
Pattern Recognition 87 (2019) 226–236 
Contents lists available at ScienceDirect 

Pattern Recognition 
journal homepage: www.elsevier.com/locate/patcog 

A nonlinear dimensionality reduction framework using smooth 
geodesics 
Kelum Gajamannage a , ∗, Randy Paffenroth a , Erik M. Bollt b 
a Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA 
b Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, NY 13699, USA 
a r t i c l e i n f o 
Article history: 
Received 7 December 2017 
Revised 20 June 2018 
Accepted 16 October 2018 
Available online 19 October 2018 
2010 MSC: 
57M50 
57N16 
58D15 
Keywords: 
Manifold 
Nonlinear dimensionality reduction 
Smoothing spline 
Geodesics 
Noisy measurements 

a b s t r a c t 
Existing dimensionality reduction methods are adept at revealing hidden underlying manifolds aris- 
ing from high-dimensional data and thereby producing a low-dimensional representation. However, the 
smoothness of the manifolds produced by classic techniques over sparse and noisy data is not guaran- 
teed. In fact, the embedding generated using such data may distort the geometry of the manifold and 
thereby produce an unfaithful embedding. Herein, we propose a framework for nonlinear dimensionality 
reduction that generates a manifold in terms of smooth geodesics that is designed to treat problems in 
which manifold measurements are either sparse or corrupted by noise. Our method generates a network 
structure for given high-dimensional data using a nearest neighbors search and then produces piecewise 
linear shortest paths that are defined as geodesics. Then, we fit points in each geodesic by a smoothing 
spline to emphasize the smoothness. The robustness of this approach for sparse and noisy datasets is 
demonstrated by the implementation of the method on synthetic and real-world datasets. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 
Advanced data collection techniques in today’s world require 

researchers to work with large volumes of nonlinear data, such as 
global climate patterns [1,2] , satellite signals [3,4] , social and mo- 
bile networks [5,6] , the human genome [7,8] , and patterns in col- 
lective motion [9,10] . Studying, analyzing, and predicting such large 
datasets is challenging, and many such tasks might be implausi- 
ble without the presence of Nonlinear Dimensionality Reduction 
(NDR) techniques. NDR interprets high-dimensional data using a 
reduced dimension that corresponds to the intrinsic nonlinear di- 
mensionality of the data [11] . Manifolds are often thought of as be- 
ing smooth, however many existing NDR methods do not directly 
leverage this important feature. Sometimes, ignoring the underly- 
ing smoothness of the manifold can lead to inaccurate embeddings, 
especially when the data is sparse or has been contaminated by 
noise . 

Many NDR methods have been developed over the last two 
decades due to the lack of accuracy and applicability of classic 
Linear Dimensionality Reduction (LDR) methods such as Principal 
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Component Analysis (PCA) [12] , which finds directions of maxi- 
mum variance, or Multi-Dimensional Scaling (MDS) [13] , which at- 
tempts to preserve the squared Euclidean distance between pairs 
of points. As the Euclidean distance used in MDS to quantify the 
distance between points in the high-dimensional space rather than 
the actual distance on the manifold, MDS has difficulties of in- 
ferring a faithful low-dimensional embedding of non-linear data. 
The NDR method Isometric Mapping (Isomap), replaces the Eu- 
clidean metric in MDS with geodesic metric to represent pairwise 
distances between points, successfully resolves the aforesaid prob- 
lem in MDS [14] . Although Isomap has been used to analyze low- 
dimensional embedding of data from several domains, such as col- 
lective motion [15] , face recognition [16] , and hand-writing digit 
classification [17] , this method can suffer from short-circuiting 
[18] , low-density of the data [19] , and non-convexity [20] , all of 
which can be magnified in the presence of noise. It is therefore 
our goal here to propose a new method which ameliorates some 
of these issues as compared to Isomap. 

Generally, NDR approaches reveal smooth low-dimensional 
and nonlinear manifold representations of high-dimensional data. 
While there are many unique capabilities provided by current NDR 
methods, most of them encounter poor performance in specific in- 
stances. In particular, many current NDR methods are not adept 
at preserving the smoothness of the embedded manifold when the 
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Fig. 1. This figure demonstrates the lack of smoothness of the geodesics generated 
by Isomap. (a) Three nearest neighbors for each point (blue dots) of a spherical 
dataset of 300 points are found and joined by line segments (shown in blue) to cre- 
ate a graph structure. The Isomap manifold distance between two arbitrary points 
α and β is estimated as the length of the geodesic (red path), that is defined as 
the shortest path between two points, computed by using, for example, Floyd’s al- 
gorithm [23] . (b) However, our approach creates a smoothing spline , shown by the 
black curve, that is fitted through the points in the geodesic as a better approxi- 
mation of the distances on the smooth manifold than the geodesic distance. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
data is sparse or noisy. Isomap closely mimics the underlying man- 
ifold’s geometry using a graph structure that it makes using a near- 
est neighbors search [21,22] , over the high-dimensional data. The 
geodesic between two points on the manifold is defined as the 
shortest path in this graph between those two points. Geodesics 
are generally piecewise linear , thus, the manifold constructed us- 
ing geodesics in this method is not actually smooth at each node, 
as demonstrated in Fig. 1 (a). Moreover, given a sufficiently smooth 
manifold, the Isomap generated geodesic distance will generally be 
an over-estimate of the true manifold distance as demonstrated in 
Fig. 1 (b). Of course, such issues are intensive in the presence of 
sparse and noisy measurements. Accordingly, herein we propose to 
replace the piecewise linear Isomap geodesic by a smoothing spline 
as shown by the black curve in Fig. 1 (b) and consider the length of 
the spline as the estimation of the manifold distance between points . 

There are few NDR methods found in the literature that uti- 
lize smoothing splines for embedding like our approach. For ex- 
ample, Local Spline Embedding (LSE) also uses smoothing splines 
to perform the embedding [24] . This method minimizes the recon- 
struction error of the objective function and embeds the data us- 
ing smoothing splines that map local coordinates of the underlying 
manifold to global coordinates. Specifically, LSE assumes the exis- 
tence of a smooth low-dimensional underlying manifold and the 
embedding is based on an eigenvalue decomposition that is used 
to project the data onto a tangent plane. However, differing from 
our approach, LSE assumes that the data is noise free and unaf- 
fected by anomalies. Another disadvantage of LSE is that it em- 
beds the data into a space where the distances in this space are 
not faithful to the distances on the manifold. The Principal Man- 
ifold Finding Algorithm (PMFA) is another NDR method that also 
uses cubic smoothing splines to represent the manifold and then 
quantifies the intrinsic distances of the points on the manifold as 
lengths of the splines [25] . However, this approach embeds high- 
dimensional data by reducing the reconstruction error over a two- 
dimensional space. As this method only performs two-dimensional 
embeddings, its applicability is limited for problems with large in- 
trinsic dimensionality. As we will demonstrate in Section 4 , our 
proposed method overcomes the limitations of the methods LSE 
and PMFA. 

This paper is structured as follows. In Section 2 , we will de- 
tail the MDS and Isomap algorithms and describe the evolu- 
tion of our NDR method from these methods. Section 3 presents 
our NDR method, Smooth Geodesic Embedding (SGE), that fits 

geodesics, as in Isomap, by smoothing splines. We analyze the per- 
formance of the SGE method in Section 4 versus three NDR meth- 
ods, Isomap, LSE, and PMFA, using three representative examples: a 
semi-spherical dataset, images of faces, and images of hand written 
digits. Finally, we provide discussion and conclusions in Section 5 . 
2. Multidimensional scaling and Isomap 

Here we begin by deriving the mathematical details of the LDR 
method MDS. Then, we proceed to discuss Isomap which replaces 
the Euclidean distance in MDS by geodesic distance. Next, we de- 
rive our method, SGE, as an extension of Isomap that fits geodesics 
with smoothing splines. 
2.1. Multidimensional scaling 

Multidimensional scaling is a classic LDR algorithm that lever- 
ages the squared Euclidean distance matrix D 2 =  [ d 2 

i j ] n ×n ; where 
d i j =  ∥ y i − y j ∥ 2 and n is a number of points in the data. Here, 
y i , y j ∈ R n ×1 , are two points on the high-dimensional dataset Y =  
[ y 1 ; . . . ; y i ; . . . ; y j ; . . . ; y n ] . This method first transforms the squared 
distance matrix D 2 into a Gram matrix S =  [ s i j ] n ×n , which is de- 
rived by double-centering [26] the data using 
s i j =  − 1 

2 [d 2 i j − µi (d 2 i j ) − µ j (d 2 i j ) + µi j (d 2 i j ) ]. (1) 
Here, µi (d 2 

i j ) and µ j (d 2 
i j ) are the means of the i -th row and j -th 

column, respectively, of the squared distance matrix, and µi j (d 2 
i j ) is 

the mean of the entire matrix D 2 . MDS then computes the Eigen- 
value Decomposition (EVD) of S as 
S =  U #U T , (2) 
where U is a unitary matrix ( U T U =  I ) providing the eigenvectors 
U T and a diagonal matrix of eigenvalues #. The Gram matrix S , that 
is made from the squared Euclidean distance matrix D 2 , is sym- 
metric and Semi-Positive Definite (SPD) 1 [26] . Thus, all the eigen- 
values of an SPD matrix S , and both the Singular-Value Decompo- 
sition (SVD) and the EVD of S are the same [26] . # and U T are ar- 
ranged such that the diagonal of # contains the eigenvalues of S in 
descending order, and the columns of U T represent the correspond- 
ing eigenvectors in the same order. We estimate p -dimensional la- 
tent variables of the high-dimensional dataset by 
ˆ X =  I p×n #1 / 2 U T . (3) 
Here, I p × n is a matrix made from first p rows of the identity ma- 
trix I n × n and ˆ X is the p -dimensional embedding of the input data 
Y . However, due to both the approximations in our method and fi- 
nite precision in computer arithmetic, the computed S might devi- 
ate slightly from being SPD. The EVD of such an S might have small 
negative eigenvalues and these negative eigenvalues would violate 
Eq. (3) . Accordingly, as we will discuss in Section 2.2 , we replace 
the EVD on S by the SVD. Multidimensional scaling has limited ap- 
plicability as it is inherently a linear method. However, the NDR 
scheme Isomap overcomes this drawback by employing geodesic 
distance instead of Euclidean distance. 
2.2. Isomap 

Isomap creates a graph structure, based upon high-dimensional 
data, that estimates the intrinsic geometry of the manifold. The 
graph structure created by Isomap can be parameterized in mul- 
tiple ways, but herein we focus on the parameter δ which mea- 
sures the number of nearest neighbors to a given point [22] . The 

1 A symmetric n × n matrix M is said to be SPD, if z T Mz ≥ 0 for all non-zero z ∈ 
R n ×1 . 
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nearest neighbor collection for each point is transformed into a 
graph structure by treating points as graph nodes and connecting 
each pair of nearest neighbors by an edge having the weight equal 
to the Euclidean distance between the two points. Given such a 
graph, the distance between any two points is measured as the 
shortest path distance in the graph , which is commonly called the 
geodesic distance . 

The geodesic distance between any two points in the data can 
be computed in many ways, including Dijkstra’s algorithm [27] , 
one that the original Isomap used. Dijkstra’s algorithm, having 
computational complexity of O(n 2 ) when used for adjacency ma- 
trices, computes the shortest path between two pairs of points at a 
time [28] . Since our dataset has n (n − 1) / 2 distinct pairs of points 
(we make combinations of 2 points out of n points), the total com- 
plexity of the Dijkstra’s algorithm is O(n 4 / 2) , [ O(n 3 (n − 1) / 2) ≈
O(n 4 / 2) ]. However, Floyd’s algorithm [23] computes shortest paths 
between all pairs of points in one batch with the computational 
complexity of O(n 3 ) [28] , which is more efficient than utilizing Di- 
jkstra’s algorithm. Thus, we replace Dijkstra’s algorithm in Isomap 
with Floyd’s algorithm. 

As in MDS, we first formulate the doubly centered matrix S 
from the squared geodesic distance matrix using Eq. (1) . The dou- 
bly centered matrix here is not necessarily SPD as we approxi- 
mate the true geodesic distance matrix by the shortest graph dis- 
tance [26] . In fact, our computational process uses several numer- 
ical approximations that might also cause S to deviate from being 
SPD. Thus, the eigenvalue decomposition of matrix S might pro- 
duce negative eigenvalues and Eq. (3) does not hold in this case. 
To overcome this problem, it is the standard to perform the SVD 
over the Gram matrix S as 
S =  V #U T , (4) 
where " is a diagonal matrix of singular values (nonnegative), and 
U and V are unitary matrices. The p latent variables of the higher 
dimensional input data are revealed by Eq. (3) with # and U T ob- 
tained from Eq. (4) . 

Isomap emphasizes nonlinear features of the manifold. How- 
ever, the lengths measured using geodesics might not faithfully re- 
flect the true manifold distance, as we demonstrate in Fig. 1 . Ac- 
cordingly, we propose to overcome this drawback in Isomap by uti- 
lizing a smoothing approach for geodesics. 
3. Smoothing geodesics embedding 

Our goal is to fit the geodesics computed in Isomap with 
smoothing splines to closely mimic the manifold and preserve the 
geometry of the embedding. Classic smoothing spline constructions 
[29] require one input parameter, denoted by s , that controls the 
smoothness of the spline fitted through the points in a geodesic. 
Our proposed method, SGE, has five parameters: 
• δ (inherent from Isomap) controls the number of nearest neigh- 

bors, 
• µs controls the smoothness of the splines, 
• ν controls the threshold of the length of splines before reducing 

the order of the spline to the next level, 
• h controls the number of discretizations that the method uses 

to evaluate the length of a spline, and 
• finally, p prescribes the number of embedding dimensions (la- 

tent variables). 
Note that, we will provide details of the parameters µs , ν , and 

h later in this section. 
Here, we demonstrate our approach by fitting a spline over an 

arbitrary geodesic G, having m ≥ 2 points, in the graph created by 
a nearest neighbors search algorithm. For an index k we have that 

d -dimensional points in G are given by 
{

y k =  [ y 1 k , . . . , y dk ] T | k =  1 . . . , m }. (5) 
For each dimension l ∈ {1 , . . . , d }, we fit {y lk | k =  1 . . . , m } using 
one dimensional smoothing splines ˆ f l (z) of order θ + 1 that are 
parameterized in z ∈ [0, 1] by minimizing 

m ∑ 
k = 1 

[
y lk − ˆ f l (z k ) ]2 + s ∫ 1 

0 [
ˆ f (θ ) 
l (z) ]2 dz (6) 

as in [29] . Here, ( θ ) represents the order of the derivative of ˆ f l , 
and z k is a discretization of the interval [0,1] such that z 1 =  0 , 
z k =  (k − 1) / (m − 1) , and z m =  1 . Minimizing of Eq. (6) yields d 
one-dimensional smoothing splines { ̂  f l (z) | l =  1 , . . . , d} . We com- 
bine these one dimensional splines and obtain a d -dimensional 
smoothing spline of the points {y k | k =  1 . . . , m } in G as, 
ˆ f (z) =  [ ̂  f 1 (z) , . . . , ˆ f d (z)] T , (7) 
which is called the smooth geodesic . In numerical implementations, 
the order θ + 1 of the spline ˆ f should be less than number of 
points m in the geodesic [29] . 

Choosing the order of a spline θ is challenging, since while a 
spline with some specified order might perfectly fits the data, an- 
other spline with a different order might weakly fits the data. The 
length of the fitted spline between two points is defined as the 
manifold distance between those two points, thus an over-fitted 
spline might provide an incorrect manifold distance. To overcome 
this problem, we introduce the spline threshold ν (in percentage) 
which allows the maximum length of a spline that can yield be- 
yond the length of the corresponding geodesic. If the length of a 
spline with a specific order exceeds this limit, SGE keeps on re- 
ducing the order of the spline by one unit until the length of the 
new spline satisfies the threshold. If none of the orders satisfy the 
threshold, then SGE assumes the manifold distance is the default 
distance which is defined to be the geodesic distance. We opt for 
this procedure, as it is worthwhile to fit a spline with a lower or- 
der when a higher order spline fails numerically. Choosing the or- 
der of the smoothing spline can also be considered as a trial and 
error process. For simplicity, we choose the order here by using the 
threshold percentage ν . Again for the simplicity, we start by fit- 
ting a cubic smoothing spline over the points on a given geodesic 
and then reduce the order if the length doesn’t meet the threshold. 
Cubic smoothing splines emphasize smoothness while involving a 
low fitting error. We empirically observed that over-fitting occurs 
very rarely in SGE, thus most of the geodesics were fitted with cu- 
bic smoothing splines. 

Below, we present our procedure of choosing the order of a 
spline, fitting points {y k | k =  1 . . . , m } on a geodesic, under three 
main cases (1, 2, and 3) and some sub-cases (a, b, . . .): 
• Case–1 If m ≥ 4: 

– Case–a: we first fit the points in the geodesic with a cu- 
bic smoothing spline ˆ f (z) where z ∈ [0, 1] according to 
Eqs. (6) and (7) . Note that, a cubic smoothing spline is rep- 
resented by θ =  2 in Eq. (6) . We discretize this spline into h 
segments z k 1 =  (k 1 − 1) / (h − 1) ; k 1 =  1 , . . . , h and compute 
the length, 
d ̂ f =  h − 1 ∑ 

k 1 = 1 ∥ ̂  f (z k 1 +1 ) − ˆ f (z k 1 ) ∥ . (8) 
Then, the length d ̂ f is compared with the corresponding 
geodesic distance 
d G =  m − 1 ∑ 

k = 1 ∥ y k +1 − y k ∥ . (9) 
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If d ̂ f < d G (100 + ν) / 100 (so that ν is thought of as a per- 
centage), then we accept d ̂ f as the length of the smooth 
geodesic, otherwise we proceed to Case–b. The parameter 
ν (in percentage) defines the threshold (the upper bound) 
of the length of the spline ˆ f that is allowed to exceed from 
the length of the corresponding geodesic. 

– Case–b: we fit the data with a quadratic (i.e., θ =  1 ) spline ˆ f 
according to Eqs. (6) and (7) and compute the length of the 
quadratic spline using Eq. (8) . If d ̂ f < d G (100 + ν) / 100 , then 
we accept d ̂ f as the length of the smooth geodesic, other- 
wise proceed to Case–c. 

– Case–c: we make a linear (i.e., θ =  0 ) fit ˆ f according to 
Eqs. (6) and (7) , and measure the length using Eq. (8) . If 
d ̂ f < d G (100 + ν) / 100 in the linear fit, then we accept d ̂ f , 
otherwise proceed to Case–d. 

– Case–d: instead of fitting a spline, we assume the original 
geodesic itself as the fit and treat d G as the length of the 
smooth geodesic. 

• Case–2 If m =  3 : 
The spline fitting process here is started from fitting a quadratic 
spline as only three points are in the geodesic. Thus, we carry- 
out all the Cases b–d as in Case–1. 

• Case–3 If m =  2 : 
We have only two points in the geodesic, thus, we perform 
Cases c–d as in Case–1. 
We use the smoothing parameter s to offset the spline fit 

between no fitting error (when s =  0 ) and the best smoothness 
(when s → ∞ ). The parameter s controls the sum of square errors 
between the training points and the fitted function. The best value 
for s ensuring the least error while having a sufficient smoothness 
is bounded by a function of the number of points in the geodesic 
as 
m − √ 

m ≤ s ≤ m + √ 
m , (10) 

[30] . Since the number of points in geodesics vary, we are unable 
to input a one-time value as the smoothing parameter into the 
method that satisfies the inequality (10) . In order to control this, 
here we introduce a new parameter called the smoothing multi- 
plier µs ≥ 0 such that s =  µs m . Thus, for input parameter µs , such 
that 
1 − 1 / √ 

m ≤ µs ≤ 1 + 1 / √ 
m , (11) 

SGE uses different smoothing levels for different splines based on 
number of points on the geodesics ( m ). 

For each pair of point in the dataset, say they are indexed by 
i and j , we execute the aforesaid procedure and approximate the 
length of the smooth geodesic d ij . Then, we square the entries 
d ij and create the matrix D 2 =  [ d 2 

i j ] n ×n . We perform double cen- 
tering on D 2 using Eq. (1) to obtain the doubly centered matrix 
S . Then, we compute SVD as in Eq. (4) followed by computing p - 
dimensional latent variables ˆ X according to Eq. (3) . A summary of 
the SGE method is presented in Algorithm 1 . 

Approximate geodesics arising from graph shortest paths in 
a finite dataset are different than the true geodesics. However, 
smoothing splines that fit points on geodesics are capable of 
closely approximating the true geodesics of finite, sparse, and noisy 
datasets sampled from a manifold, as shown in Fig. 2 . 

The smoothing spline approach in SGE approximates true 
geodesic distance of sparse samples of data more accurately than 
that of the graph distance used in Isomap [ Fig. 2 (a)]. Note, the 
shortest path between two points on a noise free manifold con- 
verges to the true geodesic of the manifold as the number of sam- 

Algorithm 1 Smooth Geodesics Embedding (SGE). Inputs: Data 
( Y ), number of nearest neighbors ( δ), smoothing multiplier ( µs ), 
spline threshold percentage ( ν), number of discretizations ( h ), and 
embedding dimensions ( p ). Outputs: List of p largest singular val- 
ues ( λl ; l =  1 , . . . , p) and p -dimensional embedding ( ̂  X ). 

1: For each point in Y , choose δ number of nearest points as 
neighbors [21]. 

2: Consider all the point in Y as nodes and if any two nodes are 
chosen to be neighbors in 1, then join them by an edge having 
the length equal to the Euclidean distance between them. This 
step converts the dataset into a graph. 

3: For each pair of nodes in the graph, find the points G =  {y k | k =  
1 . . . , m } in the shortest path using the Floyd’s algorithm [23]. 
Here, m =  |G| ≥ 2 . 

4: The points in G are fitted with a smoothing spline and its 
length is computed: 
Case–1 ( m ≥ 4 ): 
Case–a: 

Fit G with a cubic smoothing spline using Eqs. (6) and 
(7), then approximate the length d ̂ f of the spline using Eq. 
(8). Let, the length of the geodesic is d G [Eq. (9)]. If d ̂ f < 
d G (100 + ν) / 100 , then accept d ̂ f as the length of the smooth 
geodesic, otherwise proceed to Case–b. 

Case–b: 
Fit G with a quadratic smoothing spline using Eqs. (6) and 
(7). Approximate the length d ̂ f of the spline using Eq. (8). 
If d ̂ f < d G (100 + ν) / 100 , then accept d ̂ f as the length of the 
smooth geodesic, otherwise proceed to Case–c. 

Case–c: 
Fit G with a linear smoothing spline using Eqs. (6) and (7). 
Approximate the length d ̂ f of the spline using Eq. (8). If d ̂ f < 
d G (100 + ν) / 100 , then accept d ̂ f as the length of the smooth 
geodesic, otherwise proceed to Case–d. 

Case–d: 
Consider d G as the approximated length of the smooth 
geodesic. 

Case–2 ( m =  3 ): Perform Cases b–d similarly as in Case–1. 
Case–3 ( m =  2 ): Perform Cases c–d similarly as in Case–1. 

5: Fill the distance matrix D 2 =  [ d 2 
i j ] n ×n where d i j is the length of 

the smooth geodesic between nodes i and j computed in 3–4. 
Double center D 2 and convert it to a Gramian matrix S using 
the Eq. (1). 

6: Perform the SVD on S using Eq. (4) and extract p largest sin- 
gular values λl ; l =  1 , . . . , p along with the latent variable ˆ X as 
given by Eq. (3). 

ple points approaches infinity [31] . Thus, Isomap can convergently 
approximate the manifold distances using shortest graph distances 
and makes better predictions with dense samples of data. How- 
ever, as SGE fits vertices on shortest paths with smoothing splines, 
we demonstrate herein that SGE converges to the true manifold 
distance at a faster rate than that of Isomap. In particular, our 
smoothing approach assures better predictions than that of Isomap 
even under sparse samples of data as we justify in Section 4 . 

However, both the smoothing spline approximation of noisy 
data in SGE and the geodesic approximation of noisy data in 
Isomap, might not faithfully represent the real manifold [ Fig. 2 (b)]. 
This is because the Floyd’s algorithm might find a shortest path 
that is different than the true manifold if the data is contami- 
nated with noise. Since smoothing splines fit the data points on 
such shortest paths, they might also deviated from the true man- 
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Fig. 2. Trade-offs of the shortest paths and smoothing splines from the true 
geodesics. (a) The first dataset (blue points) which is noise free is sampled from a 
two-dimensional rectangular shaped manifold. (b) The second dataset (blue points) 
is sampled from a one-dimensional manifold (blue curve) representing an arc af- 
ter imposing a uniform noise. We run nearest neighbor search algorithm over both 
datasets with four nearest neighbors ( δ =  4 ) and create a graph structure in each 
dataset. Then, we compute the geodesics (green curves) between two points (black 
squares) in the datasets, and then fit the points on each geodesic using a cubic 
smoothing splines (red curves) with µs =  1 . Note that, the blue curves represent the 
true manifold distance between two black squares. In (a) we see that the smooth- 
ing spline more faithfully representing the true geodesic distance of on the noise 
free manifold, while in (b) we see that both SGE and Isomap can suffer in the pres- 
ence of noise. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
ifold. Thus, both geodesics in Isomap and smoothing splines in 
SGE demonstrate lack of convergence to the true manifold even 
at the limit of infinite samples of noisy data. We believe that we 
can produce a convergent version of the SGE method, if we first 
compute the curvature of the manifold and then utilize a tech- 
nique that helps to choose the shortest paths close to the mani- 
fold. We will explain this technique with details as a future work 
in Section 5 . However, we demonstrate that, empirically speaking, 
the smoothing spline approach is a better replacement for graph 
shortest paths even when the data is contaminated with noise us- 
ing the examples in Section 4 . 

Note that, we provide more examples in Section 4 that support 
the accuracy of embedding noisy datasets versus that of sparse 
datasets. The reason for that is, convergence of both methods, 
Isomap and SGE, of embedding sparse datasets is supported by 
[31] , while the convergence of both methods is not guaranteed 
when the data is contaminated with noise. 
4. Performance analysis 

In this section, we demonstrate the effectiveness SGE, versus 
Isomap and PMFA, in example 1 and then that of SGE versus 
Isomap in examples 2 and 3. PMFA first makes n 1 c non-overlapping 
slices of data along the direction of the largest singular vector and 
then makes n 2 c slices along the second largest singular vector. Then, 
the data in each slice is fitted with a cubic smoothing spline of 
smoothing parameter s r . The user input parameters in this method 
are n 1 c , n 2 c , and s r . The grid structure represented by all the cubic 
smoothing splines is used as the local intrinsic coordinate system 
that we use to measure the embedding distances. Large n 1 c and n 2 c 
values make thin slices with few points. Accordingly, the low den- 
sity of points in such a slice can cause cubic smoothing splines 
to weakly fit the data and misinterpret the manifold. In contrast, 
small n 1 c and n 2 c make few slices and create a sparse grid structure. 
This sparse grid structure might loose the geometry of the man- 
ifold. Accordingly, we use moderate values for the parameters n 1 c 
and n 2 c , say 10 each, in the examples we provide. While big values 
of s r make less oscillatory cubic smoothing splines, small values 
can make highly oscillatory cubic smoothing splines. As stated in 
[25] , the best value for s r is 0.9, and we use that value in the nu- 
merical examples in this manuscript. 

LSE is also an NDR method that employs a spline approach in 
their embedding. This method requires one input parameter for 
a number of nearest neighbors ( δ) and it projects δ neighbors of 

each point into a tangent space with local coordinates. Each such 
local coordinate is then mapped to its own single global coordinate 
with respect to the underlying manifold using splines. The param- 
eter δ in LSE is also an input parameter in SGE, thus, details for 
choosing the value for this parameter will be explained later when 
the parameter values of SGE are explained. 

For all the examples in this section, we set ν =  10% and h =  100 
in SGE. Setting ν to a high value increases the tendency of fitting 
points on the geodesics in SGE with cubic smoothing splines than 
fitting those points with splines having order less than three. SGE 
is fabricated to reveal a smooth underlying manifold that is en- 
sured by cubic smoothing splines than a spline with a low order. 
However, high ν values sometimes over-fit the data and that will 
then yield inaccurate embedding. We empirically learned that set- 
ting ν to 10% can exclude both of aforesaid extremes. Each spline 
is discretized to h segments and the length of the spline is com- 
puted as sum of linear lengths of these segments. While a big h 
gives a very accurate length for the spline, it increases the compu- 
tational time as SGE has to compute lengths of n (n − 1) / 2 splines 
for a dataset of n points. Thus, we set h =  100 since the accuracy 
of the spline lengths by 100 discretization is satisfactory for our 
study. 

We set δ =  3 or 4, and µs =  1 in SGE, if not stated otherwise. 
Each point in the dataset is adjacent to δ number of nearest neigh- 
bors and the graph structure is made. Setting a big value for δ will 
create more edges in the graph and that might loose the topol- 
ogy of the graph as geodesics might not infer the true curvature 
of the manifold in this case. However, a small value of δ might 
produce multiple connected components in the graph where SGE 
treats the large connected component and neglects others in this 
case. We set δ =  3 or 4, since we empirically observed that these 
values stay in the middle of aforesaid extremes. Choosing a best 
value for µs is challenging, thus based on Eq. (11) , we set µs =  1 , 
since this value provides both a perfect smoothness and a better 
fit for the splines. 

The NDR methods that we utilize in this section should pre- 
serve the pairwise distances between data and embedding in or- 
der to compare \ contrast them using two distance metrics [ Eqs. (14) 
and (17) ] that we use to compute the embedding error in this pa- 
per. To visualize an instance of embedding of these four methods 
SGE, Isomap, PMFA, and LSE, we embed a dataset sampled from a 
semi-sphere of 600 points [ Fig. 3 (a)] defined by 
y 1 =  r cos (γ1 ) cos (γ2 ) , 
y 2 =  r cos (γ1 ) sin (γ2 ) , 
y 3 =  r sin (γ1 ) , (12) 
for γ1 =  U[ − π/ 2 , π/ 2] and γ2 =  U[0 , π ] , where U[ a, b] denotes a 
uniform distribution between a and b . Here, r is the radius of the 
semi-sphere which is set to 20 + N [0 , η2 ] , where N [0 , η2 ] is a ran- 
dom variable sampled from a Gaussian distribution with mean 0 
and variance η2 . We set η =  0 as we need this semi-sphere to be 
noise free. 

We compute two dimensional embedding of this semi-sphere 
[ Fig. 3 (b–e)] using Isomap with δ =  3 ; LSE with δ =  3 ; PMFA with 
n 1 c =  n 2 c =  10 and s r =  0 . 9 ; and SGE with δ =  3 , µs =  1 , ν =  10% , 
and h =  100 . According to Fig. 3 , moving from data to embedding, 
LSE shrinks the distances in the embedding while others seem pre- 
serve the original distance between points. Thus, we omit LSE from 
this analysis and only rely on the rest of the methods since two 
distance preserving error metrics that we used here can’t be im- 
plemented for LSE. Moreover, PMFA is computationally expensive 
when the data is high dimensional (as stated in [25] ) like in face 
images of example 2 where the dataset is 4096 dimensions, and 
hand written digits of example 3 where the dataset is 784 dimen- 
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Fig. 3. Two dimensional embedding of (a) a noise free semi-sphere of 600 points using (b) Isomap, (c) LSE, (d) PMFA, and (e) SGE. 
sions. Thus, we omit the implementation of PMFA for the datsets 
in those two examples. 

As the first example, we use a synthetic three dimensional 
dataset of a semi-sphere to analyze the performance of SGE with 
respect to neighborhood size ( δ), smoothness ( µs ), sparsity ( n ), and 
noise ( η). Then, we study the performance of SGE using two high- 
dimensional standard benchmark datasets: 1) face images [32] ; 
and 2) images of handwritten digits (2’s, 4’s, 6’s, and 8’s) [33] . We 
analyze the performance of SGE versus Isomap and PMFA in exam- 
ple 1, and that of SGE versus Isomap in examples 2 and 3. 
4.1. Embedding of a semi-sphere 

We begin this section by embedding a synthetic dataset, sam- 
pled from a semi-spherical manifold, using SGE, Isomap, and PMFA 
to demonstrate the key concepts of our proposed SGE technique 
since, in this case, we can analytically compute the manifold dis- 
tance on the semi-sphere and then compare it with the embedding 
distances computed by above NDR methods. 

First, we compare the performance of SGE with changing δ and 
µs by embedding a sample 600 points generated from the mani- 
fold defined by Eq. (12) with η =  2 . Both µs in SGE and s r in PMFA 
are parameters to control the smoothness of the splines, however, 
while µs can only take any nonnegative value, chosen s r should be 
in [0, 1] [25] . Since we are unable to compare SGE and PMFA in 
this context, we only provide here a comparison between Isomap 
and SGE. 

We set the spline threshold ν and spline discretization h to be 
10% and 100, respectively, and run the SGE algorithm repeatedly 
over the spherical dataset with δ =  2 , 3 , . . . , 8 ; µs =  0 , 0 . 1 , . . . , 1 . 0 
and obtain two-dimensional embeddings. Here, we have 77 differ- 
ent pairs of δ’s and µs ’s, those then produce 77 two-dimensional 
embeddings. Now, we asses the performance of the methods in 
terms of distance preserving ability between the original data and 
the embedding. For each such embedding (77 in total), we com- 
pute distances between points in the embedding space using the 
Euclidean distance metric that we denote by D S . Now, we run 
Isomap with the same sequence of δ’s above and obtain its two- 
dimensional embeddings. The Euclidean distance matrix for the 
embedding of Isomap is denoted by D I . Now, we compute the true 
manifold distances between points of the dataset using the cosine 
law. If α and β are two points on a semi-sphere with radius r , the 
manifold distance d is given by 
d =  rγ ; γ =  cos − 1 ( αβ

| α|| β| )
, (13) 

[34] . We compute all the pairwise distances using Eq. (13) and 
form the distance matrix D M of the data sampled on the manifold. 

The embedding error of SGE, denoted by E S , is computed as 
the Mean Absolute Deviation (MAD) between embedding and data 
[35] . Since the distance matrices are symmetric and have zeros on 
the diagonal, MAD can then be computed using 
E S =  2 

n (n − 1) 
n ∑ 

i = 1 
n ∑ 

j=  i +1 
∣∣( D M ) i j − ( D S ) i j ∣∣. (14) 
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Fig. 4. Analyzing the performance of Isomap and SGE embeddings using Mean Ab- 
solute Deviation (MAD). Herein, we compute, (a) MAD between Isomap embedding 
and data, denoted by E I , for different neighborhood sizes ( δ’s), and (b) MAD be- 
tween SGE embedding and data, dented by E S , for different neighborhood sizes and 
smoothing multiplier ( µ’s). (c) The difference of errors between these two meth- 
ods ( E I − E S ) is computed in the variable space δ and µs . The green cells denote that 
the performance of SGE is superior to that of Isomap . (For interpretation of the refer- 
ences to color in this figure legend, the reader is referred to the web version of this 
article.) 
Similarly, for each pair of δ and µs , we also compute MAD be- 
tween the embedding of Isomap and the original data that we de- 
note by E I . Fig. 4 illustrates MADs for Isomap ( E I ), MADs for SGE 
( E S ), and their differences ( E I − E S ), versus δ and µs . Fig. 4 (a) and 
(b) show that both methods display decreasing errors for increas- 
ing δ’s (i.e., increasing neighbors). Moreover, SGE has a decreas- 
ing error as µs increases. Fig. 4 (c) also indicates that SGE performs 
better than Isomap for larger smoothing multipliers for all δ’s . This 
plot also shows that SGE performs worst when δ =  2 and µs =  0 , 
and performs best when δ =  2 and µs =  1 , as compared to isomap. 

Next, we analyze the influence of data sparsity on the manifold 
for embedding with SGE and compare this to PMFA and Isomap. 
For that task, we produce a sequence of spherical datasets with an 
increasing number of points. We create the first dataset with 200 
points using Eq. (12) with r =  20 + N [0 , 2 2 ] , then add another 100 
points, generated using the same equation, into the first dataset to 
produce the second dataset. Similarly, we generate the last dataset 
of 1200 points. Then, we embed these datasets in two-dimensions 
using Isomap with δ =  3 ; PMFA with n 1 c =  n 2 c =  10 and s r =  0 . 9 ; 
and SGE with δ =  3 , µs =  1 , ν =  10% , and h =  100 . We compute 
the embedding errors E I , E P , and E S using MAD for each dataset 
as explained before. Since a significantly high noise is used for 
the datasets, we create 16 such sequences of datasets and perform 
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Fig. 5. Mean embedding error of Isomap (in red, denoted by E S ), PMFA (in green, 
denoted by E P ), and SGE (in blue, denoted by E S ), versus, (a) sparcity and (b) noise. 
Error bars represent standard deviations of errors computed over realizations. Note 
that, SGE has lower average error than that of Isomap and PMFA . (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
this analysis for16 realizations to allow us to compute averages. 
Fig. 5 (a) shows the mean of embedding errors of 16 realizations 
and error bars for SGE, Isomap, and PMFA. We observe that the er- 
ror associated with SGE embedding is smaller than that of Isomap 
and PMFA for all the values of n . This observation demonstrates 
the advantages of dealing with sparse data when comparing SGE 
to Isomap and PMFA. 

Finally, we study the embedding errors of those three methods 
in terms of the size of the noise present in the data. For that task, 
we create a latticed semi-sphere of 600 points using Eq. (12) with 
appropriately discretized γ1 ∈ [ − π/ 2 , π/ 2] and γ 2 ∈ [0, π ]. Then, 
we impose increasing uniform noise levels into the parameter 
representing the radius as r =  20 + ηU [ − 1 , 1] ; η =  0 , 0 . 3 , 0 . 9 , . . . , 3 
and produce a sequence of 11 datasets. We embed each dataset us- 
ing Isomap with δ =  3 ; using PMFA with n 1 c =  n 2 c =  10 and s r =  0 . 9 ; 
and using SGE with δ =  3 , ν =  10% , µs =  1 , and h =  100 . We create 
25 such sequences of datasets and perform this analysis for 25 re- 
alizations to allow us to compute averages. Fig. 5 (b) presents mean 
embedding errors and error bars for all three methods computed 
using Eq. (14) . We observe that, while E S slowly increases with in- 
creasing η, E I and E P increase quickly with increasing η. 
4.2. Embedding of face images 

In this section, we validate the SGE method using a real-world 
dataset of face images available in [32] . This dataset consists 698 
images each of 64 × 64 dimension with a varying pose and direc- 
tion of lighting, as shown by a sample of 16 snapshots in Fig. 6 (a). 
We randomly choose 400 images as our baseline dataset and gen- 
erate three other datasets of 400 images from the baseline dataset 
by imposing Gaussian noise with standard deviations ( σ ′ s ) 0.1, 0.2, 
and 0.3 [ Fig. 6 (b)]. We set δ =  4 , ν =  10% , h =  100 in SGE and run 
this algorithm over each dataset (4 in total) 5 times for µs =  0, 0.3, 
0.6, 0.9, 1.2. Then, we embed these four datasets in two dimen- 
sions using Isomap and LSE with δ =  4 . 

We use the ability to preserve distances between the origi- 
nal and the embedding data to analyze the performance of the 

Fig. 6. Embedding of face images (64 × 64 dimensional), distorted with different 
noise levels, using Isomap and SGE with different smoothing levels. (a) A sample of 
16 face images [32] ; where the snapshots in the first, second, and third rows, rep- 
resent left-right light variation, left-right pose variation, and up-down pose varia- 
tion, respectively. (b) Face images are distorted by imposing three levels of Gaussian 
noise σ =  0.1, 0.2, and 0.3. The datasets (four in total) are embedded using Isomap 
and then using SGE with smoothing multipliers µs =  0, 0.3 0.6, 0.9, 1.2. Then, (c) 
the embedding errors of Isomap ( E I ) and SGE ( E S ), and (c) their error difference 
are computed. The green cells denote that the performance of SGE is superior to that 
of Isomap . (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
method [36] . In particular, we consider the distances in the origi- 
nal (noise free) imagery as the “true” distances and judge the al- 
gorithm’s ability to recover those distances after the imagery has 
been corrupted by noise. For both the data and the embedding, 
we first search δ nearest neighbors for each point and then pro- 
duce a weighted graph by treating points in the dataset as nodes 
and connecting each two neighbors by an edge having the length 
equal to their Euclidean distance. The weighted graph constructed 
through the nearest neighbor search is a simple graph 2 that does 
not contain self-loops or multiple edges. We compute the ij -th en- 
try of the adjacency distance matrix A for the data as 
A i j =  

{ 
d (i, j ) : if ∃ an edge i j in the graph 

of the original data, 
0 : otherwise, (15) 

and the ij -th entry of the adjacency distance matrix ˜ A for the em- 
bedding data as 
˜ A i j =  

{ 
d (i, j ) : if ∃ an edge i j in the graph 

of the embedding data, 
0 : otherwise. (16) 

2 A simple graph is an undirected graph that does not contain loops (edges con- 
nected at both ends to the same vertex) and multiple edges (more than one edge 
between any two different vertices) [37] . 
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Here, d ( i, j ) is the Euclidean distance between nodes i and j . In this 
paper, we impose Gaussian noise into real-world datasets such as 
face images and images of handwritten digits ( Section 4.3 ). Thus, 
we think of our original data as the uncorrupted data before we im- 
pose the noise. 

For n points in the dataset, the error associated with the neigh- 
bors’ distance is computed as the average of absolute differences 
between entries of the adjacency distance matrices, 
E =  1 

n (n − 1) 
n ∑ 

i, j= 1 
∣∣A i j − ˜ A i j ∣∣, (17) 

where δ is the neighbor parameter [36] . 
Fig. 6 (c) illustrates the embedding errors of Isomap, denoted 

by E I , and embedding errors of SGE, denoted by E S , for σ =  0, 
0.1, 0.2, 0.3 and µs =  0, 0.3, 0.6, 0.9, 1.2. We observe that the 
error increases in both methods when the noise in the data in- 
creases. However, the error of embedding noisy data can be re- 
duced significantly by choosing an appropriate smoothing multi- 
plier in SGE as shown here. Fig. 6 (d) showing the difference of er- 
rors ( E I − E S ) demonstrates that SGE performs better in terms of 
error than Isomap for all the noise levels with µs ≥ 0.3. 
4.3. Embedding of handwritten digits 

Next, we embed handwritten digits available from the Mixed 
National Institute of Standards and Technology (MNIST) database 
[33] using SGE and study the performance of the method. This 
dataset contains 60,0 0 0 images of handwritten digits from 0 to 9 
each of 28 × 28 dimensions. We sample two arbitrary datasets for 
our study, each with 400 images, such that one dataset has only 
the digit 2 and the other dataset has the digits 2, 4, 6, and 8. 

We run Isomap over the dataset having the digit 2 with δ =  
4 . We run SGE over this dataset two times: first with δ =  4 , 
µs =  0 , ν =  10% , and h =  100 ; and second with δ =  4 , µs =  0 . 6 , 
ν =  10% , and h =  100 . Thus, aforesaid procedure yields three two- 
dimensional embeddings. We formulate the adjacency distance 
matrices for the data and embedding using Eqs. (15) and (16) , 
respectively, and compute the error of embedding using Eq. (17) . 
Then, we distort this dataset with a Gaussian noise having σ =  0 . 2 
and run Isomap with δ =  4 . We run the noisy dataset two times 
in SGE: first with parameters δ =  4 , µs =  0 , ν =  10% , and h =  100 ; 
and second with δ =  4 , µs =  0 . 6 , ν =  10% , and h =  100 . The em- 
bedding errors for Isomap, SGE with µs =  0 , and SGE with µs =  
0 . 6 , are given in Table 1 (a). We see in this table that, regardless of 
the noise present in the data, the error associated with SGE with- 
out smoothing is greater than that of Isomap, while that of SGE 
with smoothing is smaller than that of Isomap. Moreover, the er- 
ror of embedding is increased when moving from the noisy dataset 
to the noise free dataset by 0.87 for Isomap, while that is only in- 
creased by 0.24 for SGE with µs =  0 . 6 . This is due to the fact that 
setting the smoothing multiplier µs to 0.6 allows SGE to recover 
the manifold corrupted by noisy measurements. 

Next, we embed a sample of 400 digits, consisting of 2’s, 4’s, 
6’s, and 8’s, into two dimensions using Isomap and SGE. We run 
Isomap over this dataset with δ =  4 . Then, run SGE two times: first 
with δ =  4 , ν =  10% , µs =  0 , and h =  100 ; and second with δ =  4 , 
ν =  10% , µs =  0 . 9 , and h =  100 . Thereafter, we distort the dataset 
with a Gaussian noise having σ =  0 . 3 and then run Isomap with 
δ =  4 followed by running SGE with the same two parameter sets 
that we used before. Then, we compute the Isomap and SGE errors 
associated with embedding of noise free and noisy datasets using 
Eq. (17) that we present in Table 1 (b). Similarly to the embedding 
of the digit 2, regardless of the error in the data, here we also note 
that the embedding error of SGE with no smoothing is greater than 
that of Isomap, while the embedding error of SGE with smoothing 

Table 1 
Errors of Isomap and SGE embeddings of, (a) a sample of 400 handwritten2’s; 
and (b) a sample of 400 handwritten digits having number 2’s, 4’s, 6’s, and 8’s. 
The first row of (a) shows the error when the dataset of digit 2 is embedded us- 
ing both Isomap, and SGE with two smoothing coefficients µs =  0 and µs =  0 . 6 . 
Then, the dataset is imposed with a Gaussian noise of σ =  0 . 2 and embedded 
using both Isomap, and SGE with µs =  0 and µs =  0 . 6 that you see in the sec- 
ond row of (a). The first row of (b) represents the errors of Isomap embedding, 
and SGE embeddings with µs =  0 and µs =  0 . 9 , of the noise free version of the 
sample of digits having the numbers 2, 4, 6, and 8. The second row of (b) rep- 
resents the errors of Isomap embedding, and SGE embeddings with µs =  0 and 
µs =  0 . 9 , of the noisy version of the dataset created by imposing a Gaussian 
noise with σ =  0 . 3 . 

(a) Noise Isomap SGE 
µs =  0 µs =  0 . 6 

Digit “2”
σ =  0 7.02 7.13 5.86 
σ =  0 . 2 7.89 8.19 6.10 

(b) Noise Isomap SGE 
µs =  0 µs =  0 . 9 

Digits “2”, “4”, σ =  0 7.38 7.43 6.09 
“6”, and “8” σ =  0 . 3 8.20 8.36 6.30 

Fig. 7. Isomap and SGE embeddings of handwritten numbers 2, 4, 6, and 8. Differ- 
ent digits are shown in different colors (2’s in green, 4’s in orange, 6’s in brown, and 
8’s in gray) in the two-dimensional embedding space and the embedded snapshots 
illustrate the appearance of arbitrarily chosen handwritten digits. The left panel 
shows the Isomap embedding of the noisy dataset ( σ =  0 . 3 ) and the right panel 
shows the SGE embedding of the same dataset with µs =  0 . 9 . The embedding error 
of each case is indicated in the title of the corresponding panel. Note that, quali- 
tatively speaking, the SGE embedding appears to have better clustering of similar 
digits than that of Isomap. (For interpretation of the references to color in this fig- 
ure legend, the reader is referred to the web version of this article.) 

is smaller than that of Isomap. Moreover, moving from embedding 
of noise free data to embedding of noisy data, while the error asso- 
ciated with Isomap is increased by 0.88, that of SGE with µs =  0 . 9 
is increased only by 0.21. 

Finally, we compare the classification ability of both methods in 
the presence of high noise. In this example, we define classifica- 
tion as spatially clustering of similar digits. To visualize the clas- 
sification ability, we construct two-dimensional Isomap and SGE 
embeddings of the noisy dataset ( σ =  0 . 3 ) of digits 2, 4, 6, and 8, 
that we present in Fig. 7 . Therein, we observe that, while Isomap’s 
embedding is unable to maintain clear boundaries between clus- 
ters of the same digit, SGE could at least separate numbers 2 and 
8 from the rest of the digits. Thus, we can conclude that while 
Isomap is unable to achieve a clear classification of digits, SGE with 
µs =  0 . 9 achieves qualitatively better classification, even under the 
high noise present in the data. 



234 K. Gajamannage et al. / Pattern Recognition 87  (2019) 226–236 
5. Conclusion 

Nonlinear dimensionality reduction methods can recover un- 
faithful embeddings due to sparsity and presence of high noise 
in the data. In order to obtain a faithful embedding for sparse 
and noisy data, some smoothing procedure should be performed 
in the embedding. With this idea in mind, herein we introduced a 
novel nonlinear dimensionality reduction framework using smooth 
geodesics that emphasizes the underlying smoothness of the mani- 
fold. Our method begins by first searching for nearest neighbors for 
each point using a δ-nearest neighbor search [21] . Then, we create 
a weighted graph by representing all of the data points as nodes 
and joining neighboring nodes with edges having their Euclidean 
distances as weights. For each pair of nodes in the graph, we create 
a geodesic [14] , that is defined as the shortest path between the 
given nodes, generated using Floyd’s algorithm [38] . We replaced 
Dijkstra’s algorithm in classic Isomap with Floyd’s algorithm since 
Floyd’s algorithm is more computationally efficient than Dijkstra’s 
algorithm in our case. We fit each such geodesic with a smoothing 
spline (called a smooth geodesic) that is controlled by two param- 
eters: smoothing multiplier ( µs ) and spline threshold ( ν) [29,30] . 
The length of these splines are treated as manifold distances be- 
tween corresponding points. 

We use a classic MDS method to find the dimension of the dis- 
tance matrix of smooth geodesics and perform the embedding. The 
MDS method converts the squared distance matrix to a Gram ma- 
trix, employs EVD to compute eigenvalues and eigenvectors, and fi- 
nally uses Eq. (3) to produce the embedding [26] . In theory, a Gram 
matrix of a squared distance matrix should be SPD [26] . However, 
due to geodesic approximation of the true manifold distance and 
other numerical approximations, this Gram matrix might deviate 
slightly from being SPD. Since this slightly corrupted Gram matrix 
produces small negative eigenvalues and those then violate Eq. (3) , 
we replace EVD in MDS by SVD. Note that, the EVD and SVD of an 
exact Gram matrix are the same. 

In SGE, the order of the spline fit is set to either three, two, or 
one, depending on the spline threshold. Since a sufficient smooth- 
ness and a low fitting error can be obtained by cubic smoothing 
splines, we first rely on a spline fit of order three. However, we 
observed that the smoothing spline routing in [29] fits very long 
cubic splines for some specific smoothing multipliers. Thus, if the 
length of a cubic smoothing spline doesn’t satisfy the threshold, 
we reduce the order of the spline to a lower level. Choosing the 
order of the spline can also be considered as a trial and error pro- 
cess that we implement here by utilizing a threshold. In future, we 
will consider replacing this threshold by a trial and error process 
to obtain a faithful embedding. Hereby, we also be able to consider 
higher orders for the spline in Eq. (6) than the current highest or- 
der of three. 

The smoothing spline approach in SGE approximates the true 
manifold more accurately in many cases than the geodesic ap- 
proach in Isomap ( Fig. 2 ). Specifically, the use of smoothing splines 
can closely approximates the true manifold distance even when 
the data is sparse, in contrast to Isoamp which creates polygonal 
paths that then add extra length to the true manifold distance. In 
the limit of infinite number of sample points, the Isomap geodesics 
converge to the true manifold distance [31] . However, due to the 
smoothing spline approach in SGE, we have observed that the em- 
bedding error of SGE is significantly lower than that of Isomap in 
many practical problems. This was evidenced by the semi-sphere 
example in Section 4.1 . Although, both methods do not converge 
to the true manifold when the data is corrupted by noise, SGE em- 
phasizes the smoothness of the manifold while Isomap is severely 
impacted as the errors in the lengths of the Isomap polygonal 
paths is intensified. 

In the future, we plan to modify the SGE method such that it 
converges even when the data is corrupted by noise. For that, first, 
we will need to estimate, or be provided with, the curvature of 
the manifold described by noisy data. Then, we plan to replace the 
nearest neighbor search with a range search [22] that finds all the 
points within a given distance based on the curvature. We will run 
the range search over the points those are close to the manifold 
(we can find these points as we know the curvature), and then cre- 
ate a graph by treating data points as nodes and connecting neigh- 
bors by edges. We expect that the range search will ensure that the 
graph doesn’t have long edges arising from highly noisy points in 
data. As the range search is ran over the data points close to the 
manifold, we expect to be able to create shortest paths those are 
close to the manifold. Finally, we will follow all the other steps 3–6 
as in Algorithm 1 of SGE and compute the embedding. 

We first demonstrated the effectiveness of our NDR method 
on a synthetic dataset representing a semi-sphere. We observed 
that the smoothing approach provides a better embedding perfor- 
mance than the embedding achieved by standard Isomap or PMFA 
when embedding a noisy dataset. We also observed that the errors 
in Isomap and SGE decrease as the neighborhood size increases 
[ Fig. 4 (a) and (b)]. However, when the neighborhood size is small, 
say δ =  2 , SGE has clear performance advantages over Isomap for 
noisy data when a sufficient smoothness is employed [ Fig. 4 (c)]. 
The spherical dataset also demonstrated that SGE is more robust to 
sparse sampling than Isomap and PMFA [ Fig. 5 (a)]. Moreover, while 
increasing noise in the data always appears to reduce the perfor- 
mance of the embedding, irrespective to the method that is used, 
we see that Isomap and PMFA are highly effected by increasing 
noise while SGE, with a judicious choice of smoothing multiplier, 
is more robust [ Fig. 5 (b)]. 

We also studied two standard benchmark datasets, face im- 
ages [32] and handwritten digit images [33] , and found that SGE 
provided similar superior performance on noisy versions of those 
datasets. In particular, for the digit classification task, we observed 
that SGE provides qualitatively superior classification performance 
(that is, clustering similar digits into one group) in the presence 
of noise. As future work, we will quantify the classification perfor- 
mance of the low-dimensional nonlinear embedding using a vari- 
ety of standard supervised machine learning techniques. 

As a potential application of SGE, we can modify some semi- 
supervised learning methods such as [39] and metric learnings 
such as [40] by replacing their LDR routing, applied in unlabeled 
portions of their data, by SGE. By doing this, we believe that the 
results of those methods can be improved when they are applied 
to nonlinear data due to the nonlinear and smoothing features of 
SGE. Specifically, the similarity evaluation framework in [40] in- 
puts both supervised and unsupervised data. The data here is a 
collection of patients’ claim records, lab test records, and phar- 
macy records. A distance measure between each pair of patients 
is generated as the sum of the distances in the supervised data 
and the unsupervised data. The distances in unsupervised data are 
computed on the embedding using LDR methods, such as Local 
Linear Embedding (LLE) [41] and Laplacian eigenmaps [42] , might 
not emphasis nonlinear features of the data. Thus, replacing these 
LDR method by SGE can produce accurate results in large array of 
datasets. On the other hand, the graphed based classification rout- 
ing presented in [39] leverage semi-supervised data (data with la- 
bels and without labels) and creates a graph structure of the data. 
Then, it estimates the edge weights using a modified LLE method 
followed by performing a classification which is done based edge 
weights. However, using a LDR method such as LLE for nonlin- 
ear data is not very efficient as it does not leverage the nonlinear 
features of the data. We believe that replacing the LLE routing in 
this method by SGE can produce improved results in many such 
datasets. 
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The NDR method that we introduced here ensures better per- 

formance and preserves the topology of the manifold by emphasiz- 
ing the smoothness of the manifold when embedding sparse and 
noisy data. This method is an extension of famous NDR method 
Isomap where we replaced the geodesics with smoothing splines. 
In the future, we plan to examine such techniques in more gen- 
erally. For example, one can imagine generalizing Isomap to the 
case where both geodesics and smoothing splines are not a good 
approximation of long manifold distances. In such a case, one can 
attempt to treat the long manifold distances as unknown, and em- 
ploy matrix completion techniques like [43,44] on distance matri- 
ces where some entries are not observed. 
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