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Sufficient Conditions for Fast Switching Synchronization in Time-Varying
Network Topologies∗
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Abstract. In previous work [J. D. Skufca and E. Bollt, Mathematical Biosciences and Engineering, 1 (2004),
pp. 347–359], empirical evidence indicated that a time-varying network could propagate sufficient in-
formation to allow synchronization of the sometimes coupled oscillators, despite an instantaneously
disconnected topology. We prove here that if the network of oscillators synchronizes for the static
time-average of the topology, then the network will synchronize with the time-varying topology if the
time-average is achieved sufficiently fast. Fast switching, fast on the time-scale of the coupled oscilla-
tors, overcomes the desynchronizing decoherence suggested by disconnected instantaneous networks.
This result agrees in spirit with that of [J. D. Skufca and E. Bollt, Mathematical Biosciences and En-
gineering, 1 (2004), pp. 347–359] where empirical evidence suggested that a moving averaged graph
Laplacian could be used in the master-stability function analysis [L. M. Pecora and T. L. Carroll,
Phys. Rev. Lett., 80 (1998), pp. 2109–2112]. A new fast switching stability criterion herein gives
sufficiency of a fast switching network leading to synchronization. Although this sufficient condition
appears to be very conservative, it provides new insights about the requirements for synchronization
when the network topology is time-varying. In particular, it can be shown that networks of oscilla-
tors can synchronize even if at every point in time the frozen-time network topology is insufficiently
connected to achieve synchronization.
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1. Introduction. Since Huygen’s early observations of weakly coupled clock pendula [31],
synchronization has been found in a wide variety of phenomena, ranging from biological
systems that include fireflies in the forest [14, 41], animal gates [16], descriptions of the heart
[29, 59, 27], and improved understanding of brain seizures [43] to chemistry [37], nonlinear
optics [60, 61, 62], and meteorology [20]. See one of the many excellent reviews now available,
including [11, 50, 15, 57, 26, 42]. In particular, it has been known for more than 20 years that
chaotic oscillators can synchronize under suitable coupling [24, 3, 46]. Meanwhile, in recent
years, the study of large scale, random networks has become an extremely active area with
the advent of advances in both theory and scientific application across numerous disciplines,
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as reviewed in [44, 19, 4, 5, 63], for example. Recent investigations have sought to characterize
how oscillator elements coupled according to a large scale network architecture are impacted
by the choice of architecture and corresponding spectral properties of the network [6, 34, 33,
30, 25, 38]. In particular, the master-stability function formalism [47, 48] relates spectral
properties of the graph Laplacian of the network to synchrony of supported oscillators, and
this has been used in the study of synchronization stability on arbitrary network architecture
[6].

Despite the very large volume of literature to be found, the great majority of research
activities have been focused on static networks whose connectivity and coupling strengths are
constant in time. For example, static networks are assumed for the analysis of [47, 48, 6].
However, there are applications where the coupling strengths and even the network topology
can evolve in time. Recent work such as [56, 32, 65] are among the few to consider time-
dependent couplings. See also [35] in which a so-called function dynamics gives rise to networks
that evolve according to a dynamical system, somewhat similarly to our networks. The recent
work of Blykh, Belykh, and Hasler on “blinking-systems” [9] has complementary results to
ours, which we review at the end of this introduction.

In prior work [54], we were motivated by applications that include how a disease might
occur in a network of agents in which the agents move, but the disease itself has its own time-
scale. We describe a competition of two time-scales. Said plainly, the disease has a natural
typical incubation rate and a natural infections rate (for example in a susceptible→exposed→
infected→recovered (SEIR) model), so if a susceptible agent does not come in contact with
an infected agent in the disease time-scale, then there should be no new infection. Math-
ematically, we constructed a “moving neighborhood network” (MNN), a network of agents
which move ergodically and connect when in close proximity to each other. Such a network
was shown to lead to a Poisson distributed degree distribution instantaneously, and hence
the network was typically instantaneously disconnected. It consists of typically many small
subcomponents at each instant. Such a description alone would suggest that there could be
no global synchronization of the oscillators carried by each agent which are coupled according
to the disconnected network. However, it was found that if the agents move quickly enough,
then roughly described, in any recent time window, a given agent might be likely to have
had some amount of coupling to most other agents. It turns out that for fast enough moving
agents, these random time-varying connections were enough to overcome even chaotic oscil-
lators’ sensitive dependence tendency to drift apart asynchronously. We formalized this idea
by introducing a new description of the connectivity, a “moving averaged” graph Laplacian.
We showed empirically that the spectrum of this construction works quite well together with
the master-stability formalism to accurately predict synchronization.

Besides our original motivation in mathematical epidemiology, it can be argued that this
work has strong connections to ad hoc communication systems and control systems on time-
varying networks. Fundamental connections between chaotic oscillations and proof of syn-
chronization through symbolic dynamics [55, 49] and control [17, 12, 28] and even definition
of chaos through symbolic dynamics suggest this work is rooted in a description of information
flow in the network.

Coordinated control for platoons of autonomous vehicles can also be addressed using
network concepts [18, 51, 21]. Each vehicle is represented by a node, and communication or



142 D. J. STILWELL, E. M. BOLLT, AND D. G. ROBERSON

mutual sensing is represented by connections between nodes. In [21] the average position of a
platoon of vehicles is regulated, and the graph Laplacian is used to describe communication
between vehicles. It is shown that the spectrum of the graph Laplacian can be used to indicate
stability of the controlled system. As pointed out in [51], the use of a graph Laplacian is not
entirely common since it appears naturally for only a limited class of control objectives. The
simplified model form explored in this paper, (2.1), is morally inspired by these problems
where there seems to be a notion of average information propagation in a network.

These considerations have led us in this work to consider a simplified version of the moving
agents of our MNN model. Considering certain time-varying coupled network architectures,
we can now make rigorous but sufficient statements concerning fast switching, and we use
mathematical machinery not so far typically used in the synchronization community. The
main result of this work comes from the fields of switched systems, and specifically builds
on the concept of fast switching. Switched systems are a class of systems whose coefficients
undergo abrupt change. For example, consider the linear state equation

ẋ(t) = Aρ(t)x(t),(1.1)

where ρ(t) : R �→ Z+ is a switching sequence that selects elements from a family of matrix-
valued coefficients Θ = {A1, A2, . . . }. When each element of Θ is Hurwitz, stability of (1.1)
is guaranteed if ρ(t) switches sufficiently slowly. Further restrictions on elements of Θ, such
as existence of a common Lyapunov function, can guarantee stability for arbitrary switching
functions, including those that are not slow. An excellent overview of the field of switched
systems and control is presented in [40] and in the book [39].

Even when the elements of Θ are not all Hurwitz, stability of (1.1) is still possible, although
the class of switching functions is further restricted. For example, in [64] a stabilizing switching
sequence is determined by selecting elements of Θ based on the location of the state x(t) in
the state space. This is essentially a form of state feedback.

When no elements of Θ are Hurwitz, which is the case that is considered herein, stability
of (1.1) can sometimes be guaranteed if the switching sequence is sufficiently fast. Loosely
speaking, it can be shown that

ẋ(t) = Aρ(t/ε)x(t)(1.2)

is asymptotically stable if there exists a constant T such that the time-average

1

T

∫ t+T

t
Aρ(τ)dτ

is Hurwitz for all t, and if ε is sufficiently small. This fact has been established in [36, 7, 58]
for several classes of linear systems related to (1.2). Similar results have been presented in
[2, 1] for classes of nonautonomous nonlinear systems where time is parameterized by t/ε as in
(1.2). In this case, stability of a specific average system implies stability of the original system
if ε is sufficiently small. In addition, this work requires the existence of a Lyapunov function
that is related to a certain average of the system but which is not a function of time. This
requirement is too restrictive for the class of linear time-varying systems considered herein.
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A new fast switching stability condition, presented in section 3, is derived in order to assess
local stability of networked oscillators about the synchronization manifold.

Recent complementary results have been authored by Belykh, Belykh, and Hasler, in
[8] and [9]. They developed a method called the “connection graph stability method” whereby
even for networks of time-varying connections, a bound is established based on explicitly
considering the total length of all paths through edges on the network connection graph.
Their bound links average path length in a way which allows them to consider a small-world
regular 2k-nearest lattice with long range connections which are switched on and off with
a certain probability p during short time intervals τ . They also conclude synchronization
thresholds not dissimilar to ours relating the switching time of the necessary (long range)
connections which must be small relative to the synchronization time. However the specifics
of their methods, rooted explicitly in graph theory, are different from ours, which are rooted
in the field of switched systems from control engineering. Consequently, the specific details of
both hypothesis and conclusions in our work are not the same as those in [8, 9].

2. Preliminaries. We consider a network of coupled oscillators consisting of r identical
oscillators,

ẋi(t) = f(xi(t)) + σB

r∑
j=1

lij(t)xj(t), i = 1, . . . , r,(2.1)

where xi(t) ∈ R
n is the state of oscillator i, B ∈ R

n×n, and the scalar σ is a control variable
that sets the coupling strength between oscillators. This model is inspired by the applied
questions discussed in the introduction in that it has time-varying connections which still allow
for enough connectionism for global synchronization, and it is of a sufficiently simplified form to
admit a complete and rigorous analysis. The scalars lij(t) are elements of the graph Laplacian
of the network graph and describe the interconnections between individual oscillators. Let
G(t) be the time-varying graph consisting of r vertices vi together with a set of ordered pairs of
vertices {vi, vj} that define the edges of the graph. In this work, we assume that {vi, vi} ∈ G(t)
for i = 1, . . . , r. Let G̃(t) be the r×r adjacency matrix corresponding to G(t); then G̃i,j(t) = 1
if {vi, vj} is an edge of the graph at time t and G̃i,j(t) = 0 otherwise. The graph Laplacian is
defined as

L(t) = diag(d(t)) − G̃(t),(2.2)

where the ith element of d(t) ∈ R
r is the number of vertices that vertex i is connected

to, including itself. Note that solutions of (2.1) must be interpreted in the weak sense of
Carathéodory. Indeed, the presence of a switching network leads to nonsmooth solutions,
i.e., piecewise differentiable solutions which are smooth only between switching instants. For
existence and uniqueness theorems for such nonlinear systems, one may refer to [22, 53].

Synchronization can be assessed by examining local asymptotic stability of the oscillators
along the synchronization manifold. Linearizing each oscillator (2.1) about the trajectory
xo(t), which is assumed to be on the synchronization manifold, yields

żi(t) = F (t)zi(t) + σB

r∑
j=1

lij(t)zj(t),(2.3)
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where

zi(t) = xi(t) − xo(t),(2.4)

and F (t) = Df evaluated at xo(t). Let L(t) be the r × r matrix composed of entries lij(t);
then the system of linearized coupled oscillators is written

ż(t) = (Ir ⊗ F (t) + σ(In ⊗B)(L⊗ Ir)) z(t)

= (Ir ⊗ F (t) + σL⊗B) z(t),
(2.5)

where “⊗” is the Kronecker product and z(t) = [zT1 (t), . . . , zTr (t)]T . Standard properties of the
Kronecker product are utilized here and in what follows, including: for conformable matrices
A, B, C, and D, (A ⊗ B)(C ⊗ D) = AC ⊗ BD. Notation throughout is standard, and we
assume that ‖ · ‖ refers to an induced norm.

It has been shown in [47, 48] that the linearized set of oscillators (2.5) can be decomposed
into two components: one that evolves along the synchronization manifold and another that
evolves transverse to the synchronization manifold. If the latter component is asymptotically
stable, then the set of oscillators will synchronize.

The claimed decomposition is achieved using a Schur transformation. We briefly describe
the decomposition since it plays a central role in our assessment of synchronization under time-
varying network connections. Let P ∈ R

n×n be a unitary matrix such that U = P−1LP , where
U is upper triangular. The eigenvalues λ1, . . . , λr of L appear on the main diagonal of U . The
transformation is not unique, in that the triangular structure of U can be obtained with the
eigenvalues of L in any order along the diagonal. A change of variables ξ(t) = (P ⊗ In)−1 z(t)
yields

ξ̇(t) = (P ⊗ In)−1 (Ir ⊗ F (t) + σL⊗B) (P ⊗ In) ξ(t)

=
(
Ir ⊗ F (t) + σP−1LP ⊗B

)
ξ(t)

= (Ir ⊗ F (t) + σU ⊗B) ξ(t).

(2.6)

Due to the block-diagonal structure of Ir ⊗ F (t) and the upper triangular structure of U ,
stability of (2.6) is equivalent to stability of the subsystems

ξ̇i(t) = (F (t) + σλiB)ξi(t), i = 1, . . . , r,(2.7)

where λ1, . . . , λr are the eigenvalues of L. Note that since the row sums of L are zero, the
spectrum of L contains at least one zero eigenvalue. We assign λ1 = 0, which is consistent
with particular choices of the transformation matrix P . Thus

ξ̇1(t) = F (t)ξ1(t)

evolves along the synchronization manifold, while (2.7) with i = 2, . . . , r evolves transverse to
the synchronization manifold [47]. Since the oscillators are assumed identical, the (identity)
synchronization manifold is invariant for all couplings, the question being its stability. The set
of coupled oscillators will synchronize if the synchronization manifold is stable, or, equivalently,
if (2.7) with i = 2, . . . , r is asymptotically stable.
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3. Main result. For a given static network, the master-stability function characterizes
values of σ for which a set of coupled oscillators (2.5) synchronizes [47, 6, 23]. The graph
Laplacian matrix L has r eigenvalues, which we label

0 = λ1 ≤ · · · ≤ λr = λmax.(3.1)

The stability question reduces by linear perturbation analysis to a constraint upon the eigen-
values of the Laplacian,

σλi ∈ (α1, α2) ∀i = 2, . . . , r,(3.2)

where α1, α2 are given by the master-stability function (MSF), a property of the oscillator
equations. For σ small, synchronization is unstable if σλ2 < α1; as σ is increased, instability
arises when

σλmax > α2.(3.3)

By algebraic manipulation of (3.2), if

λmax

λ2
<

α2

α1
=: β,(3.4)

then there is a coupling parameter, σs, that will stabilize the synchronized state. For some
networks, no value of σ satisfies (3.2). In particular, since the multiplicity of the zero eigenvalue
defines the number of completely reducible subcomponents, if λ2 = 0, the network is not
connected, and synchronization is not stable. However, even when λ2 > 0, if the spread of
eigenvalues is too great, then synchronization may still not be achievable.

For the case of a time-varying network topology, represented by L(t), our principal contri-
bution is to show that the network can synchronize even if the static network for any frozen
value of t is insufficient to support synchronization. Specifically, we show that the time-average
of L(t), not the frozen values of L(t), is an indicator of synchronization. If the time-average of
L(t) is sufficient to support synchronization, then the time-varying network will synchronize
if the time-average is achieved sufficiently fast.

Theorem 3.1. Suppose a set of coupled oscillators with linearized dynamics

żs(t) =
(
Ir ⊗ F (t) + σL̄⊗B

)
zs(t)(3.5)

has an asymptotically stable synchronization manifold, regarding z(t) → 0 in (2.4). Then there
exists a positive scalar ε∗ such that the set of oscillators with linearized dynamics

ża(t) = (Ir ⊗ F (t) + σL(t/ε) ⊗B) za(t)(3.6)

and time-varying network connections L(t) are also asymptotically stably synchronized, again
regarding z(t) → 0 in (2.4), for all fixed 0 < ε < ε∗, if there exists a constant T such that
L(t) satisfies

1

T

∫ t+T

t
L(τ)dτ = L̄(3.7)
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and the column sums of L(t) are all zero for all t.
Remark 3.2. Since L(t) represents a time-varying network, we may assume that for each

value of t, L(t) is a graph Laplacian as defined in (2.2). Thus the time-average L̄ in (3.7)
is not a graph Laplacian. In other words, L̄ does not necessarily correspond to a particular
network topology and arises only as the time-average of L(t). However, L̄ does inherit the
zero row and column sum property of L(t).

A preliminary lemma is required to prove Theorem 3.1, the proof of which appears in the
appendix.

Lemma 3.3. Suppose there exists a constant T for which the matrix-valued function E(t)
is such that

1

T

∫ t+T

t
E(τ)dτ = Ē(3.8)

for all t and

ẋ(t) = (A(t) + Ē)x(t), x(to) = xo, t ≥ to,(3.9)

is uniformly exponentially stable. Then there exists ε∗ > 0 such that for all fixed ε ∈ (0, ε∗),

ż(t) = (A(t) + E(t/ε))z(t), z(to) = zo, t ≥ to,(3.10)

is uniformly exponentially stable.
Proof of Theorem 3.1. First we show that the Schur transformation that decomposes the

set of oscillators (3.5) with static L̄ also induces a similar decomposition for (3.6) with time-
varying L(t). Then we apply Lemma 3.3 to show that the modes of the system that evolve
transverse to the synchronization manifold are stable if ε is sufficiently small.

Let P ∈ R
r×r be a unitary matrix such that Ū = P−1L̄P , where

Ū =

[
0 Ū1

0(r−1)×1 Ū2

]

is the Schur transformation of L̄, and Ū2 ∈ R
(r−1)×(r−1) is upper triangular. Without loss

of generality, we have assumed that the leftmost column of P is the unity norm eigenvec-
tor [

√
1/r, . . . ,

√
1/r]T corresponding to a zero eigenvalue. The change of variables ξs(t) =

(P ⊗ I)−1zs(t) yields the decomposition ξs = [ξs1, ξs2]
T , where ξs1 ∈ R

n, ξs2 ∈ R
n(r−1), and

ξs2 satisfies

ξ̇s2(t) =
(
Ir−1 ⊗ F (t) + σŪ2 ⊗B

)
ξs2(t).(3.11)

As discussed in section 2, (3.11) is asymptotically stable by hypothesis.
We now consider the same change of variables applied to (3.6). First, note that

U(t) = P−1L(t)P =

[
0 U1(t)

0(r−1)×1 U2(t)

]

since the column sums for L(t) are zero for all t. The change of variables ξa(t) = (P⊗I)−1za(t)
yields the decomposition ξa = [ξa1, ξa2]

T , where ξa1 ∈ R
n evolves along the synchronization
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manifold and ξa2 ∈ R
n(r−1) evolves transverse to the synchronization manifold. To verify that

the oscillators synchronize, it is sufficient to show that

˙ξa2(t) = (Ir−1 ⊗ F (t) + σU2(t/ε) ⊗B) ξa2(t)(3.12)

is asymptotically stable when ε is sufficiently small. Since

Ū = P−1L̄P

=
1

T

∫ t+T

t
P−1L(τ)Pdτ

=
1

T

∫ t+T

t
U(τ)dτ

we conclude that

Ū2 =
1

T

∫ t+T

t
U2(τ)dτ.(3.13)

Thus the desired result is obtained by direct application of Lemma 3.3 along with (3.11),
(3.12), and (3.13).

4. Illustration. To illustrate fast switching concepts applied to synchronization of a set
of oscillators, we consider a set of r Rössler attractors

ẋi(t) = −yi(t) − zi(t) − σ

r∑
j=1

lij(t/ε)xj(t),

ẏi(t) = xi(t) + ayi(t),

żi(t) = b + zi(t)(xi(t) − c),

(4.1)

where i = 1, . . . , r, a = 0.165, b = 0.2, c = 10, and σ = 0.3. Oscillators are coupled through
the xi variables via lij(t). Coupling between subsystems (nodes) is defined by a time-varying
graph G(t), with corresponding adjacency matrix G̃(t). The graph Laplacian L(t), with entries
lij(t), is defined as in (2.2).

For the purposes of illustration, we choose a set of five graphs and corresponding adjacency
matrices G̃1, . . . , G̃5 with the property that none of them are fully connected. That is, each
graph contains pairs of nodes that do not have a path between them. However, the union of
vertices over all five graphs yields a fully connected graph with the longest path between nodes
containing no more than two other nodes. All five graphs and the union of graph vertices are
shown in Figure 1.

A simple strategy is chosen for switching among graph Laplacians associated with the set
of graphs. We choose the T -periodic L(t) defined over one period by

L(t) =

5∑
i=1

Liχ[(i−1)T/5, iT/5)(t),
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(a) (b) (c)

(d) (e) (f)

Figure 1. (a)–(e) are graphs G1 through G5, respectively, while (f) is the union of graphs.

where χ[t1, t2)(t) is the indicator function with support [t1, t2). The time-average of L(t) is

L̄ =
1

εT

∫ εT

0
L(t/ε)dt

=
1

5

5∑
i=1

Li.

(4.2)

Toward computing the upper bound for ε given by (A.11), the set of coupled oscillators
(4.1) with coupling defined by (4.2) are integrated. The x-coordinate for each oscillator
is shown in Figure 2. The x-coordinates clearly synchronize. Asymptotic stability of the
oscillators with respect to the synchronization manifold is suggested by plotting the sum-
square deviation of the states

r∑
i=1

(xi(t) − μx(t))
2 + (yi(t) − μy(t))

2 + (zi(t) − μz(t))
2(4.3)
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Figure 2. The x-coordinate for the set of coupled Rössler attractors using the average graph Laplacian.

about the averages

μx(t) =
1

r

r∑
i=1

xi(t),

where μy(t) and μz(t) are defined similarly. Approximately exponential decay of (4.3) is
evident in Figure 3, indicating that the oscillators synchronize.

The linear time-varying system (2.5) corresponding to the set of coupled Rössler attractors
is computed from the Jacobian of the right-hand side of (4.1) evaluated at the solutions shown
in Figure 2.

As described in the proof of Lemma 3.3, a Schur transformation U that diagonalizes
L̄ is computed and used as a state transformation to decompose the linear time-varying
system (2.5) into a component that evolves along the synchronization manifold and another
component that evolves transverse to the synchronization manifold. The upper bound for
ε given in Theorem 3.1 is computed from the component of the linear system that evolves
transverse to the synchronization manifold,

ξ̇a2(t) = (Ir−1 ⊗ F (t) + σU2 ⊗B)ξa2(t).

We now estimate the constants α, ρ, η, and μ needed to compute the right-hand side of (A.11)
in the proof of Lemma 3.3 (see the appendix). This is used to compute a maximum value of
ε. The constant α is computed from (A.4), while the transition matrix is computed from

Φ̇(t, τ) = (Ir−1 ⊗ F (t) + σU2 ⊗B)Φ(t, τ), Φ(τ, τ) = I.



150 D. J. STILWELL, E. M. BOLLT, AND D. G. ROBERSON

0 10 20 30 40 50 60 70 80
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

seconds

Figure 3. Sum-square deviation in (4.3) for the set of coupled Rössler attractors using the average network L̄.
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Figure 4. Norm of the transition matrix Φ(t, τ) along with an exponentially decaying upper bound.

The norm of the transition matrix ‖Φ(t, τ)‖ is shown in Figure 4. The initial time τ is chosen
to be 40 seconds to ensure that the states of (4.1) are reasonably close to the synchronization
manifold. An upper bound that satisfies ‖Φ(t, τ)‖ ≤ γe−λ(t−τ) is also shown in Figure 4. The
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Figure 5. The x-coordinate for the set of coupled Rössler attractors using the switched network where ε = 1.

coefficients ρ, μ, and η in (A.8) are computed from γ and λ when evaluating the right-hand
side of (A.11). Choosing T = 1, the right-hand side of (A.11) is evaluated for this example,
and we determine that the set of coupled oscillators will synchronize if ε < 3.3 × 10−7. This
shows that our bound is exceedingly conservative. For example, empirically the oscillators
will synchronize with ε = 1, as shown in Figure 5.

Appendix.
Proof of Lemma 3.3. Since (3.9) is uniformly exponentially stable, there exist a symmetric

matrix function Q(t) and positive scalars η, ρ, and μ such that the Lyapunov function

v(x(t), t) = xT (t)Q(t)x(t)

satisfies

η‖x(t)‖2 ≤ v(x(t), t) ≤ ρ‖x(t)‖2,(A.1)

d

dt
v(x(t), t) ≤ −μ‖x(t)‖2(A.2)

for all t. To establish uniform exponential stability of (3.10), we will show that v(z(t), t) is
also a Lyapunov function for (3.10) if ε is sufficiently small. This claim is achieved by showing
that for sufficiently small values of ε,

Δv(z, t + εT, t) ≡ v(z(t + εT ), t + εT ) − v(z(t), t)(A.3)
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is negative definite for all t. Expanding (A.3) yields

Δv(z, t + εT, t) = zT (t + εT )Q(t + εT )z(t + εT ) − zT (t)Q(t)z(t)

= zT (t)
(
ΦT
E(t + εT, t)Q(εT + t)ΦE(t + εT, t) −Q(t)

)
z(t),

where ΦE(t, t0) is the transition matrix corresponding to A(t) + E(t/ε), i.e.,

z(t) = ΦE(t, t0)z0

is the solution to (3.10), as discussed, for example, in [52]. Similarly denoting the transition
matrix for A(t)+Ē as ΦĒ(t, t0), we use the Peano–Baker series representation of the transition
matrix to define

H(t + εT, t) = ΦE(t + εT, t) − ΦĒ(t + εT, t)

= I +

∫ t+εT

t
A(σ1) + E(σ/ε)dσ

+
∞∑
i=2

∫ t+εT

t
A(σ1) + E(σ1/ε)

∫ σ1

t
· · ·

∫ σi−1

t
A(σi) + E(σi/ε)dσi · · · dσ1

− I −
∫ t+εT

t
A(σ1) + Ēdσ −

∞∑
i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
· · ·

∫ σi−1

t
A(σi)

+ Ēdσi · · · dσ1.

By hypothesis,

∫ t+εT

t
E(σ/ε)dσ = εT Ē,

which implies that

H(t + εT, t) =

∞∑
i=2

∫ t+εT

t
A(σ1) + E(σ1/ε)

∫ σ1

t
· · ·

∫ σi−1

t
A(σi) + E(σi/ε)dσi · · · dσ1

−
∞∑
i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
· · ·

∫ σi−1

t
A(σi) + Ēdσi · · · dσ1.

Defining

α ≡ sup
t≥0

(
max

(
‖A(t) + Ē‖, ‖A(t) + E(t/ε)‖

))
(A.4)

a bound for H(t + εT, t) is computed:

‖H(t + εT, t)‖ ≤ 2
(
eεTα − 1 − εTα

)
.(A.5)
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Noting that ΦE = ΦĒ + H, Δv is expressed as

Δv(z, t + εT, t) = zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t) −Q(t)

)
z(t)

+ zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )H(t + εT, t) + HT (t + εT, t)Q(t + εT )ΦĒ(t + εT, t)

+ HT (t + εT, t)Q(t + εT, t)H(t + εT, t)
)
z(t).

(A.6)

The task now is to compute an upper bound for Δv(z, t + εT, t) and show that this bound
is negative if ε is sufficiently small. Several well-known relationships that are consequences
of (A.1), (A.2), and uniform exponential stability of (3.9) are utilized (see, for example, [52,
p. 101, 117] or [13, p. 202]). Namely,

‖Q(t)‖ ≤ ρ,(A.7)

‖ΦĒ(t, to)‖ ≤
√
ρ/ηe

− μ
2ρ

(t−to),(A.8)

v(x(t), t) ≤ e
−μ

ρ
(t−to)v(x(to), to)(A.9)

for t ≥ to.
To compute an upper bound for the first term on the right-hand side of (A.6) we note

that if x(t) = z(t) is chosen as the initial condition of (3.9) at time t, then

zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t) −Q(t)

)
z(t) = v(x(t + εT ), t + εT ) − v(x(t), t).

From (A.9) and (A.1),

v(x(t + εT ), t + εT ) − v(x(t), t) ≤ (e−μεT/ρ − 1)v(x(t), t)

≤ ρ(e−μεT/ρ − 1)‖x(t)‖2.

Thus,

zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t) −Q(t)

)
z(t) ≤ ρ(e−μεT/ρ − 1)‖z(t)‖2.(A.10)

Combining (A.5), (A.7), (A.8), and (A.10) yields the desired upper bound

Δv(z, t + εT, t) ≤
(
ρ(e−μεT/ρ − 1) + 4ρ(

√
ρ/ηe

−μεT
2ρ )(eεTα − 1 − εTα)(A.11)

+ 4ρ(eεTα − 1 − εTα)2
)
‖z(t)‖2.

Defining the continuously differentiable function g(ε, x) to be the right-hand side of (A.11),
it can be shown that g(0, z) = 0 and ∂

∂εg(0, z) = −μT‖z‖2 < 0. Thus since g(ε, z) → ∞ as
ε → ∞, there exists ε∗ such that g(ε∗, z) = 0 and g(ε, z) < 0 for all ε ∈ (0, ε∗) and z �= 0.
Thus Δv(z, t + εT, t) < 0 for all ε ∈ (0, ε∗) and z �= 0.

To show that negative-definiteness of Δv(z, t + εT, t) is sufficient to establish stability of
(3.10), choose ε and γ > 0 that satisfy

Δv(z, to + εT, to) = v(z(to + εT ), to + εT ) − v(z(to), to) ≤ −γ‖z(to)‖2
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for all to. From (A.1), v(z(to), to) ≤ ρ‖z(to)‖2, which implies that

v(z(to + εT ), to + εT ) − v(z(to), to) ≤ −(γ/ρ)v(z(to), to).

Thus

v(z(to + εT ), to + εT ) ≤ (1 − γ/ρ)v(z(to), to).

Repeating this argument yields

v(z(to + kεT ), to + kεT ) ≤ (1 − γ/ρ)kv(z(to), to)

for any positive integer k. Thus v(z(to + kεT ), to + kεT ) → 0 as k → ∞ which implies that
z(to+kεT ) → 0 as k → ∞. Since the limiting behavior is valid for any to, uniform exponential
stability of (3.10) is established.
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