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We have been motivated by a question of “anticontrol” of chaos [Schiff et al., 1994], in which
recent examples [Chen & Lai, 1997] of controlling nonchaotic maps to chaos have required
large perturbations. Can this be done without such brute force? In this paper, we present an
example in which a family of maps, Gε, numerically displays a transverse homoclinic point,
and hence a horseshoe and chaos, for a fixed value of the parameter ε. We show that these
maps converge pointwise to a linear map. Furthermore, a simple scaling conjugacy is shown
for a family of maps which even shows geometric similarity of all relevant structures. This is
in seeming contradiction to well-known structural stability results concerning horseshoes, but
careful consideration reveals that these theorems require convergence in a uniform topology in
function space. We show that no such convergence is possible for our family of maps, since
it is impossible to find a finite radius disk which contains all of the horseshoes Λε for every
ε. Thus, there is no contradiction. Our example may be considered to be a new kind of
bifurcation route to chaos by horseshoes, in which rather than creating/destroying a horseshoe
by creating/destroying transverse homoclinic points, the horseshoe is sent/brought to/from
infinity.

1. Introduction

In this paper, we address the question of how
“far” from an obviously simple dynamical system
might one find a chaotic dynamical system. We
have chosen an example family of continuously
ε-parameterized maps Gε, for which G0 is linear,
but fε is chaotic for any ε > 0.

Our motivation in this question is to investigate
possible “fine-tuning” in a control mechanism which
might drive a simple (linear) system to chaos. Such
control, from order to chaos, has been characterized
as “anticontrol,” of chaos [Schiff et al., 1994]. Con-
trolling chaos has been a hot topic in the dynamical
systems literature [Ott et al., 1990; Chen & Dong,
1998; Kapitaniak, 1996], since controls which ex-
plicitly exploit chaos offer rich flexibility and agility

[Shinbrot et al., 1993; Kostelich et al., 1993; Bollt
& Meiss, 1995; Schweizer & Kennedy, 1995; Bollt &
Kostelich, 1998]. In particular, chaos is often a ben-
eficial property which anticontrol strives to exploit
even if the process was not originally chaotic. For
example, chaos is helpful for fluid mixing [Ottino,
1989] by “chaotic advection,” and to cite a biologi-
cal example, chaos is now thought to be necessary
in the (human) brain [Schiff et al., 1994].

In recent work [Chen & Lai, 1997], the authors
showed that a rather arbitrary nonlinear dynamical
system,

xn+1 = f(xn) , (1)

with f ∈ C1(<n), may be anticontrolled by a
combination of linear state-feedback and a mod
operation to yield a rigorously chaotic process.
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That is, a feedback input sequence {uk}∞k=0,

xn+1 = f(xn) + un , (2)

is used to effectively generate a process with posi-
tive Luyapunov exponent(s), which we characterize
in 1-D by the linear map f(x),

xn+1 = f(x) = 2xn , (3)

with exponent λ = ln 2, defining the stretching
component of chaos. Further introducing a mod(1)
operation,

xn+1 = g(x) = 2xnmod(1) , (4)

effectively introduces a second ingredient for chaos,
folding and continual refolding. In fact, Eq. (4)
can easily be shown [Ott, 1994] to be topologi-
cally (semi)conjugate1 to the Bernoulli shift map
on two symbols, which in turn can be shown to be
rigorously chaotic according to the well-accepted
definition of Devaney [1989], requiring (1) sensi-
tive dependence on initial conditions, (2) topolog-
ical transitivity, (3) a dense set of periodic orbits.
In fact, conditions (1) and (2) are sufficient, as (3)
follows [Martelli et al., 1998]. But f(x) and g(x)
from Eqs. (3) and (4) are quite “far” from each
other, say in an L2 sense; this sufficient anticontrol
is brutish. Is such brute force necessary? Therefore,
the “fine-tuning” part of our question is: Given a
linear dynamical system f(x), can a nearby dynam-
ical system g(x) be found which is chaotic. In this
paper, we explicitly construct such an example.

If we wish to find a g(x) with a horseshoe,
the converse of structural stability theorems (see
Theorem 1) indicate that no such g(x) may ex-
ist “nearby” f(x). In brief, structural stability
of horseshoes imply that in a “neighborhood” of
a g(x), which has a horseshoe, all “nearby” maps
g(x)+δg(x) also have topologically conjugate horse-

shoes. This is in seeming contrast to the example
which we explicitly construct here. The loophole
which allows our example is in the topology. We
have thus far been deliberately vague in defining the
topology in which we measure function distance, as
this is exactly the sensitive issue on which our ques-
tion and discussion pivots. It turns out that struc-
tural stability results we refer to rely on the uniform
topology, and the example we present in this paper
is a family of maps which converge pointwise to a
linear map, but for each nonzero perturbation dis-
plays a horseshoe; our sequence of maps does not
converge uniformly to the linear map, in agreement
with the requirement that such is forbidden by the
converse structural stability theorems.

2. Structural Stability

In the guise of a control problem, we have re-
stated the question of “structural stability” [Hirsch
& Smale, 1974]. In particular, Smale was interested
in topologically significant behavior, in the sense
that their behavior could not be simply “perturbed-
away” by small noise or modeling errors. Therefore,
structurally stable properties could be considered to
be physically relevant, since they would not disap-
pear in the unavoidable presence of small noise. De-
vaney introduces [Devaney, 1989], “Briefly, a map
f is structurally stable if every ‘nearby’ map is
topologically conjugate to f and so has essentially
the same dynamics,” but he goes on to point-out
the importance of a precise meaning for the word
“nearby.”

The Cr topology2 is commonly used to define
structural stability.

Definition 1 [Katok & Hasselblatt, 1995]. A Cr

map f : M → M is Cm-structurally stable,
1 ≤ m ≤ r, if there exists a Cm topological

1Two maps f : M → M and g : N → N are topologically conjugate if there exists a homeomorphism h : M → N which
commutes, f = h−1 ◦ g ◦ h, and we write f ∼ g [Katok & Hasselblatt, 1995]. If h is only a surjection, then we say there is a
semi-conjugacy.
2The Cr topology is easily defined for 1-D functions. Given two functions f, g : M → M , and M ⊆ <, the C0(M) topol-
ogy follows the C0-metric: ρC0(M)(f, g) = supx∈M |f(x) − g(x)|. Similiarly, the Cr-metric, ρCr(M)(f, g) = supx∈M(|f(x) −
g(x)|, . . . , |f (r)(x)−g(r)(x)|, defines the associated Cr(M) topology. Note that ρCr(M)(f, g) is a well-defined metric only for a
compact M 6⊆ <, e.g. an interval. The natural extension to transformations in <n, for compact metrizable topological spaces,
such as a compact manifold M , follows the C0 or uniform topology, again following ρC0(M)(f, g) = supx∈M |f(x)−g(x)|. Then,

the C1 topology follows the C0 topology. Given f , g and Jacobian derivatives Df and Dg, ρC1(M)(f, g) = max(ρC1(M)(f, g),
‖Df −Dg‖0) and ‖Df −Dg‖0 = supv∈TM, ‖v‖=1(Df −Dg) · v denotes the sup-norm on the tangent space. Likewise, there is
an extension to Cr(M) [Katok & Hasselblatt, 1995]. Our main point is the importance of a compact domain to the issue of
“nearby” in the definition of structural stability.
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neighborhood U of f , such that every g ∈ U is topo-
logically conjugate, f ∼ g.

It turns out that for this definition to make
sense, we must be careful to choose a metrizable do-
main M , such as a compact manifold. Note that on
an unbounded domain, two seemingly nearby func-
tions are infinitely Cr-apart (see footnote 1). For
example, let f(x) = 2x, and g(x) = (2 + ε)x, then
ρCr(<)(f, g) = supx∈<(|f(x) − g(x)|, . . . , |f (r)(x) −
g(r)(x)| = ∞, for every ε > 0, even while they
are considered Cr-close when measured on a com-
pact domain, such as M = [a, b] is an inter-
val, ρC0([a,b])(f, g) = supx∈[a,b] |f(x) − g(x)| =

max(2|a|ε, 2|b|ε). For 1-D maps, a specialization
of Definition 1 can be found in [Devaney, 1989], by
requiring M = [a, b] is an interval, and therefore
a Cr(M) ε-neighborhood of f , or ball, may be de-

noted B
Cr(M)
ε (f), ε > 0, consists of B

Cr(M)
ε (f) =

{g ∈ Cr(M) : ρCr(M)(f, g) < ε}, and these balls
generate arbitrary neighborhoods U .

We will present a model in the next section,
which we argue has horseshoes for every nonzero
value of the parameter, but the model is arbitrarily
close to a linear map. This is seemingly in conflict
with the following theorem, but that the example is
allowed to exist is realized by careful consideration
of the metric with which we measure “nearby” in
function space.

Theorem 1 [Katok & Hasselblatt, 1995]. Given
a C1 diffeomorphism f : U → M, with the max-
imal invariant set Λ of the horseshoe of f, then
any g sufficiently C1 close to f has an invariant
set Λ′ such that f |Λ is conjugate to f ′|Λ′: there
exists a homeomorphism h : Λ → Λ′ such that
h ◦ f |Λ = f ′|Λ′ ◦ h

3. From a Linear Model to Horseshoes

We begin with an obviously simple and nonchaotic
dynamical system, the linear equation,

xn+1 = L(xn) = A · xn , (5)

where for simplicity’s sake, we choose xn ∈ <2.
Therefore, our goal is to design a dynamical system
xn+1 = f(xn), which is chaotic and arbitrarily close
to Eq. (5). To further simplify a concrete problem,
for now we assume a hyperbolic saddle in orthogo-

nal coordinates,

A =

(
c 0

0 d

)
, d > 1 , 0 < c < 1 . (6)

With stable manifold W s(0) = Es(0) = {(x, y) :
y = 0}, and unstable manifold W u(0) = Eu(0) =
{(x, y) : x = 0}. We choose,

c =
1

2
, and d = 2 , (7)

in the rest of the following. We thus begin with the
“stretch” ingredient already in place, but we discuss
control to such point from arbitrary starting points
in the conclusion section. First we strive to design
a perturbation of the linear map to introduce the
“fold” ingredient of chaos.

We recall [Smale, 1963; Wiggins, 1992; Katok
& Hasselblatt, 1995] the famous “horseshoe” the-
orem due to Smale, on which motivation for our
construction relies.

Theorem 2 [Smale, 1963; Wiggins, 1992; Katok
& Hasselblatt, 1995]. Given a Cr diffeomorphism
f, r ≥ 2, with hyperbolic periodic point p, such
that W s(p) and W u(p) intersect transversally, then
there exists integer time n ≥ 1 such that fn has an
invariant Cantor set, Λ. Furthermore, there exists
a conjugacy h : Λ→ Σ2 such that h ◦ fn|Λ = s ◦ h,
where Σ2 is the full 2-shift, and s is the Bernoulli
shift map.

Hence, our goal is to fold the unstable mani-
fold of Eq. (5) onto the stable manifold; the result-
ing dynamical system has a homoclinic point, possi-
bly transverse, and hence, an embedded horseshoe.
Furthermore, our goal is to achieve the horseshoe
with a (suitably defined) small perturbation to the
map. As already mentioned when stating structural
stability Theorem 1, these are conflicting goals; the
existence of the following solution, which we now
construct, is permitted by carefully considering how
“close” is defined.

To control the variation from the linear model
Eq. (5), we design an ε-parameterized family of dy-
namical systems,

Gε = Fε ◦ L , (8)

such that,
F0 = I , (9)

is the identity transformation when ε = 0, but Gε
is chaotic for every ε > 0.
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4. Rotation to Fold

We have chosen a rotation model, to achieve the
desired folding. Let,

Fε(z) =

(
r cos(θ + εrα)

r sin(θ + εrα)

)
, (10)

where,

r =
√
x2 + y2 , θ = tan−1

(
y

x

)
. (11)

We find that if α = 0, then Fε does not rotate
the unstable manifold of Gε = Fε ◦ L, W u

Gε
(z) fast

enough to overcome the exponential growth along
the unstable manifold of L. However, we observe
that α ≥ 1 is sufficient, and we choose α = 1 in
what follows.

We see that Fε(z) is continuously differentiable
for all z 6= 0, and the discontinuity is removable. So
we let Fε(0) = L(0). Therefore, we have an inverse
of the map, G−1

ε = L−1 ◦ F−1
ε , where F−1

ε and L−1

are each easily computed.
In Figs. 1 and 2, we show the evolution of a unit

circle, under repeated iterations of Gε and G−1
ε , for

fixed ε = 1/100. These figures give numerical evi-
dence that under several iterations, the unit circle
folds completely back over itself in a manner which
suggest an embedded horseshoe Λε. In fact, the
double folding of the unit circle over itself suggests
the existence of a larger embedded set Υε which is
conjugate to the full 3-shift Σ3. We use the sub-
script “ε” to index the sets Λε and Υε, because
the scaling conjugacy presented in the next section
means that the existence of such sets for any one ε
forces a corresponding set for all ε > 0.

Fig. 1. Evolution of a unit circle under repeated iterations by the map Gε, ε = 1/100. Upper-right inset: The unit circle
S, and the (pre)iterates G−2

ε (S), G−1
ε (S), Gε(S), and G2

ε(S). Lower-left inset and center: We see that G−6
ε (S) intersects

G6
ε(S) transversally in a manner indicating a horseshoe (see Fig. 2). For other values of ε, we get the same kind of “overlap”

intersection between G−mε (S) intersects Gmε (S), for some m(ε).
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Fig. 2. A unit circle S the 12th (pre)iterate under the mapG12
ε , G−12

ε , ε = 1/100. Lower-left inset: G12
ε folds completely across

S, numerically indicating a horseshoe, and the double folding across S indicates a conjugacy to the 3-shift Σ3. Upper-right
inset: The developing tangle of G12

ε , G−12
ε over S.

Consider implications of slowly decreasing ε
toward zero.

Remark 1. By continuity of Fε with respect to ε,
we have the pointwise convergence, Gε(z) → L(z)
as ε → 0+, for each z. Thus, small controls ε give
small ‖Gε(z) − L(z)‖2, for each fixed z.

Remark 2. Numerical observations in Figs. 1–3 in-
dicate that Gε(z) has a transverse homoclinic point,
and hence a horseshoe for every positive ε. We will
give more rigorous support to these numerical ob-
servations in the next section.

In Figs. 4 and 5, we numerically show the
consequences of decreasing ε. In short, the ho-
moclinic tangles are geometrically similar for all
ε > 0. We give rigorous proof of this in the next
section. Therefore, each homoclinic point moves
along a line-ray emanating from the origin as ε is

decreased toward zero, which is seen in Fig. 4, where
several primary homoclinic points are highlighted
(circled) for a sequence of εi, with lines drawn
connecting each correspondingly moved intersection
points. Geometric similarity also implies that the
angles between stable and unstable manifolds at
each homoclinic point must be preserved, which is
what we observe in Fig. 5. Thus, when ε is adjusted,
we do not expect any angles between stable and un-
stable manifolds to deform to nontransversality, as
is a traditional bifurcation route for the destruction
of a horseshoe.

That a horseshoe map can be found arbitrarily
close to a linear map is seemingly in conflict with the
well-known result that horseshoes are structurally
stable. In light of Theorem 1, Remark 2 seems im-
possible, since maps “nearby” maps with horseshoes
must also have horseshoes, but the “loophole” is in
the definition of nearby.
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Fig. 3. A phase portrait of the stable and unstable manifolds of the map Gε, ε = 1/100, in which we see a tell-tale homoclinic
tangle. The phase portrait is shown on a direction-field plot of Gε, in which direction (from tail toward “+” sign) indicates
the vector change between a point and its iterate: λ[Gε(z) − z]. The scaling factor λ is chosen uniformly for this figure to
shorten these vectors for aesthetic reasons. We see that the rotation direction field Fε composed with the hyperbolic saddle
direction field L gives the direction field Gε which sweeps points toward the attractor shown.

Fig. 4. A sequence of homoclinic tangles of Gεi for εi = 1/2εi−1.
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Fig. 5. Angles at transverse homoclinic points of Gε as a function of ε. In Fig. 4, each of the highlighted sequence of primary
homoclinic points shown, have angles between stable and unstable manifolds which are constant as a function of ε.

5. The Scaling Conjugacy

Adjustments to the rotation parameter ε in
Eqs. (8)–(10) give the following scaling relationship,

Gε(z) =
ε̃

ε
Gε̃

(
ε

ε̃
z

)
. (12)

This scaling relationship is easily proven for the ro-
tation function Eq. (10),

Fε(z) =
ε̃

ε
Gε̃

(
ε

ε̃
z

)
, (13)

and composition with the linear transformation L,
Eq. (5), does not upset the relationship in Gε =
Fε ◦ L.

The implication of scaling relationship Eq. (12)
is that the stable–unstable manifold structure of the
fixed point z = 0, for fixed ε, is geometrically simi-
lar to the stable–unstable manifold structure arising
at any other ε̃ value. We have illustrated this fact
graphically in Fig. 4, in which we see a sequence of
homoclinic tangles, for a sequence of εi, where each
εi = 1/2εi−1. From Eq. (12) follows that the ho-
moclinic tangle doubles in size for each halving of
ε, which we see in Fig. 4, and corresponding homo-
clinic points are connected by rays from the origin to
illustrate this fact. It also obviously follows that all

corresponding tangent angles of homoclinic points
are preserved, see Fig. 5. Hence a transverse homo-
clinic point for a given fixed ε must be a transverse
homoclinic point for all ε.

The above follows the fact that the scaling fac-
tor s = (ε̃/ε) gives a conjugacy between Gε|<2 and
Gε̃|<2 by the change of variables,

h(z) = sz , s =
ε̃

ε
, (14)

and,

h ◦Gε = Gε̃ ◦ h . (15)

Remark 3. Any horseshoe which may exist for the
map Gε|<2 must also have a corresponding horse-
shoe for any other Gε̃|<2 . Note however, that our
evidence for horseshoes for any fixed ε is numer-
ical, following Theorem 2, by numerically finding
a transverse homoclinic point as drawn in the fig-
ures. But if we believe the existence of a horseshoe
for any one ε, we must believe conjugate horseshoes
for all ε, by the conjugacy Eq. (15). Geometric sim-
ilarity gives that even the angles of each transverse
homoclinic point are preserved.
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Remark 4. It follows that any ball Bε ⊂ <2 of min-
imal diameter dε, (say diam(B) = supza, zb∈B |za −
zb|, and dε = inf{B∈<2:Λε⊂B} diam(B)), which con-
tains the horsehoe set Λε, must scale up to cover
the horsehoe set Λε̃ (assume ε > ε̃) by a factor of
1/s = ε/ε̃, to dε̃ = dε/s, as ε is reduced to ε̃. Thus,
as ε→ 0+, the diameter of a minimal covering ball
must diverge, dε →∞.

Proposition. Gε̃ does not converge uniformly to L
as ε→ 0+.

Proof. Following Remarks 3 and 4, we have that
no compact ball can be found which covers Λε for
all ε. �

Corollary. Gε̃ → L pointwise, but not uniformly,
as ε→ 0+. This is permitted by Theorem 1.

6. Conclusion

Thus, the seeming conflict is resolved. On the one
hand, Theorem 1 says that a map “near” a map
which has a horseshoe must also have a horseshoe.
But “near” must be measured in terms of the uni-
form C1 topology, which requires a compact do-
main, as discussed in remark (see footnote 2). On
the other hand we have shown an example family
of maps Gε, such that each fixed ε displays a horse-
shoe set Λε, and the family converges to a linear
map, Gε → L as ε → 0+, but the convergence is
only pointwise, not uniform. The lack of uniform
convergence is due to the scaling conjugacy which
essentially sends points on the horseshoes Λε to in-
finity, making impossible the definition of a single
compact region to define a uniform topology. This
means that Theorem 1 is of course not violated.

Hence, we have a new prototype bifurcation,
which destroys/creates a horseshoe. In short, our
horseshoe is sent to infinity, rather than the typical
model in which it is destroyed. Typically, one thinks
of the angle between stable and unstable manifolds,
of a transverse homoclinic point, continuously de-
forming, under variations of an adjustable parame-
ter, eventually destroying the transversality at some
critical parameter value. Thus, the open neighbor-
hood in a family of maps, promised by Theorem 1,
may be realized as a single parameter path in such
an adjustable parameter, as an expected interval
of critical parameters. This viewpoint does not
hold with our family of maps Gε, for which angles

at transverse homoclinic points must be preserved
when adjusting the parameter ε.

We do in fact find that Theorem 1 applies to
our family of maps Gε, in the situation where we
adjust some other parameter, such as the c or d val-
ues in the matrix L of Eq. (6) in the linear Eq. (5)
built into Gε = Fε ◦ L. For any fixed ε, one can
define a compact disk to contain the horseshoe set
Λ, and Theorem 1 therefore guarantees that “close-
enough” functions, measured in the C1 topology on
that disk (see footnote 2), will have conjugate horse-
shoes. Indeed, we find that 0.4965 ≈ c−cr < c < c+cr ≈
0.50315 and 1.9875 ≈ d−cr < d < d+

cr ≈ 2.014 each
give paths through these balls in function space. In
Fig. 6, we show the stable and unstable manifolds
of a map Gε, ε = 1/100, but c = 0.4965 ≈ ccr and
d = 2, i.e. just at the homoclinic tangency point.
This displays the more traditional homoclinic bi-
furcation, or homoclinic tangency crisis. This is the
traditional bifurcation which destroys a homoclinic
point, which Theorem 1 was designed to address.
Theorem 1 does apply to this situation, as we can
draw a single disk, containing the family of homo-
clinic tangles for c ∈ [c−cr, c

+
cr], and hence we may

discuss uniform convergence.
Consequently, the type of bifurcation displayed

by our map Gε can be considered new. It is a
global bifurcation in which the horseshoe is brought
“from infinity” and ready-made by dialing up the
adjustable parameter ε. For small values of ε > 0,
while Gε has a horseshoe, the chaotic nature of the
dynamical system is on a slow time scale, and on a
large phase space scale, that for short time intervals
and small values of z0, the map will initially behave
approximately as the linear map L.

We have also numerically observed that in
Fig. 2 (lower-inset), we see that twelve iterations of
the unit circle completely self-overlaps in a three-
fold overlap after twelve iterations, for ε = 1/100,
but in principle for some other number of iterations
for any other ε as guaranteed by Eq. (15). This sug-
gests the stronger statement that there is a conju-
gacy to a full 3-shift Σ3, rather than simply a conju-
gacy to a full 2-shift as guaranteed by the horseshoe
Theorem 2.

In summary, what we have proven is that by
the geometric scaling conjugacy, the family of maps
Gε is topologically equivalent. Furthermore, by
the fact that this conjugacy is a geometric simil-
iarity, all relevant structures scale arbitrarily large
as the control parameter is decreased ε → 0+.
Hence follows the proposition that there is no
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Fig. 6. A tangent homoclinic point at c = 0.4965. For c not in 0.4965 ≈ c−cr < c < c+cr ≈ 0.50315, we observe no transverse
homoclinic point. This is the traditional bifurcation which destroys a homoclinic point, which Theorem 1 was designed to
address.

uniform convergence, and Theorem 1 does not ap-
ply. That a horseshoe exists for Gε at any fixed
ε > 0 follows the numerical evidence that stable
and unstable manifolds intersect transversally. If
we believe this numerical evidence, then by conju-
gacy we have proven that a horseshoe exists for all
ε > 0 during the limit ε→ 0+. Our future work will
focus on trying to rigorously prove the existence of
a transverse homoclinic point for a fixed ε.

Finally, we discuss our original motivating
problem. How far is an arbitrary map from a
chaotic map? We cannot answer this question in
general. Instead, we offer a specific path through
function space. Given an arbitrary linear map, with
arbitrary matrix A, we suggest continuously de-
forming A to the nearest hyperbolic saddle. This

can be achieved by, say, the pole-placement method
[Ogata, 1990], and the distance between the given
A and A′ which displays a hyperbolic saddle may be
measured in terms of natural matrix norms. Using
the sup-norm, the matrix norm of ‖A−A′‖ is sim-
ply the maximal absolute row sum of A−A′ [Golub
& van Loan, 1989]. Then we proceed to define Gε,
starting from A′. This path through function space
is likely not the “minimal” deformation of Gε to
L(z) = A · z distance.
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