnitude of the existing angle.

From a design perspective, this analysis could guide
engineers toward selecting appropriate ranges of g,
and d,, for maximum performance.

3.1.2.  LCO amplitude analysis

The LCO amplitude of the steady model was
also examined under both plunging and pitching
control. Although the flutter boundary was not
extended under plunge control, the LCO amplitude
is slightly suppressed at lower speeds. From results
not displayed in this paper it can be concluded that
for higher control gains the region before the flutter
speed is unstable. This is consistent with [Librescu
& Marzocca, 2005], where it was demonstrated that
an optimal gain value exists. Plunging control gains
should be kept small for the best result in both
flutter and LCO behavior. Under pitch control, the
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Fig. 6.
showing that pitch control can damp the oscillating airfoil.

LCO amplitude is suppressed with larger control
gains in the negative direction. The amplification of
the LCO with larger control gains is shown in Fig. 8.
After g, = —0.25 the system becomes chaotic. The
pitching control perturbation, J,, also contributes
to LCO suppression. Figure 9 shows the LCO ampli-
tude as d, is changed for a positive and negative
control gain. Comparing this to the uncontrolled
LCO, one can see that when applying a negative
control gain an increase in the control perturbation
in the positive direction slightly suppresses the
LCO. Increasing the amplitude of perturbation in
the negative direction slightly amplifies the LCO.

Time histories of airfoil at U = 17.3m/s (a) without control, (b) with pitching control gain, go = —1, do = 0.001,

When applying a positive control gain, the oppo-
site occurs.

3.1.3.  Control power analysis

Another pertinent aspect of the limiter control pre-
sented in this paper is the power needed to main-
tain a stable LCO once control is applied. After
control is applied the transient loops are “pushed”
toward a limit cycle. The power and time plot
shows how much power is required to push each
transient loop to the LCO. Figure 10 highlights
the area that was observed. The points that are
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shown past the vertical dotted line are those where
the position is less than the limit cycle. The ver-
tical line represents the time and amplitude of the
LCO. Figures 11 and 12 display a representative
power plot for plunging and pitching gains, respec-
tively. The control gain and perturbation are small
and the free stream velocity is 25 m/s. Maintaining
the LCO in plunge control, requires several larger
power outputs with less frequency, while the pitch
control needs smaller amplitude power outputs at
a higher frequency. Both plots show that a rela-
tively small amount of power is needed to main-
tain the smaller limit cycle. Notice that the required
power is asymptotically decreasing toward zero as
the controlled LCO is reached. Eventually the sys-
tem would remain at the controlled LCO with little
to no power applied.

3.1.4. Chaos analysis

An analysis of the airfoil in steady flow at high
speeds shows that a state of chaos is reached. A
phase portrait and time history of the system under
chaotic conditions is shown in Fig. 13. Looking
at the phase portrait it is difficult to understand
or predict the airfoil’s behavior. In order to bet-
ter define what occurs a Poincaré plot was formu-
lated. The maximum amplitude was plotted versus
velocity, also shown in Fig. 13. In this plot it is
apparent that four maximums exist. Although the
Fig. 10. Observed Region for limiter control power analysis. system is chaotic the Poincaré plot shows a pattern.
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Fig. 11. Power versus time for steady model with plunge control showing that the power needed to control the LCO is
asymptotically zero.
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Fig. 12. Power versus time for steady model with pitch control showing that the power needed to control the LCO is
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To further clarify the behavior, a Poincaré plot of
velocity and displacement was created, where the
displacement is only plotted when it is in phase with
2m. This creates a “strobed” phase portrait, Fig. 14.
By strobing the phase portrait we see that, although
the system is chaotic, the points fall in almost the
same place each time. These plots may prove useful
in understanding when to apply the limiter control
in a chaotic system.

3.2.

A preliminary analysis of an airfoil under unsteady
flow conditions was performed. The following
parameters were used: p = 13.8, b = 0.118, { = 0.2,

Unsteady model
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Fig. 14. Strobed Poincaré plot of maximum angular dis-
placement versus velocity when displacement is in phase
with 2.
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(b) Unsteady Model after Flutter, U=20m/s

Fig. 15.
U = 17m/s, (b) after flutter, exhibiting an LCO, U = 20/s.

Phase plots depicting the LCO of the airfoil under unsteady flow conditions: (a) before flutter, converging to zero,
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wp = 34.6, w, = 88,72 = 0.3, ¢ = 20 and y, = 0.15.
The motion of this airfoil in plunging and pitching
can be expressed as [Shahrzad & Mahzoon, 2002]:

13.8h + 2.33¢ + (0.2 + 0.1926U) 7 + 1.9787h
+0.2715Ud + 0.01854U% v = —Qcp, (14)
2.33h + 4.1331a + (0.2 + 0.0718U )
+(3.84 — 0.001669U2) v + 4.2403
—0.01733Uh = Qe (15)

Figure 15 shows the phase portraits for the
unsteady model before and after flutter speed. For
the unsteady model the flutter speed was found
to be 19.38m/s, this is consistent with the results
obtained by [Shahrzad & Mahzoon, 2002]. These
phase portraits show that after flutter speed a limit
cycle is reached, with amplitude of 0.34 radians for
pitching.

Applying limiter control to the plunging move-
ments was found to have no positive effect on the
flutter boundary. As the magnitude of the control
gain increases in the positive direction, the flutter
speed remains constant at the uncontrolled value.
Increasing the plunge control perturbation also pro-
duces little to no change in flutter speed. When con-
trol is applied to the pitching movement, the flutter
speed is increased with increasing gain magnitude in
the negative direction. Figure 16 exhibits the rela-
tionship between pitching control gain and flutter
speed for the unsteady model, as well as the effects
of control perturbation, d,. For §, values less that
0.05 the flutter curve remains constant. After 0.05
the flutter speed will always be approximately the
uncontrolled value, in this case 19.38 m/s. Figure 17
shows the pitch control’s influence on the LCO
amplitude of the unsteady model. As the control
gain is increased in the negative direction the LCO
amplitude is decreased. As the control perturba-
tion is increased the LCO amplitude decreases with
negative gain. This analysis can provide a guideline
for choosing appropriate perturbation-gain combi-
nations to achieve the maximum LCO amplitude
performance.

The LCO amplitude of the unsteady model can
be suppressed with pitch control. Figure 18 shows
the time histories for a system, with a free stream
velocity of U = 20m/s, which is slightly above
flutter speed. With a control gain of —0.25, the
vibration is completely damped. Even before flut-
ter speed, the limiting pitch control has a positive
effect on the vibrations. A small control gain in the
negative direction makes the LCO amplitude half
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Fig. 19. Time histories of unsteady airfoil at U = 17m/s

(a) without control, (b) with pitching control gain, go =
—0.25, 0o = 0.001, showing that before flutter speed the con-
trol decreases the vibrations.

as large. Figure 19 shows the time histories before
flutter, with and without control.

4. Conclusions

The results presented in this work enhance the
scope and reliability of the aeroelastic analysis and
design criteria of light and flexible wings. This sim-
ple and novel control strategy can supplement or
replace conventional control devices, such as flaps
and ailerons, with synthetic jet, or morphing type
actuators to create a seamless aircraft with no
moving control surfaces. For an airfoil in unsteady
flow, the applied control was shown to both sup-
press the LCO, and extend the flutter boundary.
The analysis performed in this paper can serve
as guideline for selecting appropriate control gains
and perturbation values to maximize performance.



These results contribute, through control method-
ology, to the avoidance of design and operational
pitfalls that may result in catastrophic failures, and
can improve ride comfort. Since the power required
to implement this design is asymptotically zero, the
actuators needed would be relatively simple. The
uncomplicated form of our control plant promises
affordable testing and later implementation.
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Nomenclature

a = Dimensionless elastic axis position
measured from the midchord, posi-
tive aft

b = Half-chord length

C'r = Lift-curve slope
¢ = Nonlinear stiffness factor
Jh,ga = Plunging and pitching control gain,
respectively
h,a = Plunging displacement and the twist
angle about the pitch axis, respectively
Ky, K, = Spring stiffness in plunge and pitch
directions, respectively
m = Airfoil mass per unit span
Qc,nQc,o = Plunge and pitch control respectively
Qn, Qo = Aerodynamic lift and moment, respec-
tively
ro, = Nondimensional radius
about elastic axis (EA)
t, 79,7 = Time variables and dimensionless time,
(=tU/b)
U = Free-stream speed
Ur = Flutter Speed
z, = Nondimensional static unbalance of the
airfoil about its elastic axis; CG-EA

of gyration

offset
0n, 0o = Plunging and pitching control pertur-
bation
¢ = Damping coefficients in plunging = ¢,/
(mpb*wa)

(o = Damping coefficients in plunging = (,/
(mpb*wa)
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¢ = Nondimensional damping coefficient
¢(1) = Wagner indicial function

p = airfoil-to-air mass ratio, m/mpb?
p = Air density

wh,we = Uncoupled natural frequency in bending
and torsion, respectively

@ = Frequency ratio, wp/wq

-) = d()/dr, differentiation with respect to the
nondimensional time 7

(
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