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Identifying stochastic basin hopping by partitioning with graph modularity
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Abstract

It has been known that noise in a stochastically perturbed dynamical system can destroy what was the original zero-noise case barriers in the
phase space (pseudobarrier). Noise can cause the basin hopping. We use the Frobenius–Perron operator and its finite rank approximation by the
Ulam–Galerkin method to study transport mechanism of a noisy map. In order to identify the regions of high transport activity in the phase space
and to determine flux across the pseudobarriers, we adapt a new graph theoretical method which was developed to detect active pseudobarriers
in the original phase space of the stochastic dynamic. Previous methods to identify basins and basin barriers require a priori knowledge of a
mathematical model of the system, and hence cannot be applied to observed time series data of which a mathematical model is not known. Here
we describe a novel graph method based on optimization of the modularity measure of a network and introduce its application for determining
pseudobarriers in the phase space of a multi-stable system only known through observed data.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Noise in deterministic dynamic systems can play an
important role in a global change in the system. The stochastic
dynamics, can be dramatically different from the unperturbed
deterministic analogue, even under small noise inputs. For
example, additive noise in a multi-stable system can cause basin
hopping between two states [1–6]. The questions of when noise
induced chaos, phase space chaotic transport and mean escape
times from certain basins of attractions are pressing for a given
stochastic dynamic system. These questions lead us to find a
way to determine basin boundaries of stochastic systems. Bollt
et al. [1] have previously developed a technique to compute
phase space transport without a priori knowledge of the basin
boundaries based on the Ulam’s method coupled with graph
theory. This technique uses the Ulam matrix to approximate
the Frobenius–Perron operator by a Markov operator of finite
rank. In this approach the boxes covering the phase space are
reindexed according to their convergence rate to a fixed point
in a basin. However, this technique cannot be used if we only
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have experimental data, since the model is not available for
certain key steps in the Ulam–Galerkin approximation. Here,
we use a graph theoretical approach to reindex the matrix to
identify regions that should be dynamically grouped (those in
the same basin). The main advance with this new approach is
that we can identify appropriate regions of phases space to call
dynamically similar, and hence the transport barriers between
them and corresponding transport between, without an a priori
model to work with, but instead using only observed orbit data.

In a different approach, recent efforts have focused on
identifying the number and location of almost invariant sets;
those subsets of a state space where trajectories tend to stay for
comparatively long periods of time before they leave into other
regions. Set oriented methods where developed to numerically
study the problem of identifying the regions [7–10]. In this
language, we can say that a basin in a multi-stable system
subject to stochastic noise can be considered as an almost
invariant set. In the cited work, the state space of a dynamic
system is first discretized into boxes. Then the congestion of
a graph based on a multicommodity flow on the graph is
employed to partition the graph to approximate the almost
invariant sets. The idea of this technique is that edges with low
congestion can be detected in almost invariant sets, whereas
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those with high congestion are edges between the almost
invariant sets. In the language of this paper, using notions of
recent graph theory developments, we will say that those nodes
in the graph representing boxes covering an almost invariant
set of a dynamic system form a community structure. Finding
a community structure of a graph is a partitioning problem of
a graph, which we will describe in Section 3. We will show
how this problem is related to the partitioning problem of
the stochastic dynamic systems. Other approaches used for a
similar purpose of detecting the community structure in a graph
are also applicable to the partitioning problem of the dynamic
systems, and they also approximate almost invariant sets. These
are reviewed and compared in [11,12].

Applications of modelling and better understanding of
systems with basin hopping due to stochastic mechanism
are numerous. In particular, there has been some effort to
understand the nature of the basin hopping through analysis
of the Frobenius–Perron operator, or other descriptions of a
discretized model of transfer operators, including in stochastic
systems. Some of these researchers have studied in the
literature, we find applications to celestial mechanics, [13],
to molecular dynamics [14] amongst many others for
deterministic analysis to biological applications including
mathematical epidemiology for stochastic applications [1,2]. In
this paper, we will benchmark our methods with the Duffing
oscillator where transport is particularly simple to understand a
priori, and then we will also analyze the stochastic dynamics of
a gearbox model [5,6].

In this paper we will demonstrate an application of a new
graph partition method for detecting community structure,
called the modularity method [11,15,16], to a dynamic system
for discovering basin boundaries of (especially stochastic)
multi-stable systems known only through observed data from
an orbit. For completeness we will first review the concept of
the deterministic and the stochastic Frobenius–Perron operators
and finite rank approximation by the Ulam–Galerkin method.
Then we will describe the idea of the graph partition method
based on the modularity measure of a network. In the last
section we demonstrate the application of this graph partition
to the Duffing oscillator model and the gearbox model [5,6].

2. Frobenius–Perron operators and approximation

Let F be a (nonsingular) discrete time dynamic system
acting on initial conditions z ∈ M (say, M ⊂ Rn). That is,

F : M → M, x 7→ F(x). (1)

The Frobenius–Perron operator PF : L1(M) → L1(M) is
defined by [17],

PF [ρ(x)] =

∫
M
δ(x − F(y))ρ(y)dy, (2)

where ρ(x) is a probability density function (PDF) defined
in L1(M). Thus PF [ρ(x)] give us a new probability density
function, which is unique a.e. and depend on F and ρ(x). Note
that for all measurable sets A ⊂ M , we have a continuity
equation [17]∫
F−1(A)

ρ(x)dx =

∫
A

PF (ρ(x))dx . (3)

Next, we consider a stochastic process defined by

xn+1 = νn S(xn)+ T (xn) (4)

where νn are independent random vectors each having the
same density g and a relatively small magnitude compared to
the deterministic part S and T . Note that if we set T ≡ 0,
we would have a process with a multiplicative perturbation,
whereas when S ≡ 1, we have a process with an additive
stochastic perturbation. Suppose the density of xn given by
ρn . We desire to show a relation of ρn and ρn+1 of the above
stochastic process analogous to Eq. (2) using a similar approach
employed in [17]. We assume that S(xn), T (xn), and νn are
independent. We let h : M → M be an arbitrary, bounded,
measurable function, and recall that the expectation of h(xn+1)

is given by

E[h(xn+1)] =

∫
M

h(x)ρn+1(x)dx . (5)

Then, using Eq. (4) we also obtain

E[h(xn+1)] =

∫
M

∫
M

h(zS(y)+ T (y))ρn(y)g(z)dydz. (6)

By a change of variable, it follows that

E[h(xn+1)] =

∫
M

∫
M

h(x)ρn(y)g((x − T (y))S−1(y))

× |J |dxdy, (7)

where |J | is the absolute value of the Jacobian of the
transformation x = zS(y) + T (y). Since h was an arbitrary,
bounded, measurable function, we can equate Eqs. (5) and (7)
to conclude that

ρn+1(x) =

∫
M
ρn(y)g((x − T (y))S−1(y))|J |dy. (8)

The Frobenius–Perron operator for this general form of a
stochastic system with both parametric and additive terms can
then be expressed similarly to the deterministic case as

PFν (ρ(x)) =

∫
M
ρ(y)g((x − T (y))S−1(y))|J |dy. (9)

Notice that the original deterministic kernel δ now becomes a
stochastic kernel g|J |. Specifically, we have for the case of the
multiplicative perturbation, where T (x) ≡ 0, that

PFν (ρ(x)) =

∫
M
ρ(y)g(x S−1(y))S−1(y)dy. (10)

Similarly, the stochastic Frobenius–Perron operator for the
additive perturbation,, where S(x) ≡ 1, is

PFν (ρ(x)) =

∫
M
ρ(y)g (x − T (y)) dy. (11)
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We use the Ulam–Galerkin method, which is a par-
ticular case of Galerkin method [18], to approximate the
Frobenius–Perron operator. We use the projection of the in-
finite dimensional linear space L1(M) with basis functions
{φi (x)∞i=1} ⊂ L1(M) on to a finite dimensional linear subspace
with a subset of the basis functions,

4N = span{φi (x)}N
i=1. (12)

For the Galerkin method this projection,

Π : L1(M) → 4N , (13)

maps an operator from the infinite-dimensional space to an
operator of finite rank N × N matrix by using the inner product

Ai, j = 〈PFν [φi ], φ j 〉 =

∫
M

PFν [φi (x)]φ j (x)dx . (14)

The quality of this approximation is discussed in Bollt [1]
and similar references can also be found in [19–24]. For the
Ulam method the basis functions are a family of characteristic
functions

φi (x) = χBi (x) = 1 for x ∈ Bi and zero otherwise. (15)

In the deterministic case, using the inner product equation (14)
the matrix approximation of the Frobenius–Perron operator has
the form of

Ai, j =
m(Bi ∩ F−1(B j ))

m(Bi )
. (16)

where m denotes the Lebesgue measure on M and {Bi }
N
i=1 is a

family of boxes or triangles of the partition that covers M and
indexed in terms of nested refinements [25]. This Ai, j can be
interpreted as the ratio of the fraction of the box Bi that will
be mapped inside the box B j after an application of a map to
the measure of Bi . A key observation is that the kernel form
of the operator in Eq. (9) allows us to generally approximate
the action of the operator with test orbits as follows. If we only
have a test orbit {x j }

N
j=1, which is actually the main interest

of this paper, the Lebesgue measure can be approximated by
a counting measure λ and the matrix approximation of the
Frobenius–Perron operator becomes

Ai, j =
λ({xk | xk ∈ Bi and F(xk) ∈ B j })

λ({xk ∈ Bi })
. (17)

3. Graph theory and reducible matrices

In this section we review some basic concepts of
reducible matrices and corresponding relationships to the
graph induced by the matrices due to discrete approximations
of a Frobenius–Perron operator. In particular, we introduce
a question of how to discover a permutation of the
Ulam–Galerkin matrix that reveals the basin structure of a
dynamic system given to us in the form of test orbit {x j }

N
j=1.

A graph G A associated to a matrix A consists of a set of
vertices V and a set of edges E ⊂ V 2. If a disjoint collection
{Si }

k
i=1 of subsets Si ⊂ V consists of vertices such that there
is a higher density of edges within each Si than between them,
then we say roughly that {Si }

k
i=1 forms a community structure

for G A [11,15].
Let I = {1 . . . N } be an index set. For our specific

application to the transition matrix A generated by the
Ulam–Galerkin method, we define the set of vertices, V =

{υi }i∈I to label the original boxes {Bi }i∈I used to generate the
matrix A, and define the edges to be the set of ordered pairs of
integers E = {(i, j) : i, j ∈ I } which label the vertices as their
starting and ending points.

A graph is said to be reducible if there exists a subset Io ⊂ I
such that there are no edges (i, j) for i ∈ Io and j ∈ I \ Io,
otherwise it is said to be irreducible [26,27]. This condition
implies that the graph is irreducible if and only if there exists
only one connected component of a graph, which is G A itself.
In term of the transition matrix A, G A is irreducible if and only
if there exist a subset Io ⊂ I such that ai j = 0 whenever i ∈ Io
and j ∈ I \ Io.

Furthermore, A is said to be a reducible matrix if and only if
there exists some permutation matrix P such that the result of
the similarity transformation,

R = P−1 AP (18)

is block upper triangular

R =

[
R1,1 R1,2

0 R2,2

]
. (19)

This means that G A has a decomposition V = V1
⋃

V2,
such that V1 connects with V1 and V2, but V2 connects only
with itself. When R1,2 = 0, A is said to be “completely
reducible” [27]. A key observation is that in the case that G A
is generated from a bistable dynamical system the transition
matrix A is completely reducible, where R1,1 and R1,2
corresponds to the two basins of attractions of the system. Also,
in a general multistable dynamic systems the transition matrix
A has a similarity transformation into a block (upper) diagonal
form.

A key point to this work is that most (randomly or arbitrarily
realized) indexing of the configuration makes it difficult to
observe even simple structure like community structure or
reducibility of the graph and corresponding transition matrix.
In particular, a very reasonable partitioning of the phase space,
and a reasonable indexing of the boxes or triangles is not
likely to reveal dynamic organization-like reducibility or a
community structure. In Fig. 1(a) and (b) we show an example
of a transition matrix for a 30-vertex random community-
structured graph with three communities of which members
are placed haphazardly, but after a proper permutation this
matrix is transformed into an “almost” block diagonal form.
Fig. 2(a) and (b) illustrate the associated graph of the matrix
in the above example. Before sorting the vertices into three
separate communities the graph looks like a random graph that
has no community structure. However, after sorting we can see
a community structure of the graph.

There are several techniques to find an appropriate
permutation if the matrix is reducible. In the language of graph
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(a) A transition matrix before sorting. (b) The same transition matrix after sorting.

Fig. 1. The matrix in this figure is irreducible. Members of the original transition matrix before sorting are placed haphazardly and the structure is not obvious.
After using the modularity method discussed in Section 21 the “almost” block diagonal form is revealed. In this case, the sorted matrix indicates the existence of
three communities and the few off-block diagonal elements correspond to intrabasin diffusion.
(a) The original graph. Embedding vertices into the plane in
a random configuration conceals a simple structure.

(b) Sorted graph. The same graph subject to appropriate
permutation reveals “almost” block-diagonal structure
community between components.

Fig. 2. An undirected graph before and after sorting. The arrows point at the intercommunity edges.
theory, we would like to discover all connected components of
a graph. The betweeness methods in [11] and the local method
in [28] are examples of numerous methods as reviewed in [11,
12] that can be successfully used to uncover various kinds of
community structures.

In the more general case in which noise is added to a multi-
stable dynamic system, we do not expect a reducible transition
matrix because noise can cause basin hopping, which in turn
adds the connection (edges) between each original connected
components representing each basin in the noiseless system.
The larger the magnitude of noise, the larger number of the
inter-community edges. Therefore, there will be no similarity
transformation of the transition matrix into a block diagonal
form for a noisy system. However, G A still has a community
structure if noise is small enough. Note that in a case that a
magnitude of noise is large a number of intercommunity edges
may become so large that a community structure is destroyed.
In other words, one might be able to discover only one commu-
nity, which represents the entire phase space of the time-series
data, or one may obtain a large number of very small com-
munities that have no meaningful community structure. Bollt
et al. [1] developed a technique to discover an appropriate per-
mutation based on a convergence property of elements in Bi .
However, such a technique could not be applied to the case that
we merely have a test orbit {xi }

N
i=1 of a real world dynamic

systems, i.e. the data collected from experiments.
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The question of how to discover a proper community
structure of a noisy multistable dynamic system without a
priori knowledge of a mathematical model of the system is the
main interest of this paper. The edge betweeness method [15],
based on computing shortest paths, is a good robust candidate
algorithm for detecting communities, but its run time is of the
order O(m2n) for a graph with m edges and n vertices, or
O(n3) for a sparse graph(m ∼ n). Such expensive demands
on computational resources make it infeasible for a large
graph. Furthermore, a d-dimensional dynamic system with
an hd -element box (for box of order length h on a side)
or triangle covering of the invariant set makes therefore an
O(h3d) algorithm, which is quite expensive for a fine grid,
h � 1, in high dimension-d. In the next section we will
describe a method based on a modularity measure of a graph
partition developed by Newman [16]. This method is far less
expensive than the betweeness method and gives useful results
in many applications. In the last section of this work we
demonstrate examples of how to apply this method to our
specific applications in dynamic systems.

4. Modularity

As discussed in the previous section our main purpose is
to discover community structure in a network derived from
an orbit of a dynamic system through a grid partitioning of
the phase space; such structure indicates the dynamic basin
structure. Thus, our point of view is to map the problem of
phase space partition of the dynamic system (approximately)
into a problem of partitioning a digraph. Many methods have
been proposed in recent years [11,15,16,28] to appropriately
partition a digraph. Loosely, the community structure is a
partition of the digraph into subgraphs such that there are
relatively more connections within each defined component
than between components, a sort of self clustering. In this
paper, we employ a new and efficient algorithm proposed by
Newman [16] for detecting community structure based on the
optimization of the “modularity” measure.

First, we discuss the concept of the modularity as a measure
of quality of a proposed community structure found by any
graph partition algorithm. The modularity is a cost function
associated with a partitioning of a given graph G,

Q : PG → R, (20)

where PG is the set of all subpartitions P , of a given graph G.
Given a graph G and a (test) partition, P ∈ PG , P = ∪k Pk ,
each P is a set of subsets Pk , and Pk is a collection of vertices
of G. P includes all of the vertices of G. We will refer to Pk as
“community”-k. The modularity of the partition P is meant to
reflect the quality of the split into self clustered elements Pk A
modularity measure is defined by

Q(P) =

∑
(ei i − a2

i ), (21)

where ei j is the fraction of edges that connect vertices in
community i to those in community j and,

ai =

∑
ei j , (22)
represents the fraction of edges that connects to community
i . Thus Q(P) measures the difference between the fraction of
the within-community edges and the expectation of the same
quantity in the network with same community partition created
by randomizing all connections between vertices. Therefore,
Q(P) approaches 0 for a randomly connected network and
approaches Q(P) = 1, if the network has a strong community
structure. We may then optimize Q over all possible partitions
to discover the best community structure

Q = max
P∈PG

Q(P). (23)

The true optimization, however, is very costly to implement
in practice for very large networks. Clauset, Newman, and
Moore [29] proposed an approximate optimization algorithm
based on greedy optimization. Suppose that we have a graph
with n vertices and m edges. This algorithm starts with each
vertex being the only member of one of n communities. At each
step, the change in Q(P) is computed after joining a pair of
communities together and then choosing the pair that gives the
greatest increase or smallest decrease in Q(P). The algorithm
stops after n − 1 such joins in which a single community
is left. This algorithm therefore runs in time O((m + n)n),
or O(n2) on a sparse graph (n ∼ m). Note that using
more sophisticated data structure as introduced in [29] can
reduce a run time to O(n log2 n). Furthermore, the algorithm
builds a dendrogram which represents nested hierarchy of all
possible community partition of the network. Then we select
the partition corresponding to local peaks of the objective
function Q(P) for our satisfactory community division. Fig. 3
shows an example of the dendrogram of the graph network
shown in Fig. 2(a). We can see that the peak in the modularity
corresponds to the correct identification of the community
structure and the modularity is dropped from the peak when
two of the three communities are joined together at the final
step.

5. Examples

In this section,for benchmarking purposes, we first
demonstrate an application of the modularity method to the
double-well Duffing oscillator, where the solution is the
expected double wells. Then we apply the method to a gearbox
model from mechanical engineering [6,30] and then finally to a
many basin system which is known only through data. We will
observe changing basin structure with the standard deviation of
the noise.

For each model, we simulate a long test orbit. Recall that we
are interested in the case that we only have a given orbit, but
lack a mathematical model of the map that generates the test
orbit. Then as explained above, we develop a digraph transition
model of the Frobenius–Perron operator, discretized on a fine
triangulation grid of the phase space. Then our goal becomes
the determination of an appropriate partition of the phase
space using the modularity method explained in the previous
section.
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Fig. 3. Plot of dendrogram for a graph network in Fig. 2(a). As we can see the peak in the modularity (dashed line) occurs where the network is divided into three
communities.
5.1. Duffing oscillator

Our first example is chosen for sake of simplicity to
benchmark and clarify our method. Consider the the double-
well Duffing oscillation given by

ẋ = y

ẏ = x − x3
− δy + F cos(2πωt),

(24)

where δ = 0.25, F = 0.25, and ω = 1. To obtain a stochastic
version of this model noise is added to the above equations
periodically at the same phase having mean zero and standard
deviation σ . Thus this model may be viewed as a stochastic map

F : R2
→ R2, (x, y)(t + 1) = F[(x, y)(t)] + ν(t), (25)

where ν(t) is a discrete noise term. This additive noise induces
chaos-like oscillations since it causes noise-induced basin
hopping between two basins of the noise-free system. In order
to study where in the phase space these basin hopping are most
likely to occur we should first determine the basin boundaries.

For the particular experiment shown below, we randomly
choose an initial condition and iterate it 50,000 times using
the time-T map, T = 1, of the Duffing model with normal
noise of zero mean and standard deviation σ = 0.01, which
is added after each iteration of the map. Note that in the
noiseless case, for the particular chosen parameter values of
the deterministic system, if the initial point belongs to one of
the wells it will converge to the bottom of the well (x = −1
or x = 1). However, when noise is added, hopping between
the two basins may occur sporadically, depending on the nature
of the noise. Of course, given just the data of a sampled orbit,
it is not immediately obvious where are the basins and where
the jumping between the basins occurs. Of course, we only
know this information since we have chosen a particularly
simple benchmark example. We will now demonstrate that our
algorithms defined in the previous sections can automatically
discover what we already know for this problem.
With the test orbit in hand we choose a bounded phase space
that covers every points in the orbit and divide it into small
triangular regions (3200 triangles are used in this example).
After (arbitrarily) indexing each triangle we then generate a
graph whose edges and vertices correspond to the transition of
points in the orbit and the index of these triangles, respectively.
Then we can apply the modularity method to find a partition of
this graph.

The results of the digraph partitioning are shown in Fig. 4,
and the correspondingly indexed triangles are embedded back
in their native phase space positions, and coloured according to
the partition results. We can see from Fig. 4 that there are two
basins coloured by magenta and yellow in accordance with left
and right wells, as expected. Furthermore, hopping between the
two basins occurs many times. The triangles are automatically
coloured according to the partition by the modularity method,
which agrees very well with a priori known behaviour described
in the above paragraph. We see that the two basins are each
automatically coloured as their own connected components in
the phase space. Fig. 5(a) and (b) shows the Galerkin matrices
before and after the sorting by using the partition due to
the modularity method. Of particular interest when inspecting
the transitions matrices in their almost canonical reducible
form is the elements in the off-diagonal blocks. These off-
block diagonal elements indicate the hopping between two the
basins, which is approximately in agreement with Eq. (19).
Accordingly the corresponding triangles are the more active
transport regions in the phase space.

5.2. Gearbox model

Our second example is a model for rattling in a single-stage
gearbox systems with a backlash, comprising of two wheels
with a sinusoidal driving [6,30]. The relative displacement
between the gears due to the backlash is

s =
ARe

ν
sinωt −

R
ν
ϕ, (26)
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Fig. 4. A partition of an orbit generated from the Duffing model with δ = 0.095 and normal noise, σ = 0.01. The colors, magenta and yellow, are according to the
two communities found by the modularity method applied to the transition matrix, and we see that the colors of these corresponding triangles agree well with the a
priori known basins of the deterministic system. The blue dots shown are the test orbit used in the process. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
(a) The Ulam–Galerkin matrix from the Duffing oscillator before
sorting. No obvious basin structure or transport in this operator.

(b) The Ulam–Galerkin matrix from the Duffing oscillator after sorting
into into approximate reducible form. We see the basin structure of
off-diagonal elements showing relative transport between basins.

Fig. 5. Galerkin matrices before and after sorting of the Duffing oscillator.
where A and ω are angular amplitude and frequency of the
driving gear, respectively, R and Re are the radii of two gears
with a backlash ν, and ϕ is the angular displacement of the
second gear. The s variable varies from −1 to 0 and the impact
occurs when s = 0 or −1. Let sn, ṡn , and τn represent the
displacement, velocity, and time (modulo 2π just before the nth
impact. Then the dynamic variable for (n + 1)th impact can be
derived as a function of the nth impact [5];

sn+1 = sn + α(sin τn+1 − sin τn)+
γ

β
(τn+1 − τn)

−
1
β
(1 − exp[−β(τn+1 − τn)])

×

(
r ṡn + α cos τn +

γ

β

)
, (27)
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Fig. 6. Bifurcation diagram for the time of impact.

Fig. 7. A time series of the τn for α = 1.985 at noise level σ = 0.0018.
ṡn+1 = α cos τn+1 +

(
γ

β
− exp[−β(τn+1 − τn)]

)
×

(
r ṡn + α cos τn +

γ

β

)
. (28)

Pictures showing the physical meaning of these variables in
more detail can be found in [6,30].

We fix values, s0 = −0.5, β = 0.1, γ = 0.1, and r =

0.95. The bifurcation diagram shown in Fig. 6 shows that two
attractors coexist near the α = 2 and these attractors appear as
the successive time of five impacts. Following Souza et al. [6],
we add noise to the control parameter α. That is

αn = α + η(n), (29)

where η(n) is a discrete noise term, with a normal distribution,
with zero mean, and with standard deviation σ . Note that in this
example we have the case of the stochastic Frobenius–Perron
operator Eq. (9), in which the perturbation is neither additive
nor multiplicative but a combination of both. We simulate a
time series using 60,000 iterations for α = 1.985 and set the
noise standard deviation at σ = 0.0018. A time series for this
case is shown in Fig. 7, where the basin hopping can be noticed.

Following the same procedures as described in the preceding
example we can generate a graph associated to the orbit of
the gearbox model. The result from the modularity method for
this case is shown in Fig. 8, where the large squares and dots
indicate each attractor for the noiseless case. The transition
matrices before and after sorting according to the partition from
the modularity method are shown in Fig. 9(a) and (b).

5.3. A stochastic model with many basins

Let’s consider the following Hamiltonian system with a
stochastic white noise:
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Fig. 8. A partition of an orbit generated from the gearbox model with normal
noise, σ = 0.0018. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

dx
dt

=
∂ψ

∂y
+ ηx (t)

dx
dt

= −
∂ψ

∂x
+ ηy(t)

(30)

where the streamfunction ψ is given numerically as shown in
Fig. 10 and ηx and ηy are the normal noises with zero mean. We
then generate a time-series data based on the time-T map of Eq.
(30) for a normal noise with zero mean and standard deviation
σ = 0.001 as shown in Fig. 11. One may notice bursting in
the time series, which suggests transitions between the almost
invariant sets.

To investigate how the basin structure changes as the
standard variation of noise is varied, we compare the result
obtained from the modularity method for four cases of σ =

0.001, 0.005, 0.01, and 0.05 as shown in Figs. 12 and 13 In all
four cases we start with an initial point (x, y) = (−0.2, 0.6).
Note that the regions with no colour do not contain any point in
a test orbit and so they are not used in a process of generating
a graph. One may observe from Fig. 12 that the bandwidth
of the Ulam–Galerkin matrix before sorting becomes larger as
σ increases. Moreover, the modularity measure as defined in
Eq. (23) becomes lower when noise becomes greater (Q =

0.7267, 0.7183, 0.6968, and 0.6361 for σ = 0.001, 0.005, 0.01
and 0.05, respectively). Recall that the higher the value of the
modularity measure, the stronger the community structure (the
lower value of the ratio of the intercommunity edges and the
within-community edges).

6. On computational complexity

In this section, we briefly discuss the computational
complexity of the methods described in this paper. Although
increasing the number of boxes or triangles coverings, and
hence the number of vertices in the graph, can make a graph
partition that reveal more refined structure of basin, there exists
a necessary number of boxes or triangles coverings to discover
a basin structure. This minimum requirement can be related
to the Lyapunov exponent of a given dynamical system from
which the data comes from. This means that refining a covering
of a phase space beyond the necessary requirement will not
reveal more structure of basins, but any over-refinement still
(a) Before. (b) After.

Fig. 9. Transition matrix before and after sorting of the gearbox model. Notice in the sorted matrix that two distinct basins become clear as those triangles indexed
to associate to the diagonal blocks, and the regions causing hopping are clear as those few off diagonal elements. Each of the two basins, the smaller and larger
blocks, are the pink and yellow coloured regions in Fig. 8.
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Fig. 10. The velocity filed for the noiseless case of Eq. (30) is computed from the above streamfunction by the relation (dx/dt, dy/dt) = ∇ × ψ .
Fig. 11. A test orbit of the time-T map of Eq. (30) for a normal noise with standard deviation σ = 0.001.
requires more computer storage and more computer work. The
following analysis assumes the zero noise, and so this would
seem to imply it may be relevant at best for only small noise
profiles. We remind however that there does exist a concept of
stretching and Lypanov exponent for a stochastic system [31],
and so we offer the following as a heuristic model which is
suggestive of the necessary refinement of the grid to gain a
given knowledge of the system’s evolution. We find that these
considerations give a useful starting point of the noise profile is
not overwhelming.

We use the Baker’s map as an example to describe the trade-
off between the number of box coverings and the Lyapunov
exponent. Recall that a Baker’s map on the unit square [0, 1] ×

[0, 1] maybe defined by [32],

xn+1 =

{
λ1xn if yn < α,

(1 − λ2)+ λ2xn if yn > α,

yn+1 =

{
yn/α if yn < α,

(yn − α)/(1 − α) if yn > α,

(31)
where λ1 + λ2 < 1 and 0 < α < 1. The forward-time invariant
set of this map is a Cantor set of parallel vertical lines. Consider
learning these structures with box covering methods, and what
can be discovered by such finite computations. Suppose that
we want to cover all parallel stripes left in the unit box after n
iterations by square boxes of size ε so that two stripes are not
contained in the same box, see Fig. 14. The size of the square
box required to do this is

ε(n) = min{λn
1, λ

n
2}. (32)

Therefore, the required number of boxes to reveal the fractal
structure of these parallel stripes is

N (ε) ≥ ε(n)−2, (33)

and d = 2 is the dimension of the embedding phase space.
Using more boxes than the minimum requirement (33) would
only increase required storage and work but does not give us a
better knowledge of the stripes left in the unit box.
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Fig. 12. Transition matrix before and after sorting of the model Eq. (30). Notice decreasing the number of basins as the noise increases.
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Fig. 13. The phase space partition of the duffing-like model with various values of σ using the graph modularity method. The values of the modularity measure
as defined in Eq. (23) in each case are Q = 0.7267, 0.7183, 0.6968, and 0.631 for σ = 0.001, 0.005, 0.01 and 0.05, respectively. Similarly, the basin structure is
changing with σ .
(a) All stripes after n = 2. A square box of size ε1 cannot
resolve a structure finer than ε1. But we see that a smaller
square box of size ε2 is able to resolve a stripe of width up
to ε2.

(b) Here, however, the box of size ε2 cannot resolve the
stripe left in the unit box after n = 3.

Fig. 14. Two iterations of the Baker map with λ1 = λ2.
Thus we see that there is a trade-off between Lyapunov
exponents, λi , time, n, box size, ε, the size of the memory
requirements and size of the resulting digraph, N (ε) and the
dimension of the underlying space, d .
7. Conclusion

In this paper, we have described how a concept of
community structure in a graph network relates to a
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,

stochastically perturbed multistable system through the
(almost) reducibility of the matrix representing the finite-
rank approximation of the Frobenius–Perron operator by the
Ulam–Galerkin method. A new graph algorithm based on
the optimization of the modularity measure for extracting a
community structure in a network can be applied to detect
pseudo-barriers and transport mechanisms in phase space
from a time series data that comes from a stochastic multi-
stable dynamic systems. Optimizing the modularity of a large
network, which varies between 0 and 1, for all possible
network partitions is computationally infeasible. Instead, an
approximate optimization based on greedy algorithm [29] is
used, which runs in time O(n log2 n) on a sparse graph with
n vertices. We demonstrate the utility of this method in three
examples; the Duffing oscillator, the gearbox model with
normal noise and a stochastic system with many basins. For
our benchmark models, we found that the resulting community
structures correspond closely to the priori knowledge of the
basin structures in both cases.

Although the examples we demonstrated are two-dimensional
the extension of the methods to extract a basin structure from
a time series data from a stochastic multistable system of
higher dimensions proceeds in a straightforward manner. The
box dimension will be the moderating factor for the compu-
tational complexity of our methods.The network derived from
such cases can be very large, but using the algorithm that has
O(n log2 n) running time will make community structure anal-
ysis of a very large network possible in practice.
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