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Synchronization of chaotic oscillators has become well characterized by errors which shrink
relative to a synchronization manifold. This manifold is the identity function in the case of
identical systems, or some other slow manifold in the case of generalized synchronizaton in
the case of nonidentical components. On the other hand, since many decades beginning with
the Smale horseshoe, chaotic oscillators can be well understood in terms of symbolic dynamics
as information producing processes. We study here the synchronization of a pair of chaotic
oscillators as a process for sharing information bearing bits transferred between each other, by
measuring the transfer entropy tracked as the global system transitions to the synchronization
state. Further, we present for the first time the notion of transfer entropy in the measure theoretic
setting of transfer operators.
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transfer entropy.

1. Introduction

The phenomena of synchronization has been found
in various aspects of nature and science [Strogatz,
1994]. Its applications have ranged widely from biol-
ogy [Strogatz & Stewart, 1993; Golubitsky et al.,
1999] to mathematical epidemiology [He & Stone,
2003], and chaotic oscillators [Pecora & Carroll,
1990], to communicational devices in engineering
[Cuomo & Oppenheim, 1993], etc. Generally, the
analysis of chaotic synchronization has followed a
discussion of the synchronization manifold, which
may be the identity function for identical oscilla-
tors [Pecora & Carroll, 1998], or some perturbation
thereof for nonidentical oscillators [Sun et al., 2009],
often by some form of master stability function
analysis.

In the perspective of information theory and
symbolic dynamics, it can be understood that
chaotic oscillators are essentially information bear-
ing sources producing symbols at each iteration
in time, with the entropy being descriptive of the

rate of information production [Robinson & Robin-
son, 1999; Bollt, 2003]. In this vein, we will study
here a different perspective on synchronization than
the normal analytic one. We will consider coupled
oscillators as sharing information, and the process
of synchronization as being one where the shared
information is an entrainment of the entropy pro-
duction. To understand this sharing of information,
we will resort to the transfer entropy of Schreiber
[2000]. In this perspective, when oscillators synchro-
nize, it can be understood that they must be sharing
symbols in order that they may each express the
same symbolic dynamics. Furthermore, depending
on the degree of co-coupling, or master-slave cou-
pling or somewhere in between, the directionality of
the information flow can be described by the trans-
fer entropy. For the sake of a related work, we wish
to point the reader to a study of anticipating syn-
chronization which has a transfer entropy perspec-
tive while studying the appropriate scale necessary
to infer directionality [Hahs & Pethel, 2011].
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In our presentation, we choose the following
skew tent map system to use as a coupling element
[Hasler & Maistrenko, 1997] which is of a full folding
form [Billings & Bollt, 2001]

fa(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

a
if 0 ≤ x ≤ a

1 − x

1 − a
if a ≤ x ≤ 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (1)

that we couple in the following nonlinear form
[Hasler & Maistrenko, 1997],

(
xn+1

yn+1

)
= G

(
xn

yn

)

=

(
fa1(xn) + δ(yn − xn)

fa2(yn) + ϵ(xn − yn)

)

. (2)

We see that written in this form, if a1 = a2 and ϵ =
0 but δ > 0 we have a master-slave system of iden-
tical systems as illustrated in Fig. 1 where we see
a stable synchronized identity manifold where error
decreases exponentially to zero. On the other hand,
if ϵ = δ but a1 ̸= a2 we can study symmetrically
coupled but nonidentical systems in Figs. 2 and 3,
where the identity manifold is not exponentially sta-
ble but is apparently a Lyapunov stable manifold
as the error, error(n) = |x(n)− y(n)| remains small

Fig. 1. In a nonlinearly coupled skew tent map system,
Eq. (2), of identical oscillators, a1 = a2 = 0.63 and master-
slave configuration, δ = 0.6, ϵ = 0.0 (parameters as in
[Hasler & Maistrenko, 1997]). Note (above) how the sig-
nals entrain and (below) the error, error(n) = |x(n) − y(n)|
decreases exponentially.

Fig. 2. A nonlinearly coupled skew tent map system,
Eq. (2), of nonidentical oscillators, a1 = 0.63, a2 = 0.65 and
master-slave configuration, δ = 0.6, ϵ = 0.0. Note (above)
how the signals approximately entrain and (below) the error,
error(n) = |x(n) − y(n)| decreases close to zero, where it
remains close to an identity manifold, x = y where it is sta-
ble in a Lyapunov stability sense.

for both scenarios shown in the figures, a1 = 0.63
but a2 = 0.65 and a2 = 0.7 respectively, with pro-
gressively larger but stable errors. Our presentation
here will be designed to introduce the perspective of
transfer entropy to understand the process of syn-
chronization in terms of information flow, and from
this perspective to gain not only an idea of when

Fig. 3. A nonlinearly coupled skew tent map system,
Eq. (2), of nonidentical oscillators, a1 = 0.63, a2 = 0.7 and
master-slave configuration, δ = 0.6, ϵ = 0.0. As in Fig. 2, note
(above) how the signals approximately entrain and (below)
the error, error(n) = |x(n) − y(n)| decreases close to zero,
but not as small as in Fig. 2.
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oscillators synchronize but perhaps if one or the
other is acting as a master or a slave. Furthermore,
the perspective is distinct from a master stability
formalism.

2. Information Flow and Transfer
Entropy

A natural question in measurable dynamical sys-
tems is to ask which parts of a partitioned dynam-
ical system influence other parts of the system.
Detecting dependencies between variables is a gen-
eral statistical question and in a dynamical systems
context this relates to questions of causality. There
are many ways one may interpret and subsequently
computationally address dependency. For example,
familiar linear methods such as correlation have
some relevance, and these methods are very popular
especially for the simplicity of application [Kantz
et al., 1997]. A popular method is to compute
mutual information, I(X1;X2) [Cover et al., 1991],1

dI (X1;X2) =
∑

x1,x2

p(x1, x2)log
p(x1, x2)

p1(x1)p2(x2)
(3)

as a method to consider dynamical influence such
as used in [Donges et al., 2009] in the context of
global weather events. However, both correlation
and mutual information more so address overlap of
states rather than information flow and therefore
time dependencies.

The transfer entropy TJ→I was recently devel-
oped by Schreiber [2000] to be a statistical measure
of information flow, with respect to time, between
states of a partitioned phase space in a dynami-
cal system to other states in a dynamical system.
Unlike other methods that simply consider common
histories, transfer entropy explicitly computes infor-
mation exchange in a dynamical signal. Here we will
review the ideas behind transfer entropy as a mea-
surement of causality in a time evolving system,
and then we will show how this quantity can be
computed using estimates of the Frobenius–Perron
transfer operator by carefully masking the resulting
matrices. We follow here the notation of our book
in progress [Bollt et al., 2013]. Note that in the case
of Gaussian noise, it has been shown that Granger
causality measure has been shown to be equivalent
to transfer entropy [Barnett et al., 2009].

2.1. Definitions and interpretations
of transfer entropy

To discuss transfer entropy, suppose that we have
a partitioned dynamical system on a skew product
space X × Y ,

F : X × Y → X × Y. (4)

This notation of a single dynamical system with
phase space written as a skew product space allows
a broad application as we highlight in the examples
and help to clarify the transfer of entropy between
the X and Y states. For now, we will further write
this system as if it is a two-coupled dynamical sys-
tem having x and y parts describing the action on
each component and perhaps with coupling between
components,

F (x, y) = (Fx(x, y), Fy(x, y)), (5)

where,

Tx : X × Y → X

xn #→ xn+1 = Tx(xn, yn)
(6)

and likewise,

Ty : X × Y → Y

yn #→ yn+1 = Ty(xn, yn).
(7)

This notation allows that x ∈ X and y ∈ Y may
each be vector (multivariate) quantities and even of
dimensions different from each other. See Fig. 4.

Let,

x(k)
n = (xn, xn−1, xn−2, . . . , xn−k+1), (8)

be the measurements of a dynamical system Tx, at
times,

t(k) = (tn, tn−1, tn−2, . . . , tn−k+1), (9)

sequentially. In this notation, the space X is par-
titioned into states {x} and hence xn denotes the
measured state at time tn. Note that we have cho-
sen here not to index in any way the partition {x},
which may be some numerical grid as shown in
Fig. 4, since subindices are already being used to
denote time, and super indices denote time-depth of
the sequence discussed, so an index to denote space
would be a bit of notation overload. We may denote

1It is useful to point out at this stage that p1(x1) and p2(x2) are the marginal distributions of p(x1, x2); p1(x1) =
P

x2
p(x1, x2)

and likewise, p2(x2) =
P

x1
p(x1, x2).
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Fig. 4. In a skew product space X × Y , to discuss trans-
fer entropy between states {x} a partition of X and states
{y} of Y , some of which are illustrated as x, x′, x′′ and
y, y′, y′′, y′′′, a coarser partition {Ωa, Ωb} of X in symbols
a and b and likewise {Γ0, Γ1} of Y in symbols 0 and 1 are
also illustrated.

simply x, x′ and x′′ to distinguish states where
needed. Likewise, y(k)

n denotes sequential measure-
ments of y at times t(k), and also Y may be parti-
tioned into states {y} as characterized in Fig. 4.

The main idea leading to transfer entropy
[Schreiber, 2000] is to measure the deviation from
the Markov property, which would presume,

p(xn+1 |x(k)
n ) = p(xn+1 |x(k)

n , y(l)
n ), (10)

that the state (xn+1 |x(k)
n ) does not include depen-

dency on y(l)
n . When there is a departure from this

Markovian assumption, the suggestion is that there
is no information flow as conditional dependency in
time from y to x. The measurement of this devi-
ation between these two distributions is by a con-
ditional Kullback–Leibler divergence which we will
build toward in the following.

The joint entropy [Cover et al., 1991] of a
sequence of measurements is,

H(x(k)
n ) = −

∑

x(k)
n

p(x(k)
n ) log p(x(k)

n ). (11)

A conditional entropy [Cover et al., 1991],

H(xn+1 |x(k)
n )

= −
∑

p(xn+1, x
(k)
n )log p(xn+1 |x(k)

n )

= H(xn+1, x
(k)
n ) − H(x(k)

n )

= H(x(k+1)
n+1 ) − H(x(k)

n ), (12)

is approximately an entropy rate which as it is writ-
ten quantifies the amount of new information that
a new measurement of xn+1 allows following the
k-prior measurements, x(k)

n . Note that the second
equality follows the probability chain rule,

p(xn+1 |x(k)
n ) =

p(x(k+1)
n+1 )

p(x(k)
n )

(13)

and the last equality from the notational convention
for writing the states,

(xn+1, x
(k)
n ) = (xn+1, xn, xn−1, . . . , xn−k+1)

= (x(k+1)
n+1 ). (14)

Transfer entropy is defined in terms of a
Kullback–Leibler divergence, DKL(p1∥ p2) [Cover
et al., 1991] but of conditional probabilities,2

DKL(p1(A |B)∥p2(A |B))

=
∑

a,b

p1(a, b) log
p1(a | b)
p2(a | b)

, (15)

but for states specifically designed to highlight
transfer of entropy between the states X to Y (or
vice versa Y to X) of a dynamical system written
as skew product, Eq. (4). Define [Schreiber, 2000],

Tx→y =
∑

p(xn+1, x
(k)
n , y(l)

n )log
p(xn+1 |x(k)

n , y(l)
n )

p(xn+1 |x(k)
n )

,

(16)

which we see may be equivalently written as a differ-
ence of entropy rates — like conditional entropies,

Ty→x = H(xn+1 |x(l)
n ) − H(xn+1 |x(l)

n , y(k)
n ).

(17)

2Recall that the Kullback–Leibler divergence of a single random variable A with probability distribution is an error-like
quantity describing the entropy difference between the true entropy using the correct coding model log p1(A) versus a coding
model log p2(A) with a model distribution p2(A) of A. This difference of conditional Kullback–Leibler divergence is a direct
application for conditional probability p1(A |B) with a model p2(A |B).
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This may be a most useful form for computation,
but for interpretation, a useful form is in terms of
a conditional Kullback–Leibler divergence,

Ty→x = DKL(p(xn+1 |x(k)
n , y(l)

n )∥p(xn+1 |x(k)
n )),

(18)

found by putting together Eqs. (15) and (16). In
this form, as already noted in Eq. (10), the trans-
fer entropy has the interpretation as a measure-
ment of the deviation from the Markov property,
which would be the truth of Eq. (10). The state
(xn+1 |x(k)

n ) does not include the dependency on
y(l)

n suggesting that there is no information flow
as a conditional dependency in time from y to x
causing an influence on transition probabilities of
x. In this sense, the conditional Kullback–Leibler
divergence Eq. (18) describes the deviation of the
information content from the Markovian assump-
tion. In this sense, Ty→x describes an information
flow from the subsystem y to subsystem x. Likewise,
and asymmetrically,

Tx→y = H(yn+1 | y(l)
n ) − H(yn+1 |x(l)

n , y(k)
n ), (19)

and it is immediate to note that generally,

Tx→y ̸= Ty→x. (20)

This is not a surprise both on the grounds that
it has already been stated that Kullback–Leibler
divergence is not symmetric, but also there is no
prior expectation that influences should be equal.

2.2. Computation of transfer
entropy by constrained
Frobenius–Perron kernel

The main issue in discussing transfer entropy is to
ask about information moving from one part of a
partitioned phase space to another part of the phase
space as time advances. The key to computation is
joint probabilities and conditional probabilities as
they appear in Eqs. (17) and (19). There are two
major ways we may make estimates of these proba-
bilities, but both involve course-graining the states.
A direct application of formulas [Eqs. (11) and (12)]
and likewise for the joint conditional entropy to
Eq. (16) allows,

Ty→x = [H(xn+1, xn) − H(xn)]

− [H(xn+1, xn, yn) − H(xn, yn)], (21)

which serves as a useful method of direct compu-
tation. For the sake of interpretation, here we will
discuss the computation of transfer entropy by com-
puting associated conditional transition probabili-
ties from a matrix estimated from an appropriate
operator. Starting with a constrained Frobenius–
Perron operator [Szabo & Tel, 1994; Bollt et al.,
2002], we can develop an approximation of the nec-
essary entropies by simple matrix operations.

For the sake of notation consistent with the
skew product discussion of transfer entropy in
Eq. (4), we will denote,

z = (x, y) ∈ X × Y := Z. (22)

Using this notation, recall that the general form of
a Frobenius–Perron operator may be written as an
integration against a kernel k(z, z),

Pf [p(z)] =
∫

Z
k(z, z)ρ(z)dz, (23)

covers the deterministic case as a generalized func-
tion,

k(z, z) = δ(z − F (z)), (24)

or the stochastic cases of additive/multiplicative
[Santitissadeekorn & Bollt, 2007] when,

k(z, z) = g((z − F (y))S−1(z))|J |. (25)

Considering transfer entropy Tx→y as computed
by the formula Eq. (16), we must produce estimates
of the probabilities and conditional probabilities,

p(xn+1, x
(k)
n , y(l)

n ), p(xn+1 |x(k)
n , y(l)

n ) and

p(xn+1 |x(k)
n ),

(26)

over all states x in the partitioned X and y in Y .
We will focus on p(xn+1, x

(k)
n , y(l)

n ), for the sake of
discussion. Since z = (x, y), we write,

p(xn+1, xn, yn) =
∑

yn+1∈{y}
p(xn+1, yn+1, xn, yn)

≡
∑

yn+1∈{y}

p(zn+1, zn) (27)

and we have chosen the simplest but most com-
mon delay scenario k = l = 1. We remind that
{y} denotes the partition of Y and yn ∈ {y} here
denotes the state in that partition at time tn, rather
than a singleton in Y . In this case, each p(zn+1, zn)
in Eq. (27) can be interpreted as a matrix entry
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of an Ulam–Galerkin matrix [Ding & Zhou, 1996;
Bollt, 2000] by projection using characteristic func-
tions supported over the chosen partition,

{x}× {y} := {z}. (28)

Recall that an Ulam–Galerkin matrix approxima-
tion of the Frobenius–Perron operator is a finite
rank projection onto basis functions which are gen-
erally basis functions chosen to be characteristic
functions supported over boxes. Specifically, rewrite
as a conditional probability,

Ai,j =
m(Bi ∩ F−1(Bj))

m(Bi)

= p(zn ∈ Bi | zn−1 ∈ Bj). (29)

In this equation, we have written the partition {z}
in the notation {z} = {Bi} as suggested in Fig. 4,
whereas in this section there is some abuse of nota-
tion as zn may denote a partition element of {z} at
time t = tn or a singleton point as the context may
merit.

Choosing characteristic function {χBi(z)},

Ai,j = ⟨PF [χBj (z)],χBi (z)⟩

=
∫

Bi

∫

Bj

k(z, z)ρ(z)dzdz, (30)

these transition probabilities are in terms of a con-
strained Frobenius–Perron operator which we write,
PF,Bj [χBj (z)]. Due to integration over a restricted
domain defined as,

PF,Bj [ρ] =
∫

Bj

k(z, z)ρ(z)dz. (31)

Consider then an indicator vector,

[vBj ] = 1 in the element corresponding to Bj

and (32)
0 in all other positions.

which can be understood by inspection of Fig. 4. As
such, we can write,

[vx]k = 1 if k corresponds to Πx(Bk) = x,
and (33)

0 otherwise,

where Πx : Z → X is a projection function. The
vector [vx] indicates 1 exactly in all those rectan-
gles Bj which, for example, as illustrated in Fig. 4,
correspond to the red strip projecting to an element
x ∈ {x}. Likewise, let,

[vy]k = 1 if k corresponds to Πy(Bk) = y,
and (34)

0 otherwise,

with Πy : Z → Y. Counting, if {x} has Nx elements,
and {y} has Ny elements, then N = NxNy rectan-
gles are indicated in the partition {z} = {x}× {y}.
Then for given element x, indicator vectors of the
form [vx] are N ×1 labeling each {Bi}N

i=1 in a strip.
We now rewrite Eq. (27) as the following Ulam–

Galerkin matrix approximation of the constrained
Frobenius–Perron operator, Eq. (30),

p(xn+1, zn) = A · diag([vxn ]) · p, (35)

which follows from the conditional probability chain
rule.3 We must interpret the probability vector p =
p(zn), and therefore the statement p(xn+1, zn) is a
vector output across values zn. On the one hand, it
may be understood to be the usual stationary dis-
tribution vector that can be found by a histogram
of a sample orbit or by A as the dominant eigen-
vector; it is feasible however that pi = 0 for some i
thus upsetting any division to compute condition-
als. On the other hand, in the spirit of developing
the Ulam–Galerkin matrix estimate of A in terms
of the one step action of the map on a uniform
measure, Eq. (29), we will interpret pi = m(Bi).
Such estimates are in the spirit of coarse-graining
previously used in the topic of developing proba-
bilities to estimate entropies [Hlavácková-Schindler
et al., 2007; Kantz & Schreiber, 2004; Cover et al.,
1991]. We interpret diag([vxn ]) as the square matrix
whose diagonal entries are from the vector [vxn ]
that serves as a masking matrix to constrain the
Frobenius–Perron operator just as Eq. (31), so that
A · diag([vxn ]) approximate PF,xn .

The other two probabilities in Eq. (26) are
somewhat simpler to derive from A and p

p(xn+1 |xn) =
p(xn+1, xn)

p(xn)
, (36)

3P (a | b) = P (a, b)/P (b).
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which exists for those xn such that p(xn) ̸= 0, and
where,

p(xn+1, xn) =
∑

yn∈{y}

p(xn+1, zn), (37)

since p(xn+1, zn) = p(xn+1, xn, yn) is summed for
each yn, coming from Eq. (35). Also,

p(xn) = diag([vxn ]) · p. (38)

Finally in Eq. (26),

p(xn+1 | zn) =
p(xn+1, zn)

p(zn)
, (39)

which exists for those rectangles zn such that
p(zn) ̸= 0. Again p(xn+1, zn) comes from Eq. (35).
Therefore,

p(xn+1 | zn) =
p(xn+1, zn)

p(zn)
, (40)

or,

p(xn+1, zn) = A · diag([vxn ]) · p

p
. (41)

Substitution of Eqs. (35), (36), (39) into
Eq. (16) provides an estimate for Tx→y. However,
the states in the fine grid may not be those desired
to define symbolization of information states. If
the transformation is Markov on the skew product
space, then representation of A in Eq. (30) is exact.
The partition {z} serves as a symbolization which
in projections by Πx and Πy are the grids {x} and
{y} respectively. It may be more useful to consider
information transfer in terms of a coarser statement
of states. For example, see Fig. 4 where we represent
a partition Ω and Γ of X and Y, respectively. For
convenience of presentation we represent two states
in each partition,

Ω = {Ωa,Ωb} and Γ = {Γ0,Γ1}. (42)

In this case, then the estimates of all of the sev-
eral probabilities can be summed in a manner just
discussed above. Then the transfer entropy Tx→y

becomes in terms of the states of the coarse parti-
tions. The question of how a coarse partition may
represent the transfer entropy of a system relative
to what would be computed with a finer partition
has been discussed in [Hahs & Pethel, 2011] with
the surprising result that the direction of informa-
tion flow can be effectively measured as not just a
poor estimate by the coarse partition, but possibly
even of the wrong sign.

Fig. 5. Transfer entropy, Tx→y measured in bits, of the sys-
tem Eq. (2), in the identical parameter scenario a1 = a2 =
0.63 which often results in synchronization depending on the
coupling parameters swept, 0 ≤ δ ≤ 0.8 and 0 ≤ ϵ ≤ 0.8
as shown. Contrast to Ty→x as shown in Fig. 6 where the
transfer entropy clearly has an opposite phase relative to the
coupling parameters (ϵ, δ).

2.3. Results of information flow
due to synchrony

Now considering the system of coupled skew tent
maps, Eq. (2), with coupling resulting in various
identical and nonidentical synchronization scenarios
as illustrated in Figs. 1–3, we will now analyze the
information transfer across a study of both parame-
ter matches and mismatches and across various cou-
pling strengths and directionalities. In Figs. 5 and 6,

Fig. 6. Transfer entropy, Ty→x measured in bits, of the sys-
tem Eq. (2), in the identical parameter scenario a1 = a2 =
0.63 which often results in synchronization depending on the
coupling parameters swept, 0 ≤ δ ≤ 0.8 and 0 ≤ ϵ ≤ 0.8 as
shown. Compare to Tx→y as shown in Fig. 5.
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we see the results of transfer entropy, Tx→y and
Ty→x respectively in the scenario of identical oscil-
lators a1 = a2 = 0.63 for coupling parameters being
swept 0 ≤ δ ≤ 0.8 and 0 ≤ ϵ ≤ 0.8. We see that due
to the symmetry of the form of the coupled systems,
Eq. (2), the mode of synchronization is opposite to
what is expected. When Tx→y is relatively larger
than Ty→x, the interpretation is that relatively more
information flows from the x system to the y sys-
tem, and vice versa. This source of communication
is due to the coupling of the formulation of synchro-
nization. Large changes in this quantity signals the
sharing of information leading to synchronization.

In the asymmetric case, 0.55 ≤ a1, a2 ≤ 0.65 we
show a master-slave coupling ϵ = 0, δ = 0.6 in Fig. 7
and compare with Figs. 1–3. In the master-slave
scenario chosen, the x oscillator is driving the xy
oscillator. As such, the x oscillator sends its states
in the form of bits to the y oscillator as should be
measured as Tx→y > Ty→x when synchronizing and
more so when a great deal of information “effort” is
required to maintain synchronization. This is inter-
preted as seen in Fig. 7 in that when the oscillators
are identical, a1 = a2 shown on the diagonal, the
transfer entropy difference Tx→y > Ty→x is small-
est since the synchronization requires the smallest
exchange of information once started. In contrast,
Tx→y > Ty→x is the largest when the oscillators are
most dissimilar, and we see in Fig. 5 how “strained”

Fig. 7. Transfer entropy difference, Ty→x −Ty→x measured
in bits, of the system Eq. (2), in the nonidentical parame-
ter scenario sweep, 0.55 ≤ a1, a2 ≤ 0.65, and master-slave
coupling ϵ = 0, δ = 0.6. Compare to Tx→y as shown in
Fig. 5. Contrast to Ty→x as shown in Fig. 6 where the transfer
entropy clearly has an opposite phase relative to the coupling
parameters (ϵ, δ). Also compare to Figs. 1–3.

the synchronization can be since the error cannot
go to zero as the oscillators are only loosely bound.

3. Conclusion

We have discussed here the concept of synchroniza-
tion of both identical and nonidentical systems with
various directionalities and strengths of couplings
in a new language of information using Transfer
entropy. We have developed the tool of transfer
entropy a bit further than previously presented by
the interpretation within the formalism of trans-
fer operators by the Frobenius–Perron operator. We
have found that transfer entropy can make a use-
ful tool for interpreting the synchrony that devel-
ops between coupled oscillators. An obvious next
direction for this work is to apply these methods to
explore synchrony within complex networks of oscil-
lators, but now within the language of information
theory to discuss information flowing within a com-
plex network.
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