Nonlinear Dynamics, Psychology, and Life Sciences, Vol. 4, No. 2, 2000

The Complexity of Artificial Grammars

Erik M. Bollt' and Michael A. Jones?’

In experimental psychology, artificial grammars, generated by directed
graphs, are used to test the ability of subjects to implicitly learn the
structure of complex rules. We introduce the necessary notation and
mathematics to view an artificial grammar as the sequence space of a
dynamical system. The complexity of the artificial grammar is equated
with the topological entropy of the dynamical system and is computed
by finding the largest eigenvalue of an associated transition matrix. We
develop the necessary mathematics and include relevant examples (one
from the implicit learning literature) to show that topological entropy is
easy to compute, well defined, and intuitive and, thereby, provides a
quantitative measure of complexity that can be used to compare data
across different implicit learning experiments.

KEY WORDS: artificial grammars; implicit learning; symbolic dynamics; complexity;
topological entropy.

INTRODUCTION

A popular paradigm for testing rule-based learning in the psychology
literature uses finite state grammars or ‘“‘artificial grammars” (e.g., Reber,
1989). The sequences of symbols (letters) of an artificial grammar are
generated by a grammatical rule, summarized by the allowed transitions
of a directed graph. A typical experiment involves showing subjects words,
or strings of letters, or even simply sequences of letters in turn, of a list
of grammatically generated samples, in various formats and introductory

"United States Naval Academy, Mathematics Department, Annapolis, MD 21402-5002.
*Montclair State University, Department of Mathematical Sciences, Upper Montclair, NJ
07043.

3Correspondence should be directed to Michael A. Jones, Department of Mathematical Sci-
ences, Montclair State Univesity, Upper Montclair, NJ 07043; e-mail: jonesma@pegasus.
montclair.edu.

153

1090-0578/00/0400-0153$18.00/0 O 2000 Human Sciences Press, Inc.

154 Bollt and Jones

instructions (e.g., subjects may or may not be told that the sequences are
rule based). A main thesis of this paper is that an important and natural
comparison between experiments of different researchers’ studies should
involve the inherent complexity of the grammatical rules by which letter
sequences are generated.

It seems reasonable that a small directed graph (an artificial grammar
with few letters and few nodes) with many grammatical restrictions (few
arrows) should be easier to learn than a grammar with, say, a thousand
letters and thousands of transition rules. A grammar with thousands of
letters in which any letter may follow any other letter can really be said to
have no rules at all: it would actually be grammatically simple and statisti-
cally uniform. However, a grammar with just a dozen letters, with many
restricted transitions is more difficult to learn. For example, see Fig. 4, the
grammar used in the experiments performed by Reber and Allen (1978).
A mathematical measure of “grammatical complexity’’ would be useful to
the artificial grammar learning community, not only to standardize and to
evaluate results from different studies but to aid in the design and evaluation
of experiments in a single study.

In this paper, we introduce the necessary mathematics of symbolic
dynamics to view artificial grammars as dynamical systems under the
Bernoulli shift map and directly apply topological entropy as a mathemati-
cal measure of the grammatical complexity. There is a classical and
deeply rooted link between chaos theory, symbolic dynamics, and informa-
tion theory which examines the growth rate of distinct states of the
dynamical system (Adler, Konheim, & McAndrew 1965). In Shannon’s
information theory, a sequence of events conveys information only if
the events are not fully predictable; therefore, the topological entropy
may be considered as a quantitative measurement of the information
generating capacity of the chaotic dynamical system (Blahut, 1988; Shan-
non, 1948). We define the complexity of the artificial grammar to be
the growth rate of the set of possible sequences generated by the directed
graph. Artificial grammars, and thereby the results of implicit learning
experiments under different artificial grammars, can be compared by
their complexity.

We introduce the necessary preliminaries from experimental psychol-
ogy and dynamical systems, including symbolic dynamics and transition
matrices. Directed graphs can be represented by transition matrices, but
only a matrix of large enough dimension separates the useful information;
this idea is explained by a new lifting technique, which lifts the matrix to
a Markov representation.

Further, we define topological entropy as a measure of the complexity
of artificial grammars. Not only is this measure well-defined and easy to

The Complexity of Artificial Grammars 155

Table 1. Ten Observed Sequences

Sequence 1 2 3 4 5 6 7 8 9 10
First d c a d c a b d c a
Second c a d a b d a d a b
Third c a d c a d c a b c
Fourth a d c a d a b c a b
Fifth d d a b c a b d c a
Sixth b d a d c a d c a d
Seventh b d c a b d a b c a
Eight d a d c a d a d c a
Ninth c a b c a b d a b c
Tenth c a d a b c a b c a

calculate, but natural. Finally, we compute the topological entropy of the
artificial grammars from the examples used to motivate the notation, as
well as from Reber and Allen (1978). As part of our concluding remarks,
we discuss the previous attempts to grapple with the complexity of artificial
grammars in the experimental psychology literature. Further, we suggest
natural areas for research which would incorporate the quantitative mea-
sure of the complexity of artificial grammars.

NOTATION AND SYMBOLIC DYNAMICS

To introduce the notation and terminology, we consider the following
example. Suppose that the sequences of symbols in Table 1 are generated
by the same rule. The sequences are read across in the table. For example,
the first sequence is “‘dcadcabdca . . .’

Is it possible to determine if the three sequences in Table 2 were
generated by the same rule as the sequences from Table 1?

Rather than explicitly articulate the properties of the rule, the ability
to determine the rule is measured, implicitly, by how well we recognize
which candidate sequences were generated by the same rule. It so happens
that the first and third candidate sequences were generated by the same
rule as the first ten observed sequences. Without fully knowing the rule

Table 2. Three Candidate Sequences

Candidates 1 2 3 4 5 6 7 8 9 10
First b c d a b d c a d
Second d b c d c b a b c b
Third c a d c a b d c a b

156 Bollt and Jones

which generates the sequences, we may find the second candidate sequence
suspicious and notice that in the original sequences, the letter ¢ was always
followed by the letter a. However, in the second candidate sequence, the
letter c is followed, at different times, by b and d.

This is an example of an implicit learning experiment. Actual experi-
ments vary as to the conditions of which the subjects receive the information.
However, the rule is typically given by a directed graph, which generates
an artificial grammar. In the following development, we will view the di-
rected graph as a dynamical system and its artificial grammar by the subshift,
or set of all permissible sequences of letters generated by the directed
graph. For ease of introduction, we will examine the directed graph (Fig.
1) which generated the sequence data for our mock experiment and intro-
duce the terminology through this example.

The nodes of the directed graph are represented by a finite set of
letters called an alphabet, denoted by A. In our example, A = {a, b, ¢, d}.
Define the symbol space on A or, equivalently, the full shift on A, as the
set of all possible infinite letter words, denoted as 2, = {0y.0105 . . . |o; €
A}. In this setting, a point in symbol space is a possible sequence where
any element of A may follow any other element of A and the subscript
indicates the ordering of the letters. The decimal place after the first letter,
oy, 1s used as a frame of reference.

The directed graph defines an artificial grammar by generating se-
quences of letters by moving along the arcs of the graph. An artificial
grammar reduces the possible sequences of letters that can occur. This

- ®
| X]

(O—(
.

Fig. 1. A directed graph on the alphabet A = {a, b, ¢, d} and its associated transition
matrix M.

O RO
—_-—_o o
oo =
[l e

The Complexity of Artificial Grammars 157

restriction on possible sequences defines a subspace of X,. All arcs exiting
from a node are equally probable; therefore, in Fig. 1, a b is followed by
a ¢, or a d, both with probability 3. Also, in this example, all nodes are
equally probable to be the first node of the sequence. The sample data in
Table 1 and the first and third sequences in Table 2 were created by
generating random numbers to follow paths through the directed graph.*

Definition 1. An artificial grammar is the set of all letter sequences
generated by a directed graph.

This definition allows for both finite and infinite length words. The
following related concept from dynamical systems is equivalent to reading
an infinite sequence of letters from left to right. Since the topological
entropy measure of complexity is in terms of an asymptotic growth rate,
we restrict our attention to infinite sequences. Certain implicit learning
experiments use sequences of only finite length. In a later section, we discuss
how these artificial grammars can be reasonably considered as an infinite
number of concatinated finite length words.

Definition 2. The Bernoulli shift on 3, is a map s: 2, — 3, defined by

s(0) = s(op.000,05 . .) = 0L.0w05 . . . (1)
The Bernoulli shift maps an infinite sequence o = 0y.010703 . . . to
another infinite sequence ¢’ = 07.0503. . . . Alternatively, we can view the

Bernoulli shift as following an arc of the directed graph from a node oy to
the node oy. An infinite word, or point in 2,, describes an infinite itinerary
of nodes visited by a particular path through the graph.

Definition 3. A subshift 3, is a subspace of 3, which is invariant under
the Bernoulli shift, i.e., if ¢ € X then s(o) € 2.

Hence, the Bernoulli shift map is a dynamical system on symbol space
which maps sequences to sequences, by the operation of shifting the decimal
to the right and eliminating the leftmost symbol, as described by Eq. 1;
this is known as symbolic dynamics. Given our restriction to sequences of
infinite length, or equivalently, finite length words that are concatinated
into infinite length sequences, the following proposition is immediate.

Proposition 1. An artificial grammar is a subshift.

Notice that in our mock experiment, the sequence ‘abcabcabc . . .’ is
in the subshift 3. The sequence ‘chacbacba . . .’ is not in the subshift since
there is not an arc from c to b in the directed graph of Figure 1; however,
this sequence is part of the full shift, 3,, which allows transitions to all
elements of A from any element of A.

“It was statistically unlikely, specifically with probability (§)"? ~ 3.2%, that the letter a did not
start one of the 12 sequences generated by the directed graph in Fig. 1.

158 Bollt and Jones

Since every artificial grammar can be represented by a subshift where
the subshift is the set of all possible sequences generated by the directed
graph, then the topological entropy measure of complexity for the subshift
also measures the complexity of the artificial grammar. We will show how
to compute the topological entropy of an artificial grammar directly from
an associated transition matrix.

To define the associated transition matrix for the artificial grammar
of our mock experiment, we need to enumerate the elements, or states, of
A. Let abe called state 1 ora = 1and b = 2, ¢ = 3, and d = 4. Define a
transition matrix, M, to have entries m;; defined to be 0 or 1: m;; = 0 if
state i cannot immediately follow state j under the directed graph, and
m;; = 1 if state i can immediately follow state j under the directed graph.
For the directed graph in Fig. 1, identifying the entries of a transition matrix
under this rule yields the matrix M, also in Fig. 1. This matrix defines the
artificial grammar that is generated by the directed graph. We can find a
transition matrix for any artificial grammar generated by a directed graph
(with a finite number of nodes and arcs). To make this relationship precise,
we need the lifting technique discussed in the next section.

THE LIFT

Consider the directed graph in Fig. 2, which merely adds an additional
node and two additional arcs to the directed graph from Fig. 1. Realize
that the alphabet is still A = {a, b, ¢, d}. If we construct the 4 X 4 transition
matrix for this directed graph (keeping the same enumeration of the states
as in Section 2), then the first column would contain all 1’s except for the
first row. The implications are that a can be followed by b, ¢, or d. A quick
inspection of Fig. 2 agrees with this statement. However, notice that the
pair ba can be followed by ¢, but not by b or d. So, a cannot always be
followed by b, ¢, or d, since the next node depends not only on the current

OwON
X B
()—(]

Fig. 2. A directed graph on the alphabet A = {a, b, ¢, d} without the memoryless property.

The Complexity of Artificial Grammars 159

node, but its predecessor, as well. By focusing on blocks of letters (the
psychology literature refers to these as ““‘chunks,” see Higham, 1997 for a
partial review on this literature), we see that the transition matrix does not
represent the directed graph.

Artificial grammars which rely on k& previous letters also define a
subshift. However, the subshift of such a multiple-step artificial grammar
on m letters cannot be described by an m X m transition matrix. To be
able to compute the complexity of the artificial grammar, it is necessary to
find a transition matrix which does describe the artificial grammar. To
adequately describe this grammar, we develop a [ift of the symbol space
3,4 to a larger (‘“higher dimensional’) symbol space in which the k states
of information generate an m* X m* transition matrix. This idea is developed
by the following definitions.

Definition 4. The memoryless property holds for transitions between
a collection of states if only the current state is sufficient to decide if a
following transition is permitted.

The directed graph in Fig. 2 does not satisfy this property. Knowledge
that the current node is a does not imply which letters can follow a,
since it is not clear which a node is specified. If every letter of the
alphabet occurs at a single node of the directed graph, then the directed
graph has the memoryless property. If we define a “‘state” in terms of
two letters, and so there are 16 possible such two-letter states, then all
permitted transitions are well defined by simply examining only the
current two-bit “‘state.” For our example, the states are the elements
in A X A. Given the current letter and its predecessor is enough
information to determine the node in the directed graph. In general, to
achieve the memoryless property, we are forced to choose states with
enough previous letters to accomodate a multi-step rule. Defining the
appropriate state definitions to achieve the memoryless property motivates
the definition of a Markov representation.

Definition 5. A collection of states is a Markov representation if transi-
tions between the states have the memoryless property.

Any finite rule artificial grammar with a finite alphabet has a Markov
representation, meaning that there is some finite k-letter length so that the
set of all k-letter blocks (considered as m* states) is a Markov representation.
Definition 5 does not indicate that there is a single Markov representation.
In practice, it is best to choose the minimal k which achieves a Markov
representation, since the number of nodes, m*, grows exponentially in k.
However, for each k greater than or equal to this minimum value, there is
a unique Markov representation. After a formal explanation of this process,
we will return to the directed graph in Fig. 2.

Artificial grammars which incorporate k previous states are repre-

160 Bollt and Jones

sented by a Bernoulli shift on a higher dimensional symbol space. Again,
the subshift defines all sequences of letters. To define a k-state memory
dependent transition rule of the m symbols in A requires a transition rule
on the m" symbols of Af, where A* = A X A X A --- A XA

-~

k times
Denote each k-tuple of symbols from A as a symbol in A*.
The Bernoulli shift applied to a point o € ,, where k states are
recorded, may be written as

S((T) = S(0'00'10'2 ot O O'k) = 3'10'20'3 vt Uk*lgk Okt
—_— ~~
k symbols k symbols

Writing the decimal immediately after the k" symbol emphasizes the most
recent node, as k states are necessary to distinguish which node in the
directed graph.

To generate the transition matrix, we have developed a technique to
lift the symbol space to a higher dimension. The lift defines an associated
Markov representation for a grammar which might otherwise be ambiguous.
Consider the following geometric analogy for the lift. The figure eight in
a plane may be a projection of a curve in three space. While the three—
dimensional curve may not intersect itself, the planar projection does. Only
when viewed in the higher dimension (3D), can this curve without an
intersection be uniquely distinguished from a curve with an intersection.

Define the symbol space with labels from Af as 34 =
{d}.010% . . .|o] € A%} or all infinite sequences of symbols from A*.

Definition 6. The k-step lift is a map /: 3, — 3, defined by collecting
groups of k symbols from A in the following ““overlapping’” manner where
l(0) = o'. Let

g = 03010y . . . Op-10 0,41 - « - S EA-
The image of o under [is o' = oy 0{0} . . . € 24 where of = oyoi05 . . .
Or 1, O = 010,03 . . . O, O3 = 020304 . . . Oy, €1C.

The ambiguity raised by the two different transitions from the two
nodes labeled a in the directed graph in Fig. 2 can be lifted to a Markov
representation by, in this case, considering k = 2 steps at a time. The
nodes of the higher dimensional directed graph are in A X A and can be
enumerated by the lexicographic ordering, e.g., aa = 1, ab = 2, ac = 3,
ad = 4,ba =5, . . .,and dd = 16. This uniquely defines nodes and their
allowed transitions. So, in this case, considering all the possible transitions
between the m* = 4> = 16 states in the 2-bit Markov representation uniquely
defines the grammar. The transitions between states can be found in Table
3. In other examples, a lift to larger k-bit groupings may be necessary, such

The Complexity of Artificial Grammars 161

Table 3. States for a Markov Representation of
the Directed Graph in Fig. 2. The Enumerated
States Are Used to Create the Transition Matrix

in Fig. 3

aa = 1 ca =9 — ab, ad
ab = 2 — ba, bc, bd chb =10

ac =3 — ca cc =11

ad = 4 — da, dc cd =12

ba =5 — ac da = 13 — ab, ad
bb =6 db = 14
bc=17— ca dc = 15— ca
bd = 8 — da, dc dd = 16

as the artificial grammar used by Reber and Allen (1978) which is examined
in Section 5.

While it is necessary to lift a k-state artificial grammar to form an
mk X m* transition matrix, there is no danger in lifting to an even higher
dimensional matrix. There is a unique n/ X ¢/ transition matrix M for j =
k. Over-lifting the subshift is analogous to representing a 2D plane in a
higher dimensional space. The plane is still two dimensional, even though
it is embedded in a higher dimensional space.

The shift map on 34« cannot correspond to all letter sequences on the
m* states of A* due to the use of labels in A* to include the history of the
preceding letters. History cannot be chosen independently at each term,
since the first k — 1 terms are determined from the previous state. Therefore,
transitions between each of the m* labels in A* can have at most only m
outcomes each. For our example from Fig. 2, the 2-bit state ba can only
have an arc between other 2-bit states that have a as its left entry, namely
aa, ab, ac, or ad. However, an examination of the directed graph indicates
that ba is only followed by ac. The associated transition matrix appears in
Fig. 3. This implies an important restriction to the size of a lifted full shift.

Proposition 2. The full shift 3, lifts to a subshift of 3 .

Proof. Applying the shift map to points o € 3, causes the k™ previous
bit to be forgotten, while only one new bit from the set A is generated.
The other k — 1 bits are remembered, and therefore each of the m* nodes
in A* can transition to only one of m possible new nodes.

Theorem 3. Given a k-state artificial grammar on A, described by a
subshift of 3, the lift I: 3, — 34« yields an m* X m* transition matrix M
which uniquely defines the artificial grammar and generates the proper sub-
Shlft EM (- EA“.

Proof. All possible transitions between symbols of A* can be repre-
sented by an m* X m* transition matrix. Such a matrix generates the subshift
of all paths through the directed graph.

162 Bollt and Jones

000O0O0O0OODOOODODOOO0OO0OO0OOQO
6 0000O0O0ODO0OC1O0O0O0OTL 000
6000100O0O0O0GCO0O0OO0OO0OTO0OQO
0 0000O0OO0DO0O1O0O0OO0CTLITO0O00
0 100000O0OO0OO0OCOOOCO0OO0OTO0OO
6 0000O0OO0DO0OOOCOOO0OO0OO0OO
01 000O00DO0OCOCOOO0OO0O0OO0OQ0
M= 0t 00000O0OOO0OOO0OO0OCOO0OOQ
001 0001O0O0O0O0OO0CO0OO0OT1OQ0
0 00CO00O0O0OOO0OOOOO0OO0OO0O
0 00O0O0OO0OCOOOO0OOOOO0OOQ
000O0OO0OCOOOOOOODO0OO0OOOO
0001000100O0O0OO0O0OO0O0
000O0GCOOOOOOOOOOOTO OO
000100601O0O0O0O0OO0OO0OO0O
000O0O0OCOOOOOODOOOO

Fig. 3. The transition matrix for the artificial grammar shown in Fig. 2. To achieve the
memoryless property, a lift from the m = 4 letters of the alphabet, to the m? = 16 2-bit letters
was required.

COMPLEXITY AND TOPOLOGICAL ENTROPY

Cardinality is not a sufficient measure to distinguish between two
obviously varied grammars, as typically, subshifts will be uncountably infi-
nite. Topological entropy measures the asymptotic growth rate of the sub-
shift. This is in contrast to a classification scheme which may classify com-
plexity in terms of rules. In fact, as the number of rules increases (fewer
arcs), the associated subshift, or set of possible sequences, tends to get
smaller.

Originally introduced by Adler, et al., (1965) in the context of informa-
tion theory, topological entropy has become a familiar tool in the theory
of dynamical systems as a measure of the complexity of chaos. Calculating
topological entropy is particularly straightforward for the dynamics of a
subshift (when the transition matrix is finite).

To define the topological entropy of a subshift X, C 34, where M is
the m* X m* transition matrix associated with a Markov representation,
some additional definitions and concepts must be given. Define a word
of length n as a sequential combination of n symbols from A¥;
({0, Xty X2y o .y x,,j) where x; € A*. Thus, a point o € 2,4+ can be thought

n bits
of as a word of infinite length, with a decimal added as the place holder,
indicating the current position. The topological entropy 4 of a subshift X,
is the logarithm of the growth rate of the number of words of length n

The Complexity of Artificial Grammars 163

found in the subshift, as n goes to infinity. The following definitions appear
in Robinson (1995).

Definition 7. The word count of a subshift 3, is the number of subse-
quences of length n which are contained in the subshift and is denoted as

wo(Zy) = #H(xo, . . ., X)) | x; = o, for some o = gp.oi0; . . . € 2k

Definition 8. The topological entropy of the subshift 3, is the scalar
quantity h(3,), where
In(w,(Z
h(Sy) = lim M

— 00

@)

For most artificial grammars, as n increases, the number of possible
words grows exponentially. Topological entropy measures this exponent.
Recall that A is the alphabet or set of symbols and 3, is the full shift on
A. Further, M refers to a transition matrix and 3, is the subshift defined
by M.

Theorem 4. The range of the entropy function for a subshift 3, C 24
is given by the inequality

Proof. For a subshift 3, h(Z)) is bounded below by 0 since w,(2y)
is positive. Since 2, C 3.4, it follows that w,(2y) = w,(24) and h(Zy) < h(Z,).

For 3,, the possible words of length n are all permutations of m
elements # at a time, or m". Eq. 2 implies that

IH(W,,(EA)) _
n

. Inm"
lim =

n—o p

l’l(z,q) = !111'1’1

— 00

Inm

The full shift on the m* symbols of A*is h(Z4) = k In m. If it were
true that the full shift 3, lifts to the full shift 34, then the entropy would
not be a well-defined measure of complexity. However, as stated in Proposi-
tion 2, the full shift 3, lifts to a subshift, as required to preserve the entropy
between different Markov representations of artificial grammars. The fol-
lowing theorem is a direct consequence of the lifting technique and how
matrices of different sizes can represent the same sequence space.

Theorem 5. If M and N are transition matrices of Markov representa-
tions of the same artificial grammar, then their topological entropies are
equal, i.e., h(Sy) = h(Zy).

The next theorem gives a useful technique to calculate the entropy of an
arbitrary k-step artificial grammar. The topological entropy of the subshift is
equated with the spectral radius of the associated transition matrix of a
Markov representation. Recall that the spectral radius of a finite matrix is
the maximum of the modulus of the, possibly complex, eigenvalues of the

164 Bollt and Jones

matrix. However, since the transition matrices generated from artificial
grammars contain nonnegative real entries, Perron-Frobenius Theory states
that the spectral radius is largest nonnegative eigenvalue of the matrix (e.g.,
Gantmacher, 1974). Let p(M) denote spectral radius of the matrix M. The
proof of Theorem 6 appears in Robinson (1995).

Theorem 6. Given a subshift 3 generated by the transition matrix M,

h(Zy) = In p(M). ®)

AN EXAMPLE FROM THE EXPERIMENTAL
PSYCHOLOGY LITERATURE

It is more difficult to discover the rules of the grammar if the sequence
space is large. Simply put, there are just more possibilities. In this section, we
compute and compare the topological entropies for the artificial grammars
generated by the directed graphs in Figs. 1 and 2. We also compute the
topological entropy for a directed graph in Reber and Allen (1978) which
requires a lift. Since Reber and Allen only allow for finite sequences of
letters, we explain how infinite sequences can be generated by a simple
concatination of the finite words.

Since we determined transition matrices for Markov representations
of the artificial grammars generated by the directed graphs in Figs. 1 and
2, computing the topological entropies is equivalent to finding the largest
positive eigenvalues of their matrices. The topological entropy for the
artificial grammar from Fig. 1 is In 1.7455 = 0.5570, while the topological
entropy from the augmented artificial grammar from Fig. 2 is In 1.8084 =~
0.5924. Intrepreting these numbers: the original artificial grammar is less
complex than the augmented artificial grammar. Although inspection of
the two directed graphs yields a similar conclusion, the topological entropy
is a quantifiable measure of the difference in complexity. Since the artificial
grammar from Fig. 2 has a larger topological entropy, it contains more
sequences of letters; therefore, it should be harder to learn this artificial
grammar.

Example 1. The necessity for a lift in an artificial grammar in Reber
and Allen (1978).

Consider the artificial grammar generated by the directed graph in
Fig. 4. This is essentially the directed graph used in Reber and Allen (1978).
In their experiment, the “‘spaces’ did not appear on the directed graph.
They allow only finite sequences which begin on the left and exit the directed
graph on the right. Since we require infinite sequences, we concatinate finite
words by separating finite sequences of letters generated by the directed

The Complexity of Artificial Grammars 165

graph with blank spaces. Specifically, when a sequence of symbols exits the
directed graph, we assume that a space is entered in the sequence. Further,
the next symbol is an M or a V, as the directed graph is re-entered on the
left. As before, all arcs are equally probable. In Table 3, we denote a
““space” by the letter ““S.”

Further, notice that in Fig. 4, the letters are on the arcs, as opposed
to the nodes. This problem is easily remedied; any directed graph with
symbols on the arcs can be represented by a directed graph with symbols
at the nodes. To consider an artificial grammar as the subshift of a dynamical
system, we believe it is easier to develop the necessary mathematics with
the symbols at the nodes.

Notice that the letters M, R, and X can follow an R under the directed
graph. However, these letters cannot always follow an R. For example, no
sequences of the form “. . . XRX . . .” can occur. In fact, lifting the
directed graph to a directed graph on 25 (5§ X 5) symbols is also insufficient.
This directed graph needs to be lifted to a directed graph with 125 (5§ X
5 X 5) nodes. Although this seems like an enormous prospect, there are
shortcuts which reduce the transition matrix to a more manageable size.

These shortcuts eliminate nodes which will never occur since these
nodes generate rows and columns of all 0’s in the transition matrix. We
can therefore eliminate the column and row from the matrix. For example,
the node XRX can be eliminated. This reduces the matrix to a 124 X 124
matrix. We have kept the essential states and transitions in Table 4. We

space ®

X space

R

Fig. 4. The directed graph found in Reber and Allen 1978. See Table 4 for all of the allowed
3-bit transitions.

166 Bollt and Jones

Table 4. The Artificial Grammar Found in Reber and Allen (1978) and Represented

in Fig. 4
SMT — MTV RMS — MSM VSM — SMT XTV — TVR
— MTT — MSV — SMV — TVS
SMV — MVS RRM — RMS VSV — SVX - TVT
— MVT RRR — RRM VRX — RXR XTT— TTT
— MVR — RRR — RXM - TTV
SVX — VXT RXR — XRM — RXV XVR— VRX
— VXV — XRR — RXT XVS— VSM
— VXR — XRS — RXS — VSV
— VXM RXM — XMS VTS — TSM XVT— VTS
MSM — SMT RXV — XVR — TSV XRS — RSM
— SMV — XVS§ VXT - XTT — RSV
— VXR - XVT — XTV RSS — RSV
— VXM RXT— XTT VXV - XVR — RSM
MSV — SVX — XTV — XVT RXS — XSV
MTV — TVR TSM — SMT — XVS — XSM
- TVT — SMV VXR — XRR RSM — SMT
— TVS SV — SvVX — XRM — SMV
MTT — TTV TTV — TVR — XRS RSV — SVX
- TTT — TVS VXM — XMS XSV — SVX
— TVS - TVT XMS — MSM XSM — SMT
MVR— VRX TVR — VRX — MSV — SMX
MVS — VSM TVS - VSM XRR — RRM
— VSV — VSV — RRR
MVT — VTS VT — VTS XRM — RMS

have created the associated 47 X 47 matrix and found its largest eigenvalue.
The topological entropy of the artificial grammar is In 2.08 =~ 0.7324.

However, to emphasize how the change of an arc in a directed graph
can affect the topological entropy, we also have modified the directed graph
in Fig. 4 and computed the topological entropy. By removing the arc which
exits the directed graph after an R or an X, the transition matrix drops to
a 40 X 40 matrix with topological entropy In 2 =~ 0.6931.

CONCLUDING REMARKS

As the study of implicit learning through artificial grammars continues
to mature, there will be more of a necessity for comparing results across
experiments and artificial grammars. Topological entropy provides a quanti-
fiable means to measure the complexity of an artificial grammar. The rela-
tionship between the probability of successful learning of artificial grammars
and the artificial grammars’ topological entropy is a natural area for study.
Below we give an example of how topological entropy could be used to
clarify when memorizing and learning are successful. Further, we relate

The Complexity of Artificial Grammars 167

topological entropy to a simpler measure of complexity that can be used
in certain artificial grammar experiments.

There have been many approaches to the study the implicit learning
of the rules of an artificial grammar. Among them, one has the subjects
focus on memorizing valid sequences of letters. Other experiments do not
allow the subjects enough time to memorize valid sequences, by showing
many strings in short amount of time. Mathews, et al. (1989) discuss these
two approaches. We think that more rules (which reduces the topological
entropy) would be easier to memorize, while less rules (which increases
the topological entropy) would be easier to learn. Which of these two cases
is more complex? More rules corresponds to less arrows in the directed
graph, while less rules corresponds to more arrows in the directed graph.
The complexity of the subshift or the rule can be measured. Of course,
when any letter can follow any other letter, the artificial grammar is the full
shift and has the largest possible topological entropy. Although a complex
sequence space, the rule is not complex since every sequence can be gener-
ated by the rule! However, too few arrows can restrict the subshift to a
finite number of sequences. In this case, the rule can be perceived as
complex, but the sequence space as simple.

Reed and Johnson (1998) discuss the relationship between the informa-
tional complexity and the representational abstractness of artificial gram-
mars and which are more successfully learned implicitly and explicitly.
Reed and Johnson (1994, 1998) incorporate a simple measure of complexity
used by Cohen, Ivry and Keele (1990), where the complexity is measured
by the number of preceding symbols necessary to determine the next sym-
bol. This makes the sequence deterministic, not probabilistic. However,
even extending this idea, to basing the complexity solely on the number
of symbols needed to determine which symbol is possible in the next stage,
is equivalent, in our language, to suggesting that the complexity should be
measured by the minimum lift size needed for the transition matrix to be
lifted to a Markov representation of the grammar. Among other limitations,
this does not consider the size of the alphabet. In comparison, we believe
that topological entropy provides a finer, more robust measurement of com-
plexity.

REFERENCES

Adler, R., Konheim, A., & McAndrew, M. (1965). Topological entropy. Transactions of the
American Mathematical Society, 114, 309-319.

Blahut, R. E. (1988). Principles and practice of information theory. Reading, MA: Addison-
Wesley.

Cohen, A., Ivry, R. L., & Keele, S. W. (1990). Attention and structure in sequence learning.
Journal of Experimental Psychology: Learning, Memmory, and Cognition, 16, 17-30.

168 Bollt and Jones

Gantmacher, F. R. (1974). The theory of matrices, Volume II. New York, NY: Chelsea
Publishing, Co.

Higham, P. A. (1997). Dissociations of Grammaticality and Specific Similarity Effects in
Artificial Grammar Learning. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 23, 1029-1045.

Mathews, R. C., Buss, R. R., Stanley, W. B., Blanchard-Fields, F., Cho, J. R., & Druhan, B.
(1989). Role of implicit and explicit processes in learning from examples: a synergistic
effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15,
1083-1100.

Reber, A. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology:
General, 118, 219-235.

Reber, A. & Allen, R. (1978). Analogic and abstraction strategies in synthetic grammar
learning: A functionalist interpretation. Cognition, 6, 193-221.

Reed, J. M. & Johnson, P.J. (1994). Assessing implicit learning with indirect tests: Determining
what is learned about sequence structure. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 20, 585-594.

Reed, J. M. & Johnson, P. J. (1998). Implicit Learning: Methodological Issues and Evidence
of Unique Characteristics. In Stadler, M. A. & Frensch, P. A. (Eds.), Handbook of
Implicit Learning Thousand Oaks, CA: Sage Publications, Inc. 261-294.

Robinson, C. (1995). Dynamical systems: Stability, symbolic dynamics, and chaos. Ann Arbor,
MI: CRC Press.

Shannon, C. E. (1948). The mathematical theory of Communications. Bell Systems Technical
Journal, 27, 379-423.

