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Here we expand concepts with further details as they appear in the body

of this work. Specifically, network concepts for complex systems, dynami-
cal systems and fractals concepts, and machine learning concepts for neuro-
inspired models of the brain.

1 Networks and Complex Systems

1.1 Networks

Networks play an important role in many complex systems, including the
brain. A networked representation of the human brain, where different re-
gions are treated as vertices and interactions between them as edges, allows
us to explore both the structural and dynamical properties.

In this work, we use the phrase network synonymously with the mathe-
matical conception of a graph G = (V (G), E(G)) which is a set of vertices
(nodes) V = {v1, v2, ..., vN}, with cardinality |V (G)| = N and edges (links)
E ⊆ V × V with |E(G)| = M . The adjacency matrix A is a matrix repre-
sentation of the graph with entries

[A]i,j =

{
wi,j if (vi, vj) ∈ E

0 otherwise,
(1)

where wi,j is a weight. A simple graph is an unweighted graph with no self-
loops or multiple edges. Thus, each entry [A]i,j ∈ {0, 1} and [A]i,j = 0 if i = j.

1.2 Subgraphs

Informally, a subgraph is the graph that results from erasure of some of the
vertices and edges of the original graph. That is, a graph H = (V (H), E(H))
is called a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G) and
|V (H)| = N ′ ≤ N , |E(H)| = M ′ ≤ M . Now suppose the vertices in G
are relabeled so that the corresponding vertices in H have the same label,
that is V (G) = {v1, v2, ...vN}, and V (H) = {v1, v2, ..., vN ′}. Then we call
H an induced subgraph of G if E(H) = (V (H) × V (H)) ∩ E(G). In other
words, if for every vertex in H, the edges formed between each pair of those
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vertices in the graph G are also found in H, then H is an induced subgraph.
A graph is called a proper subgraph if it is a subgraph of G and it is not
identically the same as G, i.e., it has strictly fewer nodes than G. Suppose a
graph is partitioned into two proper induced subgraphs H,K ⊂ G such that
V (H)∪V (K) = V (G) and V (H)∩V (K) = ∅; that is, H and K are mutually
exclusive induced subgraphs. Then G is called connected if for every such
H and K pair in G, E(H) ∪ E(K) ̸= E(G). That is, if for every pair of
proper induced subgraphs satisfying the properties above, there is at least
one edge between the pair, then G is connected. Said another way, there is
a path from every vertex to every other vertex. If G is not connected, then
it is called disconnected.

1.3 Graph Symmetries

Symmetry is an important property of graphs that feature prominently in
the topic of dynamics on networks, specifically synchrony, though it is not
a necessary condition [42]. By symmetry, we mean an automorphism of
a graph. A graph automorphism is a permutation of the vertices which
leaves the adjacencies unchanged, meaning is “essentially” the same graph.
Stated in terms of the adjacency matrix A of a graph, there is a similarity
transformation by a permutation matrix P such that A = P TAP , where P
can be constructed from the identity matrix by permuting rows and columns
only, also here P T is the transpose of P . Such an automorphism is called
a symmetry of a graph if it exists and the graph is called symmetric. Note
that the term symmetric here does not mean a symmetric adjacency matrix,
but the phrase is usually only used when there exists such a non-trivial
permutation. Also, P ̸= I, the identity , which otherwise always works.

1.4 Diffusion Tensor Imaging (DTI) Graphs

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging technique
used to find the structural organization of white matter tracts in the human
brain. Since its formation in 1994, the technique has been widely used in
brain research. The DTI data can be processed to estimate the brain fiber
tracts using a technique called tractography. For the graph shown in Fig. 1,
which is Subject 1 from [9], a process called deterministic tractography, which
is available in a software package [45] called the diffusion toolkit, was per-
formed. The brain was parcellated into 83 regions of interest (ROIs) and
fiber tracts from each were computed. Using the ROI’s as individual vertices
and fiber tracts between ROIs as edges, a weighted structural brain network
was generated. The DTI network is then converted to a simple graph as seen
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Figure 1: Network is formulated from diffusion tensor imaging (DTI), which
is a technique for inferring white matter fiber tracts in the brain. In this
case there are 83 regions of interest (ROI), and thus 83 vertices in the corre-
sponding network structure. The size of each node scales to their betweenness
centrality. This network has no non-trivial symmetries.

in Fig. 1 by changing all non-zero weights to 1 as was done in [13]. When
we refer to a DTI network throughout the main text and in the SI, it is this
graph that we are referring to.

2 Dynamics On Networks, Synchronization

and Chimera States

2.1 Synchronization

In a coupled dynamical system, synchronization means a ‘rhythm’ or ‘a kind
of sympathy’ between two or more of its dynamical entities. The simultaneous
firing of neurons in the human brain, synchronized flashing of light by fireflies,
and synchronized clapping by an audience are some of the popular examples
[34]. Synchronization arises due to interactions between dynamical elements:
while the individual units try to move according to their own set of rules,
attractive interactions or coupling with others tries to bring harmony between
them, which in turn leads to synchronization. Below, different forms of
synchronization are discussed, each of which serve a role in our analysis of
patterns in the brain, as deduced by our Vector Pattern States (VPS) to
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distinguish basins.

2.2 Identical Synchronization

The most basic and perhaps standard version of synchronization is called
“identical synchronization” (IS) or “complete synchronization” (CS). In a
complex system of coupled dynamically evolving units, this state occurs when
all units asymptotically “beat together”, identically.

Coupled elements are each modeled as differential equations with a vector
field defined by a function f described on a graph as vertices, with the edges
describing communication between the vertices, through a coupling function
h. A generic model used for study in such systems in continuous time is
written as:

ẋi = fi(xi) + σ
N∑
j=1

[A]i,jh(xi,xj). (2)

Here, ẋi represents the derivative of xi ∈ Rd with respect to time, the pair
ẋi = fi(xi) represents the isolated dynamics associated with an individual
vertex, [A]i,j are entries of the adjacency matrix and h : Rd → Rd is the
coupling function between a pair of vertices. In the case where we have
fi = f (∀i) (meaning that the uncoupled oscillators obey identical dynamics)
and h(xi,xj) = 0, when xi = xj a synchronization manifold can be defined
as

M = {(x1,x2, ...,xn)|x1 = x2 = · · · = xn}. (3)

Any collective state of all units which occurs in M is called identically syn-
chronous. Generally, states which asymptotically converge to the synchro-
nization manifold are of interest, initial conditions which do so are defined
as being in the basin of synchronization. Thus the set,

B = {(x1(0),x2(0), ...,xn(0))|(x1(t),x2(t), ...,xn(t)) ∈ M as t → ∞}, (4)

of all initial conditions which are asymptotically attracted to the synchro-
nization manifold is known as the synchronization basin.

Stability of identical synchronization

In their seminal work relating to identical synchronization, Pecora and Car-
roll [33] analyzed the (local) stability of the synchronous state of a net-
work coupled system. Let x⃗(t) = (x1(t), x2(t), ..., xn(t)), then a synchronous
state is called stable if starting with x⃗(t) ∈ M, there exists a δ > 0 and

x⃗(t)+ ∆⃗ = (x1(t)+∆1, x2(t)+∆2, ..., xn(t)+∆n), with ∆i ̸= ∆j if i ̸= j and
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|∆i| < δ such that x⃗(t)+∆⃗ ∈ B. That is the synchronous state is called stable
if an infinitesmal perturbation to that state away from the synchronization
manifold returns to M asymptotically. In [33] details of the conditions under
which an identical system will have a stable synchronous state are stated.

2.3 Phase Synchronization

Phase synchronization between two signals xi(t) and xj(t) is a generalization
of identical synchronization. Whereas for identical synchronization, xi(t) →
xj(t), as t → ∞, for phase synchronization, a slightly weaker but otherwise
similar condition must hold after one of the signals is shifted by a phase. If
there exists a phase shift, τ > 0 such that ∥xi(t)− xj(t− τ)∥ → 0 as t → ∞,
then the two signals are defined as phase synchronous. This property is
prominent in our analysis of brain patterns.

2.4 Generalized Synchronization

Gneralized synchronization is another weakening of the concept of synchrony.
Two signals xi(t) and xj(t) are defined as generalized synchronous if ∥xi(t)−
f(xj(t))∥ → 0 for some nonidentity function f(x) ̸= x. In the identity
case that f(x) = x, then this would simply be a statement of identical
synchronization. Usually the statement is in terms of a smooth function f ,
and the set of points D = (x, f(x)) on which orbits (xi(t), xj(t)) are attracted
is called the synchronization manifold, and this phrase can be used even in
the identical case. It is certainly possible for a system to exhibit phase and
generalized synchrony.

2.5 Approximate Synchronization

If two signals xi(t) and xj(t) approach a synchronous state, such as identical
synchrony, but they do not converge to that state, then the synchronous
state is stable but not asymptotically stable. In other words, if for some
time T > 0, and small ϵ > 0, then ∥xi(t) − xj(t)∥ < ϵ for all t > T , but
they do not converge to zero, then the signals are approximately (identically)
synchronous.

2.6 Chimera States

A chimera state is defined by the presence of both synchronous and asyn-
chronous behaviors in a complex system. Specifically, if a collection of cou-
pled dynamical systems with corresponding signals, {x1(t), x2(t), ..., xn(t)}
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results in at least one subset of these that synchronizes (in terms of one
of the types of synchronization noted above), and a distinct other subgroup
that does not synchronize, then this is called a chimera state. Amongst those
that synchronize, there may be just one large synchronous cluster, or perhaps
several clusters that synchronize but not with each other, this is still called
chimera, as long as there is also a subset that is asynchronous.

Figure 2: All VPSs in Fig.3 of the main text. (a)-(h) show all el vectors (Eq.
13) in each of 8 clusters. The x-axis represents vertex pairs while the y-axis
contains all initial conditions forming forming a cluster. The color intensity
represents entries of el. (i) The color-coded network shows the chimera state
in (f). The vertices with the highest degree of synchronization are colored
white while the remaining ones are shown in black. (j) shows xi versus time
for this chimera state and is plotted as follows: first, xi(t) and xj(t − τ ∗i,j)
for nodes i and j having the smallest L(i, j, τ ∗i,j) value is plotted; thereafter,
the phase-shift for any new node k is decided such that L(i, k, τ ∗i,k) minimum
over all the pre-existing nodes i.

Chimera states have long fascinated the synchronization community, be-
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ing first named chimera states (in an identical synchronization context) by
Abrams and Strogatz in 2004 [2] though this phenomenon was reported ear-
lier by Kuramoto and Battogtokh [20]. Though originally the term chimera
state was reserved for identical oscillators, the literature is now filled with
examples in which the term chimera state is used for non-identical oscillators
[21, 38, 27, 18, 22] and so we have chosen to use the term in the broadest
sense. The definition used here allows states that are sometimes called clus-
ter synchronization or simply a clustered state [19, 28, 46, 6, 7], however it
has been observed that a change in the coupling strength is enough to create
a chimera state by isolated desynchronization of all clusters except for one
[32]. An example of one such representation of a chimera state can be found
in Fig. 2(j).

The kind of synchrony present defines the details of the chimera state,
whether the synchronous group be identical, generalized, phase synchronous,
or approximate. In our synthetic model of HR oscillators on the DTI network
as well as smaller models, we observe all of these. The stability of synchrony
associated with a chimera state has some dependence on symmetry [32].

2.7 Nearly Synchronous States

Expanding upon the concept of approximate synchrony, Sec. 2.5, here for
the HR model, we synonymously state as nearly synchronous. Consider
Fig. 3 (a) and (b) in the model with only electrical coupling, Eq. 2 with
dynamics f given by Eq. 19 and coupling function h from Eq. 20, yield
identical synchronization as shown in Fig. 3 (a). However, in Fig. 3 (c)
we have added a chemical coupling term changing the coupling function h
to the one from Eq. 21, which is the model used by [18] (see Sec. 4). As
can be seen, while the neurons still appear to be synchronized in phase, the
peaks no longer match. In Fig. 3 (e) we have included both the electrical
and chemical coupling terms and additionally we have introduced a slight
parameter mismatch. The model parameter a, which was previously set to 1
for all oscillators is now drawn from a normal distribution a ∼ N (1, 0.1). This
is an example of nearly synchronous states of which is possible to examine
the linear stability [44], even in the context of chimera [39].
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Figure 3: Time series of the x-coordinate of the HR neuron model evolving
on the DTI network without phase shift.(a) An x-coupled HR neuron model
with no chemical coupling (i.e. α = 0 and σ = 1.7), where we only observe
identically synchronized oscillators. (b) Zoom in panel of (a) for better visu-
alization. (c) For chemical coupling α = 0.03 (and σ = 1.7) oscillators still
spike at the same time, but have different sized peaks creating a spread in
the heights, though they still fully synchronize in phase. (d) Zoom in panel
of (c) for better visualization. (e) The HR model with the same coupling
parameters as (c) but with the model parameter a drawn from a normal dis-
tribution a ∼ N (1, 0.1). (f) Zoom in panel of (e) for better visualization. In
this case, the oscillators peak in the same general time frame but these spikes
have different peaks and different shapes. This represents a more generalized
synchronization pattern.

3 Basin Structure and Fractals

3.1 Fractal Dimension

Examples of fractals are abundant in nature: they exhibit patterns across
many scales that are self-similar, in some form. Real world examples, where
the self-similarity is approximate and fine details do not continue indefinitely,
include the coastlines of Britain (fractal dimension ≈ 1.21 ) and Norway
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(fractal dimension ≈ 1.52) [12]. Newton’s fractals, Von-Koch curves, Can-
tor sets, Sierpinski’s triangle, and the Koch Snowflake [12] are examples of
mathematical fractals that continue indefinitely. Fractals can be understood
as structures with roughness that can be represented by a real number, called
their dimension. A definitive property of fractals is the concept of non-integer
dimensionality [12], as this fractional dimension motivates the very naming
of sets as “fractals”. Whereas fractals are all defined on scaling of data
density relative to an exponent describing the dimensionality, manifold di-
mensionality describes the integer number of coordinates necessary uniquely
parameterize a point. For instance, a straight line is 1 dimensional, a plane
surface is 2 dimensional, and a cube is 3 dimensional. Fractal dimensional-
ity is generally a description of the scaling behavior of a set with respect to
decreasing window perspective; a non-integer fractal. It is a concept that ap-
plies to smooth as well as “rough” sets. From this perspective, the coastline
of Norway is rougher than Britain, and correspondingly, its dimension is also
farther from nearby integer numbers 1 and 2 [23, 5, 4, 40].

The fractal dimension is formally defined by the Hausdorff dimension, and
various popular methods serve as useful estimates. For example, the simi-
larity dimension, the correlation dimension, and the box dimension are each
useful data driven estimators of the fractal dimension with certain underlying
assumptions on the data. For practical computational reasons, here we use
the box dimension method to calculate the fractal dimension [35, 15, 37].

3.2 Box Dimension

The box counting dimension [15] is a popular estimator for fractal dimen-
sion. Squares (boxes or hyperboxes in higher dimensions) of side length ϵ
are chosen, and the number of ‘boxes’ (N(ϵ)) of this size needed to cover the
entire set are counted. The box dimension (d) is understood as the scaling
exponent, in the limit as the area (or volume) of the box goes to zero with:

dbox(SBL) = lim
ϵ→0

ln(N(ϵ))

ln(1/ϵ)
, (5)

supposing the limit exists [43]. If the above limit does not exist, one may
still find the upper and lower box dimensions of the set. Efficient algorithms
for estimating the box dimension exist [37]. Fig. 4(a) shows an example of a
boundary set obtained using Eq. 20, while Fig. 4(b) shows the plot of ln(1

ϵ
) vs

ln(N) for this boundary set. The slope of the line of best fit is interpreted as
the limit given in Eq. 5, which in this example is equal to 1.27. As expected,
the dimension of the boundary set is non-integer. Note that in practice due
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to finite data set size, as ϵ → 0, N(ϵ) saturates after a certain ϵ value is
reached, which is due to the fact that N(ϵ) can not increase further once
each point in the set is covered by a unique square.

Figure 4: (a) The boundary set obtained after simulation of the HR dynamics
under coupling given by Eq. 20 which corresponds to the boundary set from
Fig.3(b) in the main text. (b) The graph of ln(1

ϵ
) vs lnN(ϵ), calculating the

dimension of the boundary set in (a). The fitted slope of 1.27 estimates the
fractal dimension.

3.3 Fractal Boundaries and Riddled Basins

Complexity can be found even in the structure of the basins of attraction in
multi-stable systems. The feature of interest to this work is the possibility of
the concept of a high level of “non-smoothness” of a fractal basin boundary
when moving between sets of initial conditions attracted to one basin and
those leading to a different one. And in particular, we described a scenario
that arises for the HR system and some parameters where a particularly
highly intermingled fractal basin boundary called riddled-basins occurs. We
shall describe these scenarios.

In general, a boundary point of a set has the property that every neigh-
borhood of the point, no matter how small, includes some points both in the
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set, and not in the set. The boundary set of a given set is thus the union of all
such boundary points. The boundary of an open disc in the plane, for exam-
ple, is a circle, which clearly is a smooth set. However, in dynamical systems
it is not uncommon that boundary sets of basins of attraction can be frac-
tals. The set of points forming the boundary between the basins of different
attractors need not form a smooth curve, and instead this boundary set may
have a fractal dimension [26]. Our proposal herein is that the key feature of
complex networked models of the brain with the observed behavior of rapid
switching between various patterns is the presence of fractal basin bound-
aries [14, 26]. In particular, there is an apparently rich “intermingling” of
these boundaries as the present phenomenon of what is called riddled basins
[3, 29, 10, 30]; see Fig. 7. Riddled basins occur in many physical settings,
notably in the basin structure, for example, of magnetic potential wells [47],
but the fact that we point this out in neurophysiology as shown in Fig. 7, as
a crucial mechanism behind the ability to quickly switch focus, the nimble
brain theory, is a unique and new interpretation of this now classical concept
from dynamical systems.

4 Computational Methods

4.1 Vector Pattern States

Here, we describe in more detail what we have introduced as Vector Pattern
States (VPS) that allow comparisons between different initial conditions The
purpose of the VPS is to classify the various fully synchronous, chimera, and
incoherent states which may coexist in the basin. Thus, we associate which
components of the complex network are in some form of synchrony, including
the weaker approximate synchrony and phase shifted synchrony as presented
in Section 2. This is a crucial technological step for mapping the basins as
described in the next section.

In general, synchrony is defined asymptotically (i.e. as t → ∞), which is
impractical. Instead for a finite time interval time series

xi(t), for t ∈ [T0, T0 + T ], i ∈ {1, ..., N}, (6)

a similarity measure must be introduced to determine if a system is ‘close
enough’ to be considered synchronized. Let I ⊂ R and ∥u∥L2(I,M) be the
norm given by

∥u∥2L2(I,M) =

∫
I

∥u(t)∥22dt, (7)
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where M is a compact subset of Rd and ∥ · ∥ is the Euclidean norm ∥u∥2 on
Rd. We abuse notation and also denote ∥u∥L2(I,M) by ∥u∥22. Also, we denote
uτ (t) = u(t− τ) as the function u evaluated at t− τ . Other Lp norms could
be used to define the similarity measure, due to equivalence of Lp norms in
finite dimensional spaces. We will investigate the influence of different norms
in future research.

An example of the similarity measure between the trajectories xi(t) and
xj(t) of a pair (i, j) could be an average over I = [T0, T0 + T ]

L(i, j) =
1

T
∥xi − xj∥22 =

1

T

T0+T∫
T0

∥xi(t)− xj(t)∥22dt. (8)

This is fine in the CS case, however as we are interested in a more general
synchronization case, the similarity measure should also allow for the possi-
bility of a non-zero time shift τ between the time series. Thus, we consider
the following similarity measure

L(i, j, τ) =
1

T
∥xi − xτ

j∥22 =
1

T

T0+T∫
T0

∥xi(t)− xj(t− τ)∥22dt. (9)

The time shift that minimizes Eq.9, τ ∗i,j, is of interest in this work since
synchronization is viewed from a less restrictive criterion than CS, allowing
for time shifts. For real-valued time series (d = 1), note that L(i, j, τ) is
related to cross-correlation, in the sense that

(xi ⋆ xj)τ =

T0+T∫
T0

xi(t)xj(t− τ)dt (10)

is maximized at a particular τ̃ , which happens to be the same τ ∗i,j that min-
imizes L(i, j, τ). In other words,

τ ∗i,j = argmax
τ

(xi ⋆ xj)τ = argmin
τ

L(i, j, τ). (11)

Thus, it is possible to find τ̃ using the well-studied method cross correlation.
In practice, not only is the time interval finite, the sampling rate is finite as
well, allowing the integrals to be replaced by sums and the cross correlation
can be found with

Rxi,xj
(τ) =

T0+T∑
t=T0

xi(t)xj(t− τ), (12)
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with τ ∗i,j = argmax
τ

Rxi,xj
(τ) otherwise we say that τ ∗i,j = 0, and

when T0 − |τ ∗i,j| > 0

L(i, j, τ ∗i,j) =
1

T − |τ ∗i,j|

T0+T∑
t=T0

∥xi(t)− xj(t− τ ∗i,j)∥22.

In our simulations, the time interval and sampling rate are chosen so that
Eq.(12) gives a good approximation of τ ∗i,j. For instance, for the HR system
we select the fast-variable (x-coordinate), so the time series has sufficiently
large number of cycles for the chosen time interval and step size.

For the case of phase synchronization (where only phase difference is
relevant), the τ ∗i,j for every i ̸= j encodes all information about different final
states, that is, they distinguish between chimera, complete synchronous, and
completely incoherent states. In the generalized version of synchronization
discussed here, not only are the τ ∗i,j important, but so is the difference between
the ‘profile’ of the time series, so L(i, j, τ ∗i,j) should be taken into consideration
as well. Therefore the state of the pair (i, j) can be further characterized by
the ordered pair (τ ∗i,j, L(i, j, τ

∗
i,j)).

We are now ready to define the vector pattern state (VPS) for all (i ̸= j)

el = (τ ∗,l1,2, τ
∗,l
1,3, . . . , τ

∗,l
N−1,N , βL

l(1, 2, τ ∗,l1,2), βL
l(1, 3, τ ∗,l1,3), . . . , βL

l(N−1, N, τ ∗,lN−1,N),
(13)

where β > 0 allows for scaling the relative importance of the phase shift
vs. the similarity measure between the time series. Each initial condi-
tion will lead to its own VPS. Though such states may not be unique,
for instance, an initial condition which leads to complete synchronization
will have the VPS: el = (0, 0, 0, ..., 0) (in the limit as t → ∞), and thus
each initial condition which leads to CS will have the same VPS. In the
above mentioned case of phase synchronization, the VPS will be given by
el = (τ ∗1,2, τ

∗
1,3, . . . , τ

∗
N−1,N , 0, 0, . . . , 0) (in the limit as t → ∞).

4.2 Mapping the Basin Structure

In the last section we described our VPS so as to compare components of
network coupled dynamics. With this, we can map the entire space of initial
conditions to decide a basin structure. The VPS allows for characterization of
states which may have both a phase shift as well as differences in the ‘shape’
of the time series. As discussed above, in the CS scenario, all components
of the VPS will be ≈ 0. Similarly in the phase synchronization, all compo-
nents corresponding to L(i, j, τ ∗i,j) will be 0, while the τ

∗
i,j themselves become

bounded from above. However the utility of the VPS is best expressed in
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chimera states and generalized synchronization. When some of the vertices
become asynchronous and others follow a CS state, the VPS will have some
components nearly 0 and others large.

We examine the CS case in more detail, noting it is analogous to the more
generalized synchronization. Finding the basin structure is straightforward
if the pairwise distances (under whatever measure is chosen) between all
oscillators are small enough. The system may be considered in CS and the
initial condition leading to this state may be marked as one color. Any initial
condition not leading to CS will then be assigned a different color. However,
this becomes much more challenging in chimera states, since not all pairs
will reach CS. It may seem that classifying all states which have at least one
synchronized pair as well as at least one desynchronized pair as in the same
basin will be sufficient, but chimera states range from being nearly incoherent
to being nearly coherent and classifying all as the same may hide very rich
structure.

To resolve this, each VPS (el) is stacked into a matrix,

E =


e1
e2
...

eNs

 . (14)

This matrix encodes all final states evolving from each initial condition, which
are indexed by l. E is then clustered, in this case using k-means, with each
cluster assigned a color in the basin plot. This leaves the choice of k, which
was done using a variation on the elbow method. An example of how this is
done is shown in Fig. 6.

In the elbow method after a cluster has been chosen from k-means, the
value of W (C) from Eq. 17 becomes the dependent variable, with k as the
independent variable. When examining this relationship across multiple k’s
generally there will be a discontinuity which is clearly visible, which will be
the optimal value, though there are situations where this can fail [16]. In a
slight variation, to identify the elbow, a log-log plot is used instead, and the
last k before the majority of values fall on the linear trend is selected as the
‘elbow’ as shown in Fig. 6 (b).

The effects varying k has on the basin structure are shown in Fig. 7,
the initial conditions chosen from the random plane shown here were drawn
from a 1500 × 1500 grid, sampled over the unit square ([0, 1]2). The initial
conditions for all other oscillators were initially chosen uniformly at random
from the uniform distribution U(−1, 1) and were then held constant with the
exception of the initial conditions drawn from the random plane (which were
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Figure 5: The bifurcation diagram for an isolated HR oscillator. The param-
eters are a = 1, b = 3, c = 1, d = 5, xR = −0.5(1 +

√
5), s = 4, and I = 3.27

[11].

sampled as discussed above).

The complexity of the basin can be seen even for small values of k, the
optimal k balances between too little and too much detail in the basin struc-
ture. In Fig. 7, k = 8 was found to be optimal using the version of the elbow
method discussed above. Note that the basin used in this example differs
from the one shown in Fig. 6, hence the different values of k.

4.3 Clustering and k-Means

Often insights into a problem can be drawn by clustering data together to in-
fer meaningful relationships. Numerous methods exist to perform clustering,
however k-means is a popular, robust and relatively computationally inex-
pensive method for clustering a ‘cloud’ of data points together. With data
x ∈ RS×d, where S is the sample size and d is the dimension, and making
the assumption that data is all of the quantitative type so that distance has
meaning, then k-means is performed by minimizing the within cluster mean
squared Euclidean distance between points. Choosing 1 ≤ k ≤ S, let C be a
clustering C = {C1, C2, ..., Ck}, with Ck ⊂ {1, 2, ..., S}. Then we define the
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Figure 6: The elbow method. (a) The traditional version of the elbow method
relies on examining the plot of W (Ĉ) and finding a point discontinuity, which
is then chosen as k. Here it is challenging to find a clear elbow. (b) Instead,
ln(k) vs. ln(W (Ĉ)) is plotted, with a linear fit determined. The best k value
is chosen to be the last value before which the majority of the points fall on
the line of best fit, in this example k = 5.

dissimilarity measure d to be the squared Euclidean distance [16]:

d(x, y) = ||x− y||22, (15)

and the within cluster mean

x̄i,k =
1

Nk

Nk∑
i=1

I(i ∈ Ck) · xi, (16)

where Nk =
S∑

i=1

I(i ∈ Ck) and I is the indicator function. The within cluster

squared error (W ) is defined as,

W (C) =
k∑

j=1

S∑
i=1

d(xi, x̄i,j). (17)

Note that d(xi, x̄i,j) is the distance between a data point and the centroid of
the cluster it is in. The k-means problem is to minimize this within cluster
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Figure 7: Effect of varying k on the basin plots. Even for small k, a complex
basin structure is observed. The choice of k can be seen as a trade off between
too much and too little detail in this context.

squared error, that is to find the cluster Ĉ with

Wk(Ĉ) = min
C

W (C). (18)

As noted above, there are numerous clustering techniques, and one can
even generalize k-means by designing the distance function d(x, y) to be a
different dissimilarity measure than the more common squared Euclidean
distance, such a clustering method is called k-medoids [16].

5 Networks of coupled oscillators

Here, we show that the construction of basins of attractions via VPS can
also be applied to networks of coupled oscillators. Initially, we illustrate our
approach for two small size populations that are globally coupled to each
other [1]. Then, we apply the VPS construction to a network that does not
have full permutation symmetry. In both scenarios our approach is able to
capture the basin structure, illustrating its applicability.
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5.1 Coupled HR neurons

Hindmarsh and Rose (HR) developed a model of neuronal firing in the brain
[17]. We have used this model as a complex network of coupled oscillators as
a semi-synthetic system using a true DTI network. Each HR neuron follows
the following dynamics:

f(x) =

y − ax3 + bx2 − z + I
c− dx2 − y

r[s(x− xR)− z],

 (19)

where x = [x, y, z]T . Additionally two different coupling functions were used,
the first one with,

h1(xi,xj) =

xj − xi

yj − yi
zj − zi

 , (20)

and the other one with

h2(xi,xj) =

 0
yj − yi

0

− α(xi − Vsyn)

[1 + e−λ(xj−θsyn ]−1

0
0

 (21)

For the standard coupling scheme with h1 given in Eq. 20, the values of
a, b, c, d, xR, and s are selected based on earlier research works, see [11, 17].
In this work, we set these parameters to a = 1, b = 3, c = 1, d = 5, xR =
−0.5(1 +

√
5), s = 4, and I = 3.27. This will be referred to as the standard

HR model. The value of xR is chosen from the condition ẋi = ẏi = 0 (i.e.
the fast variables) while zi (the slow variable) is neglected. With this choice
of parameters an isolated HR neuron exhibits a periodic time evolution. To
decide if the time evolution is periodic or not, we follow the approach of
Poincare [43]. Fig. 5 highlights how the behavior of the system changes
when the parameter r is varied. For a given set of parameters, the number
of cuts a moving HR neuron makes on the Poincare plane are counted. The
Poincare plane is any plane transverse to a time-continuous flow, which in
this case is the y − z plane located at x = 0. Fixing I and decreasing r
towards 0, the y coordinates of all intersections on the Poincare plane are
shown, such that x(t) < 0 and x(t+dt) > 0, where dt denotes the integration
time step. The resulting plot (Fig. 5) is called a bifurcation diagram and the
type of bifurcation is a period-doubling bifurcation of limit cycles. A finite
number of cuts (let’s say Nc) indicate a periodic trajectory with period Nc,
while the limit Nc → ∞ shows a chaotic evolution.

An alternative model, which includes chemical coupling in addition to
the electrical coupling, that is with h2 from Eq. 21, the parameters are:
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a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.005, xR = −1.6, I = 3.25, σ =
0.5, α = 0.03, which is known to contain chimeras [18]. Here the chemical
and electrical adjacency matrices are assumed to be the same, unlike in [18].
This will be referred to as the chemical coupling model. An example of the
dynamics is shown in Fig. 3 (c) and (d), and a version of this model where
the parameter a for each oscillator is drawn from a normal distribution is
shown in Fig. 3 (e) and (f).

5.2 Two populations of globally coupled oscillators

Figure 8: Basin structure of two globally coupled populations. (a) Two
globally coupled populations of five nodes. The (intra-)coupling strength
inside a population and (inter-)coupling strength between populations are
given by µ and ν, respectively, with µ > ν. (b) Two-dimensional section of
the state space showing basins of the 18 (clustered) distinct states identified
by the VPS of the two globally coupled populations. There is a symmetry
among the basins with respect to reflections across the diagonals, which
originates from the reflection symmetry of the network. To construct the
VPS, we use β = 1 in Equation (13) and a grid of 1248 × 1248 uniformly
sampled initial conditions.
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We consider two coupled populations as illustrated in Figure 8 a)

θ̇ki = ω +
2∑

k′=1

σkk′

Nk′

Nk′∑
j=1

sin(θk
′

j − θki − α), i = 1, . . . , Nk, (22)

where θki is the phase of the i-th oscillator in population k ∈ {1, 2} and ω is
the oscillator frequency. Based on earlier works [1, 24, 31], we suppose that
σ11 = σ22 = µ > 0, and σ12 = σ21 = ν > 0, with µ > ν. Also, by rescaling
time, we may set µ+ ν = 1 and introduce useful parameters A = µ− ν and
β = π/2 − α that determine the existence of chimeras states in the system.
For identical oscillators, we can change coordinates to the rotating frame ω,
θki 7→ θki − ωt, so the natural frequency can be fixed at ω = 0.

The system (22) has full permutation symmetry, allowing a low-dimensional
description in terms of macroscopic variables in the thermodynamic limit
(Nk → ∞) [1]. In particular, the authors in [24] use the resulting reduced
system to describe the basins of attraction of chimera states. The basin
structure corresponds to the infinite size system, but it is expected to remain
roughly the same for large populations sizes [31]. We tested our VPS con-
struction (results not shown), reproducing a basin structure that contains a
few distinct states, as predicted by the infinite size system [24]. Here, we con-
sider the interesting case when the population size is small, and the dynamics
of the full system deviates from the evolution of the reduced system [31]. In
fact, in this scenario, the evolution still has a low-dimensional description
but the macroscopic variables do not evolve in a closed form equation, so the
reduced system becomes intractable analytically, see [25] for details.

We consider the case of N = 5, A = 0.1 and β = 0.025, where it is known
that stable chimeras exist [1, 24, 31]. For initial conditions we consider
equally spaced phases over the circle, i.e., for a fixed ϑ ∈ [0, 2π]

θ1i (0) =
2πi

N
, i = 1, . . . , N1,

θ2i (0) =
2πi

N
+ ϑ, i = 1, . . . , N2,

so the system starts close to a incoherence state.
We consider ϑ = 0.1, transient time of 2000 time steps, and integrate

over 1000 more time steps to obtain the final state, sampling every 0.02 time
steps. The basin plot is performed in the plane (θ11(0), θ

2
1(0)) for which the

initial conditions are varied over the interval [0, 2π], see Figure 8 (b). We
see that the basin has coexistence of different chimera states and (complete)
phase synchronization state, as described in [31], and our method is capable
of identifying these cases.

21



5.3 Coupled oscillators in networks

Figure 9: (a) Network with one single link removed, breaking the full per-
mutation symmetry of the globally coupled network. Nodes with different
colors correspond to the new clusters formed from the permutation symmetry
group. Red edge corresponds to a randomly selected edge that was removed
from the globally coupled network. (b) Two-dimensional section of the state
space showing basins of 12 (clustered) distinct states. To construct the VPS,
we use β = 1 in Equation (13) and a grid with 1248×1248 uniformly sampled
initial conditions.

For the case of a network without full permutation symmetry, we consider
the following equations of motion for the oscillators

θ̇i = σ

N∑
j=1

[A]i,j sin(θj − θi − α), i = 1, . . . , N, (23)

where σ is the overall coupling strength. The adjacency matrix A represents
a network that does not have any non-trivial symmetry. To generate this
network we initiate the globally coupled network, as depicted in Figure 8 (a),
and remove uniformly at random one edge from the graph. The resulting
graph has two new clusters that are depicted in different colors, which is
calculated via Sage [41]. See Figure 9 for an illustration of the (random)
network used in our numerical results.

We consider time interval of 5000 time steps and sample the trajectory
at every 0.02 time steps. Also, the parameters are σ = 0.01 and as before
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α = π/2− β with β = 0.025. Choosing the same two-dimensional section as
previously, we construct the basin structure via VPS, as illustrated in Figure
9 (b), using five clusters that are determined by the elbow method discussed
earlier. Here, we consider a transient time of 4000 time steps and calculate
the similarity measure and cross correlation, over the remaining 1000 time
steps.

The basin structure shows that the system has a high sensitivity to initial
conditions, so our method is able to characterize such basin which has an
intermingled structure. It remains an interesting line of research to describe
the mechanism behind the chaotic dynamics, since it differs from the globally
coupled scenario where a low-dimensional description is available [8].

5.4 VPS for phase oscillators

Different from the HR system, when we consider coupled oscillators, the time
series is given by phases {θi(t)}t≥0 in the circle. To construct the VPS, we
perform an embedding into R, so we can use the same similarity measure
introduced in Section 4.1. More precisely, for each oscillator time series, we
consider

xi(t) = cos(θi(t)), i = 1, . . . , N.

5.5 Coupled Hénon maps

Additionally we study the network of coupled Hénon maps,

[
xi(t+ 1)
yi(t+ 1)

]
=

fx(xi(t), yi(t)) + σ
N∑
j=1

[A]i,j

(
fx(xj(t), yj(t))− fx(xi(t), yi(t))

)
fy(xi(t), yi(t))


(24)

for i ∈ {1, 2, ..., N}, with fx(x, y) = 1− px2 + y, fy(x, y) = bx and t ∈ N, as
discussed in [36]. The parameters chosen are p = 1.44, b = 0.164, σ = 0.8.
The network used is the DTI brain network from Fig. 1.

To allow the system to settle on to the attractor we use 20, 000 time
steps. The final 1, 000 time steps are utilized for the construction of the
VPS. Following several of the above examples, we use only the x-component
for the VPS. The basin shown contains 1, 000, 000 initial conditions sampled
in a grid of [−3, 3]2 for the x and y component of a randomly chosen node.
The initial condition for all other nodes is set to (0, 0)T . Though we are
using a different network structure, we find a very similar basin structure to
that of [36]. This basin appears to be riddled, which indicates how general
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this phenomenon is. Additionally it is clear that non-trivial symmetry is not
necessary for riddled basins.

Figure 10: Basin structure in the Hénon system for a randomly chosen x,y
plane. The system is given by Eq. 24. The network is the same DTI network
shown in Fig. 1. This structure appears to have a riddled basin.
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