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Synchronization in random weighted directed
networks

Maurizio Porfiri, Daniel J. Stilwell and Erik M. Bollt

Abstract— We assess synchronization of oscillators that are
coupled via a time-varying stochastic network, modeled as a
weighted directed random graph that switches at a given rate
between a set of possible graphs. The existence of any graph edge
is probabilistic and independent from the existence of any other
edge. We further allow each edge to be weighted differently. Even
if the network is always instantaneously not connected, we show
that sufficient information is propagated through the network
to allow almost sure synchronization as long as the expected
value of the network is connected, and that the switching rate is
sufficiently fast.

Keywords: synchronization, random graphs, directed graphs,
weighted graphs, fast switching, ad hoc networking

I. INTRODUCTION

Since Huygen’s early observations of weakly coupled clock
pendula [20], synchronization has been found in a wide
variety of phenomena, especially in recent years, ranging from
biological systems that include fire flies in the forest [7],
[29], animal gates [9], descriptions of the heart [15], [19],
[43], and improved understanding of brain seizures [31], to
chemistry [23], nonlinear optics [33], and meteorology [11].
Many excellent reviews now available, including [8], [42],
[14], [30], [37].

Despite the very large literature to be found on synchro-
nization, the great majority of research activities have been
focused on static networks whose connectivity and coupling
strengths are constant in time. For example, static networks
are assumed for the analysis of [3], [35], [36]. However, there
are applications where the coupling strengths and even the
network topology can evolve in time. Recent work such as
[21], [26], [27], [39], [41], [46], [4], [5] are amongst the
few to consider time-dependent couplings. There is even less
previous work concerning problems of stochastic time-varying
couplings as we address in this paper, see e.g. [6], [10], [32].

For the case of static networks, extensive research activ-
ity has led to many well-established and broad criteria for
oscillators synchronization, see e.g. [35], [36]. In [40] it
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is shown that if the time-varying network topology has a
uniform time-average and switches at a sufficiently fast rate,
then synchronization is asymptotically achieved if the static
time-average of the network topology asymptotically supports
synchronization. In this case, the concept of fast switching
enables the analysis of a time-varying network to be based on
a static time-average of the network. In particular, the result
applies to periodically switching network topologies.

The principal contribution of this paper is to extend the
deterministic result of [40] to time-varying networks whose
topology changes randomly over time. We formulate the syn-
chronization problem over a random communication network,
where each communication link has a different probability to
exist and communication channels are arbitrary weighted. We
show that if the average network asymptotically supports syn-
chronization, then synchronization is achieved asymptotically
almost surely if the network topology switches at a sufficiently
fast rate. This result is obtained by using a mixture of findings
from stochastic stability theory, see e.g. [24], linear system
theory, see e.g. [38], and fast switching theory, see e.g. [22].

Our present work is motivated by a variety of emerging ap-
plications, including cooperative control [13] and [18], math-
ematical epidemiology [39], mobile ad-hoc networks [28],
and opinion dynamics [17]. In all of these cases, information
is shared along agents via a time-varying network topology
that may change randomly. In the context of mathematical
epidemiology, our results relate to models of how disease
propagates through large network of moving agents. Such a
network would be time-varying since infections depend on
proximity among infected and susceptible moving agents.

The paper is organized as follows. In Section II we re-
view the concept of random graph and we formally define
the synchronization problem. In Section III we derive some
preliminary results on stochastic linear systems needed for
proving our main claim which appears in Section IV. In Sec-
tion V our main result is illustrated by a numerical simulation
for a network of Rössler oscillators. Section VI is left for
conclusions.

Our notation throughout is standard. ‖ · ‖ refers to the
Euclidean norm in RN or corresponding induced norm. The
vector in RN that consists of all unit entries is denoted
e = [1, . . . , 1]T, and ⊗ is the standard Kronecker product.
Z+ refers to the set of nonnegative integers, also IN is the
N ×N identity matrix.

II. PROBLEM STATEMENT

A. Random Graph
For a random directed graph G with N vertices, the ex-

istence of an edge from vertex i to vertex j $= i in the set
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V = {1, ..., N} is determined randomly and independently of
other edges with probability pij ∈ [0, 1]. We assume that the
graph does not have loops. That is, no single edge starts and
ends at the same vertex. In addition, we introduce the weight
matrix W = [wij ], where wii = 0 for i ∈ V . The adjacency
matrix A = [aij ] of a directed weighted random graph is a
random matrix with all zeros on the main diagonal, and off-
diagonal elements defined as:

aij =
{

wij with probability pij

0 with probability 1− pij

for i $= j. For the case that all pij are equal to p for every
i, j ∈ V , the random graph is the well known Erdös-Rényi
graph [12], for which the question of percolation transitions is
well understood [1]. That is, the question of when a giant
component develops above a critical value of p, allowing
a path between most vertices. The present approach should
allow for specific popular network configurations, including
small world graphs [44], and scale-free graphs [2]. The out-
degree matrix D = diag(d) is a random matrix whose nonzero

elements are di =
n∑

j=1
aij . The Laplacian matrix L = D − A

is defined as the difference between the adjacency matrix A
and the out-degree matrix D. The finite sample space of the
random graph is indicated by G, and the elementary events
(possible graphs) are indicated by G(j), j = 1, ..., |G| where
| · | denotes cardinality. The graph Laplacian corresponding to
G(j) is L(j).

The Laplacian matrix L = [lij ] is a zero row-sum matrix,
and therefore the null space of L contains e = [1, .., 1]T.
Properties of directed weighted graphs may be found in the
comprehensive paper [45].

Since the graph edges are independent random variables, the
expected value of the graph Laplacian, written E[L] = [E[lij ]],
may be computed entrywise by

E[lij ] =






−pijwij , i $= j

+
N∑

k=1
pikwik, i = j

(1)

The matrix E[L] corresponds to a weighted directed graph
which does not necessarily belong to G. We refer to this graph
as the average graph, denoted E[G].

If each edge has the same probability to exist, pij = p $= 0,
as in the Erdös-Rényi graph, then the average graph Laplacian
E[L] is equal to the graph Laplacian of a fully connected graph
multiplied by p, where a fully connected graph has a weighted
directed edge from each node to every other node.

B. Synchronization Problem

We consider a dynamic system consisting of N identical
oscillators interconnected pairwise via a stochastic, weighted,
unidirectional information network

ẋi(t) = f(xi(t)) + σB(t)
N∑

j=1

lij(t)xj (2)

xi(0) = xi0, i = 1, . . . N, t ≥ 0

where xi(t) ∈ Rn is the random state of oscillator i, xi0 ∈ Rn

is its initial condition, f : Rn → Rn describes the oscillators’
individual dynamics, B(t) ∈ Rn×n models coupling between
agents, σ > 0 is a control parameter that partially assigns
coupling strength between oscillators, and scalars lij(t) are
the element of the time-varying graph Laplacian L(t). We
collect all the states of the system in the nN dimensional
vector x(t) = [x1(t), . . . , xN (t)]T ∈ RnN .

The network topology G(t) characterized by the corre-
sponding graph Laplacian L(t) switches at a series of time
instants {∆k|k ∈ Z+}, where ∆ is a fixed period. The set of
equations (2) describes a nonlinear stochastic switched system.
During each time interval [k∆, (k + 1)∆) with k ∈ Z+,
the communication network G(t) is constant and equals the
random graph Gk. We assume that the Gk’s are independent
equally distributed random graphs as described in Subsection
II-A.

We say that the system of oscillators is synchronized if
the state vectors for all oscillator are identical. Specifically,
the oscillators are synchronized if x(t) = e⊗ s(t) for some
s(t) ∈ Rn that is a solution of the individual oscillator

ṡ(t) = f(s(t)) (3)

We refer to the the manifold in RnN consisting of trajectories
e⊗ s(t) where s(t) is a solution of (3) as the synchronization
manifold. Note also that the range of e⊗ In contains the
synchronization manifold.

C. Decomposition

Synchronization of the system of oscillators can be assessed
by examining local stability with respect to the synchroniza-
tion manifold. Linearizing the system of oscillators about the
trajectory e⊗ s(t) ∈ RnN on the synchronization manifold
yields,

ż(t) = (IN ⊗ F (t) + σL(t)⊗B(t))z(t) (4)

where z(t) = x(t)− e⊗ s(t). To analyze asymptotic stability
of the set of oscillators, we decompose the state of (4) into
a component that evolves along the synchronization manifold,
and a component that evolves transverse to the synchronization
manifold. For analysis, it suffices to show that the component
that evolves transverse to the synchronization manifold asymp-
totically approaches the synchronization manifold.

Decomposition of the oscillator states is based on a matrix
W ∈ RN×(N−1) that satisfies WTe = 0 and WTW = IN−1.
Note that the vector of synchronized oscillator states e⊗ s(t)
is in the null space of WT ⊗ In and in the range of e⊗ In.
The state vector z(t) in (4) can be decomposed as

z(t) = (W ⊗ In)ζ(t) + e⊗ zs(t)

where
ζ = (W ⊗ In)Tz

and
zs =

1
N

((e⊗ In)Tz)
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Note that zs(t) is the average of all the components in
z(t), and that ((W ⊗ In)ζ)T(e⊗ zs) = 0. Using the state
transformation

[
zs(t)
ζ(t)

]
=

[
1
N (e⊗ In)T
(W ⊗ In)T

]
z(t)

the linearized oscillator dynamics (4) are partitioned

żs(t) = F (t)zs(t) + σ(eTL(t)W ⊗B(t))ζ(t) (5a)

ζ̇(t) = (IN−1 ⊗ F (t) + σWTL(t)W ⊗B(t))ζ(t) (5b)

Thus local almost sure asymptotic synchronization of the set
of oscillators (2) is achieved if ζ(t) in (5b) almost surely
converges to zero, see e.g. [25]. The definition of almost sure
convergence may be found, for example, in [16] (Chapter 5).

III. PRELIMINARY PROPOSITIONS

In this section we present two propositions on linear system
stability which are used to determine sufficient conditions
for almost sure asymptotic synchronization of (2). The first
proposition establishes the relationship between asymptotic
stability of a linear switched time-varying system and that of
a derived sample-data system.

Proposition 1: Consider the stochastic linear system

ẏ(t) = (A(t) + B(t)⊗H(t))y(t), t ≥ 0 (6)

where y(t) ∈ Rm, A(t) ∈ Rm×m and B(t) ∈ Rm×m are
bounded and continuous functions for all t ≥ 0, and
H(t) ∈ Rm×m is a bounded random process that for some
∆ > 0 is constant for all t ∈ [k∆, (k + 1)∆) and switches at
time instants ∆k, for all k ∈ Z+. Let yk ≡ y(k∆). If yk

a.s.→ 0,
then y(t) a.s.→ 0.

Proof: For any t ∈ [k∆, (k + 1)∆), y(t) = Φ(t, k∆)yk

where Φ is the transition matrix of the linear system (6).
Since A, B and H are bounded, there exist positive constants
constants α, β and η such that for any t ≥ 0,

‖A(t)‖ ≤ α, ‖B(t)‖ ≤ β, ‖H(t)‖ ≤ η (7)

where ‖·‖ is the induced Euclidean norm. From the Gronwall-
Belmann inequality, (see e.g. Exercise 3.12 in [38])

‖y(t)‖ ≤ ‖yk‖ exp
∫ (k+1)∆

k∆
(‖A(τ) + B(τ)⊗H(τ)‖)dt

Thus for any t ∈ [k∆, (k + 1)∆)

‖y(t)‖ ≤ exp((α + βη)∆)‖yk‖

and claim follows.
For clarity we restate the well-known Borel-Cantelli Lemma

in the form presented in Lemma 1 of [24] (Chapter 8).
Lemma 1: Consider the stochastic process Xk ∈ Rm. If

f : Rm → R is a nonnegative function and
∞∑

k=0

E[f(Xk)] <∞

then f(Xk) a.s.→ 0.
The following proposition generalizes the claim in Theorem

8 of [24] (Chapter 8) to time-varying systems.

Proposition 2: Consider the stochastic system

Xk+1 = AkXk (8)

where the Ak are mutually independent random matrices and
X0 ∈ Rm. Suppose there is a sequence of symmetric positive
semidefinite matrices Qk, such that for any k

E[AT
k Qk+1Ak]−Qk = −C (9)

where E indicates expected value, and C is symmetric positive
definite, then (8) is almost surely asymptotically stable in the
sense that Xk

a.s.→ 0 for any initial condition X0.
Proof: Our proof is similar to that of Theorem 1 in

[24] (Chapter 8). Define the quadratic Lyapunov function
vk(x) = 1

2xTQkx, x ∈ Rm and the related random process

Vk = vk(Xk) =
1
2
XT

k QkXk (10)

Thus, using iteratively (8), (9) and (10) we obtain

E[V1] = V0 −
1
2
XT

0 CX0

E[V2|X1] = v1(X1)−
1
2
XT

1 CX1

E[Vk|Xk−1, . . .X1] = vk−1(Xk−1)−
1
2
XT

k−1CXk−1

E[Vk|X1, . . .Xk−1] = V0 −
1
2

k−1∑

h=0

XT
h CXh (11)

Since C and Qk are positive semidefinite, (11) yields

V0 ≥ V0 − E[Vk] =
1
2

k−1∑

h=0

E[XT
h CXh] (12)

Thus the right-hand side of (12) is bounded above. Since
C is positive semi-definite, the right-hand side of (12)
is non-negative, and direct application of Lemma 1 with
f(Xk) = 1/2XT

k CXk yields Xk
a.s.→ 0.

IV. SYNCHRONIZATION THROUGH FAST-SWITCHING

Our principal result is to show that the network of coupled
oscillators with stochastic time-varying L(t) can synchronize
even if the network is insufficiently coupled to support syn-
chronization at every instant of time. We show that synchro-
nization is achieved as long as the average network E[G],
corresponding to the graph Laplacian E[L] in (1), supports
synchronization and the switching period ∆ between new
samples of the network topology is sufficiently small. In other
words, analysis of synchronization for the stochastic time-
varying network (2) reduces to analysis of synchronization
for the static network

ẋi(t) = f(xi(t)) + σB(t)
N∑

j=1

E[lij ]xj , i = 1, . . . N, t ≥ 0

(13)
along with sufficiently fast switching of the network topology.
The case of static networks has been extensively addressed
in the literature, and analysis tools include the well-known
master-stability function [35].
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Theorem 1: Consider the deterministic dynamic system

ẏ(t) = (IN−1 ⊗ F (t) + σWTE[L]W ⊗B(t))y(t) (14)

representing the linearized transverse dynamics of (13). As-
sume that F (t) and B(t) are bounded and continuous for
all t ≥ 0. If (14) is uniformly asymptotically stable, there
is a time-scale ∆∗ > 0 such that for any shorter time-scale
∆ < ∆∗ the stochastic system (2) asymptotically synchronizes
almost surely.

Proof:
We define M(t) ≡ (IN−1 ⊗ F (t) + σWTL(t)W ⊗B(t))

and rewrite the variational equation (5b) as

ζ̇(t) = M(t)ζ(t) (15)

Consequently equation (14) my be compactly rewritten as

ẏ(t) = M̄(t)y(t) (16)

where M̄(t) ≡ (IN−1 ⊗ F (t) + σWTE[L]W ⊗B(t)). With
Proposition 1 in mind, we define the sequences ζk ≡ ζ(k∆)
and yk ≡ y(k∆), for k ∈ Z+. For any k ∈ Z+

ζk+1 = Γkζk (17a)
yk+1 = Θkyk (17b)

where Γk and Θk are the transition matrices of (15) and
(16) over the time interval [k∆, (k + 1)∆), respectively. By
hypothesis, yk in (17b) asymptotically converges to zero for
any initial condition y0. Our task is to show that ζk in (17a)
converges to zero almost surely for any initial condition if ∆
is sufficiently small.

Since F and B are bounded for all t ≥ 0, there are positive
constants φ and β such that for any t ≥ 0, ‖F (t)‖ ≤ φ and
‖B(t)‖ ≤ β. Since the event sample space is finite ‖L(t)‖ ≤
λ, where λ = maxj=1,...|G| ‖L(j)‖. By definition ‖W‖ = 1,
therefore for any t > 0

‖M(t)‖ ≤ α, ‖M̄(t)‖ ≤ α (18)

where α = φ + σβλ.
Since (16) is uniformly asymptotically stable and M̄(t) is

continuous there exists symmetric continuously differentiable
matrix Q(t) such that (see e.g. Theorem 7.2 of [38])

ηI ≤ Q(t) ≤ ρI (19)

The related Lyapunov function v(t, y) = 1
2yTQ(t)y satis-

fies d
dtv(t, y(t)) ≤ −µ‖y(t)‖2, where η, ρ and µ are pos-

itive scalars. For linear systems, uniform asymptotic stabil-
ity is equivalent to uniform exponential stability, thus in
[k∆, (k + 1)∆), (see e.g. the proof of Theorem 7.4 of [38])

v((k + 1)∆, yk+1)− v(k∆, yk) ≤ (1− exp(−µ∆/ρ))‖yk‖2
(20)

From (20) the following condition arises

ΘT
k Q((k + 1)∆)Θk −Q(k∆) = −P (21)

where P is a symmetric positive definite matrix satisfying

‖P‖ ≥ (1− exp(−µ∆/ρ)) (22)

In addition, since M̄(t) bounded, from the Gronwall-Belmann
inequality, see e.g. Exercise 3.12 in [38], we have

‖Θk‖ ≤ exp
∫ (k+1)∆

k∆
‖M̄(t)‖dt

which yields
‖Θk‖ ≤ exp(α∆) (23)

Recalling the Peano-Baker expansion for Γk (see e.g. Chap-
ter 3 of [38])

Γk = I(N−1)n +
∫ (k+1)∆

k∆
M(σ1)dσ1+

∞∑

i=2

∫ (k+1)∆

k∆
M(σ1)

∫ σ1

k∆
· · ·

∫ σi−1

k∆
M(σi)dσi · · · dσ1

we can express
Rk = Γk −Θk (24)

as

Rk =
∫ (k+1)∆

k∆
(M(σ)− M̄(σ))dσ + εk (25)

where

εk =
∞∑

i=2

∫ (k+1)∆

k∆
(M(σ1)− M̄(σ1))

∫ σ1

k∆
· · ·

∫ σi−1

k∆
(M(σi)− M̄(σi))dσi · · · dσ1 (26)

By taking the expected value of both sides of (25) we have

E[Rk] = E[εk] (27)

From (18), the norm of the first term on the RHS of (25) is
bounded by 2∆α. On the other hand from (18) and (26) the
norm of εk may be bounded by

‖εk‖ ≤
∞∑

i=2

(2∆α)i = exp(2∆α)− 1− 2∆α (28)

which implies

‖E[εk]‖ ≤ exp(2∆α)− 1− 2∆α (29)

Using (18) and (29), the norm of Rk is bounded by

‖Rk‖ ≤ exp(2∆α)− 1 (30)

We emphasize that from (28) and (30),

‖Rk‖ ≤ O(∆), ‖εk‖ ≤ O(∆2) (31)

Next, we show that for sufficiently small values of ∆, the
matrix Qk = Q(k∆) defines a quadratic Lyapunov function
for the system (5b) in the sense of Proposition 2. Indeed by
using substituting (24) into (21) and by using (27), we obtain

E[ΓT
k Qk+1Γk]−Qk =

E[(Rk + Θk)TQk+1(Rk + Θk)]−Qk =
−P + ΘT

k Qk+1E[εk] + E[εk]TQk+1Θk + E[RT
k Qk+1Rk]

(32)
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Combining all the bounds in (18), (19), (22), (23), (29) and
(30), (32) yields

E[ΓT
k Qk+1Γk]−Qk ≤ −g(∆)I(N−1)n

where the continuous function g(∆) is defined by

g(∆) = (1− exp(−µ∆/ρ))− 2 exp(α∆)ρ
(exp(2∆α)− 1− 2∆α)− ρ(exp(2∆α)− 1)2

Since g(0) = 0, d
d∆g(0) = µ

ρ > 0, and g(∆)→ −∞
as ∆→∞, there exists ∆∗ such that g(∆) > 0 for all
∆ ∈ (0, ∆∗) and by applying Proposition 2 the claim follows.

V. ILLUSTRATION

To illustrate fast switching concepts applied to synchro-
nization of a set of oscillators coupled through a randomly
switching graph, we consider a set of r Rössler attractors

ẋi(t) = −yi(t)− zi(t)− σ
r∑

j=1

lijxj(t)

ẏi(t) = xi(t) + ayi(t)
żi(t) = b + zi(t)(xi(t)− c)

where i = 1, . . . , r, a = 0.165, b = 0.2, c = 10, and σ = 0.3.
Oscillators are coupled through the xi variables via lij which
changes randomly at the transition instants k∆. Each edge is
assigned the same probability to exists, pij = p = 0.05 and the
same unitary weight. One may naturally ask if such a directed
random graph is close to percolation, since it is closely
related to the undirected Erdös-Rényi graph [12] for which
the percolation question can be directly addressed. However,
the percolation problem is not relevant here, since it is not
necessary for our network to be instantaneously connected.
Indeed, it is possible for the network to instantaneously consist
of many subcomponents when the system is changed with
a fast enough ∆. We consider as example, a network of 25
oscillators and we assume that switching occurs with a period
∆ = 1. Figure 1 and Figure 2 depict the x coordinate of
the set of coupled Rössler oscillators using the average graph
and the random graph respectively, versus the time t. Figure
3 reports the dynamics of the network topology for the first 6
time intervals.

VI. CONCLUSIONS

New generalizations on synchronization of mutually cou-
pled oscillators are presented. We pose the synchronization
problem in a stochastic framework where communication
among nodes is modeled as a weighted directed random
switching graph. We utilize tools based on fast switching
and stochastic stability, and show that synchronization is
asymptotically achieved if the average communication network
asymptotically supports synchronization and if the network
topology is changing with a sufficiently fast rate. A numer-
ical simulation illustrates the theoretical achievements of the
present paper.
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Fig. 1. Time evolution of the x coordinate of the set of coupled Rössler
oscillators using the average graph
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Fig. 2. Time evolution of the x coordinate of the set of coupled Rössler
oscillators using the random graph
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