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Abstract
Optical flow refers to the visual motion observed between two consecutive 
images. Since the degree of freedom is typically much larger than the 
constraints imposed by the image observations, the straightforward 
formulation of optical flow as an inverse problem is ill-posed. Standard 
approaches to determine optical flow rely on formulating and solving 
an optimization problem that contains both a data fidelity term and a 
regularization term, the latter effectively resolves the otherwise ill-posedness 
of the inverse problem. In this work, we depart from the deterministic 
formalism, and instead treat optical flow as a statistical inverse problem. We 
discuss how a classical optical flow solution can be interpreted as a point 
estimate in this more general framework. The statistical approach, whose 
‘solution’ is a distribution of flow fields, which we refer to as Bayesian optical 
flow, allows not only ‘point’ estimates (e.g. the computation of average flow 
field), but also statistical estimates (e.g. quantification of uncertainty) that are 
beyond any standard method for optical flow. As application, we benchmark 
Bayesian optical flow together with uncertainty quantification using several 
types of prescribed ground-truth flow fields and images.
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1. Introduction

Optical flow reflects the visual motion between consecutive images. Determination of optical 
flow is important for applications ranging from machine learning and computer vision [28], 
artificial intelligence and robotics [4, 25], to scientific applications from oceanography to 
weather forecasting [5, 6, 10, 19, 20], to name a few. In classical approaches optical flow is 
determined by solving a variational optimization problem which requires inclusion of a regu-
larization term in additional to data fitting for the problem to be well-posed [1, 16, 35]. The 
choice of regularization parameter turns out critical for the satisfactory inference of optical 
flow. Despite the many (competing) methods of selecting the regularization parameter, none 
seems to be most ‘natural’ comparing to the others [15, 30, 34]. Another important feature of 
classical optical flow approaches is that they produce a single solution (by design) as a ‘point 
estimate’. In practice, the magnitude of the flow as well as measurement error and noise can 
vary significantly from one part of the images to another, and thus at a given pixel the inferred 
flow vector can be associated with either large or small uncertainty. Although not captured in 
classical optical flow, such ‘uncertainty’ would provide valuable information if attainable as 
part of the solution.

In this work we adopt a statistical inversion framework for the estimation of optical flow. 
In this framework the computation of optical flow is reformulated from the Bayesian perspec-
tive as a statistical inversion problem. From this new, statistical perspective, different types of 
information and model assumptions are collectively fused to give rise to a posterior distribu-
tion of the unknowns of interest. The posterior distribution, which is typically sampled using 
some appropriately designed Markov chain Monte Carlo scheme, can be further used to derive 
various estimates. Importantly, unlike the point estimate of optical flow obtained by classi-
cal variational approaches, the proposed statistical inversion approach is a methodological 
way of uncertainty propagation to produce a distribution of candidate optical flow fields from 
which various statistical properties can be extracted, including ensemble average estimation 
and uncertainty quantification.

The rest of the paper is organized as follows. In section 2 we review the standard optical 
flow setup and discuss how it can be treated as an inverse problem defined in finite dimen-
sions. In section 3 we we review the basics of inverse problems, including the standard least 
squares approach and Tikhonov regularization. Then, in section  4 we present a statistical 
inversion approach for optical flow, and discuss the choice of priors, models, sampling proce-
dure and computational algorithms. In section 5 we showcase the utility statistical inversion 
approach for optical flow using several benchmark examples of flow fields and noisy image 
data. Finally, section 6 contains a conclusion and discussion of several unsolved and unat-
tempted issues that might be of interest for future research.

2. Optical flow as an inverse problem

Given a sequence of consecutively captured images, the visual relative motion between them 
is commonly referred to as optical flow, which can often provide insight about the actual phys-
ical motion. The inference of optical flow is an outstanding scientific question, which requires 
making assumptions about the underlying motion as well as the measurement process.
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2.1. Problem setup

Consider two single-channeled (typically grayscale) digital images (‘pictures’) taken from 
the same scene at two nearby time instances. The image data are represented by two matri-
ces F = [Fij]nx×ny and G = [Gij]nx×ny. Thus each image contains nx × ny pixels, defined on 
a common two-dimensional subspace Ω. The goal of optical flow estimation is to infer a 
flow field, defined by matrices U = [Uij]nx×ny  and V = [Vij]nx×ny where ⟨Uij, Vij⟩ represents 
the optical ‘velocity’ occurring at the (i, j)th pixel inferred from the two images. The image 
data F and G are often regarded as sampled data from smooth functions F(x, y) and G(x, y), 
with Fij = F(xi, yj) and Gij = G(xi, yj) where {(xi, yj)}(i=1,...,nx;j=1,...,ny) are grid points from a 
spatial domain Ω. Thus U and V  can be viewed as discrete spatial samples of a smooth 2D 
flow field 

−→
W (x, y) = ⟨U(x, y), V(x, y)⟩, which is defined on Ω that captures the visual optical 

motion occurring between the two observed images.

2.2. Variational approach of inferring optical flow

The classical variational approach of optical flow starts by defining an ‘energy’ functional 
whose minimization yields an estimation of the optical flow field [1]. One of the most widely 
used functional was proposed by Horn and Schunck in 1981 [16], given by

E(U, V) =

∫∫

Ω
(FxU + FyV + Ft)

2dxdy + α

∫∫

Ω
(∥∇U∥2 + ∥∇V∥2)dxdy,

 

(1)

where U(x, y) and V(x, y) are smooth functions defined over Ω which represent a candidate 
flow field. In the Horn–Schunck functional, the first term is often referred to as data fidelity 
as it measures the deviation of the total image intensity from being conservative, that is, how 
much does the model fit deviates from the condition

dF/dt = FxU + FyV + Ft = 0. (2)

The second term measures the solution regularity by penalizing solutions that have large spa-
tial gradients and is called the regularization term. The relative emphasis of smoothness as 
compared to ‘fitting’ the total image intensity conservation equation (2) is controlled by the 
positive scalar α which is called a regularization parameter. The main role of the regulariza-
tion term is to ensure that the minimization of the functional is a well posed problem. Without 
the regularization term, the problem is ill-posed.

Given α, the functions U and V  that minimize the Horn–Schunck functional (1) satisfy the 
Euler–Lagrange equations

{
Fx(FxU + FyV + Ft) = α(Uxx + Uyy),
Fy(FxU + FyV + Ft) = α(Vxx + Vyy),

 (3)

which are typically solved by some iterative scheme over a finite set of spatial grid points  
[16, 29] to produce an estimation of the optical flow. Alternatively, one could also dis-
cretize the functional (1) itself to yield a finite-dimensional inverse problem as discussed in  
section 2.3 below with solution strategy reviewed in section 3.

2.3. Finite-dimensional representation of the variational optical flow functional

As discussed in the previous section, the classical variational approach of optical flow works 
by first formulating and minimizing a functional over smooth vector fields, and then evaluating 
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the obtained vector field at the grid points on which the original image data are given. Here we 
approach the problem from a different route, by first discretizing the functional (1) to convert 
the functional minimization (an infinite-dimensional problem) into a finite-dimensional linear 
inverse problem, and then solving the inverse problem to yield solutions which give the values 
of a vector field defined over the same grid points as the image data.

The remainder of this section will be focused on the conversion of the functional (1) into a 
finite-dimensional function defined on a set of uniformly distributed grid points

{(xi, yj)}i=1,2,...,nx;j=1,2,...,ny , (4)

where xi+1 − xi = ∆x and yj+1 − yj = ∆y are the spacing in the x direction and the y direction, 
respectively. The conversion will be achieved by approximating the integrals in equation (1) 
with appropriately derived summations over the grid points. For notational convenience, we 
use a bold lowercase variable to denote the vectorization of a matrix. For example, the bold-
face vector q denotes the column vector obtained by ‘vertically stacking’ the columns of a 
matrix Q = [

−→
Q 1,
−→
Q 2, . . . ,

−→
Q n] in order [12], where 

−→
Q i denotes the ith column of Q. That is,

q = vec(Q) =

⎡

⎢⎢⎢⎢⎣

−→
Q 1
−→
Q 2
...
−→
Q n

⎤

⎥⎥⎥⎥⎦
. (5)

First let us consider the data fidelity term: 
∫∫

Ω(FxU + FyV + Ft)2dxdy. The spatial deriva-
tives Fx(x,y) and Fy(x,y) can be approximated by a finite difference scheme. For example, the 
simple forward difference yields the approximations:

{
Fx(x, y) ≈ 1

∆x [F(x +∆x, y)− F(x, y)] ,
Fy(x, y) ≈ 1

∆y [F(x, y +∆y)− F(x, y)] . (6)

We next express these derivatives as operations on the column vector f . To do this, we define 
matrix Sk = [S(ij)

k ]k×k as

S(ij)
k =

{
−δij + δi+1,j, if i < k;
−δi,j−1 + δi,j, if i = k. (7)

The forward difference applied to f  can be represented as
{

f x ≈ Qx f ,
f y ≈ Qy f , (8)

where
{

Qx ≡ 1
∆x [In ⊗ Sm],

Qy ≡ 1
∆y [Sn ⊗ Im].

 (9)

The temporal derivative can be estimated from the data by the direct pixel-wise difference 
between the two images, to yield

f t ≈ g− f . (10)

With these definitions and approximations, we obtain a discretized version of the conserva-
tion equation (2) expressed as a finite-dimensional linear system:
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Ax = b, (11)

where
⎧
⎨

⎩

A = [diag(f x), diag(f y)],
x = [u⊤, v⊤]⊤,
b = −f t.

 (12)

Here diag(f x) and diag(f y) represent the diagonal matrices whose diagonal elements are given 
by the entries of the vector f x and f y, respectively. From this connection we approximate 
the first integral in the functional (1) as ∥Ax− b∥2 where ∥ · ∥ denotes the standard Euclidean 
norm.

Next we develop a finite-dimensional approximation of the regularization term in the func-
tional (1). This requries discretization of ∇U and ∇V . Using a similar forward difference to 
approximate the partial derivatives, we obtain

{
∇U ≈ 1

∆x [U(x +∆x, y)− U(x, y)] + 1
∆y [U(x, y +∆y)− U(x, y)] ,

∇V ≈ 1
∆x [V(x +∆x, y)− V(x, y)] + 1

∆y [V(x, y +∆y)− V(x, y)] . (13)

For the vectorized variables u and v, we have
{
∇u = ux + uy ≈ (Qx + Qy)u,
∇v = vx + vy ≈ (Qx + Qy)v, (14)

where Qx and Qy are defined in equation (9). Consequently, we obtain the approximation of 
the second integral in the Horn–Schunck functional (1) as

{∫∫
Ω ∥∇U∥2dxdy ≈ u⊤

x ux + u⊤
y uy ≈ u⊤[Q⊤

x Qx + Q⊤
y Qy]u,∫∫

Ω ∥∇V∥2dxdy ≈ v⊤x uy + v⊤y vy ≈ v⊤[Q⊤
x Qx + Q⊤

y Qy]v, (15)

which then gives
∫∫

Ω
(∥∇u∥2 + ∥∇v∥2)dxdy ≈ x⊤Qx, (16)

where the matrix

Q = I2 ⊗ [Q⊤
x Qx + Q⊤

y Qy]. (17)

Therefore, the variational optical flow formulation (1) can be reformulated at a finite spa-
tial resolution as an inverse problem, where, for a given parameter value α, the corresponding 
solution is given by solving the following (regularized) optimization:

min
x

(
∥Ax− b∥2 + αx⊤Qx

)
. (18)

This is a standard approach in inverse problems, formulated as a least squares problem with 
Tikhonov regularization, with more details to be presented in the next section.

3. Inverse problem in finite dimensions

Although there has been a great deal of progress on the mathematical characterization of 
inverse problems in the field of functional analysis, a practical problem often concerns find-
ing a solution in a finite-dimensional space. At a fundamental level, the most common inverse 
problem stems from a linear model [15, 17, 34]
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b = Ax + η, (19)
where b ∈ Rm is a column vector of observed data, A = [aij]m×n ∈ Rm×n is a (known) matrix 
representing the underlying model, the column vector η ∈ Rn  denotes (additive) noise, and 
x ∈ Rn is the vector of unknowns to be inferred.

Given A and b, the problem of inferring x in equation (19) is called an inverse problem 
because rather than direct ‘forward’ computation from the model, it requires a set of indirect, 
‘backward’, or ‘inverse’ operations to determine the unknowns [34]. Depending on the rank 
and conditioning of the matrix A, the problem may be ill-posed or ill-conditioned. In classical 
approaches, these issues are dealt with by adjusting the original problem to a (slightly) modi-
fied optimization problem as discussed in section 2.1 whose solution is meant to represent the 
original, as discussed in section 3.2.

We note that in the classical setting a solution to the inverse problem is a vector x as a result 
of solving an optimization problem. Such a solution is referred to as an point estimate because 
it gives one solution vector without providing any information about how reliable (or uncer-
tain) the solution is [15, 34]. On the other hand, the statistical inversion approach to inverse 
problems provides an ensemble of solutions—defined by the posteriori distribution which not 
only point estimates can be made but also their uncertainty quantification [11, 17].

3.1. Least squares solution

The classical least squares solution to the inverse problem is given by [12]

xℓ2 = A†b, (20)

where A† denotes the pseudo-inverse of A which can be obtained from the singular value 
decomposition of A [12]. Depending on the rank of A, the least squares solution xℓ2 is associ-
ated with one of the minimization problems:

{
minAx=b ∥x∥2, if rank(A) < n;
minx ∥Ax− b∥2, if rank(A) = n. (21)

Here ∥ · ∥2 denotes the ℓ2 (Euclidean) norm. Let the true solution to equation (19) be x∗, that 
is, b = Ax∗ + η . It follows that

xℓ2 − x∗ = A†η. (22)

In practice, even when the matrix A has full column rank (rank(A) = n), the discrepancy 
between the true and least squares solutions is typically dominated by noise when some sin-
gular values of A are close to zero, rendering A an ill-conditioned matrix and the solution x∗ 
unstable and sensitive to small changes in data [34].

3.2. Tikhonov regularization

A powerful approach to resolve the instabilities due to noise and the near-singularity of A is to 
regularize the problem. In the classical Tikhonov regularization one adds a quadratic regular-
ization term αxTLx for some prescribed matrix L to penalize non-smoothness, giving rise to a 
regularized optimization problem [31–34]:

min
x

(
∥Ax− b∥2

2 + αxTL x
)

. (23)
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In the regularized problem the positive scalar parameter α controls the weight of regulariza-
tion and L is typically a symmetric positive definite matrix, both of which need to be cho-
sen appropriately for the problem to be uniquely defined [31–34]. We refer to the two terms 
∥Ax− b∥2

2 and αx⊤L x in (23) as data fidelity and solution regularity, respectively. In a sim-
plistic description, they can be described as ‘selecting’ a solution xα that balances the desire 
to ‘solve’ Ax = b and to be ‘regular’ as measured by x⊤Lx. The regularization parameter α 
therefore dictates the extent to which the compromise is made between the two.

For a given parameter α, we denote the corresponding regularized solution by

xα = argminx{∥Ax− b∥2 + αx⊤Lx}. (24)

By standard vector calculus, it can be shown that xα is in fact a solution to the modified linear 
system

(A⊤A + αL)xα = A⊤b, (25)

which is typically well-posed for appropriate choices of L and α. When the matrices are large 
and sparse, equation (25) is often solved by iterative methods rather than a direct matrix inver-
sion since the latter tends to be numerically costly and unstable [12].

In Tikhonov regularization, a key issue is how to choose the regularization parameter α 
appropriately. In theory, a ‘good’ regularizer has the property that in the absence of noise, 
the solution to the regularized problem converges to the true solution when the regularization 
parameter α→ 0. However, in practice, under the presence of noise, it is always a challenge 
to try to determine a good value for α. If α is too small, the instability and sensitivity of the 
original problem would still persist; whereas for too large of an α the solution will be over-
regularized and not fit the data well. A good balance is thus paramount. Despite the existence 
and ongoing development of many competing methods for selecting α most of which focus 
on asymptotical optimality as the number of data points approach infinity, none of them stands 
out as a best ‘natural’ choice unless specific priori information about the noise in the data 
are available (see chapter 7 of [34]). In the following section we discuss how the problem of 
selecting an exact regularization parameter is no longer required from a Bayesian perspec-
tive; instead, it suffices to start with some loose range of values represented by a probability 
distribution, unless more specific knowledge is available about the problem in which case the 
distribution can be chosen to reflect such information.

4. Statistical inversion approach

The statistical inversion approach to an inverse problem starts by treating all variables as ran-
dom variables (e.g. x, b and η in equation (19)), and representing our knowledge (or absence 
of knowledge) of the unknowns as prior distributions. With observational data and a forward 
model (e.g. matrix A in equation (19)), the ‘inversion’ leads to an ensemble of points together 
with a posterior distribution from which various statistical estimates can be made [8, 11, 17, 
21]. The key in the inversion is to use the Bayes rule to express the posterior distribution 
p(x|b), which is the conditional distribution of the ‘solution vector’ x given the observed data 
b, as [11, 17]

p(x|b) = 1
p(b)

p(b|x) · p(x). (26)

Here the likelihood function p(b|x) is the probability density function (pdf) of the random 
variable b given x which is determined by the underlying model; p(x) is the priori distribution 
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of x; and p(b) > 0 acts as a normalization constant which does not affect the solution proce-
dure or the final solution itself.

Thus, in the statistical inversion formulation, each candidate solution x is associated with 
the probability p(x|b) that is determined (up to a normalization constant 1/p(b)) once the 
likelihood function and the prior distribution are given. For a given inverse problem, the like-
lihood function can be obtained using the underlying model such as equation (19) including 
the noise distribution. On the other hand, the prior distribution p(x) is typically constructed 
according to some prior knowledge of the solution. Unlike standard approaches which pro-
duce ‘point estimates’, in statistical inversion it is the posterior distribution that is considered 
as the ‘solution’ to the inverse problem. Based on the posterior distribution, one can further 
extract useful information such as point estimates and uncertainty quantification, by sampling 
from the distribution. Efficient sampling methods will be reviewed toward the end of this 
section.

The unique feature of enabling information fusion and uncertainty quantification has made 
the statistical inversion approach to inverse problems an attractive venue for the development 
of new theory and applications. In image processing applications, it has been utilized for many 
problems such as image denoising and deblurring [2, 18], sparse signal reconstruction [23], 
and more recently attempted for optical flow computation [9]. In particular, we note that our 
approach, although different in many of the technical aspects, shares a similar statistical inver-
sion perspective as [9].

4.1. Statistical interpretation of optical flow obtained by Tikhonov regularization

Under the statistical inversion framework, solution to an inverse problem is the posterior dis-
tribution, from which point estimates can be further obtained. Among these point estimates, a 
particularly common one is the maximum a posteriori (MAP) estimator, which is defined as

xMAP = argmaxxp(x|p) = argminx{− ln p(x|b)} (27)

= argminx{− ln p(b|x)− ln p(x)}. (28)

As noted in [2, 17], the MAP estimator given by equation (28) produces a vector x that is 
identical to the solution of a Tikhonov regularization specified in equation (24) upon appropri-
ate choice of the model and prior pdf. In particular, consider the model given by equation (19) 
with independent and identically distributed (iid) Gaussian noise of variance λ−1. It follows 
that

p(b|x) = p(η) ∝ exp

(
−λ

2
∥Ax− b∥2

)
, (29)

where the symbol ‘∝’ means ‘proportional to’. Under a Gaussian prior,

p(x) ∝ exp

(
−δ

2
x⊤Lx

)
, (30)

the term − ln p(x|b) in the MAP estimator becomes

− ln p(x|b) ∝ ∥Ax− b∥2 + (δ/λ)x⊤Lx. (31)

The choice of α = δ/λ in the Tikhonov regularization then yields a solution xα that equals the 
vector xMAP  given by the same MAP estimator. Thus, with these assumptions of the form of 
the noise, the distribution of the prior, there is a logical bridge between two different philoso-
phies for inverse problems, in that a solution from Tikhonov regularization can be interpreted 
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as an MAP estimate of the posteriori distribution under appropriate choices of prior distribu-
tions and likelihood functions.

Furthermore, and crucially, as shown in the next section, more important information exists 
in the statistical inversion framework. Specifically, by sampling from the posterior distribution 
the statistical inversion approach allows for not only a point estimate but also other statistical 
properties associated with the solution, in particular spread around a point estimate which 
enables uncertainty quantification.

4.2. Choice of priors and hyperpriors

In general, the statistical inversion framework allows flexibility in choosing prior distribu-
tions about unknowns and noise. When these prior distributions themselves contain unknown 
parameters, these parameters can themselves be thought of as random variables which follow 
hyperprior distributions. In this paper we will consider some elementary choice of the priors 
and hyperpriors, with the main purpose of showing how to setup the procedure for sampling 
the posterior distribution.

We focus on (multivariate) Gaussian priors for both the unknown x and noise η. In the 
absence of knowledge of how ‘spread-out’ the prior distributions are, we use additional 
parameters for these priors, where these parameters are taken to be random variables drawn 
from hyperprior distributions. This type of approach has been previously adopted and imple-
mented in image denoising applications [2]. In particular, we consider a specific class of the 
noise and prior distributions:

{
likelihood function : p(b|x,λ) ∝ λm/2 exp

(
−λ

2 ∥Ax− b∥2
)

,
prior distribution : p(x|δ) ∝ δn/2 exp

(
− δ

2 x⊤Lx
)

. (32)

Here the noise is assumed to be additive, Gaussian, and independent of the measured data, 
with variance λ−1, giving rise to the form of the likelihood function. On the other hand, the 
prior distribution is considered to be Gaussian with covariance matrix (δL)−1 (matrix δL is 
referred to as the precision matrix). We choose L  =  Q where Q is given by equation  (17) 
which corresponds to a spatial regularization measure. As it turns out, this choice of L is 
closely related to the selection of prior according to a spatial Gaussian Markov random field 
which is common in tackling spatial inverse problems [3, 14].

As we pointed out, to completely specify the posterior distribution, we also need to choose 
prior distributions for the parameters λ and δ. These are often called hyperpriors. Following 
[2], we choose the priors for p(λ) and p(δ) to be Gamma distributions, as

{
p(λ) ∝ λαλ−1 exp(−βλλ),
p(δ) ∝ δαδ−1 exp(−βδδ).

 (33)

Such choice ensures that p(λ) and p(δ) are conjugate hyperpriors, and makes the design 
of sampling of posterior distributions more convenient. In the absence of knowledge of the 
values of λ and δ, one needs to choose the values of αλ, βλ, αδ, and βδ to ensure the distribu-
tions p(λ) and p(δ) to be ‘wide’, allowing the Markov chain to explore a potentially larger 
region of the parameter space. Following [2, 3, 14], we set αλ = αδ = 1 and βλ = βδ = 10−4 
unless otherwise noted. We tested other choice of parameters as well and they mainly affect 
the length of the transient in the MCMC sampling process and do not seem to have a strong 
influence on the asymptotic outcome. Details of these will be discussed in section 5 along with 
numerical examples.
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4.3. Sampling from the posterior distribution

In the statistical inversion formalism, once the form of the posterior distribution is derived, 
the remaining part of the work is devoted to efficient sampling from the posterior distribution. 
Typically a Markov chain Monte Carlo (MCMC) sampling approach is adopted. The main 
idea is to generate a sequence of samples according to a prescribed Markov chain whose 
unique stationary distribution is the desired posterior distribution.

Note that under the Gaussian priors and gamma hyperpriors as we discussed above, the full 
conditional distributions that relate to the posterior distribution are given by

⎧
⎪⎨

⎪⎩

p(x|λ, δ, b) ∝ exp
(
−λ

2 ∥Ax− b∥2 − δ
2 x⊤Lx

)
,

p(λ|x, δ, b) ∝ λm/2+αλ−1 exp
(
λ
[
− 1

2∥Ax− b∥2 + βλ

])
,

p(δ|x,λ, b) ∝ δn/2+αδ−1 exp
(
δ
[
− 1

2 x⊤Lx− βδ

])
.

 (34)

In other words,
⎧
⎨

⎩

x|λ, δ, b ∼ N
(
(λA⊤A + δL)−1λA⊤b, (λA⊤A + δL)−1

)
,

λ|x, δ, b ∼ Γ
(
m/2 + αλ, 1

2∥Ax− b∥2 + βλ

)
,

δ|x,λ, b ∼ Γ
(
n/2 + αδ , 1

2 x⊤Lx + βδ

)
.

 (35)

We adopt the block Gibbs sampler developed in [2, 17] as a specific MCMC procedure to 
sample the posterior distribution. In theory the sample distribution asymptotically converges 
to the true posterior distribution. The approach contains the following steps.

 (i)  Initialize δ0 and λ0, and set k  =  0.
 (ii)  Sample xk ∼ N

(
(λA⊤A + δL)−1λA⊤b, (λA⊤A + δL)−1

)
.

 (iii)  Sample λk+1 ∼ Γ
(
m/2 + αλ, 1

2∥Axk − b∥2 + βλ

)
.

 (iv)  Sample δk+1 ∼ Γ
(
n/2 + αδ , 1

2 (x
k)⊤L(xk) + βδ

)
.

 (v)  Set k← k + 1 and return to step (ii).

Here the computational burden is mainly due to step 1, which requires drawing samples from 
a multivariate Gaussian variable, which is equivalent to solving the following linear system at 
each iteration for xk :

(λkA⊤A + δkL)xk = λkA⊤b + w, where w ∼ N (0,λkA⊤A + δkL). (36)

For large matrices, instead of a direct solve using Gauss elimination, an iterative method is 
usually preferred. Among the various notable iterative methods such as Jacobi, Gauss–Seidel 
(G–S), and conjugate gradient (CG) [22], we adopted the CG for all the numerical experi-
ments as reported in this paper, with a starting vector of all zeros, maximum of 500 iterations, 
and error tolerance of 10−6. Note that the computational bottleneck in solving equation (36) 
can in principle be tackled using more efficient methods, for example, by exploring history of 
solutions with similar parameters to provide ‘good’ initial guess or by utilizing the Karhunen–
Loève expansion to reduce the dimensionality of the problem.

5. Results: Bayesian optical flow from statistical inversion

5.1. Benchmark flow fields and noisy image pairs

To benchmark the proposed statistical inversion approach for Bayesian optical flow, we con-
sider 5 qualitatively different flow fields that span a broad diversity of possibilities. The flow 
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fields, which are all defined on the normalized spatial domain [−1, 1]× [−1, 1], are generally 
not divergence-free. In particular, the flow fields are defined as follows.

 Flow field 1:  ⟨U(x, y), V(x, y)⟩ = ⟨x, y⟩.
 Flow field 2:  ⟨U(x, y), V(x, y)⟩ = ⟨−y, x⟩.
 Flow field 3:  ⟨U(x, y), V(x, y)⟩ = ⟨y, sin(x)⟩.
 Flow field 4:  ⟨U(x, y), V(x, y)⟩ = ⟨−π sin(0.5πx) cos(0.5πy),π cos(0.5πx) sin(0.5πy)⟩.
 Flow field 5:  ⟨U(x, y), V(x, y)⟩ = ⟨−π sin(πx) cos(πy),π cos(πx) sin(πy)⟩.

We first consider synthetic image pairs, where the first image is constructed by the equation

F(x, y) =
1
2
[cos(πx) cos(πy) + 1] . (37)

Then, for each optical flow field, we generate the second image G using the equation

g = f − f xu− f yv + η, (38)

where f  and g represent the vectorization of F and G, respectively, η denotes (multivariate) 
noise whose individual components are independently drawn from a Gaussian distribution 
with zero mean and fixed standard deviation σ, and spatial derivatives are numerically imple-
mented using the forward difference scheme. All synthetic images are constructed at the fixed 
resolution of 30-by-30 pixels, with uniform spacing in both directions, represented by a set of 
30-by-30 matrices.

5.2. Bayesian optical flow with uncertainty quantification

For each image pair (F, G), we adopt the MCMC-Gibbs sampling procedure and corre-
sponding choice of prior pdf and hyerpriors presented in section  4 to obtain an empirical 
posterior distribution p(U, V) as the solution of the statistical inversion problem, which we 
refer to as Bayesian optical flow. Unlike classical optical flow which provides a point estimate, 
the Bayesian optical flow can be thought of as an ensemble of flow fields each associated 
with some probability. From such an ensemble and associated probability distribution (the 
posterior distribution), we can further extract useful information. For example, the mean flow 
field can be computed using the sampling mean of the posterior distribution, which is shown 
in figures 1 through 6 to compare with the true underlying flow field. In particular, in each 
figure, the top row (a1)–(a3) shows the image data of the first image F (a1), the second image 
G generated from equation (38) with no noise (a2) and with noise under standard deviation 
σ = 0.02 (a3), respectively. The middle rows (b1)–(b3) show the true optical flow field (b1) 
compared with the inferred ‘mean’ optical flow fields together with uncertainty quantification 
from the MCMC samples (b2) and (b3). The uncertainty regions are computed as follows. At 
each point z = (x, y), we construct a 2d normal pdf N (µ,Σ) by using the sample mean µ and 
sample covariance Σ estimated from the MCMC samples after discarding the initial transients. 
This allows us to obtain a ‘mean’ optical flow at point z defined as ⟨u(z), v(z)⟩ = ⟨µ1,µ2⟩. 
Uncertainty is quantified by computing a confidence region that contains q probability mass 
of the fitted multivariate normal distribution given by [24].

(z− µ)⊤Σ−1(z− µ) ! χ2
2(q). (39)

Here χ2
2(q) denotes the qth quantile of the Chi-squared distribution with two degrees of free-

dom, that is, χ2
2(q) = K−1(q) where K is the cdf of χ2

2. These confidence regions (shaded 
ellipses) are shown for the zoomed-in plots for the inferred optical flow fields. Finally, the last 
row (c1)–(c3) in each figure shows how the MCMC procedure produces a distribution of the 
effective regularization parameter δ/λ. Panel (c1) shows the change of δ/λ over time in the 
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Figure 1. Bayesian optical flow computed using statistical inversion, based on 
image pairs (F, G) under example flow field 1, where ⟨U(x, y), V(x, y)⟩ = ⟨x, y⟩. Top 
row (a1)–(a3): image data generated according to equation (38) for F (a1) and using 
equation (37) for G either without noise (a2) or with noise standard deviation σ = 0.02 
(a3). Middle rows (b1)–(b3): true flow field (b1) and the mean flow field from the 
posterior distribution estimated using the MCMC samples. In the panels below (b2) 
and (b3), we also show the uncertainty regions (as shaded ellipses), also from MCMC 
samples as given by equation (39). Bottom row (c1)–(c3): time evolution (c1) as well 
as the distribution (c2)–(c3) of the effective regularization parameter σ/λ, where the 
distributions are obtained after discarding the initial transient in the MCMC sampling 
process.
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Figure 2. Bayesian optical flow computed using statistical inversion, based on image 
pairs (F, G) under example flow field 2, where ⟨U(x, y), V(x, y)⟩ = ⟨−y, x⟩. Top row 
(a1)–(a3): image data generated according to equation  (38) for F (a1) and using 
equation (37) for G either without noise (a2) or with noise standard deviation σ = 0.02 
(a3). Middle rows (b1)–(b3): true flow field (b1) and the mean flow field from the 
posterior distribution estimated using the MCMC samples. In the panels below (b2) 
and (b3), we also show the uncertainty regions (as shaded ellipses), also from MCMC 
samples as given by equation (39). Bottom row (c1)–(c3): time evolution (c1) as well 
as the distribution (c2)–(c3) of the effective regularization parameter σ/λ, where the 
distributions are obtained after discarding the initial transient in the MCMC sampling 
process.
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Figure 3. Bayesian optical flow computed using statistical inversion, based on image 
pairs (F, G) under example flow field 3, where ⟨U(x, y), V(x, y)⟩ = ⟨y, sin(x)⟩. Top 
row (a1)–(a3): image data generated according to equation (38) for F (a1) and using 
equation (37) for G either without noise (a2) or with noise standard deviation σ = 0.02 
(a3). Middle rows (b1)–(b3): true flow field (b1) and the mean flow field from the 
posterior distribution estimated using the MCMC samples. In the panels below (b2) 
and (b3), we also show the uncertainty regions (as shaded ellipses), also from MCMC 
samples as given by equation (39). Bottom row (c1)–(c3): time evolution (c1) as well 
as the distribution (c2)–(c3) of the effective regularization parameter σ/λ, where the 
distributions are obtained after discarding the initial transient in the MCMC sampling 
process.
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Figure 4. Bayesian optical flow computed using statistical inversion, 
based on image pairs (F, G) under example flow field 4, where 
⟨U(x, y), V(x, y)⟩ = ⟨−π sin(0.5πx) cos(0.5πy),π cos(0.5πx) sin(0.5πy)⟩. Top row 
(a1)–(a3): image data generated according to equation  (38) for F (a1) and using 
equation (37) for G either without noise (a2) or with noise standard deviation σ = 0.02 
(a3). Middle rows (b1)–(b3): true flow field (b1) and the mean flow field from the 
posterior distribution estimated using the MCMC samples. In the panels below (b2) 
and (b3), we also show the uncertainty regions (as shaded ellipses), also from MCMC 
samples as given by equation (39). Bottom row (c1)–(c3): time evolution (c1) as well as 
the distribution (c2) and (c3) of the effective regularization parameter σ/λ, where the 
distributions are obtained after discarding the initial transient in the MCMC sampling 
process.
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Figure 5. Bayesian optical flow computed using statistical inversion, based 
on image pairs (F, G) under example flow field 5, where ⟨U(x, y), V(x, y)⟩ =  
⟨−π sin(πx) cos(πy),π cos(πx) sin(πy)⟩. Top row (a1)–(a3): image data generated 
according to equation  (38) for F (a1) and using equation  (37) for G either without 
noise (a2) or with noise standard deviation σ = 0.02 (a3). Middle rows (b1)–(b3): true 
flow field (b1) and the mean flow field from the posterior distribution estimated using 
the MCMC samples. In the panels below (b2) and (b3), we also show the uncertainty 
regions (as shaded ellipses), also from MCMC samples as given by equation  (39). 
Bottom row (c1)–(c3): time evolution (c1) as well as the distribution (c2) and (c3) of 
the effective regularization parameter σ/λ, where the distributions are obtained after 
discarding the initial transient in the MCMC sampling process.
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MCMC sampling procedure, indicating convergence to a stationary distribution typically after 
a quick initial transient. The remaining panels (c2) and (c3) show the distribution of δ/λ after 
discarding the initial transient, for both the case of no noise (c2) and the case with noise (c3).

We point out a few observations from the numerical experiments. First, the estimated mean 
optical flow compare reasonably well with the true flow in all examples of the qualitatively dif-
ferent optical flow fields, supporting the utility of the proposed statistical inversion approach (see 
panels (b1)–(b3) in all figures). Secondly, we again point out that the MCMC procedure used in 
our statistical inversion approach to optical flow does not require an active prior choice of the reg-
ularization parameter. The MCMC samples seems to quickly converge to a stationary distribution 
for the effective parameter (panel (c1) in all figures), from which the distributions of parameters 
and solutions can be determined. Finally, comparing to the noise free images, the estimation of 
optical flow becomes less accurate when noise is added. It is worth mentioning that the statistical 
inversion approach in fact allows us to ‘predict’ this difference without knowing the ground-truth 
optical flow, by quantifying and comparing the uncertainty of solutions (panels (b2) and (b3) in 
all figures). Note that although here we only show the Bayesian optical flow results based on 
Gaussian noise, we have also performed simulations using uniform noise and Laplace-distributed 
noise, and found that the results are quite similar to what is shown in figures 1–6.

5.3. Simulations on real images

Finally, we conduct numerical experiments for the computation of Bayesian optical flow from 
using real images together with the benchmark flow fields. In each example, we consider 
matrix F defined by a real image from the Middlebury dataset (http://vision.middlebury.edu/
stereo/, also see [26]), resized to a fixed size of 60-by-60 pixels in grayscale, with intensity 
normalized so that each pixel intensity is in the range [0, 1]. We consider a total of six such 
images, as shown in figure 6.

For each real image F and a given flow field ⟨U, V⟩, we generate a resulting second image 
G according to the flow equation (38), where the noise is taken to be a multivariate Gaussian 
distribution with zero mean and covariance matrix σI with σ = 0.05. This choice of standard 
deviation ensures a non-negligible effect on the pixel intensities of the image pairs, since each 
Fij ∈ [0, 1]. These ‘noisy second images’ are shown in each of the first column of figures 7–12. 
For comparison, we also consider what we call a ‘true second image’, denoted as Ḡ , which is 
defined by the same flow equation (38) but in the absence of noise. These true second images 
are shown in the second column in figures 7 through 12, for each one of the image example 
and flow field. Thus, each baseline image F and flow field gives rise to a noisy image pair 
(F, G), and there is a total of 30 such pairs given the 6 real images and 5 flow fields.

For each noisy image pair (F, G), we use the same methodology with the same choice of pri-
ors and hyperpriors as in section 5.2 to obtain a Bayesian optical flow from sampling the poste-
rior distribution–in practice because of the randomness of the MCMC process, we observe that 
sometimes the sample distribution does not ‘converge’ to a stationary distribution even after 
thousands of iterations; when this occurs we simply restart the MCMC from a different initial 
seed. Recall that different from a standard regularization approach which require careful choice 
of the regularization parameter, here such parameter is itself treated as a random variable that 
has its own prior which can be taken to be a ‘wide’ distribution in the absence of additional 
knowledge. From the posterior distribution, we take the mean as an estimate of the average 
flow field. To test the usefulness of the reconstructed flow field, we use it together with the first 
image F to obtain an estimated second image Ĝ from equation (38), setting the noise term to be 
zero. The estimated second image Ĝ is shown for each example in the third column of figures 7 
through 12. Interestingly, the estimated Ĝ seems to not only resemble the given noisy image G, 

J Sun et alInverse Problems 34 (2018) 105008



18

but even more similar to the noiseless second image Ḡ. This observation is confirmed quantita-
tively, as shown in the last column of figures 7 through 12, where the values of Ĝij  are plotted 
against both those of Gij and of Ḡij . These results confirm the validity of Bayesian optical flow 
obtained by a statistical inversion approach, and, additional suggests that accurate reconstruc-
tion of optical flow can be potentially useful for image smoothing and denoising applications.

6. Discussion and conclusions

In this paper we take a statistical inversion perspective to the optical flow inference prob-
lem. From this perspective all relevant variables in an otherwise standard inverse problem are 
treated as random variables, and the key is to form an efficient process to construct and sample 
the posterior distribution by utilizing knowledge about the form of model, noise, and other 
prior information. From a Bayesian perspective, the various priors and the forward model 
combine to produce a posterior distribution describing the propagation of prior information in 
context of the problem. We have shown that optical flow estimates given by traditional varia-
tional approaches such as the seminal work developed by Horn and Schunck [16] can in fact 
be interpreted in the statistical inversion framework under particular choices of models, noise, 
and priors. Thus we recap that there are major advantages over the classical variational calcu-
lus approach to inverse problems where by necessity the ill-posedness is dealt with by adding 
an ad hoc regularity term that hopefully agrees with expected physical interpretation. From a 
Bayesian perspective, the ill-posedness is dealt with naturally under the statistical inversion 
framework by restating as a well-posed extended problem in a larger space of probability 
distributions [11, 17]. This therefore naturally removes a key difficulty of having to choose 
exactly an appropriate regularity parameter encountered in classical methods. Instead, in con-
trast to classical optical flow methods which only yield single solutions as ‘point estimates’, 

(a) (b) (c)

(d) (e) (f)

Figure 6. Real images used for the computations of Bayesian optical flow in section 5.3.
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Figure 7. Optical flow computed from noisy image pairs (F, G), where F is given by 
the image shown in figure 6(a). Each row corresponds to the choice of a different flow 
field, each of which is defined in section 5.1. From left to right in each row: noisy second 
image G obtained from the flow equation (38) using Gaussian noise with σ = 0.05, true 
second image Ḡ  from the same flow equation  in the absence of noise, estimated Ĝ  
based on using the mean flow field, and plots of Ĝ  against G versus Ĝ  against Ḡ .
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Figure 8. Optical flow computed from noisy image pairs (F, G), where F is given by 
the image shown in figure 6(b). Each row corresponds to the choice of a different flow 
field, each of which is defined in section 5.1. From left to right in each row: noisy second 
image G obtained from the flow equation (38) using Gaussian noise with σ = 0.05, true 
second image Ḡ  from the same flow equation  in the absence of noise, estimated Ĝ  
based on using the mean flow field, and plots of Ĝ  against G versus Ĝ  against Ḡ .
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Figure 9. Optical flow computed from noisy image pairs (F, G), where F is given by 
the image shown in figure 6(c). Each row corresponds to the choice of a different flow 
field, each of which is defined in section 5.1. From left to right in each row: noisy second 
image G obtained from the flow equation (38) using Gaussian noise with σ = 0.05, true 
second image Ḡ  from the same flow equation  in the absence of noise, estimated Ĝ  
based on using the mean flow field, and plots of Ĝ  against G versus Ĝ  against Ḡ .
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Figure 10. Optical flow computed from noisy image pairs (F, G), where F is given by 
the image shown in figure 6(d). Each row corresponds to the choice of a different flow 
field, each of which is defined in section 5.1. From left to right in each row: noisy second 
image G obtained from the flow equation (38) using Gaussian noise with σ = 0.05, true 
second image Ḡ  from the same flow equation  in the absence of noise, estimated Ĝ  
based on using the mean flow field, and plots of Ĝ  against G versus Ĝ  against Ḡ .
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Figure 11. Optical flow computed from noisy image pairs (F, G), where F is given by 
the image shown in figure 6(e). Each row corresponds to the choice of a different flow 
field, each of which is defined in section 5.1. From left to right in each row: noisy second 
image G obtained from the flow equation (38) using Gaussian noise with σ = 0.05, true 
second image Ḡ  from the same flow equation  in the absence of noise, estimated Ĝ  
based on using the mean flow field, and plots of Ĝ  against G versus Ĝ  against Ḡ .

J Sun et alInverse Problems 34 (2018) 105008



24

Figure 12. Optical flow computed from noisy image pairs (F, G), where F is given by 
the image shown in figure 6(f). Each row corresponds to the choice of a different flow 
field, each of which is defined in section 5.1. From left to right in each row: noisy second 
image G obtained from the flow equation (38) using Gaussian noise with σ = 0.05, true 
second image Ḡ  from the same flow equation  in the absence of noise, estimated Ĝ  
based on using the mean flow field, and plots of Ĝ  against G versus Ĝ  against Ḡ .
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the statistical inversion approach produces a distribution of points which can be sampled in 
terms of most appropriate estimators and also for uncertainty quantification. Specifically in 
the context of an optic flow problem, we expect a distribution of regularity parameters, and 
correspondingly a distribution of optical flow vectors at each pixel.

In this paper we focused on a statistical inversion formulation with the choice of priors 
inspired from the classical Horn–Schunck functional. Although such choices appear to be rea-
sonable for the synthetic flow fields considered herein, real images and optical flow fields are 
much more complicated and, consequently, require additional efforts in forming the appropri-
ate priors. Such priors can come from previous knowledge of images and flow fields from 
similar systems, taken under similar scenes, or from other physical measurements. In addition, 
different noise distributions should be considered, and these will require modifying the stand-
ard Horn–Schunck framework, which assumed rigid body motion and conservation of bright-
ness. In particular, with regard to the regularization term, one example is to consider different 
p-norms other than just the standard 2-norm, and possibly with a kernel to weigh in additional 
information about the physical embedding of objects [27]. Other data fidelity terms [5, 6, 19] 
can be form ulated to describe the physics of the underlying application, for example for fluid 
and oceanographic problems where a stream function, or even a quasi-static approximation to 
assume such physics as corriolis can be used; or in scenarios where divergence-free flows are 
estimated by utilizing vorticity-velocity formalism or more general data assimilation tools [7, 
13, 36]. Likewise, regularity in time and multiple time steps may be appropriate [5], as these 
corre spondingly more complex formulations nonetheless come back to a linear inverse prob-
lem tenable in the framework of this paper. Specifically within the statistical inversion frame-
work developed in the current paper, all of these could be recast so that the data fidelity term 
may be incorporated and should not require significant modification of the general framework 
as introduced here, which we plan in future work. Likewise, other numerical differentiation and 
integration schemes can be used as well in place of the simple forward difference used here.
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