
Pattern Recognition 87 (2019) 226–236
Contents lists available at ScienceDirect

Pattern Recognition
journal homepage: www.elsevier.com/locate/patcog

A nonlinear dimensionality reduction framework using smooth
geodesics
Kelum Gajamannage a , ∗, Randy Paffenroth a , Erik M. Bollt b
a Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA
b Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, NY 13699, USA
a r t i c l e i n f o
Article history:
Received 7 December 2017
Revised 20 June 2018
Accepted 16 October 2018
Available online 19 October 2018
2010 MSC:
57M50
57N16
58D15
Keywords:
Manifold
Nonlinear dimensionality reduction
Smoothing spline
Geodesics
Noisy measurements

a b s t r a c t
Existing dimensionality reduction methods are adept at revealing hidden underlying manifolds aris-
ing from high-dimensional data and thereby producing a low-dimensional representation. However, the
smoothness of the manifolds produced by classic techniques over sparse and noisy data is not guaran-
teed. In fact, the embedding generated using such data may distort the geometry of the manifold and
thereby produce an unfaithful embedding. Herein, we propose a framework for nonlinear dimensionality
reduction that generates a manifold in terms of smooth geodesics that is designed to treat problems in
which manifold measurements are either sparse or corrupted by noise. Our method generates a network
structure for given high-dimensional data using a nearest neighbors search and then produces piecewise
linear shortest paths that are defined as geodesics. Then, we fit points in each geodesic by a smoothing
spline to emphasize the smoothness. The robustness of this approach for sparse and noisy datasets is
demonstrated by the implementation of the method on synthetic and real-world datasets.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction
Advanced data collection techniques in today’s world require

researchers to work with large volumes of nonlinear data, such as
global climate patterns [1,2] , satellite signals [3,4] , social and mo-
bile networks [5,6] , the human genome [7,8] , and patterns in col-
lective motion [9,10] . Studying, analyzing, and predicting such large
datasets is challenging, and many such tasks might be implausi-
ble without the presence of Nonlinear Dimensionality Reduction
(NDR) techniques. NDR interprets high-dimensional data using a
reduced dimension that corresponds to the intrinsic nonlinear di-
mensionality of the data [11] . Manifolds are often thought of as be-
ing smooth, however many existing NDR methods do not directly
leverage this important feature. Sometimes, ignoring the underly-
ing smoothness of the manifold can lead to inaccurate embeddings,
especially when the data is sparse or has been contaminated by
noise .

Many NDR methods have been developed over the last two
decades due to the lack of accuracy and applicability of classic
Linear Dimensionality Reduction (LDR) methods such as Principal

∗ Corresponding author.
E-mail addresses: kdgajamannage@wpi.edu (K. Gajamannage),

rcpaffenroth@wpi.edu (R. Paffenroth), ebollt@clarkson.edu (E.M. Bollt).

Component Analysis (PCA) [12] , which finds directions of maxi-
mum variance, or Multi-Dimensional Scaling (MDS) [13] , which at-
tempts to preserve the squared Euclidean distance between pairs
of points. As the Euclidean distance used in MDS to quantify the
distance between points in the high-dimensional space rather than
the actual distance on the manifold, MDS has difficulties of in-
ferring a faithful low-dimensional embedding of non-linear data.
The NDR method Isometric Mapping (Isomap), replaces the Eu-
clidean metric in MDS with geodesic metric to represent pairwise
distances between points, successfully resolves the aforesaid prob-
lem in MDS [14] . Although Isomap has been used to analyze low-
dimensional embedding of data from several domains, such as col-
lective motion [15] , face recognition [16] , and hand-writing digit
classification [17] , this method can suffer from short-circuiting
[18] , low-density of the data [19] , and non-convexity [20] , all of
which can be magnified in the presence of noise. It is therefore
our goal here to propose a new method which ameliorates some
of these issues as compared to Isomap.

Generally, NDR approaches reveal smooth low-dimensional
and nonlinear manifold representations of high-dimensional data.
While there are many unique capabilities provided by current NDR
methods, most of them encounter poor performance in specific in-
stances. In particular, many current NDR methods are not adept
at preserving the smoothness of the embedded manifold when the

https://doi.org/10.1016/j.patcog.2018.10.020
0031-3203/© 2018 Elsevier Ltd. All rights reserved.

K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236 227

Fig. 1. This figure demonstrates the lack of smoothness of the geodesics generated
by Isomap. (a) Three nearest neighbors for each point (blue dots) of a spherical
dataset of 300 points are found and joined by line segments (shown in blue) to cre-
ate a graph structure. The Isomap manifold distance between two arbitrary points
α and β is estimated as the length of the geodesic (red path), that is defined as
the shortest path between two points, computed by using, for example, Floyd’s al-
gorithm [23] . (b) However, our approach creates a smoothing spline , shown by the
black curve, that is fitted through the points in the geodesic as a better approxi-
mation of the distances on the smooth manifold than the geodesic distance. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
data is sparse or noisy. Isomap closely mimics the underlying man-
ifold’s geometry using a graph structure that it makes using a near-
est neighbors search [21,22] , over the high-dimensional data. The
geodesic between two points on the manifold is defined as the
shortest path in this graph between those two points. Geodesics
are generally piecewise linear , thus, the manifold constructed us-
ing geodesics in this method is not actually smooth at each node,
as demonstrated in Fig. 1 (a). Moreover, given a sufficiently smooth
manifold, the Isomap generated geodesic distance will generally be
an over-estimate of the true manifold distance as demonstrated in
Fig. 1 (b). Of course, such issues are intensive in the presence of
sparse and noisy measurements. Accordingly, herein we propose to
replace the piecewise linear Isomap geodesic by a smoothing spline
as shown by the black curve in Fig. 1 (b) and consider the length of
the spline as the estimation of the manifold distance between points .

There are few NDR methods found in the literature that uti-
lize smoothing splines for embedding like our approach. For ex-
ample, Local Spline Embedding (LSE) also uses smoothing splines
to perform the embedding [24] . This method minimizes the recon-
struction error of the objective function and embeds the data us-
ing smoothing splines that map local coordinates of the underlying
manifold to global coordinates. Specifically, LSE assumes the exis-
tence of a smooth low-dimensional underlying manifold and the
embedding is based on an eigenvalue decomposition that is used
to project the data onto a tangent plane. However, differing from
our approach, LSE assumes that the data is noise free and unaf-
fected by anomalies. Another disadvantage of LSE is that it em-
beds the data into a space where the distances in this space are
not faithful to the distances on the manifold. The Principal Man-
ifold Finding Algorithm (PMFA) is another NDR method that also
uses cubic smoothing splines to represent the manifold and then
quantifies the intrinsic distances of the points on the manifold as
lengths of the splines [25] . However, this approach embeds high-
dimensional data by reducing the reconstruction error over a two-
dimensional space. As this method only performs two-dimensional
embeddings, its applicability is limited for problems with large in-
trinsic dimensionality. As we will demonstrate in Section 4 , our
proposed method overcomes the limitations of the methods LSE
and PMFA.

This paper is structured as follows. In Section 2 , we will de-
tail the MDS and Isomap algorithms and describe the evolu-
tion of our NDR method from these methods. Section 3 presents
our NDR method, Smooth Geodesic Embedding (SGE), that fits

geodesics, as in Isomap, by smoothing splines. We analyze the per-
formance of the SGE method in Section 4 versus three NDR meth-
ods, Isomap, LSE, and PMFA, using three representative examples: a
semi-spherical dataset, images of faces, and images of hand written
digits. Finally, we provide discussion and conclusions in Section 5 .
2. Multidimensional scaling and Isomap

Here we begin by deriving the mathematical details of the LDR
method MDS. Then, we proceed to discuss Isomap which replaces
the Euclidean distance in MDS by geodesic distance. Next, we de-
rive our method, SGE, as an extension of Isomap that fits geodesics
with smoothing splines.
2.1. Multidimensional scaling

Multidimensional scaling is a classic LDR algorithm that lever-
ages the squared Euclidean distance matrix D 2 = [d 2

i j] n ×n ; where
d i j = ∥ y i − y j ∥ 2 and n is a number of points in the data. Here,
y i , y j ∈ R n ×1 , are two points on the high-dimensional dataset Y =
[y 1 ; . . . ; y i ; . . . ; y j ; . . . ; y n] . This method first transforms the squared
distance matrix D 2 into a Gram matrix S = [s i j] n ×n , which is de-
rived by double-centering [26] the data using
s i j = − 1

2 [d 2 i j − µi (d 2 i j) − µ j (d 2 i j) + µi j (d 2 i j)]. (1)
Here, µi (d 2

i j) and µ j (d 2
i j) are the means of the i -th row and j -th

column, respectively, of the squared distance matrix, and µi j (d 2
i j) is

the mean of the entire matrix D 2 . MDS then computes the Eigen-
value Decomposition (EVD) of S as
S = U #U T , (2)
where U is a unitary matrix (U T U = I) providing the eigenvectors
U T and a diagonal matrix of eigenvalues #. The Gram matrix S , that
is made from the squared Euclidean distance matrix D 2 , is sym-
metric and Semi-Positive Definite (SPD) 1 [26] . Thus, all the eigen-
values of an SPD matrix S , and both the Singular-Value Decompo-
sition (SVD) and the EVD of S are the same [26] . # and U T are ar-
ranged such that the diagonal of # contains the eigenvalues of S in
descending order, and the columns of U T represent the correspond-
ing eigenvectors in the same order. We estimate p -dimensional la-
tent variables of the high-dimensional dataset by
ˆ X = I p×n #1 / 2 U T . (3)
Here, I p × n is a matrix made from first p rows of the identity ma-
trix I n × n and ˆ X is the p -dimensional embedding of the input data
Y . However, due to both the approximations in our method and fi-
nite precision in computer arithmetic, the computed S might devi-
ate slightly from being SPD. The EVD of such an S might have small
negative eigenvalues and these negative eigenvalues would violate
Eq. (3) . Accordingly, as we will discuss in Section 2.2 , we replace
the EVD on S by the SVD. Multidimensional scaling has limited ap-
plicability as it is inherently a linear method. However, the NDR
scheme Isomap overcomes this drawback by employing geodesic
distance instead of Euclidean distance.
2.2. Isomap

Isomap creates a graph structure, based upon high-dimensional
data, that estimates the intrinsic geometry of the manifold. The
graph structure created by Isomap can be parameterized in mul-
tiple ways, but herein we focus on the parameter δ which mea-
sures the number of nearest neighbors to a given point [22] . The

1 A symmetric n × n matrix M is said to be SPD, if z T Mz ≥ 0 for all non-zero z ∈
R n ×1 .

228 K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236
nearest neighbor collection for each point is transformed into a
graph structure by treating points as graph nodes and connecting
each pair of nearest neighbors by an edge having the weight equal
to the Euclidean distance between the two points. Given such a
graph, the distance between any two points is measured as the
shortest path distance in the graph , which is commonly called the
geodesic distance .

The geodesic distance between any two points in the data can
be computed in many ways, including Dijkstra’s algorithm [27] ,
one that the original Isomap used. Dijkstra’s algorithm, having
computational complexity of O(n 2) when used for adjacency ma-
trices, computes the shortest path between two pairs of points at a
time [28] . Since our dataset has n (n − 1) / 2 distinct pairs of points
(we make combinations of 2 points out of n points), the total com-
plexity of the Dijkstra’s algorithm is O(n 4 / 2) , [O(n 3 (n − 1) / 2) ≈
O(n 4 / 2)]. However, Floyd’s algorithm [23] computes shortest paths
between all pairs of points in one batch with the computational
complexity of O(n 3) [28] , which is more efficient than utilizing Di-
jkstra’s algorithm. Thus, we replace Dijkstra’s algorithm in Isomap
with Floyd’s algorithm.

As in MDS, we first formulate the doubly centered matrix S
from the squared geodesic distance matrix using Eq. (1) . The dou-
bly centered matrix here is not necessarily SPD as we approxi-
mate the true geodesic distance matrix by the shortest graph dis-
tance [26] . In fact, our computational process uses several numer-
ical approximations that might also cause S to deviate from being
SPD. Thus, the eigenvalue decomposition of matrix S might pro-
duce negative eigenvalues and Eq. (3) does not hold in this case.
To overcome this problem, it is the standard to perform the SVD
over the Gram matrix S as
S = V #U T , (4)
where " is a diagonal matrix of singular values (nonnegative), and
U and V are unitary matrices. The p latent variables of the higher
dimensional input data are revealed by Eq. (3) with # and U T ob-
tained from Eq. (4) .

Isomap emphasizes nonlinear features of the manifold. How-
ever, the lengths measured using geodesics might not faithfully re-
flect the true manifold distance, as we demonstrate in Fig. 1 . Ac-
cordingly, we propose to overcome this drawback in Isomap by uti-
lizing a smoothing approach for geodesics.
3. Smoothing geodesics embedding

Our goal is to fit the geodesics computed in Isomap with
smoothing splines to closely mimic the manifold and preserve the
geometry of the embedding. Classic smoothing spline constructions
[29] require one input parameter, denoted by s , that controls the
smoothness of the spline fitted through the points in a geodesic.
Our proposed method, SGE, has five parameters:
• δ (inherent from Isomap) controls the number of nearest neigh-

bors,
• µs controls the smoothness of the splines,
• ν controls the threshold of the length of splines before reducing

the order of the spline to the next level,
• h controls the number of discretizations that the method uses

to evaluate the length of a spline, and
• finally, p prescribes the number of embedding dimensions (la-

tent variables).
Note that, we will provide details of the parameters µs , ν , and

h later in this section.
Here, we demonstrate our approach by fitting a spline over an

arbitrary geodesic G, having m ≥ 2 points, in the graph created by
a nearest neighbors search algorithm. For an index k we have that

d -dimensional points in G are given by
{

y k = [y 1 k , . . . , y dk] T | k = 1 . . . , m }. (5)
For each dimension l ∈ {1 , . . . , d }, we fit {y lk | k = 1 . . . , m } using
one dimensional smoothing splines ˆ f l (z) of order θ + 1 that are
parameterized in z ∈ [0, 1] by minimizing

m ∑
k = 1

[
y lk − ˆ f l (z k)]2 + s ∫ 1

0 [
ˆ f (θ)
l (z)]2 dz (6)

as in [29] . Here, (θ) represents the order of the derivative of ˆ f l ,
and z k is a discretization of the interval [0,1] such that z 1 = 0 ,
z k = (k − 1) / (m − 1) , and z m = 1 . Minimizing of Eq. (6) yields d
one-dimensional smoothing splines { ̂ f l (z) | l = 1 , . . . , d} . We com-
bine these one dimensional splines and obtain a d -dimensional
smoothing spline of the points {y k | k = 1 . . . , m } in G as,
ˆ f (z) = [̂ f 1 (z) , . . . , ˆ f d (z)] T , (7)
which is called the smooth geodesic . In numerical implementations,
the order θ + 1 of the spline ˆ f should be less than number of
points m in the geodesic [29] .

Choosing the order of a spline θ is challenging, since while a
spline with some specified order might perfectly fits the data, an-
other spline with a different order might weakly fits the data. The
length of the fitted spline between two points is defined as the
manifold distance between those two points, thus an over-fitted
spline might provide an incorrect manifold distance. To overcome
this problem, we introduce the spline threshold ν (in percentage)
which allows the maximum length of a spline that can yield be-
yond the length of the corresponding geodesic. If the length of a
spline with a specific order exceeds this limit, SGE keeps on re-
ducing the order of the spline by one unit until the length of the
new spline satisfies the threshold. If none of the orders satisfy the
threshold, then SGE assumes the manifold distance is the default
distance which is defined to be the geodesic distance. We opt for
this procedure, as it is worthwhile to fit a spline with a lower or-
der when a higher order spline fails numerically. Choosing the or-
der of the smoothing spline can also be considered as a trial and
error process. For simplicity, we choose the order here by using the
threshold percentage ν . Again for the simplicity, we start by fit-
ting a cubic smoothing spline over the points on a given geodesic
and then reduce the order if the length doesn’t meet the threshold.
Cubic smoothing splines emphasize smoothness while involving a
low fitting error. We empirically observed that over-fitting occurs
very rarely in SGE, thus most of the geodesics were fitted with cu-
bic smoothing splines.

Below, we present our procedure of choosing the order of a
spline, fitting points {y k | k = 1 . . . , m } on a geodesic, under three
main cases (1, 2, and 3) and some sub-cases (a, b, . . .):
• Case–1 If m ≥ 4:

– Case–a: we first fit the points in the geodesic with a cu-
bic smoothing spline ˆ f (z) where z ∈ [0, 1] according to
Eqs. (6) and (7) . Note that, a cubic smoothing spline is rep-
resented by θ = 2 in Eq. (6) . We discretize this spline into h
segments z k 1 = (k 1 − 1) / (h − 1) ; k 1 = 1 , . . . , h and compute
the length,
d ̂ f = h − 1 ∑

k 1 = 1 ∥ ̂ f (z k 1 +1) − ˆ f (z k 1) ∥ . (8)
Then, the length d ̂ f is compared with the corresponding
geodesic distance
d G = m − 1 ∑

k = 1 ∥ y k +1 − y k ∥ . (9)

K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236 229
If d ̂ f < d G (100 + ν) / 100 (so that ν is thought of as a per-
centage), then we accept d ̂ f as the length of the smooth
geodesic, otherwise we proceed to Case–b. The parameter
ν (in percentage) defines the threshold (the upper bound)
of the length of the spline ˆ f that is allowed to exceed from
the length of the corresponding geodesic.

– Case–b: we fit the data with a quadratic (i.e., θ = 1) spline ˆ f
according to Eqs. (6) and (7) and compute the length of the
quadratic spline using Eq. (8) . If d ̂ f < d G (100 + ν) / 100 , then
we accept d ̂ f as the length of the smooth geodesic, other-
wise proceed to Case–c.

– Case–c: we make a linear (i.e., θ = 0) fit ˆ f according to
Eqs. (6) and (7) , and measure the length using Eq. (8) . If
d ̂ f < d G (100 + ν) / 100 in the linear fit, then we accept d ̂ f ,
otherwise proceed to Case–d.

– Case–d: instead of fitting a spline, we assume the original
geodesic itself as the fit and treat d G as the length of the
smooth geodesic.

• Case–2 If m = 3 :
The spline fitting process here is started from fitting a quadratic
spline as only three points are in the geodesic. Thus, we carry-
out all the Cases b–d as in Case–1.

• Case–3 If m = 2 :
We have only two points in the geodesic, thus, we perform
Cases c–d as in Case–1.
We use the smoothing parameter s to offset the spline fit

between no fitting error (when s = 0) and the best smoothness
(when s → ∞). The parameter s controls the sum of square errors
between the training points and the fitted function. The best value
for s ensuring the least error while having a sufficient smoothness
is bounded by a function of the number of points in the geodesic
as
m − √

m ≤ s ≤ m + √
m , (10)

[30] . Since the number of points in geodesics vary, we are unable
to input a one-time value as the smoothing parameter into the
method that satisfies the inequality (10) . In order to control this,
here we introduce a new parameter called the smoothing multi-
plier µs ≥ 0 such that s = µs m . Thus, for input parameter µs , such
that
1 − 1 / √

m ≤ µs ≤ 1 + 1 / √
m , (11)

SGE uses different smoothing levels for different splines based on
number of points on the geodesics (m).

For each pair of point in the dataset, say they are indexed by
i and j , we execute the aforesaid procedure and approximate the
length of the smooth geodesic d ij . Then, we square the entries
d ij and create the matrix D 2 = [d 2

i j] n ×n . We perform double cen-
tering on D 2 using Eq. (1) to obtain the doubly centered matrix
S . Then, we compute SVD as in Eq. (4) followed by computing p -
dimensional latent variables ˆ X according to Eq. (3) . A summary of
the SGE method is presented in Algorithm 1 .

Approximate geodesics arising from graph shortest paths in
a finite dataset are different than the true geodesics. However,
smoothing splines that fit points on geodesics are capable of
closely approximating the true geodesics of finite, sparse, and noisy
datasets sampled from a manifold, as shown in Fig. 2 .

The smoothing spline approach in SGE approximates true
geodesic distance of sparse samples of data more accurately than
that of the graph distance used in Isomap [Fig. 2 (a)]. Note, the
shortest path between two points on a noise free manifold con-
verges to the true geodesic of the manifold as the number of sam-

Algorithm 1 Smooth Geodesics Embedding (SGE). Inputs: Data
(Y), number of nearest neighbors (δ), smoothing multiplier (µs),
spline threshold percentage (ν), number of discretizations (h), and
embedding dimensions (p). Outputs: List of p largest singular val-
ues (λl ; l = 1 , . . . , p) and p -dimensional embedding (̂ X).

1: For each point in Y , choose δ number of nearest points as
neighbors [21].

2: Consider all the point in Y as nodes and if any two nodes are
chosen to be neighbors in 1, then join them by an edge having
the length equal to the Euclidean distance between them. This
step converts the dataset into a graph.

3: For each pair of nodes in the graph, find the points G = {y k | k =
1 . . . , m } in the shortest path using the Floyd’s algorithm [23].
Here, m = |G| ≥ 2 .

4: The points in G are fitted with a smoothing spline and its
length is computed:
Case–1 (m ≥ 4):
Case–a:

Fit G with a cubic smoothing spline using Eqs. (6) and
(7), then approximate the length d ̂ f of the spline using Eq.
(8). Let, the length of the geodesic is d G [Eq. (9)]. If d ̂ f <
d G (100 + ν) / 100 , then accept d ̂ f as the length of the smooth
geodesic, otherwise proceed to Case–b.

Case–b:
Fit G with a quadratic smoothing spline using Eqs. (6) and
(7). Approximate the length d ̂ f of the spline using Eq. (8).
If d ̂ f < d G (100 + ν) / 100 , then accept d ̂ f as the length of the
smooth geodesic, otherwise proceed to Case–c.

Case–c:
Fit G with a linear smoothing spline using Eqs. (6) and (7).
Approximate the length d ̂ f of the spline using Eq. (8). If d ̂ f <
d G (100 + ν) / 100 , then accept d ̂ f as the length of the smooth
geodesic, otherwise proceed to Case–d.

Case–d:
Consider d G as the approximated length of the smooth
geodesic.

Case–2 (m = 3): Perform Cases b–d similarly as in Case–1.
Case–3 (m = 2): Perform Cases c–d similarly as in Case–1.

5: Fill the distance matrix D 2 = [d 2
i j] n ×n where d i j is the length of

the smooth geodesic between nodes i and j computed in 3–4.
Double center D 2 and convert it to a Gramian matrix S using
the Eq. (1).

6: Perform the SVD on S using Eq. (4) and extract p largest sin-
gular values λl ; l = 1 , . . . , p along with the latent variable ˆ X as
given by Eq. (3).

ple points approaches infinity [31] . Thus, Isomap can convergently
approximate the manifold distances using shortest graph distances
and makes better predictions with dense samples of data. How-
ever, as SGE fits vertices on shortest paths with smoothing splines,
we demonstrate herein that SGE converges to the true manifold
distance at a faster rate than that of Isomap. In particular, our
smoothing approach assures better predictions than that of Isomap
even under sparse samples of data as we justify in Section 4 .

However, both the smoothing spline approximation of noisy
data in SGE and the geodesic approximation of noisy data in
Isomap, might not faithfully represent the real manifold [Fig. 2 (b)].
This is because the Floyd’s algorithm might find a shortest path
that is different than the true manifold if the data is contami-
nated with noise. Since smoothing splines fit the data points on
such shortest paths, they might also deviated from the true man-

230 K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236

Fig. 2. Trade-offs of the shortest paths and smoothing splines from the true
geodesics. (a) The first dataset (blue points) which is noise free is sampled from a
two-dimensional rectangular shaped manifold. (b) The second dataset (blue points)
is sampled from a one-dimensional manifold (blue curve) representing an arc af-
ter imposing a uniform noise. We run nearest neighbor search algorithm over both
datasets with four nearest neighbors (δ = 4) and create a graph structure in each
dataset. Then, we compute the geodesics (green curves) between two points (black
squares) in the datasets, and then fit the points on each geodesic using a cubic
smoothing splines (red curves) with µs = 1 . Note that, the blue curves represent the
true manifold distance between two black squares. In (a) we see that the smooth-
ing spline more faithfully representing the true geodesic distance of on the noise
free manifold, while in (b) we see that both SGE and Isomap can suffer in the pres-
ence of noise. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
ifold. Thus, both geodesics in Isomap and smoothing splines in
SGE demonstrate lack of convergence to the true manifold even
at the limit of infinite samples of noisy data. We believe that we
can produce a convergent version of the SGE method, if we first
compute the curvature of the manifold and then utilize a tech-
nique that helps to choose the shortest paths close to the mani-
fold. We will explain this technique with details as a future work
in Section 5 . However, we demonstrate that, empirically speaking,
the smoothing spline approach is a better replacement for graph
shortest paths even when the data is contaminated with noise us-
ing the examples in Section 4 .

Note that, we provide more examples in Section 4 that support
the accuracy of embedding noisy datasets versus that of sparse
datasets. The reason for that is, convergence of both methods,
Isomap and SGE, of embedding sparse datasets is supported by
[31] , while the convergence of both methods is not guaranteed
when the data is contaminated with noise.
4. Performance analysis

In this section, we demonstrate the effectiveness SGE, versus
Isomap and PMFA, in example 1 and then that of SGE versus
Isomap in examples 2 and 3. PMFA first makes n 1 c non-overlapping
slices of data along the direction of the largest singular vector and
then makes n 2 c slices along the second largest singular vector. Then,
the data in each slice is fitted with a cubic smoothing spline of
smoothing parameter s r . The user input parameters in this method
are n 1 c , n 2 c , and s r . The grid structure represented by all the cubic
smoothing splines is used as the local intrinsic coordinate system
that we use to measure the embedding distances. Large n 1 c and n 2 c
values make thin slices with few points. Accordingly, the low den-
sity of points in such a slice can cause cubic smoothing splines
to weakly fit the data and misinterpret the manifold. In contrast,
small n 1 c and n 2 c make few slices and create a sparse grid structure.
This sparse grid structure might loose the geometry of the man-
ifold. Accordingly, we use moderate values for the parameters n 1 c
and n 2 c , say 10 each, in the examples we provide. While big values
of s r make less oscillatory cubic smoothing splines, small values
can make highly oscillatory cubic smoothing splines. As stated in
[25] , the best value for s r is 0.9, and we use that value in the nu-
merical examples in this manuscript.

LSE is also an NDR method that employs a spline approach in
their embedding. This method requires one input parameter for
a number of nearest neighbors (δ) and it projects δ neighbors of

each point into a tangent space with local coordinates. Each such
local coordinate is then mapped to its own single global coordinate
with respect to the underlying manifold using splines. The param-
eter δ in LSE is also an input parameter in SGE, thus, details for
choosing the value for this parameter will be explained later when
the parameter values of SGE are explained.

For all the examples in this section, we set ν = 10% and h = 100
in SGE. Setting ν to a high value increases the tendency of fitting
points on the geodesics in SGE with cubic smoothing splines than
fitting those points with splines having order less than three. SGE
is fabricated to reveal a smooth underlying manifold that is en-
sured by cubic smoothing splines than a spline with a low order.
However, high ν values sometimes over-fit the data and that will
then yield inaccurate embedding. We empirically learned that set-
ting ν to 10% can exclude both of aforesaid extremes. Each spline
is discretized to h segments and the length of the spline is com-
puted as sum of linear lengths of these segments. While a big h
gives a very accurate length for the spline, it increases the compu-
tational time as SGE has to compute lengths of n (n − 1) / 2 splines
for a dataset of n points. Thus, we set h = 100 since the accuracy
of the spline lengths by 100 discretization is satisfactory for our
study.

We set δ = 3 or 4, and µs = 1 in SGE, if not stated otherwise.
Each point in the dataset is adjacent to δ number of nearest neigh-
bors and the graph structure is made. Setting a big value for δ will
create more edges in the graph and that might loose the topol-
ogy of the graph as geodesics might not infer the true curvature
of the manifold in this case. However, a small value of δ might
produce multiple connected components in the graph where SGE
treats the large connected component and neglects others in this
case. We set δ = 3 or 4, since we empirically observed that these
values stay in the middle of aforesaid extremes. Choosing a best
value for µs is challenging, thus based on Eq. (11) , we set µs = 1 ,
since this value provides both a perfect smoothness and a better
fit for the splines.

The NDR methods that we utilize in this section should pre-
serve the pairwise distances between data and embedding in or-
der to compare \ contrast them using two distance metrics [Eqs. (14)
and (17)] that we use to compute the embedding error in this pa-
per. To visualize an instance of embedding of these four methods
SGE, Isomap, PMFA, and LSE, we embed a dataset sampled from a
semi-sphere of 600 points [Fig. 3 (a)] defined by
y 1 = r cos (γ1) cos (γ2) ,
y 2 = r cos (γ1) sin (γ2) ,
y 3 = r sin (γ1) , (12)
for γ1 = U[− π/ 2 , π/ 2] and γ2 = U[0 , π] , where U[a, b] denotes a
uniform distribution between a and b . Here, r is the radius of the
semi-sphere which is set to 20 + N [0 , η2] , where N [0 , η2] is a ran-
dom variable sampled from a Gaussian distribution with mean 0
and variance η2 . We set η = 0 as we need this semi-sphere to be
noise free.

We compute two dimensional embedding of this semi-sphere
[Fig. 3 (b–e)] using Isomap with δ = 3 ; LSE with δ = 3 ; PMFA with
n 1 c = n 2 c = 10 and s r = 0 . 9 ; and SGE with δ = 3 , µs = 1 , ν = 10% ,
and h = 100 . According to Fig. 3 , moving from data to embedding,
LSE shrinks the distances in the embedding while others seem pre-
serve the original distance between points. Thus, we omit LSE from
this analysis and only rely on the rest of the methods since two
distance preserving error metrics that we used here can’t be im-
plemented for LSE. Moreover, PMFA is computationally expensive
when the data is high dimensional (as stated in [25]) like in face
images of example 2 where the dataset is 4096 dimensions, and
hand written digits of example 3 where the dataset is 784 dimen-

K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236 231

-20
20

0

20

200 10-20 0 -40 -20 0 20 40
-40
-20
0
20
40

-2 0 2
-2

0

2

0 20 40 60
0
20
40
60

-40 -20 0 20 40
-40
-20
0
20
40

Fig. 3. Two dimensional embedding of (a) a noise free semi-sphere of 600 points using (b) Isomap, (c) LSE, (d) PMFA, and (e) SGE.
sions. Thus, we omit the implementation of PMFA for the datsets
in those two examples.

As the first example, we use a synthetic three dimensional
dataset of a semi-sphere to analyze the performance of SGE with
respect to neighborhood size (δ), smoothness (µs), sparsity (n), and
noise (η). Then, we study the performance of SGE using two high-
dimensional standard benchmark datasets: 1) face images [32] ;
and 2) images of handwritten digits (2’s, 4’s, 6’s, and 8’s) [33] . We
analyze the performance of SGE versus Isomap and PMFA in exam-
ple 1, and that of SGE versus Isomap in examples 2 and 3.
4.1. Embedding of a semi-sphere

We begin this section by embedding a synthetic dataset, sam-
pled from a semi-spherical manifold, using SGE, Isomap, and PMFA
to demonstrate the key concepts of our proposed SGE technique
since, in this case, we can analytically compute the manifold dis-
tance on the semi-sphere and then compare it with the embedding
distances computed by above NDR methods.

First, we compare the performance of SGE with changing δ and
µs by embedding a sample 600 points generated from the mani-
fold defined by Eq. (12) with η = 2 . Both µs in SGE and s r in PMFA
are parameters to control the smoothness of the splines, however,
while µs can only take any nonnegative value, chosen s r should be
in [0, 1] [25] . Since we are unable to compare SGE and PMFA in
this context, we only provide here a comparison between Isomap
and SGE.

We set the spline threshold ν and spline discretization h to be
10% and 100, respectively, and run the SGE algorithm repeatedly
over the spherical dataset with δ = 2 , 3 , . . . , 8 ; µs = 0 , 0 . 1 , . . . , 1 . 0
and obtain two-dimensional embeddings. Here, we have 77 differ-
ent pairs of δ’s and µs ’s, those then produce 77 two-dimensional
embeddings. Now, we asses the performance of the methods in
terms of distance preserving ability between the original data and
the embedding. For each such embedding (77 in total), we com-
pute distances between points in the embedding space using the
Euclidean distance metric that we denote by D S . Now, we run
Isomap with the same sequence of δ’s above and obtain its two-
dimensional embeddings. The Euclidean distance matrix for the
embedding of Isomap is denoted by D I . Now, we compute the true
manifold distances between points of the dataset using the cosine
law. If α and β are two points on a semi-sphere with radius r , the
manifold distance d is given by
d = rγ ; γ = cos − 1 (αβ

| α|| β|)
, (13)

[34] . We compute all the pairwise distances using Eq. (13) and
form the distance matrix D M of the data sampled on the manifold.

The embedding error of SGE, denoted by E S , is computed as
the Mean Absolute Deviation (MAD) between embedding and data
[35] . Since the distance matrices are symmetric and have zeros on
the diagonal, MAD can then be computed using
E S = 2

n (n − 1)
n ∑

i = 1
n ∑

j= i +1
∣∣(D M) i j − (D S) i j ∣∣. (14)

(a)

2
3
4
5
6
7
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2
3
4
5
6
7
8

10
20
30
40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2
3
4
5
6
7
8

0

5

10

15

Fig. 4. Analyzing the performance of Isomap and SGE embeddings using Mean Ab-
solute Deviation (MAD). Herein, we compute, (a) MAD between Isomap embedding
and data, denoted by E I , for different neighborhood sizes (δ’s), and (b) MAD be-
tween SGE embedding and data, dented by E S , for different neighborhood sizes and
smoothing multiplier (µ’s). (c) The difference of errors between these two meth-
ods (E I − E S) is computed in the variable space δ and µs . The green cells denote that
the performance of SGE is superior to that of Isomap . (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)
Similarly, for each pair of δ and µs , we also compute MAD be-
tween the embedding of Isomap and the original data that we de-
note by E I . Fig. 4 illustrates MADs for Isomap (E I), MADs for SGE
(E S), and their differences (E I − E S), versus δ and µs . Fig. 4 (a) and
(b) show that both methods display decreasing errors for increas-
ing δ’s (i.e., increasing neighbors). Moreover, SGE has a decreas-
ing error as µs increases. Fig. 4 (c) also indicates that SGE performs
better than Isomap for larger smoothing multipliers for all δ’s . This
plot also shows that SGE performs worst when δ = 2 and µs = 0 ,
and performs best when δ = 2 and µs = 1 , as compared to isomap.

Next, we analyze the influence of data sparsity on the manifold
for embedding with SGE and compare this to PMFA and Isomap.
For that task, we produce a sequence of spherical datasets with an
increasing number of points. We create the first dataset with 200
points using Eq. (12) with r = 20 + N [0 , 2 2] , then add another 100
points, generated using the same equation, into the first dataset to
produce the second dataset. Similarly, we generate the last dataset
of 1200 points. Then, we embed these datasets in two-dimensions
using Isomap with δ = 3 ; PMFA with n 1 c = n 2 c = 10 and s r = 0 . 9 ;
and SGE with δ = 3 , µs = 1 , ν = 10% , and h = 100 . We compute
the embedding errors E I , E P , and E S using MAD for each dataset
as explained before. Since a significantly high noise is used for
the datasets, we create 16 such sequences of datasets and perform

232 K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236

1 2 3 4 5 6 7 8 9 10 11 12

5
10
15
20
25 SGE

Isomap
PMFA

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
12
14
16
18
20 SGE

Isomap
PMFA

Fig. 5. Mean embedding error of Isomap (in red, denoted by E S), PMFA (in green,
denoted by E P), and SGE (in blue, denoted by E S), versus, (a) sparcity and (b) noise.
Error bars represent standard deviations of errors computed over realizations. Note
that, SGE has lower average error than that of Isomap and PMFA . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
this analysis for16 realizations to allow us to compute averages.
Fig. 5 (a) shows the mean of embedding errors of 16 realizations
and error bars for SGE, Isomap, and PMFA. We observe that the er-
ror associated with SGE embedding is smaller than that of Isomap
and PMFA for all the values of n . This observation demonstrates
the advantages of dealing with sparse data when comparing SGE
to Isomap and PMFA.

Finally, we study the embedding errors of those three methods
in terms of the size of the noise present in the data. For that task,
we create a latticed semi-sphere of 600 points using Eq. (12) with
appropriately discretized γ1 ∈ [− π/ 2 , π/ 2] and γ 2 ∈ [0, π]. Then,
we impose increasing uniform noise levels into the parameter
representing the radius as r = 20 + ηU [− 1 , 1] ; η = 0 , 0 . 3 , 0 . 9 , . . . , 3
and produce a sequence of 11 datasets. We embed each dataset us-
ing Isomap with δ = 3 ; using PMFA with n 1 c = n 2 c = 10 and s r = 0 . 9 ;
and using SGE with δ = 3 , ν = 10% , µs = 1 , and h = 100 . We create
25 such sequences of datasets and perform this analysis for 25 re-
alizations to allow us to compute averages. Fig. 5 (b) presents mean
embedding errors and error bars for all three methods computed
using Eq. (14) . We observe that, while E S slowly increases with in-
creasing η, E I and E P increase quickly with increasing η.
4.2. Embedding of face images

In this section, we validate the SGE method using a real-world
dataset of face images available in [32] . This dataset consists 698
images each of 64 × 64 dimension with a varying pose and direc-
tion of lighting, as shown by a sample of 16 snapshots in Fig. 6 (a).
We randomly choose 400 images as our baseline dataset and gen-
erate three other datasets of 400 images from the baseline dataset
by imposing Gaussian noise with standard deviations (σ ′ s) 0.1, 0.2,
and 0.3 [Fig. 6 (b)]. We set δ = 4 , ν = 10% , h = 100 in SGE and run
this algorithm over each dataset (4 in total) 5 times for µs = 0, 0.3,
0.6, 0.9, 1.2. Then, we embed these four datasets in two dimen-
sions using Isomap and LSE with δ = 4 .

We use the ability to preserve distances between the origi-
nal and the embedding data to analyze the performance of the

Fig. 6. Embedding of face images (64 × 64 dimensional), distorted with different
noise levels, using Isomap and SGE with different smoothing levels. (a) A sample of
16 face images [32] ; where the snapshots in the first, second, and third rows, rep-
resent left-right light variation, left-right pose variation, and up-down pose varia-
tion, respectively. (b) Face images are distorted by imposing three levels of Gaussian
noise σ = 0.1, 0.2, and 0.3. The datasets (four in total) are embedded using Isomap
and then using SGE with smoothing multipliers µs = 0, 0.3 0.6, 0.9, 1.2. Then, (c)
the embedding errors of Isomap (E I) and SGE (E S), and (c) their error difference
are computed. The green cells denote that the performance of SGE is superior to that
of Isomap . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
method [36] . In particular, we consider the distances in the origi-
nal (noise free) imagery as the “true” distances and judge the al-
gorithm’s ability to recover those distances after the imagery has
been corrupted by noise. For both the data and the embedding,
we first search δ nearest neighbors for each point and then pro-
duce a weighted graph by treating points in the dataset as nodes
and connecting each two neighbors by an edge having the length
equal to their Euclidean distance. The weighted graph constructed
through the nearest neighbor search is a simple graph 2 that does
not contain self-loops or multiple edges. We compute the ij -th en-
try of the adjacency distance matrix A for the data as
A i j =

{
d (i, j) : if ∃ an edge i j in the graph

of the original data,
0 : otherwise, (15)

and the ij -th entry of the adjacency distance matrix ˜ A for the em-
bedding data as
˜ A i j =

{
d (i, j) : if ∃ an edge i j in the graph

of the embedding data,
0 : otherwise. (16)

2 A simple graph is an undirected graph that does not contain loops (edges con-
nected at both ends to the same vertex) and multiple edges (more than one edge
between any two different vertices) [37] .

K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236 233
Here, d (i, j) is the Euclidean distance between nodes i and j . In this
paper, we impose Gaussian noise into real-world datasets such as
face images and images of handwritten digits (Section 4.3). Thus,
we think of our original data as the uncorrupted data before we im-
pose the noise.

For n points in the dataset, the error associated with the neigh-
bors’ distance is computed as the average of absolute differences
between entries of the adjacency distance matrices,
E = 1

n (n − 1)
n ∑

i, j= 1
∣∣A i j − ˜ A i j ∣∣, (17)

where δ is the neighbor parameter [36] .
Fig. 6 (c) illustrates the embedding errors of Isomap, denoted

by E I , and embedding errors of SGE, denoted by E S , for σ = 0,
0.1, 0.2, 0.3 and µs = 0, 0.3, 0.6, 0.9, 1.2. We observe that the
error increases in both methods when the noise in the data in-
creases. However, the error of embedding noisy data can be re-
duced significantly by choosing an appropriate smoothing multi-
plier in SGE as shown here. Fig. 6 (d) showing the difference of er-
rors (E I − E S) demonstrates that SGE performs better in terms of
error than Isomap for all the noise levels with µs ≥ 0.3.
4.3. Embedding of handwritten digits

Next, we embed handwritten digits available from the Mixed
National Institute of Standards and Technology (MNIST) database
[33] using SGE and study the performance of the method. This
dataset contains 60,0 0 0 images of handwritten digits from 0 to 9
each of 28 × 28 dimensions. We sample two arbitrary datasets for
our study, each with 400 images, such that one dataset has only
the digit 2 and the other dataset has the digits 2, 4, 6, and 8.

We run Isomap over the dataset having the digit 2 with δ =
4 . We run SGE over this dataset two times: first with δ = 4 ,
µs = 0 , ν = 10% , and h = 100 ; and second with δ = 4 , µs = 0 . 6 ,
ν = 10% , and h = 100 . Thus, aforesaid procedure yields three two-
dimensional embeddings. We formulate the adjacency distance
matrices for the data and embedding using Eqs. (15) and (16) ,
respectively, and compute the error of embedding using Eq. (17) .
Then, we distort this dataset with a Gaussian noise having σ = 0 . 2
and run Isomap with δ = 4 . We run the noisy dataset two times
in SGE: first with parameters δ = 4 , µs = 0 , ν = 10% , and h = 100 ;
and second with δ = 4 , µs = 0 . 6 , ν = 10% , and h = 100 . The em-
bedding errors for Isomap, SGE with µs = 0 , and SGE with µs =
0 . 6 , are given in Table 1 (a). We see in this table that, regardless of
the noise present in the data, the error associated with SGE with-
out smoothing is greater than that of Isomap, while that of SGE
with smoothing is smaller than that of Isomap. Moreover, the er-
ror of embedding is increased when moving from the noisy dataset
to the noise free dataset by 0.87 for Isomap, while that is only in-
creased by 0.24 for SGE with µs = 0 . 6 . This is due to the fact that
setting the smoothing multiplier µs to 0.6 allows SGE to recover
the manifold corrupted by noisy measurements.

Next, we embed a sample of 400 digits, consisting of 2’s, 4’s,
6’s, and 8’s, into two dimensions using Isomap and SGE. We run
Isomap over this dataset with δ = 4 . Then, run SGE two times: first
with δ = 4 , ν = 10% , µs = 0 , and h = 100 ; and second with δ = 4 ,
ν = 10% , µs = 0 . 9 , and h = 100 . Thereafter, we distort the dataset
with a Gaussian noise having σ = 0 . 3 and then run Isomap with
δ = 4 followed by running SGE with the same two parameter sets
that we used before. Then, we compute the Isomap and SGE errors
associated with embedding of noise free and noisy datasets using
Eq. (17) that we present in Table 1 (b). Similarly to the embedding
of the digit 2, regardless of the error in the data, here we also note
that the embedding error of SGE with no smoothing is greater than
that of Isomap, while the embedding error of SGE with smoothing

Table 1
Errors of Isomap and SGE embeddings of, (a) a sample of 400 handwritten2’s;
and (b) a sample of 400 handwritten digits having number 2’s, 4’s, 6’s, and 8’s.
The first row of (a) shows the error when the dataset of digit 2 is embedded us-
ing both Isomap, and SGE with two smoothing coefficients µs = 0 and µs = 0 . 6 .
Then, the dataset is imposed with a Gaussian noise of σ = 0 . 2 and embedded
using both Isomap, and SGE with µs = 0 and µs = 0 . 6 that you see in the sec-
ond row of (a). The first row of (b) represents the errors of Isomap embedding,
and SGE embeddings with µs = 0 and µs = 0 . 9 , of the noise free version of the
sample of digits having the numbers 2, 4, 6, and 8. The second row of (b) rep-
resents the errors of Isomap embedding, and SGE embeddings with µs = 0 and
µs = 0 . 9 , of the noisy version of the dataset created by imposing a Gaussian
noise with σ = 0 . 3 .

(a) Noise Isomap SGE
µs = 0 µs = 0 . 6

Digit “2”
σ = 0 7.02 7.13 5.86
σ = 0 . 2 7.89 8.19 6.10

(b) Noise Isomap SGE
µs = 0 µs = 0 . 9

Digits “2”, “4”, σ = 0 7.38 7.43 6.09
“6”, and “8” σ = 0 . 3 8.20 8.36 6.30

Fig. 7. Isomap and SGE embeddings of handwritten numbers 2, 4, 6, and 8. Differ-
ent digits are shown in different colors (2’s in green, 4’s in orange, 6’s in brown, and
8’s in gray) in the two-dimensional embedding space and the embedded snapshots
illustrate the appearance of arbitrarily chosen handwritten digits. The left panel
shows the Isomap embedding of the noisy dataset (σ = 0 . 3) and the right panel
shows the SGE embedding of the same dataset with µs = 0 . 9 . The embedding error
of each case is indicated in the title of the corresponding panel. Note that, quali-
tatively speaking, the SGE embedding appears to have better clustering of similar
digits than that of Isomap. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this article.)

is smaller than that of Isomap. Moreover, moving from embedding
of noise free data to embedding of noisy data, while the error asso-
ciated with Isomap is increased by 0.88, that of SGE with µs = 0 . 9
is increased only by 0.21.

Finally, we compare the classification ability of both methods in
the presence of high noise. In this example, we define classifica-
tion as spatially clustering of similar digits. To visualize the clas-
sification ability, we construct two-dimensional Isomap and SGE
embeddings of the noisy dataset (σ = 0 . 3) of digits 2, 4, 6, and 8,
that we present in Fig. 7 . Therein, we observe that, while Isomap’s
embedding is unable to maintain clear boundaries between clus-
ters of the same digit, SGE could at least separate numbers 2 and
8 from the rest of the digits. Thus, we can conclude that while
Isomap is unable to achieve a clear classification of digits, SGE with
µs = 0 . 9 achieves qualitatively better classification, even under the
high noise present in the data.

234 K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236
5. Conclusion

Nonlinear dimensionality reduction methods can recover un-
faithful embeddings due to sparsity and presence of high noise
in the data. In order to obtain a faithful embedding for sparse
and noisy data, some smoothing procedure should be performed
in the embedding. With this idea in mind, herein we introduced a
novel nonlinear dimensionality reduction framework using smooth
geodesics that emphasizes the underlying smoothness of the mani-
fold. Our method begins by first searching for nearest neighbors for
each point using a δ-nearest neighbor search [21] . Then, we create
a weighted graph by representing all of the data points as nodes
and joining neighboring nodes with edges having their Euclidean
distances as weights. For each pair of nodes in the graph, we create
a geodesic [14] , that is defined as the shortest path between the
given nodes, generated using Floyd’s algorithm [38] . We replaced
Dijkstra’s algorithm in classic Isomap with Floyd’s algorithm since
Floyd’s algorithm is more computationally efficient than Dijkstra’s
algorithm in our case. We fit each such geodesic with a smoothing
spline (called a smooth geodesic) that is controlled by two param-
eters: smoothing multiplier (µs) and spline threshold (ν) [29,30] .
The length of these splines are treated as manifold distances be-
tween corresponding points.

We use a classic MDS method to find the dimension of the dis-
tance matrix of smooth geodesics and perform the embedding. The
MDS method converts the squared distance matrix to a Gram ma-
trix, employs EVD to compute eigenvalues and eigenvectors, and fi-
nally uses Eq. (3) to produce the embedding [26] . In theory, a Gram
matrix of a squared distance matrix should be SPD [26] . However,
due to geodesic approximation of the true manifold distance and
other numerical approximations, this Gram matrix might deviate
slightly from being SPD. Since this slightly corrupted Gram matrix
produces small negative eigenvalues and those then violate Eq. (3) ,
we replace EVD in MDS by SVD. Note that, the EVD and SVD of an
exact Gram matrix are the same.

In SGE, the order of the spline fit is set to either three, two, or
one, depending on the spline threshold. Since a sufficient smooth-
ness and a low fitting error can be obtained by cubic smoothing
splines, we first rely on a spline fit of order three. However, we
observed that the smoothing spline routing in [29] fits very long
cubic splines for some specific smoothing multipliers. Thus, if the
length of a cubic smoothing spline doesn’t satisfy the threshold,
we reduce the order of the spline to a lower level. Choosing the
order of the spline can also be considered as a trial and error pro-
cess that we implement here by utilizing a threshold. In future, we
will consider replacing this threshold by a trial and error process
to obtain a faithful embedding. Hereby, we also be able to consider
higher orders for the spline in Eq. (6) than the current highest or-
der of three.

The smoothing spline approach in SGE approximates the true
manifold more accurately in many cases than the geodesic ap-
proach in Isomap (Fig. 2). Specifically, the use of smoothing splines
can closely approximates the true manifold distance even when
the data is sparse, in contrast to Isoamp which creates polygonal
paths that then add extra length to the true manifold distance. In
the limit of infinite number of sample points, the Isomap geodesics
converge to the true manifold distance [31] . However, due to the
smoothing spline approach in SGE, we have observed that the em-
bedding error of SGE is significantly lower than that of Isomap in
many practical problems. This was evidenced by the semi-sphere
example in Section 4.1 . Although, both methods do not converge
to the true manifold when the data is corrupted by noise, SGE em-
phasizes the smoothness of the manifold while Isomap is severely
impacted as the errors in the lengths of the Isomap polygonal
paths is intensified.

In the future, we plan to modify the SGE method such that it
converges even when the data is corrupted by noise. For that, first,
we will need to estimate, or be provided with, the curvature of
the manifold described by noisy data. Then, we plan to replace the
nearest neighbor search with a range search [22] that finds all the
points within a given distance based on the curvature. We will run
the range search over the points those are close to the manifold
(we can find these points as we know the curvature), and then cre-
ate a graph by treating data points as nodes and connecting neigh-
bors by edges. We expect that the range search will ensure that the
graph doesn’t have long edges arising from highly noisy points in
data. As the range search is ran over the data points close to the
manifold, we expect to be able to create shortest paths those are
close to the manifold. Finally, we will follow all the other steps 3–6
as in Algorithm 1 of SGE and compute the embedding.

We first demonstrated the effectiveness of our NDR method
on a synthetic dataset representing a semi-sphere. We observed
that the smoothing approach provides a better embedding perfor-
mance than the embedding achieved by standard Isomap or PMFA
when embedding a noisy dataset. We also observed that the errors
in Isomap and SGE decrease as the neighborhood size increases
[Fig. 4 (a) and (b)]. However, when the neighborhood size is small,
say δ = 2 , SGE has clear performance advantages over Isomap for
noisy data when a sufficient smoothness is employed [Fig. 4 (c)].
The spherical dataset also demonstrated that SGE is more robust to
sparse sampling than Isomap and PMFA [Fig. 5 (a)]. Moreover, while
increasing noise in the data always appears to reduce the perfor-
mance of the embedding, irrespective to the method that is used,
we see that Isomap and PMFA are highly effected by increasing
noise while SGE, with a judicious choice of smoothing multiplier,
is more robust [Fig. 5 (b)].

We also studied two standard benchmark datasets, face im-
ages [32] and handwritten digit images [33] , and found that SGE
provided similar superior performance on noisy versions of those
datasets. In particular, for the digit classification task, we observed
that SGE provides qualitatively superior classification performance
(that is, clustering similar digits into one group) in the presence
of noise. As future work, we will quantify the classification perfor-
mance of the low-dimensional nonlinear embedding using a vari-
ety of standard supervised machine learning techniques.

As a potential application of SGE, we can modify some semi-
supervised learning methods such as [39] and metric learnings
such as [40] by replacing their LDR routing, applied in unlabeled
portions of their data, by SGE. By doing this, we believe that the
results of those methods can be improved when they are applied
to nonlinear data due to the nonlinear and smoothing features of
SGE. Specifically, the similarity evaluation framework in [40] in-
puts both supervised and unsupervised data. The data here is a
collection of patients’ claim records, lab test records, and phar-
macy records. A distance measure between each pair of patients
is generated as the sum of the distances in the supervised data
and the unsupervised data. The distances in unsupervised data are
computed on the embedding using LDR methods, such as Local
Linear Embedding (LLE) [41] and Laplacian eigenmaps [42] , might
not emphasis nonlinear features of the data. Thus, replacing these
LDR method by SGE can produce accurate results in large array of
datasets. On the other hand, the graphed based classification rout-
ing presented in [39] leverage semi-supervised data (data with la-
bels and without labels) and creates a graph structure of the data.
Then, it estimates the edge weights using a modified LLE method
followed by performing a classification which is done based edge
weights. However, using a LDR method such as LLE for nonlin-
ear data is not very efficient as it does not leverage the nonlinear
features of the data. We believe that replacing the LLE routing in
this method by SGE can produce improved results in many such
datasets.

K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236 235
The NDR method that we introduced here ensures better per-

formance and preserves the topology of the manifold by emphasiz-
ing the smoothness of the manifold when embedding sparse and
noisy data. This method is an extension of famous NDR method
Isomap where we replaced the geodesics with smoothing splines.
In the future, we plan to examine such techniques in more gen-
erally. For example, one can imagine generalizing Isomap to the
case where both geodesics and smoothing splines are not a good
approximation of long manifold distances. In such a case, one can
attempt to treat the long manifold distances as unknown, and em-
ploy matrix completion techniques like [43,44] on distance matri-
ces where some entries are not observed.
Acknowledgement

The authors would like to thank NSF XSEDE for allocating com-
putational time, under the request number DMS180 0 07, from the
resource Jetstream.
References

[1] S. Aksoy, N.H. Younan, L. Bruzzone, Pattern recognition in remote sensing, Pat-
tern Recognit. Lett. 31 (10) (2010) 1069–1070, doi: 10.1016/j.patrec.2010.04.014 .

[2] C.H. Yu, D. Luo, W. Ding, J. Cohen, D. Small, S. Islam, Spatio-temporal asyn-
chronous co-occurrence pattern for big climate data towards long-lead flood
prediction, in: IEEE International Conference on Big Data, 2015, pp. 865–870,
doi: 10.1109/BigData.2015.7363834 .

[3] B.S. Manjunath, W.Y. Ma, Texture features for browsing and retrieval of large
image data, IEEE Trans. Pattern Anal. Mach. Intell. 18 (8) (1996) 837–842,
doi: 10.1109/34.531803 .

[4] W. Jin, L. Wang, X. Zeng, Z. Liu, R. Fu, Classification of clouds in satellite im-
agery using over-complete dictionary via sparse representation, Pattern Recog-
nit. Lett. 49 (Supplement C) (2014) S193–S200, doi: 10.1016/j.patrec.2014.07.
015 .

[5] R. Chaker, Z.A. Aghbari, I.N. Junejo, Social network model for crowd anomaly
detection and localization, Pattern Recognit. 61 (Supplement C) (2016) 266–
281, doi: 10.1016/j.patcog.2016.06.016 .

[6] M.S. Parwez, D.B. Rawat, M. Garuba, Big data analytics for user-activity analysis
and user-anomaly detection in mobile wireless network, IEEE Trans. Ind. Inf. 13
(4) (2017) 2058–2065, doi: 10.1109/TII.2017.2650206 .

[7] A.W.C. Liew, H. Yan, M. Yang, Pattern recognition techniques for the emerg-
ing field of bioinformatics: a review, Pattern Recognit. 38 (2005) (2006) 2055–
2073, doi: 10.1016/j.patcog.2005.02.019 .

[8] I. Berg, D. Bosnacki, P.A.J. Hilbers, Large scale analysis of small repeats via min-
ing of the human genome, in: 20th International Workshop on Database and
Expert Systems Application, 2009, pp. 198–202, doi: 10.1109/DEXA.2009.78 .

[9] Y. Kong, Y. Jia, Y. Fu, Interactive phrases: semantic descriptions for human
interaction recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (9) (2014)
1775–1788, doi: 10.1109/TPAMI.2014.2303090 .

[10] B. Solmaz, B.E. Moore, M. Shah, Identifying behaviors in crowded scenes using
stability analysis for dynamical systems, IEEE Trans. Pattern Anal. Mach. Intell.
34 (10) (2012) 1–8, doi: 10.1109/TPAMI.2012.123 .

[11] L. Van Der Maaten, E. Postma, J. Den Herik, Dimensionality reduction: a com-
parative, J. Mach. Learn. Res. 10 (2009) 66–71 . doi: 10.1.1.112.5472 . http://
citeseerx.ist.psu.edu/viewdoc/summary? .

[12] I. Jolliffe , Principal Component Analysis, Wiley Online Library, 2002 .
[13] T.F. Cox , M.A .A . Cox , Multidimensional Scaling, CRC press, 20 0 0 .
[14] J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for

nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323,
doi: 10.1126/science.290.5500.2319 .

[15] P. Delellis, G. Polverino, G. Ustuner, N. Abaid, S. Macrì, E.M. Bollt, M. Porfiri,
Collective behaviour across animal species, Sci. Rep. 4 (1) (2014) 3723, doi: 10.
1038/srep03723 .

[16] M.H. Yang, Face recognition using extended isomap, in: IEEE International
Conference on Image Processing, 2, 2002, pp. 117–120, doi: 10.1109/ICIP.2002.
1039901 .

[17] M.H. Yang, Extended isomap for classification, in: Proceedings of the Na-
tional Conference on Artificial Intelligence, 2002, pp. 224–229, doi: 10.1109/
ICPR.2002.1048014 .

[18] M. Balasubramanian, The isomap algorithm and topological stability, Science
295 (5552) (2002) 7, doi: 10.1126/science.295.5552.7a .

[19] J.A . Lee, A . Lendasse, M. Verleysen, Nonlinear projection with curvilinear dis-
tances: isomap versus curvilinear distance analysis, Neurocomputing 57 (2004)
49–76, doi: 10.1016/j.neucom.2004.01.007 .

[20] H. Zha, Z. Zhang, Continuum isomap for manifold learnings, Comput. Stat. Data
Anal. 52 (1) (2007) 184–200, doi: 10.1016/j.csda.2006.11.027 .

[21] J.H. Freidman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches
in logarithmic expected time, ACM Trans. Math. Softw. 3 (3) (1977) 209–226,
doi: 10.1145/355744.355745 .

[22] P.K. Agarwal, J. Erickson, Geometric range searching and its relatives, Adv.
Discr. Computat. Geom. 223 (1997) 1–56 . doi: 10.1.1.38.6261 .

[23] R.W. Floyd, Algorithm 97: shortest path, Commun. ACM 5 (6) (1962) 345,
doi: 10.1145/367766.36 816 8 .

[24] S. Xiang, F. Nie, C. Zhang, C. Zhang, Nonlinear dimensionality reduction with
local spline embedding, IEEE Trans. Knowl. Data Eng. 21 (9) (2009) 1285–1298,
doi: 10.1109/TKDE.2008.204 .

[25] K. Gajamannage, S. Butail, M. Porfiri, E.M. Bollt, Dimensionality reduction of
collective motion by principal manifolds, Physica D 291 (2015) 62–73, doi: 10.
1016/j.physd.2014.09.009 .

[26] J.A. Lee, M. Verleysen, J.A. Lee, M. Verleysen, J.A. Lee, M. Verley-
sen, Nonlinear Dimensionality Reduction, Springer Science & Busi-
ness Media, 2007, doi: 10.1007/978- 0- 387- 39351- 3 . https://books.google.
com/books?hl=en&lr=&id=o _ TIoyeO7AsC&oi=fnd&pg=PR14&dq=nonlinear+
dimension+reduction&ots=CNL84oi4Bz&sig=mHZtuSiVafamqZobWXYCbZA95 to
http://books.google.com/books?hl=en&lr=&id=o _ TIoyeO7AsC&oi=fnd&pg=
PR14&dq=nonlinear+dimensionality+redu .

[27] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math.
1 (1) (1959) 269–271, doi: 10.1007/BF01386390 .

[28] S.S. Ray , Graph Theory with Algorithms and its Applications: In Applied Sci-
ence and Technology, Springer Science & Business Media, 2012 .

[29] C.D. Boor, On calculating with B-spline, J. Approx. Theory 6 (1) (1972) 50–62,
doi: 10.1016/0 021-9045(72)90 080-9 .

[30] C.H. Reinsch, Smoothing by spline functions, Numer.Math. 10 (3) (1967) 177–
183, doi: 10.1007/BF02162161 .

[31] M. Bernstein, V. De Silva, J.C. Langford, J.B. Tenenbaum, Graph approximations
to geodesics on embedded manifolds, Technical Report, Department of Psy-
chology, Stanford University, 20 0 0 . doi: 10.1.1.32.6460 . http://citeseerx.ist.psu.
edu/viewdoc/summary? .

[32] J.B. Tenenbaum, V. De Silva, J.C. Langford, Data sets for nonlinear dimensional-
ity reduction, Data for faces, 2016, http://web.mit.edu/cocosci/isomap/datasets.
html .

[33] Y. LeCun, C. Cortes, C.J.C. Burges, The MNIST database of handwritten dig-
its(2016). http://yann.lecun.com/exdb/mnist/ .

[34] J. Stewart , Essential Calculus: Early Transcendentals, Cengage Learning, 2012 .
[35] J.D. Petruccelli , B. Nandram , M. Chen , Applied Statistics for Engineers and Sci-

entists, Prentice Hall New Jersey, 1999 .
[36] B. Shaw, T. Jebara, Structure preserving embedding, in: Proceedings of the 26th

Annual International Conference on Machine Learning - ICML ’09, 2009, pp. 1–
8, doi: 10.1145/1553374.1553494 .

[37] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer Science
& Business Media, 2012, doi: 10.1007/978- 1- 4614- 4529- 6 .

[38] T.H. Cormen , Introduction to Algorithms, MIT press, 2009 .
[39] J. Wang, F. Wang, C. Zhang, H.C. Shen, L. Quan, Linear neighborhood prop-

agation and its applications, IEEE Trans. Pattern Anal. Mach. Intell. 31
(9) (20 09) 160 0–1615, doi: 10.1109/TPAMI.2008.216 . http://ieeexplore.ieee.org/
abstract/document/4620115/ .

[40] F. Wang, J. Sun, PSF: A unified patient similarity evaluation framework through
metric learning with weak supervision, IEEE J. Biomed. Health Inform. 19
(3) (2015) 1053–1060, doi: 10.1109/JBHI.2015.2425365 . http://ieeexplore.ieee.
org/abstract/document/7091853/ .

[41] S.T. Roweis , L.K. Saul , Nonlinear dimensionality reduction by locally linear em-
bedding, Science 290 (5500) (2000) 2323–2326 .

[42] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduc-
tion and data representation, Neural Comput. 15 (6) (2003) 1373–
1396, doi: 10.1162/089976603321780317 . http://www.mitpressjournals.org/doi/
10.1162/089976603321780317 .

[43] Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices, arXiv preprint (2010).

[44] R. Paffenroth, P. du Toit, R. Nong, L. Scharf, A.P. Jayasumana, V. Bandara, Space-
time signal processing for distributed pattern detection in sensor networks,
IEEE J. Sel. Top. Signal Process. 7 (1) (2013) 38–49, doi: 10.1109/JSTSP.2012.
2237381 .

Dr. Kelum Gajamannage is a PostDoctoral Scholar in
the Department of Mathematical Sciences, WPI, USA. He
was awarded his BS in Mathematics and MS in Applied
Statistics at University of Peradeniya, and PhD in Math-
ematics at Clarkson University. His research interests in-
clude manifold learning, dimensionality reduction, and
data mining.

236 K. Gajamannage et al. / Pattern Recognition 87 (2019) 226–236
Dr. Randy Paffenroth is an Associate Professor of Math-
ematical Sciences, Computer Science, and Data Science
at WPI. His current technical interests include machine
learning, signal processing, large scale data analytics,
compressed sensing, and the interaction between mathe-
matics, computer science and software engineering, with
a focus on applications in cyber-defense.

Dr. Erik M. Bollt is endowed as the W. Jon Harrington
Professor of Mathematics at Clarkson University and joint
to ECE. Professor Bollt specializes in dynamical systems,
including as informed by data processing. Prof. Bollt has
recently published a book on these topics, [Applied and
Computational Measurable Dynamics, SIAM, (2013)].

