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Differential Geometry Perspective of Shape Coherence and Curvature Evolution
by Finite-Time Nonhyperbolic Splitting∗
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Abstract. Mixing and coherence are essential topics for understanding and describing transport in fluid dynam-
ics and other nonautonomous dynamical systems. Only recently has the idea of coherence gained
more serious footing, particularly with the recent advances of finite-time studies of nonautonomous
dynamical systems. Here we define shape coherent sets as a means to emphasize the intuitive notion
of ensembles which “hold together” for some period of time, and we contrast this notion to other
recent perspectives of coherence, notably “coherent pairs,” and likewise also to the geodesic the-
ory of material lines. We will relate shape coherence to the differential geometry concept of curve
congruence through matching curvatures. We show that points in phase space where there is a
zero-splitting between stable and unstable foliations locally correspond to points where curvature
will evolve only slowly in time. Then we develop curves of points with zero-angle, meaning non-
hyperbolic splitting, by continuation methods in terms of the implicit function theorem. From this
follows a simple ODE description of the boundaries of shape coherent sets. We will illustrate our
method with popular benchmark examples and further investigate the intricate structure of foliation
geometry.

Key words. shape coherent set, curvature evolution, finite-time stable and unstable foliations, implicit function
theorem, continuation, mixing, transport
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1. Introduction. Finite-time mixing and transport mechanisms in two-dimensional fluid
flows are a classic and long-standing problem area in dynamical systems. We are interested
here especially in coherent structures in the flow. For the autonomous case, there are several
studies on almost invariant sets; see [6, 16, 4], for example. For the nonautonomous case,
Lagrangian coherent structures (LCSs) based on finite-time Lyapunov exponents (FTLEs)
that focus on maximal local stretching have become a popular computational way to study
transport (see [21, 22, 37]), but caveats regarding the possibility of false positives have been
revealed [23, 12]; similarly finite sized Lyapunov exponents (FSLEs) show differences and
likely false positives [33]. On the other hand, transfer operator methods based on Galerkin–
Ulam matrices which evolve distributions of ensembles of initial conditions have also been
successfully developed for finding so-defined coherent pairs [11, 16, 18]. There are also some
recent works on improving, comparing, and generalizing these methods [39, 30]. An exciting
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SHAPE COHERENCE BY NONHYPERBOLIC SPLITTING 1107

recent development involves minimally stretching material lines by studying the Cauchy–
Green strain tensor [1, 24] in a so-called theory of geodesic curves. In [11], the authors
developed a theory of geodesic curves whereby they define a principle that coherent sets
should correspond to boundaries that are minimally stretching. Our definition here of shape
coherent sets is agreeable with this geodesic curve principle by Farazmand–Haller, but from
a different perspective, since we will discuss that evolution of curvature is also related to
evolution of arc length, whereas they discuss evolution of length of boundary curves.

However, popularly general notions of coherence broadly interpreted may include allow-
ing for sets that may stretch and fold when considering material curves of set boundaries
and ensembles of set of points therein that advect with the flow. We note that if they are
highlighted by coloring (partition), then general sets automatically catch the eye, especially
when remembering the simple notion that dynamical systems, being continuous, will preserve
properties such as connectedness. From this perspective, almost any connected set that is
highlighted may appear coherent in the sense of continuity. We take a narrower view here.

Here we introduce a different but related mathematical definition of coherence by defining
shape coherent sets which we so named to distinguish our definition from other possible notions
of the phrase coherence. We will show that our intuitively motivated notion of shape coherence
directly addresses the idea of sets, evolving in such a way as to “hold together.” Our perspective
is strictly Lagrangian and is meant to capture the typical idea that a coherent set should “catch
your eye,” as often described roughly when suggesting coherence. We mathematically define
this concept in terms of stating that shape coherence should correspond (approximately at
least) to a region of phase space where, over the finite-time epoch of consideration, the flow
restricted to that region is equivalent to a member of the group of rigid body motions.

Analysis of our definition of shape coherence from a perspective of differential geometry
reveals that sets which have boundaries that have relatively slowly changing curvature of their
boundary curves correspond to shape coherent sets. From this observation we relate that
curves with slowly evolving curvature are related to curves with a zero-splitting property,
meaning a shear-like scenario in which, when stable and unstable foliations are parallel, and
a curve of such points exists, these curves evolve curvature relatively slowly. This geometric
interpretation by curvature evolution is agreeable with the theory of geodesic curves derived
through variational principles in [24], from which it follows that such curves follow as solutions
of the ODE whose vector field is defined by unstable foliations; the connection to coherence
is intuitive in that minimally stretching boundary curves suggest slowly changing shapes.

We highlight [8], in which the authors make an observation in discussing a “Lyapunov
diffusivity.” They propose a quantity that depends on particle dispersion in the forward time
Lyapunov exponent (future) correction in terms of angle α between stable and unstable Lya-
punov vectors, λ̃ = λ sin2 α; from this they note that when α = 0, shear would dominate,
and they note that shear is consistent with a transport barrier. There have been studies of
evolution of curvature in the literature [29, 10, 9, 34, 25] focused on strongly chaotic regions
or turbulent regions. In more recent studies, Thiffeault [41, 40, 42], relating a distribution of
curvature growth rate, found long tails and a corresponding scaling law describing the folding
points, and a small range describing the stretching regions, but with a relatively flat interme-
diate scale suggestive of ellipticity. The key difference between these previous works and the
appearance of curvature here is that past work was focused on the role of curvature in the
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1108 TIAN MA AND ERIK M. BOLLT

description of the chaotic set, whereas we show that curvature can also be used to describe the
complement, which is indicative of an equivalence to shape-coherent sets. See also [32, 43, 27]
for studies of curvature of streamlines as descriptive of the topological aspects of experimental
turbulent flows.

Since it is well known in differential geometry [7] that curvature directly defines curve
congruence, here we link directly to our definition of a shape coherent set through the Frenet–
Serret formulae of curvature [7, 14, 36] and the so-called Frenet frame. We present a construc-
tive analysis based on the implicit function theorem; our analysis shows that such zero-splitting
curves may be shown to exist and they may be numerically constructed by adaptations of stan-
dard continuation methods. We give two examples with the popular benchmarks of transport
in the Rossby wave system and the double gyre. We also make some geometric observations
that angles between stable and unstable foliations develop zeros with increasing time epoch
in a manner that relates to the prominence of the coherent sets, and also related to the
accumulation of stable and unstable manifolds progressively revealing Cantor-like structure.

2. Shape coherent sets. Here we will describe our perspective of coherence in terms of our
definition of “shape coherence.” We will compare and contrast this definition with the popular
coherent pairs definition [18] based on measurable dynamics and transfer operators, and also
to the geodesic curve theory [11], from which we will realize that there are coincidences in the
outcomes but efficiencies to be gained in a different perspective leading to methods that are
computationally very different from but aim toward the same basic goal. From a differential
geometry perspective, we will draw strong links between shape coherence to evolution of
curvature of the boundaries of shape coherent sets.

The goal in developing a definition of coherence in a nonautonomous dynamical system
is to find sets that “hold together”; in some sense that phrase requires a good mathematical
definition. Suppose we have a dynamical system,

(2.1) ż = G(z, t),

and for a vector field G : M × R → R, for an open subset M ⊂ R2, and sufficient regularity
such that there is a flow, Φ(z, t; τ) : M ×R×R. In an autonomous dynamical system, “hold
together” leads to almost invariant sets [16], which describes weak transitivity [15]. That is,
A is almost invariant if Φ(A, 0; 0) ≈ Φ(A, 0;T ) describes almost invariance, for a time epoch,
t = 0 : T . The idea of almost invariance breaks down in the nonautonomous setting; to
demand that the image of a set must mostly overlap itself in finite time is too strict since sets
generally move in time. If we wish to say that two sets At and At+τ are coherent pairs [18]
(see also [4]), then in measure μ we may demand that

(2.2) ρμ(At, At+τ ) :=
μ(At ∩ Φ(At+τ , t+ τ ; τ))

μ(At)
≥ ρ0

for some fraction ρ0 ≈ 1. Further, in [18] they demand that μ(At) = μ(At+τ ). But, by
this (not yet completely described) definition with conditions as stated so far here, any set is
a coherent pair to its own image, no matter how contorted. In [18] they further add a third
condition to the definition of coherent pairs that μ(At) and μ(At+τ ) must be “robust” to small
perturbations, while not explicitly part of the computation. This third condition is covered
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SHAPE COHERENCE BY NONHYPERBOLIC SPLITTING 1109

automatically, in some sense, by the computational diffusive effect [17] of the discretized
grid used to approximate transfer operators in the Ulam–Galerkin based method [4]. In our
notation, we will take At to be the evolution of an initial set A to time t under the flow, so
At0 ≡ A, and for simplicity, we write Φt(z) := Φ(z, t0, t) with t0 = 0.

Alternatively by our perspective we will appeal directly to the geometry of the idea that
a coherent set should “hold together” to capture the intuition that such sets should “capture
our eyes” when viewing the flow.

Definition 2.1 (finite-time shape coherence). The shape coherence factor α between two mea-
surable nonempty sets A and B under an area preserving flow Φt after a finite time epoch
t ∈ [0, T ] is

α(A,B, T ) := sup
S(B)

m(S(B) ∩ ΦT (A))

m(B)
,(2.3)

where S(B) is a group of transformations of rigid body motions of B, specifically translations
and rotations descriptive of frame invariance. We interpret m(·) to denote Lebesgue measure,
but one may substitute other measures as desired. Then we say A is finite-time shape coherent
to B with the factor α under the flow ΦT after the time epoch T , but, stated briefly, A is shape
coherent to B. We call B the reference set and A the dynamic set.

Whereas generally a nonlinear flow can make for quite complicated distortions when
stretching and folding on general sets, on a shape coherent set this definition could be in-
terpreted by the statement that when the flow ΦT is restricted to a shape-coherent set A,
then ΦT |A is roughly equivalent to a simpler transformation, a member of the group S of rigid
body transformations. That is a degree of simplicity on the spatial scale of the set A, and on
the time scale T , even if on finer scales within the set A there may be complicated flow.

Remark 2.1.

1. While generally we can choose any kind of set B as the reference set, the idea was
designed so that a set corresponding to the intuitive idea of “holding together” is more
relevant. So, for example, one may choose a circle of the same area as A as a reference
set.

2. It is interesting to choose the reference set B to be the dynamic set A itself. Then we
are considering if a set is finite-time shape coherent relative to itself over time. That
is, does A maintain its shape?
In such a case, we may choose B = A at t = t0 = 0 which is then compared to ΦT (A)
where T = t0 + T . We are interested here in time epochs centered on t0, and as such,
we may choose time intervals t1 < t0 < t2 perhaps to balance stretching. Generally,
in this paper we will discuss simply centered time, t1 = −T < t0 = 0 < t2 = T .

3. Direct computation of α for specific shapes is called the “registration” problem within
the computational geometry and image processing community, and there are fast al-
gorithms, including those based on the FFT, to be used for these [5, 2, 4].

4. The definition yields that 0 ≤ α(A,B, T ) ≤ 1.

Any group of transformations could be chosen, but we have restricted our attention here
to rigid body motions simply to match to the notion of curvature congruence for the bound-
ary curve in the subsequent section. However, a shape coherence could be defined to also
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1110 TIAN MA AND ERIK M. BOLLT

(a) A set A in a flow Φ.

(b) A registration between Φ−T (A) and A (c) A registration between ΦT (A) and A

Figure 1. (b) and (c) show that A almost keeps its shape in the flow for both forward time and backward
time. Here shapes were matched by direct application of (2.3) but specifically by traditional image processing
registration algorithms.

include transformations such as dilation, shear, and even a nonlinear transformation such as
a conformal mapping, whether or not it has a group structure. From the perspective of image
warping, registration, and image processing, the group of transformations S serves to describe
the local transformation ΦT as restricted to a chosen set A and has the characteristics of the
simpler transformation from S. In this sense we are asking if B “warps” to A, ΦT (A) ≈ S(B)
as a transformation. Note that the form of the definition (2.3) allows a set which may have
“mixing” in its interior A but nonetheless “holds together” relative to B as a whole. This
comes from the specific form of the shape coherence measure, α.

We may wish to contrast a stronger condition that a set remains coherent constantly
throughout the time epoch, rather than possibly just at the terminal times as defined by the
coefficient α in Definition 2.1. In such a case we may develop a coefficient β.

Definition 2.2 (finite-time shape coherence throughout the time epoch). The shape coherence
factor throughout the time epoch between between two measurable nonempty sets A and B un-
der a flow Φt throughout a complete finite time epoch [t1, t2] is defined as

β(A,B, [t1, t2]) := max
t∈[t1,t2]

α(A,B, t).(2.4)
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SHAPE COHERENCE BY NONHYPERBOLIC SPLITTING 1111

While α and β are well defined, and therefore shape coherence is well defined when α ≈ 1,
or throughout the time epoch if β ≈ 1, direct application may resort to image registration
methods, and this may seem awkward. See Figure 1, where shapes Φ−T (A) and A as well
as A and ΦT (A) were matched by “traditional” image registration algorithms in MATLAB,
namely, the imregister algorithm. Instead we will now describe how these can be easily related
to quantities from differential geometry that are easily computed and analyzed, namely, the
evolution of curvature of the boundaries.

3. Curvature and frame invariance of shape coherence. Here we relate our definition
of shape coherence to the readily computed quantities of the evolution of curvature of the
boundary curves from differential geometry. In brief, by Definition 2.1 above, a set is shape
coherent if it “mostly” maintains its shape in the sense of a rigid body motion. Here we relate
matching the shape of a set A to its image ΦT (A) after the flow to the problem of matching the
boundary curves. From differential geometry, shapes are matched if their boundary curves are
matched and curves are matched if the curvatures of the curves are matched. Furthermore, we
show the regularity statement that a slowly changing boundary curve implies shape coherence.
Then in a subsequent section we will explore the dynamical properties that correspond to
slowly evolving boundary curves. We begin by recalling the following definition.

Definition 3.1 (see [7]). Congruence. Two space curves are congruent if they differ only by
rigid body motions, meaning translation and rotations.

Congruence is generally accepted as the equivalence relationship between curves in differ-
ential geometry, as it allows the following theorem, which says that matching curvature and
torsion lead to congruence.

Theorem 3.2 (see [7]). Fundamental Theorem of Curve Theory. Two space curves C and C̃
are congruent if and only if their corresponding arcs, C : γ(s) = (x(s), y(s), z(s)), 0 ≤ s ≤ 1,
and C̃ : γ̃(s) = (x̃(s), ỹ(s), z̃(s)), 0 ≤ s ≤ 1, both parameterized by unit arc length s, have
curvature and torsion that can be matched, in the sense that there exists a “shift” parameter
a such that κ(s) = κ̃(s′), and τ(s) = τ̃(s′) for all s, for s′ = mod(s− a, 1).

We refer to a choice of s′ = mod(s− a, 1) that matches curvatures and torsion as exactly
“lined up” parameterizations, as depicted in Figure 2.

Remark 3.1. In this paper, since we will specialize to planar flows and curves outlining
planar sets, torsion is zero, τ = τ̃ = 0, and z(s) = z̃(s) = 0. So we write simply γ(s) =
(x(s), y(s)) and likewise for γ̃(s).

Now recalling the Frenet–Serret formula [7, 14, 36],

(3.1)

⎡
⎣ T

N
B

⎤
⎦
′

=

⎡
⎣ 0 κ 0

−κ 0 τ
0 −τ 0

⎤
⎦
⎡
⎣ T

N
B

⎤
⎦ ,

but in our planar setting we get the specialized case

(3.2) T′ = κN,N′ = −κT.
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1112 TIAN MA AND ERIK M. BOLLT

The general solution of (3.2) can be readily found,

T = C1 sin

∫
s
κ(σ)dσ − C2 cos

∫
s
κ(σ)dσ,

N = C1 cos

∫
s
κ(σ)dσ + C2 sin

∫
s
κ(σ)dσ,(3.3)

where C1 and C2 are constant vectors.
This specifies the tangent and normal vectors of a curve, T (s) and N(s), in terms of a given

curvature function, κ(s), as an ODE in terms of the derivative of the (unit) parameterization,
′ := d

ds . Furthermore, since T (s) = γ′(s), solving (3.2) for T (s) (and simultaneously N(s))
for a given curvature κ(s) allows the curve to be found:

(3.4) γ(s) =

∫ s

0
T(σ)dσ + γ0.

So we see that the curvature specifies the curve, up to an initial position and orientation,
γ0. This clarifies part of the interest in the Frenet frame for the definition of congruence
in matching curves. We wish to point out that the Frenet frame is closely related to the
dynamical notion of frame invariance.

Now in the following two theorems, we show that close curvature functions correspond to
close curves. Then subsequently we show that it then follows that the shape coherence must
be significant. The proofs of these two theorems are given in Appendix A.

Theorem 3.3. Given two curvature functions κ1(s) and κ2(s) of two closed curves γ1(s)
and γ2(s) with the same arc length, if sups |κ1(s)− κ2(s)| < ε, then there exists

(3.5) δ(ε) = s2ε(‖C1‖2 + ‖C2‖2) > 0,

where C1 and C2 are the constant vectors in (3.3) and s is the arc length from initial point of
the two lined-up curves, such that

(3.6) ‖γ1(s)− γ2(s)‖2 < δ(ε).

The idea of congruence in Definition 3.1 is that comparison of two curves should be immune
to details such as that the parameterization of one curve may be shifted relative to the other
despite if they are otherwise (mostly) the same. Even if comparing two very similar curves,
but which are not oriented in a convenient way, it is possible that κ1(s1) and κ2(s2) may not
be closely matched pointwise; nonetheless, they may define curves γ1(s) and γ2(s) that are
close or even the same in the sense of congruence. In such a case, the only problem in seeing
that curves are so similar by comparing the curvatures is that the parameterizations of each
of the two curves are not ideally “aligned.” Such a situation is depicted in Figure 2. In other
words, there may exist some shift a, such that if we can define

(3.7) s = s1 and s2 = s+ a such that sup
s

|κ1(s)− κ2(s)| < ε,

and if it turns out that ε ≥ 0 is sufficiently small, then by Theorem 3.3, it can be shown
that γ1(s) and γ2(s) are close. In practice, before resorting to Theorem 3.3, and assuming
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(a) Two curves: Similar curvatures & same arc length.(b) Two curves: Similar curvatures & same arc length.

(c) Two curves that have been rectified (lined up). (d) Two curves that have been rectified (lined up).

Figure 2. (c) Two curves with the same arc length are shown, but the curvatures differ pointwise; note in
particular the initial points s = 0 (red star on γ1) and s∗ = 0 (orange cross on γ2). In (a) and (b), we apply
a circular convolution on the two curves to find a new initial point s = 0 (green star) on γ2 so that it has
pointwise almost the same curvature function as γ1, as described in (3.7)–(3.8). (d) With the new initial point
on γ2, the curves are approximately lined up by overlapping and setting the same directions for both the unit
normal and unit tangent vectors of the two initial points.

continuous functions, it is useful to choose

(3.8) a = argminmax
s

|κ1(s)− κ2(s)|, where s = s1 and s2 = s+ a.

The curves are approximately lined up. One useful way we find to estimate such a shift is by
convolution.

In the next theorem we describe how closely matching curves leads to closely matched
shapes as measured in terms of shape coherence. This, together with the above statement
that closely matching curvature functions lead to closely matched curves, informs us in the
following sections that studying the propensity of slowly changing curvature is the key to
understanding shape coherence. To most usefully apply the following theorem, we should
again assume generally that the parameterizations are designed to associate points along the
curves in an efficient way as described in the previous paragraph; otherwise there may exist a
parameterization that causes a small ε, but we may not realize it without considering (3.8).

Theorem 3.4. For two closed curves γ1(s) = (x1(s), y1(s)) and γ2(s) = (x2(s), y2(s))(0 ≤
s < 2π, which are boundaries of sets A1 and A2 (see Figure 3), let the boundaries of A =
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1114 TIAN MA AND ERIK M. BOLLT

Figure 3. The red, green, and blue closed curves are the boundaries of sets A1, A2, and A.

A1 ∩ A2 A = A1 ∩A2 �= ∅ such that area(A) > 0 is γ(s) = (x(s), y(s)) and

ε = max{|x− x2|, |y − y2|, |x′ − x′2|, |y′ − y′2|},
M = 2max{|x|, |x2|, |y|, |y2|, |x′|, |x′2|, |y′|, |y′2|}.(3.9)

Then there exists a Δ(ε), which is defined as

Δ(ε) =
2πMε

Area(A2)
,(3.10)

such that

1 ≥ α(A1, A2, 0) ≥ 1−Δ(ε).(3.11)

4. Finite-time stable and unstable foliations. Stated simply, the stable foliation at a
point describes the dominant direction of local contraction in forward time, and the unstable
foliation describes the dominant direction of contraction in “backward” time. See Figures
4–5. Generally, the Jacobian matrix DΦt(z) of the flow Φt(·) evaluated at the point z has the
same action as any matrix in that a circle maps onto an ellipse. In Figures 4–5 we illustrate
the general infinitesimal geometry of a small disc of variations εw from a base point Φt(z).
At z, we observe that a circle of such vectors, w = 〈cos(θ), sin(θ)〉, 0 ≤ θ ≤ 2π, centered at
the point Φt(z) pulls back under DΦ−t(Φt(z)) to an ellipsoid centered on z. The major axis
of that infinitesimal ellipsoid defines f t

s(z), the stable foliation at z. Likewise, from Φ−t(z), a
small disc of variations pushes forward under DΦt(Φ−t(z)) to an ellipsoid, again centered on
z. The major axis of this ellipsoid defines the unstable foliations, f t

u(z).
To compute the major axis of ellipsoids corresponding to how discs evolve under the action

of matrices, we may resort to the singular value decomposition [19]. Let

(4.1) DΦt(z) = UΣV ∗,
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Figure 4. The SVD (4.1) of the flow Φt(z) can be used to infer the finite time stable foliation f t
s(z) (and

likewise the finite time unstable foliation f t
u(z)) at z in terms of the major and minor axes as shown and

described in (4.5)–(4.6).

where ∗ denotes the transpose of a matrix, U and V are orthogonal matrices, and Σ =
diag(σ1, σ2) is a diagonal matrix. By convention we choose the index to order, σ1 ≥ σ2 ≥ 0.
As part of the standard singular value decomposition theory, principal component analysis
provides that the first unit column vector of V = [v1|v2] corresponding to the largest singular
value, σ1, is the major axis of the image of a circle under the matrix DΦt(z) around z. That
is,

(4.2) DΦt(z)v1 = σ1u1,

as seen in Figure 4, describes the vector v1 at z that maps onto the major axis, σu1 at Φt(z).
Since Φ−t ◦Φt(z) = z and DΦ−t(Φt(z))DΦt(z) = I, then, recalling the orthogonality of U and
V , it can be shown that

(4.3) DΦ−t(Φt(z)) = V Σ−1U∗,

and Σ−1 = diag( 1
σ1
, 1
σ2
). Therefore, 1

σ2
≥ 1

σ1
, and the dominant axis of the image of an

infinitesimal circle from Φt(z) comes from DΦt(z)u2 =
1
σ2
v2.

Summarizing, the stable foliation at z is

(4.4) f t
s(z) = v2,

where v2 is the second right singular vector of DΦt(z), according to (4.1). Likewise, by the
description above, the unstable foliation is

(4.5) f t
u(z) = u1,D
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1116 TIAN MA AND ERIK M. BOLLT

where u1 is the first left singular vector of the matrix decomposition,

(4.6) DΦt(Φ−t(z)) = U Σ V
∗
.

An important concept here is the included angles between the stable and unstable foliations
as follows.

Definition 4.1. The included angle of the finite-time stable and unstable foliations is defined
as θ(z, t) : Ω× R

+ → [−π/2, π/2] :

θ(z, t) := arccos

〈
f t
s(z), f

t
u(z)

〉
‖f t

s(z)‖2‖f t
u(z)‖2

.(4.7)

See the included angle indicated in Figure 5; it plays a role in evolution of curvature and
shape coherence, as discussed in the following section.

5. Curvature evolution near local hyperbolicity and nonhyperbolicty. In section 3 we
presented the theory that shapes whose boundary curves’ curvature is slowly varying in time
correspond to shape coherent sets. In this section we will argue on geometric grounds that
curves whose points correspond to tangency between stable and unstable foliations, as pre-
sented in section 4, tend to have slowly evolving curvature. Thus stable and unstable foliations
are related to shape coherence. For this reason, in the next section we will present theory and
later a constructive method to find curves of such tangencies as a means to construct shape
coherent sets.

Before tackling the general problem of nonlinear flows as evolved in finite time, we discuss
the linear flow, representing the evolution of curvature in the neighborhood of a base point
z = (x1, x2) with each of several hyperbolic and nonhyperbolic scenarios.

Here we cover a hyperbolic saddle which we contrast to three (precursor of) nonhyperbolic
transformation types—scaling, rotation, and shear [3, 28]. We recover the curvature formula
under each of these linear transformation maps, representing the local behaviors of the flow
near a point of zero-splitting foliation.

1. Hyperbolic saddle: Let

(5.1) ẋ1 = λ1x1, x1(0) = x1,0, x2(0) = x2,0, ẋ2 = λ2x2, λ2 > 0 > λ1,

which by design is a hyperbolic saddle and decoupled, so the stable and unstable
manifolds are orthogonal. Now consider the evolution of a curve of initial conditions,

(5.2) x2,0 = f(x1,0).

As an example of how this curve evolves in such a manner as to increase curvature at
the origin, see Figure 5(a). To verify this statement mathematically, let the evolution
of points on the curve starting at initial conditions (x1,0, x2,0) = (x1,0, f(x1,0)) evolve
according to the linear flow,

(5.3) (x1(s, t), x2(s, t)) = (seλ1t, f(s)eλ2t),
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(a)

(b)

Figure 5. (a) A curve C goes through a small neighborhood of a point z with 90 degree foliations; the angle
changes its shape from time −T to T . Notice that the curve changes its curvature significantly in time, and
it can increase or decrease curvature depending on the details of how the curve is oriented relative to f t

s(z)
and f t

u(z); (b) The same curve C but with almost zero-splitting foliations roughly keeps its shape as noted by
inspecting the curvature at z through time.

taking s = x1,0 to be the chosen parameterization of the curve in terms of the initial
x1-position of a point on the curve. See Figure 5. Then using the standard curvature
computation of a two-dimensional parameterized curve yields

(5.4) k(s, t) =
|x′1x′′2 − x′2x′′1|
(x′21 + x′22 )3/2

=
e(λ2−2λ1)t|f ′′(s)|

[1 + f ′(s)2e2(λ2−λ1)t]3/2
.

Thus we may estimate asymptotically in long time,

(5.5) k(s, t) ≈ e(λ1−2λ2)t|f ′′(s)f ′(s)−3| when t >> 1,

where long time is interpreted as t > 0 when e2(λ1−λ2)t < f ′(s)2. Conversely, asymp-
totically in short time,

(5.6) k(s, t) ≈ e(λ2−2λ1)t|f ′′(s)| when t << 1,

where short time is interpreted as e2(λ2−λ1)t < f ′(s)−2. We can interpret that since
we have assumed that λ2 > 0 > λ1, then in short time curvature grows, but after
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1118 TIAN MA AND ERIK M. BOLLT

(a)

(b)

Figure 6. The rotation and scaling case. We see that curvature changes only slightly over the time epoch.

reaching a maximum, in long time curvature shrinks. Notably, we add to this story
that points of large initial curvature due to large f ′′(s) and small f ′(s) persist longer in
the growing stage of the curvature, as noted by e2(λ2−λ1)t < f ′(s)−2 before transition
to e2(λ1−λ2)t < f ′(s)2. Thus a highly hyperbolic saddle structure suggests significant
change of curvature, which corresponds to significant changes in shape according to
the Frenet–Serret theory.

2. Scaling and rotation: For a given time epoch 0 < t < +∞ and a point z = (x, y), we
suppose the forward flow Ft is

Ft(z) =

(
cosα − sinα
sinα cosα

)(
a 0
0 1

a

)
z

and the backward transport matrix Bt is

Bt(z) =

(
cosβ − sinβ
sinβ cosβ

)(
b 0
0 1

b

)
z,

where β, α > 0 and a, b > 1, without loss of generality. See Figure 6(a). Thus, the flow
from −t to t can be considered as B−1

t Ft(z). And the deformation matrix of B−1
t Ft(z)

clearly is the same as its coefficient matrix, which is

Q = B−1
t Ft =

(
1
b 0
0 b

)(
cos θ − sin θ
sin θ cos θ

)(
a 0
0 1

a

)
=

(
a
b cos θ − 1

ab sin θ

ab sin θ b
a cos θ

)
,
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where θ = mod(α− β, π/2). And it is easy to show that θ is the included angle of the
stable and unstable foliations. We next show how the angle θ is related to the change
of curvature of a given curve under the flow from −t to t.
Consider a curve γ−t = (x−t, f(x−t)) at time −t, under the flow through a time interval
[−t, t]. The curvature of γ−t at −t is known as

k(γ−t) =
|f ′′(x−t)|

(1 + f ′2(x−t))
3
2

.(5.7)

However, the curvature is changed by the flow B−1
t Ft(z) to

k(γt) =
|f ′′(x−t)|

((ab cos θ − 1
abf

′2(x−t) sin θ)2 + (ab sin θ + b
af

′2(x−t) cos θ)2)
3
2

.(5.8)

The ratio between the two curvatures can be written as

k(γ−t)

k(γt)
=

(ab cos θ − 1
abf

′2(x−t) sin θ)
2 + (ab sin θ + b

af
′2(x−t) cos θ)

2

1 + f ′2(x−t)
.(5.9)

The Taylor expansion of the ratio k(γ−t)
k(γt)

with respect to small angle θ is

k(γ−t)

k(γt)
=

a2

b2
+ b2f ′2(x−t)

a2

1 + f ′2(x−t)
+

2f ′(x−t)(b
2 − 1

b2
)

1 + f ′2(x−t)
θ +O(θ2).(5.10)

Thus, for θ << 1, if the flow has a ≈ b, we have k(γ−t)
k(γt)

≈ 1 for all x−t of the curve. See

Figure 6(b). The curvatures hardly change through time interval [−t, t]. Note that
there may be some special x−t such that this ratio may be close to 1 even without a
small θ.

3. Shear:
(a) If we have

Ft =

(
1 a
0 1

)

and Bt is

Bt =

(
1 b
0 1

)
,

then it follows that

Q = B−1
t Ft =

(
1 −b
0 1

)(
1 a
0 1

)
.

By the same process of case 1, we have the curvatures ratio as

k(γ−t)

k(γt)
=

(1 + (a− b)f ′(x−t))
2 + f ′2(x−t)

1 + f ′2(x−t)
.(5.11)

Thus, a ≈ b is necessary and sufficient for the angle between foliations to be small,
and from this follows that the ratio k(γ−t)

k(γt)
≈ 1. See Figure 7.
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1120 TIAN MA AND ERIK M. BOLLT

(a)

(b)

Figure 7. The shear case. Again the curvature changes only slightly over the time epoch.

(b) If we have

Ft =

(
1 0
a 1

)

and Bt is

Bt =

(
1 b
0 1

)
,

then

Q = B−1
t Ft =

(
1 −b
0 1

)(
1 0
a 1

)
.

In this case, we can see that the angle between foliations never reaches 0 unless
a = b = 0. However, a small angle can still can keep the curvature relatively
constant. Consider the ratio between curvatures,

k(γ−t)

k(γt)
=

(1− ab− bf ′(x−t))
2 + (a+ f ′(x−t))

2

1 + f ′2(x−t)
.(5.12)

Hence, if we have a ≈ 0 and b ≈ 0, the foliations’ angle is small, and the ratio
k(γ−t)
k(γt)

≈ 1.

6. Curves of stable and unstable foliation tangencies. Motivated by these linear hyper-
bolic and nonhyperbolic dynamics, we consider a nonlinear flow and how it evolves a complete
curve of points z, such that each point on the curve locally has a tangency scenario as above.
Therefore, we should expect that at each point on such a curve, curvature will change slowly.
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We will highlight the difference between hyperbolicity and nonhyperbolicity in terms of evolu-
tion of curves by showing a nonhyperbolic curve and contrasting it with a nearby hyperbolic
curve. A question which follows this discussion is if there is a curve that consists only of
points with a zero-splitting angle; i.e., a zero-splitting curve is a set of points C such that

(6.1) If z ∈ C, then θ(z, t) = 0.

The answer is yes. In this section we will not discuss construction as that will be covered in
section 7.

Figure 8 shows the comparison between a zero-splitting curve and a nearby general curve
C̃. We show time evolution of C from time −T until time T and, correspondingly, that its
curvature changes only slightly. However, even a nearby curve C̃ is shown, and significant
changes in curvature develop in the same time epoch. Correspondingly, we see that C evidently
encloses a shape coherent set, but C̃ does not. It may seem surprising that a small displacement
of C produces such a large change of evolution of curvature, but the explanation, which relates
to the geometry, is that finite-time stable and unstable foliations can change direction quite
rapidly, even in small neighborhoods, as suggested by Figures 12–13. This is agreeable with
the traditional well-known infinite-time concept of stable manifolds accumulating on unstable
manifolds, known as the lambda lemma [13]. Thus motivated, in the next section we will
discuss a continuation algorithm based on the implicit function theorem to construct curves
C of zero-splitting.

7. On continuation curves of zero-splitting. We enlist the implicit function theorem for
proof of existence of curves of zero-splitting and construction. We cite the planar implicit
function theorem as follows, as the planar version is sufficient for the purposes of this paper.

Theorem 7.1 (see [31]). Implicit Function Theorem. If F : E → R is continuously differ-
entiable in a domain E ⊂ R, an equation F (x, y) = c has some point (x0, y0) ∈ E such that
F (x0, y0) = c, and ∂F

∂y (x0, y0) �= 0, then there exist a neighborhood U ⊂ E of x0 and a function
y = y(x) in this neighborhood such that y(x0) = y0 and F (x, y(x)) = c for all x ∈ U .

If the vector field has enough regularity to ensure that the function θ(z, t) is at least C1,
then by the implicit function theorem, we have the following.

Theorem 7.2 (continuation theorem). The set of z = (x, y) with θ(z, t) = 0 is a set of C1

curves, which can be written as C1 functions such as y = g1(x) or x = g2(y) of a finite t, which
depends on θy �= 0 or θx �= 0. Furthermore, dy/dx = −θx/θy for a given initial condition z0
has a solution g1 or likewise dx/dy = −θy/θx, respectively.

By the discussion in section 6, these curves relate to shape coherence. The following
algorithm offers a numerical method to obtain these boundaries.

7.1. Numerical continuation. Theorems 7.1–7.2 lead readily to a numerical continuation
method to find zero-splitting curves by adaptation of the idea of continuation and by using
the differential equation from the implicit function theorem. The implicit function theorem
gives that, solving the initial value problem,

dy

dx
= −θx

θy

(
or possibly

dx

dy
= −θy

θx
if tracking with respect to the other coordinate

)
,(7.1)

θ(z0, t) = 0,
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1122 TIAN MA AND ERIK M. BOLLT

(a) A zero-splitting curve versus a general curve.

(b)

Figure 8. (a) The blue curve is a zero-splitting curve C at time 0, and the black curve is a general curve
C̃, which is a slightly shifted version of the blue curve. We can see that at time −T , compared to the general
curve, the zero-splitting curve roughly keeps its curvatures, and the arc length is better. (b) In a curvature
as a function of the arc length, k(s), notice that the general curve’s (black curve above) curvature changes
dramatically, as seen by the green bump. Likewise, the green curve extends on the x-axis far from the other
three, meaning that the arc length of the general curve grows much more than the zero-splitting curve.

from a seed point z0(x0, y0) where θ(z0, t) = 0. A solution of this initial value problem
represents a subset segment of the curve of zero-splitting of the stable and unstable foliations.
Numerical continuation is a common theme in applied mathematics, and specifically it is used
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SHAPE COHERENCE BY NONHYPERBOLIC SPLITTING 1123

in dynamical systems in numerical bifurcation theory [20]. There are now many sophisticated
algorithms for this purpose, and we will describe only the simplest rudimentary variation of
such an algorithm here.

In practice seeding the initial value problem requires finding at least one good point (z̃0)
which is near a zero point, which by continuity of θ(z, t), if ‖(z0)−(z̃0)‖ < δ, then |θ(z̃0, t)| < ε.
Such a point (z̃0) for an initial rough threshold ε1 can be found by essentially a random
search in the domain of interest, and then an improved seed representing a smaller threshold
0 < ε2 < ε1 can be found by a numerical optimization (root-finding-like) algorithm applied to
θ(z, t) = 0 with that rough seed z̃0, to the useful tiny threshold ε2. For example, we choose
ε1 = 1 × 10−2 and ε2 = 1 × 10−10. Then a numerical ODE solver continues along solutions
of (7.1), but with the caveat that at each step of the numerical ODE solver, a corrective step
must be taken by repetition of the root-finding algorithm to the threshold ε2 as a search purely
along the y variable when solving along dy

dx = − θx
θy
, together with the caveat that the roles of

x and y can reverse when reaching singularities θx = 0 or θy = 0 representing points where
the curve can become multiply valued as a function over x (or y). So we state the following
algorithm as a prediction-then-correction type algorithm, which we describe as steps rather
than a complete algorithm.

1. Find a rough seed in the domain z̃0 ∈ Ω, for a given rough threshold, ε1 > 0, and let
n = 1.

2. An improved seed is found, zn = (xn, yn), to the required precision 0 < ε2 < ε1, such
that |θ(zn, t)| < ε2 by the trust-region dogleg method [38].

3. Make a predictive step by Euler’s method on (7.1), ỹn+1 = yn + h − θx
θy
(zn, t), and

xn+1 = xn+h, for a chosen small h > 0. (Or x̃n+1 = xn+h− θy
θx
(zn, t) and yn+1 = yn+h

if the roles are reversed.)
4. Make a corrective step by the root-finder, z̃0 → z0, again to precision ε2 by the trust-

region dogleg method but this time while holding the dependent variable of the ODE
constant. (If solving dy

dx = − θx
θy
, then x is the active variable, and vice-versa if solving

dx
dy = − θy

θx
.)

5. If the right-hand side of the differential equation develops a singularity, θx(zn) ≈ 0, or
approximately so (|θx(zn)| < ε3 for some small ε3 > 0) (or θy(zn) ≈ 0 depending on
which of the two ODEs is currently being used in (7.1), then reverse the roles of x and
y; that is, begin tracking the other version of the continuation equation in (7.1).

6. Repeat step 3 until a stopping criterion is reached.
7. Stopping criteria. Keep repeating step 4 until it cannot find zero points in the trust

region or find a zero point already exists.
8. Connect the zero-splitting points from step 4; after step 5, we get a curve for one seed.
9. Connecting gap criteria. If the gap is smaller than a given distance lmax, we just

connect it and claim that the internal region of these curves is a coherent structure
candidate.

The stopping criterion generally is the result of the inability of the root-finder to find a root
to the required precision. Variations of this could proceed by adaptively reducing step size h
and retrying the test step as possibly the loss of the curve is the reason for the inability to find
a root, and in such case the method could have stepped past a point of singularity, requiring
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1124 TIAN MA AND ERIK M. BOLLT

a role reversal. Note that such a phenomenon is sensitive to step size, and generally we
choose small step sizes. Because of the role of the corrector step, we have not been motivated
to choose a higher order numerical ODE integrator, but again we emphasize that there are
many more sophisticated continuation algorithms available [20]. We have found that even this
simple algorithm gives excellent smooth curves to high precision, and quickly, as evidenced
by the examples in Figures 9–11 and 14–15. Finally, note that since there are generally many
zero-splitting curves, repeated initial seeding for step 1 can proceed by randomly choosing
many initial conditions z̃0 ∈ Ω in an attempt to satisfy the chosen rough threshold, ε1 > 0.

8. Examples. In this section, we apply our methods to the Rossby wave system and the
double gyre system, both of which have become benchmark examples for studying almost
invariance, coherence, and transport [18, 16, 30, 4].

8.1. An idealized stratospheric flow. Consider the Hamiltonian system

dx/dt = −∂Φ/∂y,

dy/dt = ∂Φ/∂x,(8.1)

where

Φ(x, y, t) = c3y − U0Ltanh(y/L)(8.2)

+A3U0Lsech
2(y/L)cos(k1x)

+A2U0Lsech
2(y/L)cos(k2x− σ2t)

+A1U0Lsech
2(y/L)cos(k1x− σ1t).

This quasiperiodic system represents an idealized zonal stratospheric flow [35, 18]. There
are two known Rossby wave regimes in the system. We will show two cases with different
parameters.

1. Let U0 = 63.66, c2 = 0.205U0, c3 = 0.7U0, A3 = 0.2, A2 = 0.4, A1 = 0.075, and
the other parameters in (8.3) be the same as stated in [35]. We set the time epoch
T = 3 days. By the parameters, we emphasize the main partition and small gaps
between zero-splitting curves in the Rossby wave.
At first, we generate a uniform 2000×200 grid of the domain [0, 6.371π×106 ]× [−2.5×
106, 2.5 × 106]. Figure 12(a) shows the finite-time stable and unstable foliations for
each of these 4 × 105 points in the domain. Then we obtain, amongst these, 3292
points with foliation angles smaller than ε1 = 10−2.
Figures 9(a) and (c) are the zero-splitting curves that result from the continuation
algorithm in section 7.1 but are then shown as evolved at different times, T = −3 days
and T = 3 days. Notice that the small gaps in the middle region can be connected,
so we can get the middle partition of the zonal flow. However, the small gaps indicate
more details of the mixing behaviors of the flow. For comparison we have included in
Figures 9(b) and 9(d) the results using the Frobenius–Perron operator based coherent
pairs method [18].

2. Let U0 = 44.31, c2 = 0.205U0, c3 = 0.461U0, A3 = 0.3, A2 = 0.4, A1 = 0.075, and
the other parameters are the same as the above. For this example, we change T
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(a) T = −3 days (b) T = 3 days

(c) T = −3 days (d) T = 3 days

Figure 9. (a) and (c) are curves with zero-splitting angles at different times; the small gaps between curves
indicate the leaking points of the middle partition from the coherent pair method, which is (b) and (d).

from 3 days to 5 days. We describe the whole partition and elliptic islands by the
parameters.
We choose the same grid to seed the initial conditions as above to apply our method.
Figures 10(a) and (c) are the initial status and final status of the resulting zero-splitting
curves. Notice the strong similarity here to the results shown in Figures 10(b) and
(d) of the relatively coherent pairs method results from [30] that specialized [18] to a
hierarchical partition. It is apparent that, in addition to the larger scaled north-south
barriers, the interior elliptic island-like structures are also found by both methods.
Figure 11 shows a movie of the zero-splitting curves which illustrates directly that
as time proceeds the shapes hold together, as was the original motivation. This is a
visual presentation of the shape coherence.

3. It is interesting to inspect the foliation geometry in more detail. Figure 12 (b) describes
how the angle changes with x-coordinates for a fixed y-coordinate. We focus on a small
region of the domain, Figure 12(c), and the angle function in this restricted domain,
Figure 12(d). We believe that the fast switching behaviors between 0 and 90 degrees
indicate an efficient mixing system. Note that as the time epoch T is increased, the
angle function develops increasing variation, as the foliation switches direction more
and more quickly. The eventual development in the limit of long time windows would
be that the foliations would change direction infinitely many times in a finite sized
small domain representing the behavior of the stable and unstable manifolds that
are known to accumulate in horseshoe-like trellis structures in many common chaotic
dynamical systems. On the other hand, for small time epochs, we can study how
zero-splitting of the foliation first develops. Figure 13 shows how the angle changes by
time T for a fixed y-coordinate. From a practical standpoint, we note how those zeros
of θ(z, t) that develop first seem to generally correspond to primary partitioning of the
phase space, while those zeros that develop only at larger times seem to correspond
to smaller-scaled shape coherent structures.
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1126 TIAN MA AND ERIK M. BOLLT

(a) T = −5 days (b) T = 5 days

(c) T = −5 days (d) T = 5 days

Figure 10. (a) and (c) are curves with zero-splitting angles at different times; the elliptic islands are
consistent with the results from coherent pair method, which is (b) and (d).

(a) A snapshot of the movie.

Figure 11. The movie of the stable and unstable foliations with nonhyperbolic splitting for zonal flow from
T = −5 days to T = 5 days.

8.2. The nonautonomous double gyre. Consider the nonautonomous double gyre sys-
tem,

ẋ = −πA sin(πf(x, t)) cos(πy),

ẏ = πA cos(πf(x, t)) sin(πy)
df

dx
,(8.3)

where f(x, t) = ε sin(ωt)x2 + (1− 2ε sin(ωt))x, ε = 0.1, ω = 2π/10, and A = 0.1. See [37, 16].
Let the initial time be t0 = 0, and the time epoch to build the foliations is T = 10. For double
gyre, we focus on the main partition and the closed curves.
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(a) Stable and unstable foliations for the whole domain.

(b) Angles versus x for a fixed y.

(c) Foliations in the blue rectangular.

(d) Angles versus x in the small blue region.

Figure 12. (a) is the stable and unstable foliations of the Rossby wave at time t = 0; the wavelike structures
result from the differences among angles. (b) is the plot of foliation angles versus the x value for a fixed y. (c)
is how foliations look like in the small blue area of the whole domain. (d) is the angle changes with x for a fixed
y for the small blue region.
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1128 TIAN MA AND ERIK M. BOLLT

Figure 13. For y = −1× 106, the figure shows the angles between foliations for different uniformly spaced
times from T = 0 to T = ±3 days versus the x-coordinates of the Rossby wave. At the beginning, all the angles
are equal to 90 degrees. Then the angles on the two sides become smaller, and more small angles keep emerging
for longer times. At last, we get the figure which is in Figure 12(b).
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We calculate the finite-time stable and unstable foliations on a uniform 2000 × 200 grid
of the domain [0, 2] × [0, 1]. Figure 14(a) shows the zero-splitting curves at time T = −10,
and Figure 14(b) shows the same curves evolved 2T to time T = 10. Investigating finer
scaled structures, Figures 14(c) and (d) describe two small different regions in the double
gyre system. In particular, those zero-splitting points z with angle functions θ(z, T ) with
large variation (with respect to z), which change quickly between 0 and π/2 in (d) show the
well-known fast mixing middle region of the double gyre. These points are similar to those
seen in the Rossby system in Figure 13. Figures 15(a) and (b) show the zero-splitting curve
in the middle of the double gyre, and (c) and (d) show extra island-like closed curves.

9. Conclusions. Here we have defined a mathematically precise concept of coherence,
called “shape coherent sets,” to emphasize the intuitive idea of sets that hold together in a flow
and roughly catch our eyes. With respect to this definition, it follows that a flow that is locally
approximately the same as a simpler rigid body motion is shape coherent. Then we show that
the theory of differential geometry which holds the concept of congruence between curves
allows us to prove that a set whose boundary curvature changes relatively little during the
finite epoch of the flow corresponds to a shape coherent set. Thus, through this equivalence,
we then investigate what properties of the flow tend to cause curvature to change relatively
slowly. We show that points with tangencies between the finite-time stable and unstable
foliations tend to experience curvature change relatively slowly. Therefore, we search for
curves of such tangency points, which are usually typical of shear. We prove existence of such
curves through the implicit function theorem, which also suggests a constructive algorithm
based on solving the ODE from the implicit function theorem, or many other of the typical
methods for numerical continuation. Thus we develop shape coherent sets in two benchmark
examples, the double gyre and the Rossby wave system. Further, we include investigations
of the intricate stable and unstable foliations topology in each of these systems, which is
typical of finite versions of chaotic systems, where the complex folding of stable and unstable
manifolds suggests that finite-time stable and unstable manifolds will change rapidly in space.
Therefore, the angle’s function (see Figures 12–13) can have highly intricate structure, and
we discuss the role of primary roots for primary barriers.

In a broad sense, it might be said that the phrase “coherence” has many different mean-
ings to many different people—some spectral and some set oriented. Some interpretations of
the phrase allow for sets that may significantly stretch and fold. Clearly, if a set is specifically
highlighted visually by coloring the set as a partition, and then that set is advected, then the
set will appear to hold together. However, this could be interpreted as a property of a con-
tinuous flow, that connected sets remain connected, and so a coloring alone will guide our eye
for almost any coloring. Our definition of shape coherence is not meant to capture all possible
perspectives of the popular phrase “coherence.” It does, however, describe a phenomenon that
we believe exists in a wide variety of chaotic and turbulent systems as a type of simplicity
within the otherwise complicated motion. It is evident that it is not a property present in all
possible dynamical systems (taking the Arnold Cat map, for example), but it does exist, and
we find it to be an interesting phenomenon. Note that shape coherence as we defined it has
both spatial and time scales associated with it. Time scales obviously describe sets that may
hold together for a while before deforming, but also on a spatial scale, a rather simple set may
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1130 TIAN MA AND ERIK M. BOLLT

(a) Foliations of the whole domain of the double gyre.

(b) Foliations’ angle on the black line.

(c) Foliations in the blue rectangular. (d) Foliations in the brown rectangular.

(e) Angles in the blue line. (f) Angles in the brown line.

Figure 14.
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(a) Main partition at T = −10. (b) Main partition at T = 10.

(c) Island partition at T = −10. (d) Island partition at T = 10.

Figure 15.

maintain its shape, whereas subsets of that set may contain highly turbulent behavior. To
that point, consider as an example for the sake of discussion the Great Red Spot of Jupiter,
which is known to be quite complex within the great storm which maintains its approximate
shape for long times. We have shown in detail two popular examples, and we have found
the shape coherent sets to exist in many more examples, including periodic and aperiodic
nonautonomous flows. Finally, we remark that fundamentally the study of coherence and
specifically shape coherent sets is in some sense the complement to the study of transport
and the mixing which occurs in the hyperbolic-like mixing sets. These are fundamentally
complementary questions on complement sets.

Appendix A. Proof of Theorems 3.3–3.4. In this section, we give proofs of Theorems
3.3 and 3.4, which we restate here for convenience.

Theorem A.1 (see (3.3)). Given two curvature functions κ1(s) and κ2(s) of two closed
curves γ1(s) and γ2(s) with the same arc length, if sups |κ1(s)− κ2(s)| < ε, then there exists

(A.1) δ(ε) = s2ε(‖C1‖2 + ‖C2‖2) > 0,

where C1 and C2 are the constant vectors in (3.3) and s is the arc length from the initial point
of the two lined-up curves, such that

(A.2) ‖γ1(s)− γ2(s)‖2 < δ(ε).

Proof. Consider comparing the two curves pointwise. While here we assume that the arc
lengths of the two curves are the same, we will discuss the generalized case of differing arc
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lengths in what follows. We have assumed that the curvatures are as suggested in Figure 2.
We will argue that distance between the two points can be controlled by their curvatures.

Without loss of generality and for convenience of the estimates of comparison, assume that
the two curves intersect at s = 0, γ1(0) = γ2(0), and furthermore at s = 0 that the tangent
and normal vectors are each parallel, as depicted in Figure 2. The reason this statement can
be made without loss of generality is that the Frenet–Seret formula states that a curve can be
reconstructed up to initial conditions, which is the reasoning behind the definition of curve
congruence that curves are called the same if they are indistinguishable up to a rigid body
motion. Therefore, a rigid body motion of γ2(s) can be used to orient the tangent and normal
at s = 0 with those of γ1(s), and also at s = 0, as depicted in Figure 2. This defines constant
vectors C1 and C2. Note this is not a unique orientation for matching, but sufficient and
convenient.

We denote the constants as C1 and C2, rather than two different pairs. So we have

γ1(s) =

∫ s

0

(
C1 sin

∫ s

0
κ1(σ)dσ − C2 cos

∫ s

0
κ1(σ)dσ

)
dσ,(A.3)

γ2(s) =

∫ s

0

(
C1 sin

∫ s

0
κ2(σ)dσ − C2 cos

∫ s

0
κ2(σ)dσ

)
dσ.(A.4)

Then the distance between the two points γ1(sa) and γ2(sb) on the different curves is

‖γ1(s)− γ2(s)‖2 =
∥∥∥∥
∫ s

0

(
C1 sin

∫ s

0
κ1(σ)dσ − C2 cos

∫ s

0
κ1(σ)dσ

)
dσ

−
∫ s

0

(
C1 sin

∫ s

0
κ2(σ)dσ − C2 cos

∫ s

0
κ2(σ)dσ

)
dσ

∥∥∥∥
2

=

∥∥∥∥
∫ s

0

(
C1

(
sin

∫ s

0
κ1(σ)dσ − sin

∫ s

0
κ2(σ)dσ

))
dσ

+

∫ s

0

(
C2

(
cos

∫ s

0
κ2(σ)dσ − cos

∫ s

0
κ1(σ)dσ

))
dσ

∥∥∥∥
2

=

∥∥∥∥
∫ s

0

(
2C1 cos

(∫ s

0

κ1(σ) + κ2(σ)

2
dσ

)
sin

(∫ s

0

κ1(σ)− κ2(σ)

2
dσ

))
dσ

+

∫ s

0

(
2C2 sin

(∫ s

0

κ2(σ) + κ1(σ)

2
dσ

)
sin

(∫ s

0

κ1(σ)− κ2(σ)

2
dσ

))
dσ

∥∥∥∥
2

=

∥∥∥∥
∫ s

0
2

(
C1 cos

(∫ s

0

κ1(σ) + κ2(σ)

2
dσ

)
+ C2 sin

(∫ s

0

κ2(σ) + κ1(σ)

2
dσ

))

× sin

(∫ s

0

κ1(σ)− κ2(σ)

2
dσ

)
dσ

∥∥∥∥
2

≤
∫ s

0
2

(
(‖C1‖2 + ‖C2‖2)

∣∣∣∣ sin
(∫ s

0

κ1(σ)− κ2(σ)

2
dσ

) ∣∣∣∣
)
dσ.(A.5)
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By the assumed condition sups |κ1(s)− κ2(s)| < ε, we have at least, for ε < π
2 ,

‖γ1(s)− γ2(s)‖2 <

∫ s

0
2

(
(‖C1‖2 + ‖C2‖2)

∣∣∣∣ sin
(∫ s

0

ε

2
dσ

) ∣∣∣∣
)
dσ

=

∫ s

0
2 (‖C1‖2 + ‖C2‖2)

∣∣∣ sin(sε
2

) ∣∣∣dσ
= 2s (‖C1‖2 + ‖C2‖2)

∣∣∣ sin(sε
2

) ∣∣∣ ≤ s2ε(‖C1‖2 + ‖C2‖2).(A.6)

The last inequality follows from the fact that sin(p) ≤ p for all 0 ≤ p. Hence we may choose
δ(ε) = s2ε(‖C1‖2 + ‖C2‖2). Note that s is the arc length from the beginning points to the
compared points, and recall that by assumption ε > 0.

Theorem A.2 (see (3.4)). For two closed curves γ1(s) = (x1(s), y1(s)) and γ2(s) =
(x2(s), y2(s))(0 ≤ s < 2π) which are boundaries of sets A1 and A2 (see Figure 3), let the
boundaries of A = A1 ∩ A2, A = A1 ∩ A2 �= ∅ such that area(A) > 0 be γ(s) = (x(s), y(s)),
and,

ε = max{|x− x2|, |y − y2|, |x′ − x′2|, |y′ − y′2|},
M = 2max{|x|, |x2|, |y|, |y2|, |x′|, |x′2|, |y′|, |y′2|}.(A.7)

Then there exists a Δ(ε), which is defined as

Δ(ε) =
2πMε

Area(A2)
(A.8)

such that

1 ≥ α(A1, A2, 0) ≥ 1−Δ(ε).(A.9)

Proof. Suppose that the closed curves γ1(s) and γ2(s) are boundaries of sets A1 and A2,
respectively. Let A = A1 ∩ A2 and γ(s) be the boundary of A. See Figure 3. We annotate
these closed curves as γ(s) = (x(s), y(s)), γ1(s) = (x1(s), y1(s)), and γ2(s) = (x2(s), y2(s)).

By Green’s theorem, we have

Area(A) =
1

2

∫
γ(s)

xdy − ydx =
1

2

∫ 2π

0
x(s)y′(s)ds − y(s)x′(s)ds,

Area(A2) =
1

2

∫
γ2(s)

x2dy2 − y2dx2 =
1

2

∫ 2π

0
x2(t)y

′
2(s)ds− y2(s)x

′
2(s)ds

=
1

2

∫ 2π

0
x2(s)y

′
2(s)ds− y2(s)x

′
2(s)ds,(A.10)
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where the reason we use 2π is that we set the origin inside A. Then we have

|Area(A)−Area(A2)| =
∣∣∣∣12

∫ 2π

0
x(s)y′(s)ds − y(s)x′(s)ds − 1

2

∫ 2π

0
x2(s)y

′
2(s)ds − y2(s)x

′
2(s)ds

∣∣∣∣
=

∣∣∣∣12
∫ 2π

0

(
x(s)y′(s)− x2(s)y

′
2(s)

)
+

(
y2(s)x

′
2(s)− y(s)x′(s)

)
ds

∣∣∣∣
=

∣∣∣∣12
∫ 2π

0

(
x(s)y′(s)− x(s)y′2(s) + x(s)y′2(s)− x2(s)y

′
2(s)

)

+

(
y2(s)x

′
2(s)− y(s)x′2(s) + y(s)x′2(s)− y(s)x′(s)

)
ds

∣∣∣∣
=

∣∣∣∣12
∫ 2π

0

(
x(s)y′(s)− x(s)y′2(s)

)
+

(
x(s)y′2(s)− x2(s)y

′
2(s)

)

+

(
y2(s)x

′
2(s)− y(s)x′2(s)

)
+

(
y(s)x′2(s)− y(s)x′(s)

)
ds

∣∣∣∣
≤ 1

2

∫ 2π

0

∣∣∣∣x(s)y′(s)− x(s)y′2(s)
∣∣∣∣+

∣∣∣∣x(s)y′2(s)− x2(s)y
′
2(s)

∣∣∣∣
+

∣∣∣∣y2(s)x′2(s)− y(s)x′2(s)
∣∣∣∣+

∣∣∣∣y(s)x′2(s)− y(s)x′(s)
∣∣∣∣ds

≤ 1

2

∫ 2π

0
|x(s)||y′(s)− y′2(s)|+ |y′2(s)||x(s) − x2(s)|

+ |x′2(s)||y(s) − y2(s)|+ |y(s)||x′2(s)− x′(s)|ds
≤ 1

2

∫ 2π

0

1

2
Mε+

1

2
Mε+

1

2
Mε+

1

2
Mεds

= Mε

∫ 2π

0
ds

= 2πMε.(A.11)

On the other hand, from (2.3),

α(A1, A2, 0) = sup
S(A2)

m(S(A2) ∩ Φ0(A1))

m(A2)
,(A.12)

and then we have

α(A1, A2, 0) ≥ m(S(A2) ∩A1)

m(A2)
=

m(A)

m(A2)
= 1− |Area(A) −Area(A2)|

Area(A2)
.(A.13)

Let Δ(ε) = 2πMε
Area(A2)

; we have

α(A1, A2, 0) = 1− |Area(A) −Area(A2)|
Area(A2)

≥ 1−Δ(ε).(A.14)
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Note that the simplified details of the above proof assume that there is a region of overlap
between A1 and A2 that has just one connected component, and we can always assume that
the two regions are arranged to have at least one such region. In the more general case in
which the two regions overlap in multiple components, the above proof can be easily adjusted
to integrate the area across each region, and the statement of the theorem remains the same.
Notice also that we have stated the theorem so that each boundary curve has the same
arc length, but in the case of different arc lengths a comparable theorem can be developed,
proved by defining a “speed” s′ = vs, to show that regularity between boundary curves leads
to regularity of the shape coherence.
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