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The design and modeling of a novel limiter jet reaction torquer control of a wing with potentially 
chaotic dynamics is the topic of this paper. This study will provide a better understanding of the 
nonlinear dynamics of the open/closed-loop aeroelasticity of flexible wings with either steady or 
unsteady aerodynamic loads.  The limiter control can be applied to either the plunging or pitching 
characteristic of the wing or both of them. On a prototypical the control can effectively suppress Limit 
Cycle Oscillations (LCO) and chaos well beyond the nominal flutter speed. This could lead to a 
practical implementation of the control mechanism on actual and future generation aircraft wings via 
implementation of a combination of propulsive/jet type forces, micro surface effectors, and fluidic 
devices.  Analysis of this control produced favorable results in the suppression of LCO amplitude and 
increased flutter boundaries for plunging and pitching motion.  The dynamic limiting control has 
asymptotically zero power and is simply implemented making it a feasible solution to the problem of 
the chaotic dynamics of the oscillating airfoil. 

Nomenclature 
a = Dimensionless elastic axis position measured from the midchord, positive aft 
b = Half-chord length 
CLα             = Lift-curve slope 
ε = Nonlinear stiffness factor 
gh, gα = Plunging and pitching control gain, respectively  

α,h  = Plunging displacement and the twist angle about the pitch axis, respectively 
Kh, Kα = Spring stiffness in plunge and pitch directions, respectively 
m = Airfoil mass per unit span 
Qc,h Qc,α   =     Plunge and pitch control respectively 
Qh, Qα = Aerodynamic lift and moment, respectively 
rα = Non-dimensional radius of gyration about elastic axis (EA) 

t , 0τ ,τ  = Time variables and dimensionless time, ( )btU≡  

U  = Free-stream speed 

FU  =   Flutter Speed 
xα = Non-dimensional static unbalance of the airfoil about its elastic axis; CG-EA offset 
δh, δα = Plunging and pitching control perturbation 
ζh ,ζα = Damping coefficients in plunging and pitching 

ζ = )/( 4
αωπρζ bh  = )/( 4

αα ωπρζ b = non-dimensional damping coefficient 

)(τφ  =   Wagner indicial function in the time domain 

µ = 2/ bm πρ , airfoil-to-air mass ratio 
ρ  = Air density 
ωh, ωα, = Uncoupled natural frequency in bending and torsion respectively  
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ω  =  Frequency ratio, αωω /h  

(.) = d( )/dτ, differentiation with respect to the non-dimensional time τ 
 

I.  Introduction 
The tendency to reduce weight, increase structural flexibility and operating speed certainly increases the likelihood 
of the flutter occurrence within the aircraft operational envelope. Moreover, combat aircraft can experience, during 
their operational life, dramatic reductions of the flutter speed that can affect their survivability [1-6]. The mission 
profile of the next generation of UAV will probably lead to a configuration requirement of an adaptable airframe to 
best meet the varying flight conditions. It is conceivable that the changes in geometry that occur would also incur 
aeroelastic instabilities, such as flutter, at points of transition during the mission.  
 
Conventional methods of examining aeroelastic behavior have relied on a linear approximation of the governing 
equations of the flowfield and the structure. However, aerospace systems inherently contain structural and 
aerodynamic nonlinearities [7] and it is well known that with these nonlinearities present, an aeroelastic system may 
exhibit a variety of responses that are typically associated with nonlinear regimes of response, including Limit Cycle 
Oscillation (LCO), flutter, and even chaotic vibrations [8]. These nonlinearities result from unsteady aerodynamic 
sources, such as in transonic flow condition or at high angle of attack, large deflections, and partial loss of structural 
or control integrity. Aeroelastic nonlinearities have been identified in [9] and analyses, focusing on LCO behavior 
and flutter boundaries, have been performed on similar airfoils, as well as aeroelastic panels [10-13]. Previous work 
has shown that airfoils operating past the flutter boundary produce LCO that increase in amplitude with increased 
speed, limiting the safe flight boundary [14].  
 
 The interest toward the development and implementation of active control technology was prompted by the new 
and sometimes contradictory requirements imposed on the design of the new generation of the flight vehicle that 
mandated increasing structural flexibilities, high maneuverability, and at the same time, the ability to operate safely 
in severe environmental conditions. In the last two decades, the advances of active control technology have rendered 
the applications of active flutter suppression and active vibrations control systems feasible [15, 16]. A great deal of 
research activity devoted to the aeroelastic active control and flutter suppression of flight vehicles has been 
accomplished. The state-of-the-art advances in these areas are presented in [17, 18]. The reader is also referred to a 
sequence of articles [19] where a number of recent contributions related to the active control of aircraft wing are 
discussed at length. 
 
Early studies have shown that the flutter instability can be postponed and consequently the flight envelope can be 
expanded via implementation of a linear feedback control capability. However, the conversion of the catastrophic 
type of flutter boundary into a benign one requires the incorporation of a nonlinear feedback capability given a 
nonlinear aeroelastic system. In recent years, several active linear and nonlinear control capabilities have been 
implemented. Digital adaptive control of a linear aeroservoelastic model [20], µ-method for robust aeroservoelastic 
stability analysis [21], gain scheduled controllers [22], neural and adaptive control of transonic wind-tunnel model 
[23, 24] are only few of the latest developed active control methods. Linear control theory, feedback linearizing 
technique, and adaptive control strategies have been derived to account for the effect of nonlinear structural stiffness 
[25, 26]. A model reference variable structure adaptive control system for plunge displacement and pitch angle 
control has been designed using bounds on uncertain functions, [27]. This approach yields a high gain feedback 
discontinuous control system. In [28], an adaptive design method for flutter suppression has been adopted while 
utilizing measurements of both the pitching and plunging variables. 
 
This paper will present a simple and yet effective limiter jet reaction torquer control that would enable an increase in 
flutter speed, enhance the aeroelastic response, and suppress LCO and chaotic dynamics, preventing catastrophic 
failure. The nonlinear approach of lifting surfaces of aeronautical and space vehicles permits determination of the 
conditions under which un-damped oscillations can occur at velocities below the flutter speed, and also of the 
conditions under which the flight speed can be exceeded beyond the flutter instability, without catastrophic failure, 
i.e. when a stable LCO takes place. The next generation of aircraft will not be mission specific, but will instead be 
able to adapt to many different situations and requirements, so the use of these controls to expand the safe flight 
boundary of an aircraft opens large opportunities in this direction.  These facts emphasize the importance of at least 
two issues: i) various nonlinear effects should be included in the aeroelastic analysis; ii) implementing adequate 
control methodologies will enable one to expand the flight envelope by increasing the flutter speed, or to enhance 
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Fig. 1: 2-DOF pitching and plunging airfoil 

the aeroelastic response by attenuating the excessive vibrations, but also to convert the unstable LCO into a stable 
one [29].  
   
More insight into the wealth of the limiting dynamic control developed in [15, 30-31] and applied to this important 
aeroelastic problem is provided. Limiter control uses small perturbations to neutralize system instabilities.  This 
technique has been applied to simple mechanical systems, such as a pendulum, and to electric circuits [32].  
Dynamic limiting continuously adjusts the limiter value, allowing for more effective chaos control [31]. While other 
forms of nonlinear control of aeroelastic structural systems have previously been researched [29], the feasibility of 
dynamic limiting, as applied to a nonlinear airfoil, is explored in this paper.  In section II, the mathematical model of 
the plunging/pitching airfoil will be introduced, as well as the dynamic limiting control.  Section III outlines the 
results of the applied control on the airfoil in steady and unsteady flow, focusing on LCO suppression and flutter 
boundary extension.  A brief summary of the conclusions can be found in section IV. 

II.  Mathematical Model 
A classical two degrees-of-freedom in pitch and plunge airfoil will be used to evaluate the limiter control. The 
schematic for this system is shown in Fig.1.   
 
 
 
 
 
 
 
 
 
 
 
 
For this model the nonlinear aeroelastic governing equations are [11] 
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where h  and α  are the plunge and pitching angle displacement. In addition to the well known structural terms, see 
[1-4], the aerodynamic lift and moment forces are represented by , ,hQ Qα  respectively.   
A model with unsteady aerodynamics will also be considered. The lift and moment are expressed as[33]: 
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where )(τφ  is the Wagner function. This function is best approximated with: 

( ) τττφ 21
21

bb eAeA −− −=     (5) 
where Ai =(0.165; 0.335) and bi= (0.0455; 0.300) [34].  In the next sections a steady and an unsteady model for the 
airfoil will be presented.   
 
From the mathematical point of view, the nonlinear aeroelastic governing equations, (1) and (2), will be coupled 
with a nonlinear feedback limiter control.  Such control can stabilize desired orbits [35], and in this paper it is 
implemented toward suppressing LCO and chaotic motions. This technique has already been successfully applied to 
chaotic mechanical systems [36, 37], and experiments have proved its effectiveness. The dynamic limiting technique 
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Fig. 2: Position versus velocity plot of a simple limit cycle (a) without control, (b) with a control value, 
ki, that decreases the LCO amplitude, (c) with a control value that completely damps-out the system.  
The shaded area represents the direction of the control value ki and the magnitude of G(z, t) . Ai 
represents the region for which the control is applied.

[36, 37] enables us to selectively control unstable periodic orbits via minimal perturbations. Furthermore, recent 
results [37] have further extended the limiter control to allow for low-energy control in electronic devices. The jet 
reaction torquer/morphing control can be mathematically described via a simple state dependent, but otherwise 
constant addition to the uncontrolled aeroelastic system, written in general multivariable form as: 

   ( ) ( ), t= +z F z,p G z&       (6) 

where ( )=z F z,p&   represents the dynamics of the uncontrolled aeroelastic system.  ( ), tG z  represents the 
constant addition to the unperturbed dynamics and may be posed as combination of characteristics (indicator) 
functions, both spatially and temporally:  
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  Where iA  represents a region and the variable ik  is a constant vector addition, or direction the force should be 

applied, to the vectorfield whose influence tends to push the LCO in the general direction of ik . This should be 
chosen appropriately to suppress the LCO and chaotic motions. This concept is demonstrated in Fig. 2. 

 
A qualitative explanation of this control is that when the dynamics of the system enter the region, Ai, for example 
when the airfoil reaches a pre-defined deflection limit, the control is applied to push it back to that limit.  
 
For the form of the limiter control mechanism, shown below for both plunging and pitching, we choose 
   

)(, hhhc hHgQ δ−=       (10) 
 

  )(, ααα δα −= HgQc       (11) 
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Fig.3: Phase plots depicting the LCO of the airfoil under steady flow conditions: (a) before flutter, converging 

to zero, U=15m/s, (b) after flutter with LCO behavior, U=17.5m/s 

This form of the control is applied in equations (12) and (13).  In other words the characteristic functions in equation 
(7) are simplified here as the Heavyside function, H. The control gain, or direction of the pushing force, is 

represented by gh and gα, while the control perturbation is given as δh and δα. For this model the control gain can be 
either positive or negative since the force addition can come from either direction. When applied to the 

corresponding plunge or pitch governing equation this control produces the desired vector addition. Some 
explanatory cases will be presented in the next section for the 2-D wing model first controlling the plunging 

characteristics, followed by the pitching for both steady and unsteady models.  Both models governing equations 
were numerically solved using a combination of a non-stiff Adams method and a stiff Gear method.  

   
III. Results and Discussion 

Steady Model 
A linear model of the airfoil in steady flow will be analyzed first .The following parameters were used: µ =12.8, 
b=0.118, ζ=0.2, ωh= 34.6, ωα=88, rα2=0.3, ε = 20 and χα = 0.15, from [11].  For the steady flow the governing 
equations become: 
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Fig. 3 shows the phase portraits for the steady model before and after flutter speed. For the steady model the flutter 
speed was found to be 17.22 m/s, which is consistent with the value obtained by [11].  These phase portraits show 
that after flutter speed a limit cycle is reached, with amplitude of 0.17 radians for pitching, and a maximum of 0.5 
for plunging.   
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Fig. 6: Velocity versus LCO amplitude for various 
natural frequencies in bending, ωh. 

Fig. 4: Velocity versus LCO amplitude for various 
nonlinear stiffness factors, ε. 

 
Fig. 5: Velocity versus LCO amplitude for various 
airfoil-to-air mass ratios, µ. 

 
 
Fig. 7: Velocity versus LCO amplitude for various 
natural frequencies in torsion, ωα. 

Before we applied any control, we analyzed the effect of the nonlinear stiffness factor, ε, on LCO amplitude.  As 
shown in Fig. 4 increasing this stiffness factor significantly decreases the LCO amplitude, while the flutter speed 
remains constant. As a limiting case, ε =0, a straight vertical line at the flutter speed will be obtained. We also 
explored the effect of the airfoil-to-air mass ratio, µ.  In Fig. 5, it is apparent that as µ increases, the LCO amplitude 
decreases and the flutter boundary is enhanced.  

 
The natural uncoupled frequencies in bending and torsion, ωh and ωα, also have a significant effect on the flutter 
speed and LCO amplitude.  In Fig. 6, an increase in ωh will decrease the flutter speed and increase the LCO 
amplitude.  The opposite is valid for ωα, as seen in Fig. 7.  Increasing the natural pitching frequency will decrease 
the LCO and increase the flutter boundary. 
 

 
Varying the radius of gyration, rα, for the prototypical airfoil may also assist in LCO suppression and flutter 
boundary extension. Increasing the value of rα extends the flutter speed and suppresses the LCO amplitude.  For, rα 
larger than 0.4, the LCO may only occur at very large flight speeds.  χα represents the non-dimensional static 
unbalance of the airfoil, about the elastic axis, or the CG-EA offset.  Increasing this parameter decreases the flutter 
speed and increases the LCO amplitude.  As χα approaches 0.2, a constant LCO amplitude curve is reached for all 
higher offset values.  For values lower than χα = 0.1, the LCO only occurs at high speeds.  Although these are just 
parametric studies, they can give a good understanding of the post-flutter behavior, which may be characteristic of 
the system. 



46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 
 Austin, Texas, 18-21 April 2005. 

 
American Institute of Aeronautics and Astronautics 

 

7

 
Fig. 10: LCO amplitude versus free stream velocity for a 2-DOF system. UF represents the flutter speed, 

after which a stable LCO appears.  After approximately U=25, a chaotic region exists.  The red and green 
phase portraits and time histories represent the uncontrolled and controlled system, respectively.

 
Fig. 8: Velocity versus LCO amplitude for various radii 
of gyration, rα. 

 
Fig. 9: Velocity versus LCO amplitude for various CG-
EA offsets, χα.

Analysis of the steady model’s flutter speed behavior, under plunge control, shows no significant change. As the 
control gain, gh, and the control perturbation, δh, vary, the flutter speed remains constant at its uncontrolled value.  
Under pitch control, a considerable change in flutter speed is observed. The potential of pitch control in the steady 
model is highlighted in Fig.10. The amplitude of the LCO vs. the free stream velocity for a Plunging/Pitching airfoil 
with a freeplay structural non-linearity in pitch, subjected to an incompressible flow is presented. When this airfoil’s 
flutter speed UF is exceeded, the airfoil experiences a stable LCO and a chaotic behavior. This analysis shows that 
the limiter control is capable of suppressing LCO and also the chaotic dynamics of such an airfoil, even well 
beyond the flutter speed.  Notice the Hopf bifurcation that occurs at flutter speed, UF.  Before this point the system is 
converging, however above flutter speed a stable LCO appears.  At approximately U=25, the system becomes 
chaotic as shown in the magnified red region.  The plots shown in green represent the system with the applied 
control.  The stable limit cycle is now converging and the chaotic region has also been suppressed. 
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Fig. 11: Phase portraits and time histories of airfoil at U=17.3m/s (a) without control, (b) with pitching control 

gain, gα=- 1, δα=0.001, showing that pitch control can damp the oscillating airfoil. 

Subjecting the steady airfoil model to pitch control at a velocity close to flutter speed can significantly damp out the 
system. In Fig. 11, the pitching phase portrait and time history are shown for a velocity of 17.3 m/s with and without 
control.  The uncontrolled airfoil slowly approaches a limit cycle.  The time history displays the amplitude of 
vibration shortly before reaches the LCO (approximately at τ =1800) and including the LCO. By applying pitch 
control gα=-1, the oscillations stop before τ = 350 (2.3 seconds). 
 

Flutter Analysis 
The effect of pitching control gain, gα, and control perturbation, δα, on flutter speed is shown in Fig. 12.  This effect 
is very complex, but there exist combinations of gα and δα, for which the control is most effective in extending the 
flutter boundary.  One can see that, as the magnitude of the control gain increases in the negative direction, the 
flutter speed boundary is extended.  As the magnitude of the control gain increases in the positive direction, the 
opposite behavior is observed.   Focusing on the larger range, it is apparent that for gains larger than 0.1, the flutter 
speed will gradually drift to the uncontrolled flutter speed and then continually decline.  In the negative direction, 
any gain with a magnitude larger than 0.1 decreases the flutter speed, while gains between 0 and -0.1 produce a 
useful increase in the flutter speed.  
 
Fig. 12 also shows the behavior of the flutter speed as we vary the control perturbation, δα.  Focusing primarily on 
the left hand side of the graph, one can observe that the lowest value of δα, produces the most valuable result.  The 
flutter speed is greatly increased in the smaller control gain magnitude range.  For larger perturbations the flutter 
speed is not improved, but decreased, further limiting the safe flight boundary. Perturbations larger than 0.05 
produce flutter speed that is equivalent to the value of the uncontrolled boundary.  Since δα is a perturbation to the 
angle of attack, its value should remain small and on the order of magnitude of the existing angle.  From a design 
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Fig. 14: Pitch control perturbations, δα, versus 
LCO Amplitude for various control gains, gα. 

perspective, this analysis will guide engineers toward selecting appropriate ranges of gα and δα, for maximum 
performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LCO Amplitude Analysis 
The Limit Cycle Oscillation amplitude of the steady model was also examined under both plunging and pitching 
control.  Although the flutter boundary was not extended under plunge control, the LCO amplitude is slightly 
suppressed at lower speeds.  However, for higher control gains the region before the flutter speed is unstable.  
Plunging control gains should be kept small for the best result in both flutter and LCO behavior.  Under pitch 
control, the LCO amplitude is suppressed with larger control gains in the negative direction.  The amplification of 
the LCO with larger control gains is shown in Fig. 13. After gα=0.25 the system becomes chaotic. 
 The pitching control perturbation, δα, also contributes to LCO suppression.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 13: Free stream velocity versus LCO amplitude under 
pitch control.  Various values of the control gain are shown, 
δα=0.001.

Fig. 12: Control gain, gα, versus flutter speed for an airfoil under steady conditions with 
pitch control and various control perturbations.
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Fig. 15: Observed Region for limiter control 
power analysis

 
 Fig. 14 shows the LCO amplitude as δα is changed for a positive and negative control gain.  Comparing this to the 
uncontrolled LCO, one can see that when applying a negative control gain an increase in the control perturbation in 
the positive directly slightly suppresses the LCO.  Increasing the perturbation in the negative direction slightly 
amplifies the LCO.  When applying a positive control gain, the opposite occurs. 
 
Control Power Analysis 
Another pertinent aspect of the limiter control presented in this paper is the power needed to maintain a stable LCO 
once control is applied. After control is applied the transient loops are “pushed” toward a limit cycle.  The power 
and time plot shows how much power is required to push each transient loop to the LCO.  Fig. 15 highlights the area 
that was observed. The points that are shown past the vertical dotted line are those where the position is less than the 
limit cycle.  The vertical line represents the time and amplitude of the LCO.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16 displays a representative power plot for both plunging and pitching gains.  The control gain and perturbation 
are small and the free stream velocity is 25m/s. Maintaining the LCO in plunge control, requires several larger 
power outputs with less frequency, while the pitch control needs smaller amplitude power outputs at a higher 
frequency. Both plots show that a relatively small amount of power is needed to maintain the smaller limit cycle.  
Notice that the required power is asymptotically decreasing toward zero as the controlled LCO is reached. 
Eventually the system would remain at the controlled LCO with little to no power applied. 

 
 
 

 

  (a)             (b) 
Fig. 16: Power versus time for steady model with (a) plunge control, and (b) pitch control, showing that the 

power needed to control the LCO is asymptotically zero. 
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Unsteady Model 
   A preliminary analysis of an airfoil under unsteady flow conditions was performed. The following parameters 
were used: µ =13.8, b=0.118, ζ=0.2, ωh= 34.6, ωα=88, rα2=0.3, ε = 20 and χα = 0.15. The motion of this airfoil in 
plunging and pitching can be expressed as [11]:  

                      hCQUUhhUh ,
201854.02715.09787.1)1926.02.0(33.28.13 −=++++++ ααα &&&&&&  (14) 

 
    

ααααα ,
32 01733.024.4)001669.084.3()0718.02.0(1331.433.2 CQhUUUh =−+−++++ &&&&&&  (15) 

 
Fig. 17 shows the phase portraits for the unsteady model before and after flutter speed.  For the unsteady model the 
flutter speed was found to be 19.38 m/s, this is consistent with the results obtained by [11]. These phase portraits 
show that after flutter speed a limit cycle is reached, with amplitude of 0.34 radians for pitching, and a maximum of 
0.29 for plunging. 

 
Limiter control was placed in the plunging movement and found to have no positive effect on the flutter boundary.  
As the magnitude of the control gain increases in the positive direction, the flutter speed remains constant at the 
uncontrolled value. Increasing the plunge control perturbation produces also produces little to no change in flutter 
speed.  When control is applied to the pitching movement, the flutter speed is increased with increasing gain 
magnitude in the negative direction.  Fig. 18 exhibits the relationship between pitching control gain and flutter speed 
for the unsteady model, as well as the effects of control perturbation, δα.  For δα values less that 0.05 the flutter curve 
remains constant.  After 0.05 the flutter speed will always be approximately the uncontrolled value, in this case 
19.38m/s. Fig. 19 shows the pitch controls influence on the LCO amplitude of the unsteady model.  As the control 
gain is increased in the negative direction the LCO amplitude is decreased, however in the positive direction the 
opposite is true.  As the control perturbation is increased the LCO amplitude increases with positive gain, and 

 
Fig. 17: Phase plots depicting the LCO of the airfoil under unsteady flow conditions: (a) before flutter, 

converging to zero, U=17m/s, (b) after flutter, exhibiting an LCO, U=20/s 
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Fig. 20: Phase portraits and time histories of unsteady airfoil at U=20 m/s (a) without control, (b) with pitching 
control gain, gα=-0.25, δα=0.001, showing that the LCO of an unsteady airfoil can be suppressed with this 
control.   

 
Fig. 18: Pitching control gain versus flutter 
speed for unsteady model 

 
 
Fig. 19: Pitching control gain versus flutter speed for 
unsteady model 
 

decreases with negative gain.  This analysis can provide a guideline for choosing appropriate perturbation-gain 
combinations to achieve the maximum LCO amplitude performance. 

 
The LCO amplitude of the unsteady model can be suppressed with pitch control.  Fig. 20 shows the phase portraits 
and time histories for a system, with a free stream velocity of U=20 m/s, which is slightly above flutter speed.  With 
a control gain of -0.25, the vibration is completely damped. 
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Fig. 21: Phase portraits and time histories of unsteady airfoil at U=17m/s (a) without control, (b) with pitching 

control gain, gα=-0.25, δα=0.001, showing that before flutter speed the control decreases the vibrations. 

Even before flutter speed, the dynamic limiting pitch control has a positive effect on the vibrations.  A small control 
gain in the negative direction makes the LCO amplitude half as large.   Fig. 21 shows the phase portraits before 
flutter, with and without control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

IV. Conclusions  
The results presented in this work enhance the scope and reliability of the aeroelastic analysis and design criteria of 
light and flexible wings. This simple and novel control strategy can supplement or replace conventional control 
devices, such as flaps and ailerons, with synthetic jet, or morphing type actuators to create a seamless aircraft with 
no moving control surfaces.  For an airfoil in unsteady flow, the applied control was shown to both suppress the 
LCO, and extend the flutter boundary.  The analysis performed in this paper can serve as guideline for selecting 
appropriate control gains and perturbation values to maximize performance. These results contribute, through 
control methodology, to the avoidance of design and operational pitfalls that may result in catastrophic failures, and 
can improve ride comfort.  Our theory for nonlinear control will be readily reusable and capable of a broader 
envelope of design without weight penalties.  Since the power required to implement this design is asymptotically 
zero, the actuators needed would be relatively simple. The uncomplicated form of our control plant promises 
affordable testing and later implementation. 
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