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The problem of infinite information flow*

Zheng Bian' and Erik M. Bollt!

Abstract. We study conditional mutual information (cMI) between a pair of variables X,Y given a third one
Z and derived quantities including transfer entropy (TE) and causation entropy (CE) in the dynam-
ically relevant context where X = T(Y, Z) is determined by Y, Z via a deterministic transformation
T. Under mild continuity assumptions on their distributions, we prove a zero-infinity dichotomy
for cMI for a wide class of T', which gives a yes-or-no answer to the question of information flow
as quantified by TE or CE. Such an answer fails to distinguish between the relative amounts of
information flow. To resolve this problem, we propose a discretization strategy and a conjectured
formula to discern the relative ambiguities of the system, which can serve as a reliable proxy for
the relative amounts of information flow. We illustrate and validate this approach with numerical
evidence.

Key words. information flow, causal inference, information theory, entropy, Kullback—Leibler divergence, mu-
tual information, conditional mutual information
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1. Introduction. Quantifying information flow is a critical task for understanding complex
systems in various scientific disciplines, from neuroscience [26, 25, 20] to financial markets
[8, 3]. Information measures such as mutual information (MI), conditional mutual information
(cMI) [7], transfer entropy (TE) [19], and causation entropy (CE) [23], have become essential
tools for this purpose.

Tracing back to the classic Weiner-Granger causality [11, 12, 4, 15], a central idea that
underlies these information theoretic methods of quantifying information flow is the notion of
disambiguation in a predictive framework. In contrast to the experimentalist approach, which
infers causality from outcomes of perturbations and experiments, the predictive framework,
which we consider below, is premised on alternative formulations of the forecasting question,
with and without considering the influence of an external system.

Formulated by Schreiber [19] in 2000, TE is a quantitative attempt in this predictive
framework. We think of V' = {V}} and U = {U,} as stochastic processes indexed by discrete
timet = 0,1, - - -; for a concrete example, imagine that V, U record EEG times series data from
different parts of the brain. We expect that the present state V; informs about the future state
Vi+1 and are interested in determining whether the present state U also informs about Vj11.
If V41 is conditionally independent of U, given V;, then the knowledge about the state of Uy
does not resolve any uncertainty about the state of V;y1, assuming one already has access to
the state of V;. In this case, we would like to conclude no information flow from U to V at
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2 Z. BIAN AND E. M. BOLLT

time t and zero TE accordingly. Otherwise, any deviation from this conditional independence
indicates the presence of information flow, to be captured and quantified by some positive
value of TE measured in bits per time unit.

By a slight generalization of Schreiber’s original formulation and in agreement with the
usual definition for discrete variables, we define TE

(L.1) Tvsve = 1(Vig1; U\ V)

to be the conditional mutual information of V;11, U; given V;. For simplicity, this is the case of
lag length 1; longer lags are allowed in general. Causation entropy, proposed by Sun, Taylor
and Bollt [23], generalizes TE to infer network connectivity [21, 22, 1, 16], by also building
in conditioning on ternary influences as a way to resolve the differences between direct and
indirect interactions. The precise definition of ¢cMI will be given in Section 2. Roughly speak-
ing, it quantifies the deviation from conditional independence of a pair of random variables
conditioned on a third variable.

1.1. Zero-infinity dichotomy. Consider a typical situation from dynamical systems, where
the random variable Vi is determined by U, V; via some deterministic map 7', that is,

(1.2) Vier = T(U V).

If V41 does not depend on Uy, that is, Vi11 = Tp(V;), then we trivially have zero information
flow Ty vy = 0. In terms of probability distributions, this case corresponds to the regular
conditional probability P(V;11 € :|V; = v;) = 07,,(o,) being a dirac delta.

Otherwise, one expects Ty > 0 to quantify the amount of information flowing from U
to V at time t. For example, if the map 7' is highly “ambiguous”, then the knowledge about
the states of Uy, Vi does not resolve much uncertainty about the state of Viy;.

Ezample 1.1. Consider two maps Tj(u,v) = 100(u + v) mod 1 and Th(u,v) = u + v
mod 1. The knowledge about the states of U;, V; up to 10~2 precision is completely lost via
Ty and trivially informs that Vi1 = T4 (U, Vi) lies in [0, 1], whereas this knowledge under 75
informs about the state of V;11 = Ty(U;, V;) up to precision 2 x 1072. Therefore, we may
expect Ty, v+ to be smaller in the more ambiguous case of Vi1 = T1(Uy, V;) than in the case
of Viy1 = To(Us, V3).

However, under some mild continuity assumptions on the distribution of V11, we see that in
both cases, Ty, v+ = oo. This holds more generally for any measurable map 7. Throughout
this paper, we assume that the random variables take values in standard measurable spa-
ces, unless otherwise stated. This implies the existence and essential uniqueness of regular
conditional probabilities and disintegrations; for details see Appendix A.

Theorem A (infinite information flow): Assume that for a positive measure set of
outcomes vy of Vi, the regular conditional probability distribution P(Vii1 € -|V; = vt) of Vi1
in Eq. (1.2) charges an atomless continuum. Then, the transfer entropy Ty vy from U to V.
at time t is infinite.

Remark 1.2. The positive measure set is with respect to the distribution of V;. We say
that a probability measure p charges an atomless continuum if there is a measurable set B
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THE PROBLEM OF INFINITE INFORMATION FLOW 3

such that u(B) > 0 and p({b}) = 0 for each point b € B. The assumption of Theorem A
says that V; alone does not fully determine V;11 but rather leaves a rich continuum of possible
values for V;y;. This is the case, for example, when V41 = T1 (U, V;) or Vigp = To(Up, Vi) as
in Example 1.1 with V; and U; independent and following the uniform distribution on [0, 1].

Theorem 3.7 gives an equivalent but slightly different formulation of Theorem A and is
proven in Section 3.3. The zero-infinity dichotomy of Ty, gives a yes-or-no answer to the
question of information flow.

A key step in the proof of Theorem A is to disintegrate the conditional mutual informa-
tion into mutual information between conditioned variables. We believe that this result is
interesting in its own right and state it below.

Theorem B (disintegration of conditional mutual information): The conditional
mutual information [(X;Y|Z) of three random variables X,Y, Z is the average of the mutual
information 1(X,;Y,) between conditioned versions X,,Y, of X,Y defined in Eq. (2.3), that
is,

106Y12) = [ 1043 Y)aP (o).
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Figure 1. Disintegrated distributions. The main histogram at the bottom illustrates the distribution Pz of
variable Z, which, together with Y, determines X = T(Y, Z) via a measurable map T. The joint distribution
Pxvy z disintegrates into (Pxy z). for each realization of Z = z, which can be interpreted as the joint distribution
Px_v. of the conditioned versions X.,Y. of X, Y. The left, center and right subplots above the main histogram
illustrate three typical disintegrated distributions (Pxyz). = Px,v,, where X, follows a constant, atomic and
continuous distribution, respectively. In each subplot, the scatter plot shows the joint distribution Px_ vy, , the
top histogram shows the marginal distribution Py,, and the right histogram shows the marginal distribution
Px_. The intensity of the blue gradient indicates regions of high probability density.
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4 Z. BIAN AND E. M. BOLLT

Remark 1.3. The conditioned variables X,,Y, describe the probabilistic landscape once
the uncertainty about Z is removed, by assuming that the outcome of Z is z. This allows
the intermediate measurement of I(X,;Y,) on this particular outcome. By averaging across
all outcomes of Z, the full conditional mutual information I(X;Y|Z) is recovered. We illus-
trate pictorially three typical scenarios in Figure 1; the subplots show the joint Px.y, and
marginal distributions Px_, Py, of pairs of random variables X,, Y, above the main histogram
illustrating the distribution of Z. Proposition 2.8 gives an equivalent but slightly different
formulation of Theorem B and is proven in Section 2.3. The main technical step involves the
proper construction of X,,Y, in Eq. (2.3) and the equivalence of disintegration and regular
conditional probability in our context.

Theorem B reduces the analysis of TE or ¢MI in Theorem A to that of MI between con-
ditioned variables. The exhaustive analysis of MI in the deterministic context thus completes
the proof of Theorem A.

In practice, one computes TE from a finite amount of data and obtains finite positive
values of Tyy_,v¢. As noted in [6], much of the literature that applies TE to detect information
flow focuses on establishing that T,y is statistically significantly different from zero, and
treats the finite positive values of Ty, as mere artifacts of finite sampling.

As discussed in Example 1.1, a more ambiguous map such as T; allows through less
information flow, which should be reflected by a smaller value of Ty _,y;. Of course, this
intuitive assumption is valid for discrete variables. However, it lacks theoretical justification in
the case of continuous variables as pointed out by Theorem A, which is typical for applications
to dynamical systems. We refer to this discrepancy between the practically obtained finite TE
values and the theoretic zero-infinity dichotomy as the problem of infinite information flow.

1.2. Resolution by discretization. In light of Theorem B, it suffices to analyze the pair-
wise I(X;Y) for X = T(Y), seeing that I(X;Y|Z) can be obtained by averaging across
I(X,,Y,) for pairs of conditioned variables X,,Y,. A resolution of the problem of infinite
information flow needs to achieve two things:

(R1) modify the model so as to obtain finite values for I(X;Y),
(R2) by comparing the relative values, distinguish between the relative amounts of infor-
mation flow.

By adding white noise to the map T as employed in [24], one can easily achieve (R1) as a
blurring effect. However, we will show in Appendix B that this strategy still falls short of (R2).
In fact, we prove for Bernoulli maps with uniformly distributed additive noise of amplitude
¢, uniformly distributed Y and hence X, the resulting finite value of I(X;Y) is In %, which is
a function of the noise amplitude alone, independent of the expanding rate of the Bernoulli
map. In this sense, the addition of white noise does not achieve (R2) because the resulting
finite values of I(X;Y) cannot distinguish between the relative dynamical ambiguities of the
Bernoulli systems.

We propose discretization as a strategy to achieve both (R1) and (R2) and illustrate in
the one-dimensional case.

Conjecture C (relative ambiguity of (7,Y)): Suppose that X,Y are R-valued random
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THE PROBLEM OF INFINITE INFORMATION FLOW 5

variables with continuous probability density functions fx, fy, respectively, and that there is a
piecewise C* map T for which |T'| > 1 and X = T(Y'). Consider the discretization by uniform
mesh of size A > 0, that is,

2 :R— ZA, (I WA} = [iA, (i +1)A), i€

Then, in the limit as A — 01, the discretized variables X2 :=II2X, Y2 :=TI2Y satisfy
I(X2Y®) +InA - H(X) — /m T fydy =: —Ap(Y),

where H(X) := — [ fxIn fxdz is the differential entropy of X and the quantity Ap(Y') shall
be called the relative ambiguity of system (T,Y).

Remark 1.4. In the special case of T = id, we have I(X?; X2)+In A — H(X) and recover
the relation between Shannon entropy and differential entropy, see e.g. [7, Section 9.3]. More
generally, it is clear that in the refinement limit of the discretization, i.e., as A — 0%, the
MI between the discretized variables (X, Y?) tends to the infinite theoretic value I(X;Y).
This is not our primary concern, however. What is more interesting is the behavior for finite
A~!. Namely, for any finite A~!, the intuition that a more ambiguous system (7,Y) with
large relative ambiguity Ar(Y') allows through less information is reflected by a smaller value
of I(X?,Y?). In this sense, discretization achieves both (R1) and (R2), resolving the problem
of infinite information flow.

Note that the relative ambiguity Ap(Y) involves an entropy and an exponent, which nat-
urally suggests a link to the Pesin entropy formula [18]. However, we defer further discussions
on this link, as well as the proof and generalization of Conjecture C, to a separate ongoing
work.

Below, we validate Conjecture C with numerical evidence in some concrete dynamical
examples. A sketch of the derivation of the conjectured formula for Ap(Y) is included in the
Appendix C.

Ezample 1.5 (Bernoulli interval maps). Let the random variable X = E4(Y") be determined
by Y via the piecewise linear expanding map Ey : [0,1] — [0,1], d € Z, d > 2, on the unit
interval given by

Ei(x) =d-z mod 1.

Assume Y follows a continuous distribution (we consider uniform and Gaussian N 1)(0.3,0.02)
centered at 0.3 with variance 0.02 truncated between 0 and 1) on the interval. By Theorem
A, or more directly, Theorem 3.6, I(X;Y) = occ.

From Conjecture C, we have zero differential entropy of the uniformly distributed variable
X and a constant expansion rate |T’| = d, which yields A7 (Y) = Ind.

A direct calculation, see Section 4.1, shows that if Y is uniformly distributed in [0, 1], then
so is X and

in agreement with Conjecture C.
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6 Z. BIAN AND E. M. BOLLT

In Figure 2, we set A™' = 300. The left and center panels show the scatter plots of
the joint distribution Pyaya of the discretized variables X2, Y2, together with the marginal
distribution Py-a on the top and Pya on the right of the scatter plots. We take Y to follow
the uniform distribution in the left panel in blue and the Gaussian N (0.3,0.02) in the
center panel in red. The intensity of the colors indicates the high probability density. The
right panel shows the mutual information I(X%,Y?) decreases as the expansion rate d of the
Bernoulli map FE,; increases. The blue and red dots correspond to the cases of Y following
the FEg-invariant uniform distribution and the Gaussian ./\/’[071} (0.3,0.02), respectively. For
comparison, we superimpose the Conjecture prediction In A~ + H(X) — Ind in dashed lines.

Observe that the dots from empirical calculations fit well with the Conjecture C predic-
tions in dashed lines in both the uniform and Gaussian cases. In comparison to the uniform
distribution, the tight Gaussian distribution Mg 1)(0.3,0.02) of Y results in a smaller (in fact,
negative) differential entropy term H(X) and hence a bigger relative ambiguity A7 (Y") of the
system (7,Y) and a smaller discretized mutual information. As the Bernoulli expanding rate
d increases, the system (7,Y’) becomes more ambiguous in both the uniform and Gaussian
cases, and hence I(X?,Y?) decreases. For very large d, the expansion is so strong that even
the tight Gaussian distribution of Y smoothens to an almost uniform distribution of X via
E; and we see convergence of the two curves. This example validates both Conjecture C and
the discretization strategy’s ability to achieve (R1-2).

Uniform(0, 1)
Njpy(0.3,0.02)

<

4.51 \
S 4.5 \
g7 N
»<t 4.0 \
~— \\
~ \\

3.5 So

~
—————————— _\\
/ e gy
\N

Bernoulli expansion rate d

Ey(Y®)

XA =

Figure 2. Discretization via uniform A™' = 300 partition of continuous random variable X = Eq(Y)
determined by variable Y wia the Bernoulli map FEq : x — d-x mod 1. In the left and middle panels, the
scatter plots show the joint distribution Pxaya of the discretized variables X2 Y2, together with the marginal
distributions Pya at the top and Pxa on the right. The blue and red plots correspond to Y following the
uniform and Gaussian N 1)(0.3,0.02) distributions, respectively. Here, N 1)(0.3,0.02) means the Gaussian
distribution centered at 0.3 with variance 0.02 and truncated between 0 and 1. The right panel plots for each
Bernoulli expansion rate d, the corresponding I(XA;YA) of the discretized variables. The blue and red dots
correspond to the empirical calculations of uniform and Gaussian Njo,17(0.3,0.02) distributions, respectively.
The dashed lines show the theoretic predictions from Conjecture C.

The next example illustrates the discretization strategy in a nonlinear case and beyond
the scope of Conjecture C (because the map has contracting regions).

Ezample 1.6 (Sine box functions). Let the random variable X = S, (Y") be determined by

This manuscript is for review purposes only.
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THE PROBLEM OF INFINITE INFORMATION FLOW 7

Y via the sine box function S, : [0, 1] — [0, 1] given by

_ 1 +sin2mnx
-
We consider two continuous distributions for Y, namely, the uniform distribution and the
absolutely continuous S,-invariant probability (acip) distribution. The acip is approximated
by a long trajectory {y:},ys+1 = Sn(ys),t = 170,70+ 1,-++ , 70 + 7 — 1 of length 7 = 10° with
the first 7p = 1000 iterates discarded as transients. In both cases, we have I(X;Y) = oo by
Theorem A, or more directly, Theorem 3.6.

In Figure 3, we discretize X, Y the same way as in Example 1.5. For Sy, we show the scatter
plots of Pyaya and histogram of Py-a at the top and Pya on the right of the left and center
panels. The uniform Py shown in blue on the left is not invariant for S,,, but the red acip in the
middle is S,-invariant. The right panel shows that with Y following either uniform or acip
distribution, the mutual information I(X?;Y%) between the discretized variables X2, Y4
decreases as the function S,, becomes more ambiguous (as n increases). The calculation and
simulation details are presented in Section 4.2.

Sp(x) : n=12---.

501 :‘. Uniform(0, 1)
. acip

NANA T

Sy(Y2)

XA
’i
’l

V V V V 2*? 4 - =
v \l V 901 “ta,
YA

yA 10 15 20

sine box period n

[SF

Figure 3. Discretization via uniform A~ = 300 partition of continuous random wvariable X = S, (Y)
determined by variable Y via the sine box function Sy : x — E8B2T2 - In yhe left and middle panels, the
scatter plots show the joint distribution Pyaya of the discretized variables X2 Y2, together with the marginal
distributions Pya at the top and Pxa on the right. The right panel plots for each n, the corresponding MI
I(XA; YA) of the discretized variables, with the empirical values shown in dots and Conjectured values in dashed
lines. The blue and red colors correspond to Y following the uniform and acip distributions, respectively.

We remark that the sine box example falls outside the scope of Conjecture C because
Sy, has contracting regions near % + ﬁ foreach n =1,2,--- and k =0,--- ,2n — 1, where
our Conjectured formula fails. It turns out that these contracting regions are assigned a
higher weight for smaller values of n and uniform and acip densities of fy, leading to a bigger
discrepancy between the empirical and Conjectured I(X A YA) values for small n. In spite of
this, it is remarkable that our formula still captures the trend that as n increases, the relative
ambiguity of S, increases and I(X A YA) decreases. This example illustrates the validity of
the discretization strategy.

To obtain meaningful finite values of TE or ¢cMI in Eq. (1.1) that can distinguish the
relative amounts of information flow, we discretize each conditioned version Y, and X, =

This manuscript is for review purposes only.
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8 Z. BIAN AND E. M. BOLLT

T.(Y,) = T(Y:, z) to obtain meaningful finite values of MI I(X,;Y,) as in Examples 1.5, 1.6,
and then average/integrate across all versions of z against the marginal distribution Pz (or
its discretization) in the sense of Theorem B. The numerical computations of TE in practice,
in our view, essentially implement a similar discretization scheme.

Organization of the paper. In Section 2 we review the definition and properties of MI
and cMI and end with Proposition 2.8 to decompose cMI into disintegrated MI of conditioned
versions of the original variables. In Section 3, we analyze the dichotomy properties of MI
and cMI leading to the proof of the Theorem of infinite information flow. In Section 4,
we present detailed calculations and simulations for the illustrative Bernoulli and sine box
examples 1.5, 1.6. In the Appendix, we discuss the key technical results on standard spaces,
regular conditional probability, disintegration, and the effect of additive white noise.

Acknowledgments. We thank Tiago Pereira and Edmilson Roque dos Santos for helpful
discussions and comments. Z.B. and E.M.B. are supported by the NSF-NIH-CRCNS. E.M.B.
is also supported by DARPA RSDN, the ARO, and the ONR.

2. Background on cMI. We review notions and properties of Kullback-Leibler divergence
in Section 2.1, entropy and mutual information in Section 2.2, and the conditional mutual in-
formation in Section 2.3. Some technical definitions and constructions, including the standard
measurable space and regular conditional probability, are essential for the general definition
of the conditional mutual information and therefore are also briefly reviewed in the Appendix.
More details can be found in [13, 14].

Let (92, F,P) be a probability space and f :  — A a measurable function (also called
random variable) taking values in the measurable space (A, B4) called the alphabet. Denote
the distribution of f on (A,B4) by

Py = f,P.
When A is a finite/countable set, we say that the alphabet is finite/discrete. For several
random variables fi,---, f,, we denote their joint distribution by Py..r, = (f1,- -, fa)«P

and the product measure of their marginal distributions by Pr, @ ---®@ Py, = ((f1):P)®---®
((Pf,)+P).

2.1. Kullback-Leibler divergence. First consider the special case where A is a finite set
and By = 24. Given two probability measures P, M on (A, B4), the Kullback-Leibler diver-
gence of P with respect to M is defined to be

P(a)
KL(P|M) := P(a)l .
(PIM) = 37 Pla)n 1702
acA
Note that this makes sense only when M (a) = 0 implies P(a) = 0, i.e., P < M. In this case
we define Oln% := 0; otherwise, KL(P||M) is defined to be oc.

Now consider the general case: two probability measures P, M on an arbitrary measurable
space (0, F). The Kullback-Leibler divergence KL(P| M) of P with respect to M is defined
as

KL(P|M) = sup KL(Py 7).

where the supremum is taken over all random variables f : 2 — A with a finite alphabet A.
In fact, there is a sequence of random variables f, with finite alphabets, for example, obtained

This manuscript is for review purposes only.
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THE PROBLEM OF INFINITE INFORMATION FLOW 9

via increasingly fine partitions of €, such that KL(P, ||My,) tends to KL(P|M) as n — oc;
see [14, Corollary 5.2.3].

Remark 2.1. KL is an asymmetric quantity that underlies the definitions of Shannon,
transfer, causation entropy and (conditional) mutual information.

A key property is the so-called divergence inequality:

Lemma 2.2 (Divergence inequality, [14] Lemma 5.2.1). For any probability measures P, M
on a common alphabet, we have KL(P||M) > 0 and the equality holds precisely when P = M.

Two cases of KL will be relevant to us.

Lemma 2.3 (Relative entropy density [14] Lemma 5.2.3). For any probability measures P, M
on a common alphabet, if P < M, then the Radon-Nikodym derivative f := dP/dM exists,
1s called the relative entropy density of P with respect to M, and verifies

KL(P|M) = /anf(w)dP(w) = /Qf(w) In f(w)dM (w).

In this case, if Q is finite then f(w) = P(w)/M(w) and KL reduces to the finite alphabet case;
if @ =R% and P, M < Leb with densities fp, fur, respectively, then

KL(P|M) = /Rd f(x)In %dm.

On the other hand, if P is not absolutely continuous with respect to M, then
KL(P||M) = .

2.2. Mutual information. Define the mutual information between two random variables
X and Y to be
I(X, Y) = KL(PX)/HPX X Py)

It can be shown [14, Chapter 2.5] that the (Shannon) entropy of X (defined as H(X) :=
— Y weay Px (@) Inpx(x) in the discrete alphabet case) can be recovered by the mutual infor-
mation with X itself H(X) = I(X;X) and therefore I(X;Y) = H(X)+ H(Y) - H(X,Y).

Remark 2.4. Inlight of Lemma 2.2, it is clear that I(X;Y") equals zero precisely when X, Y
are independent and quantifies their deviation from independence otherwise. The product
of marginals Px ® Py serves as the reference independent model against which the joint
distribution Pxy is compared. More precisely, if (X', Y”) has joint distribution Px ® Py, then
X', Y’ are independent and have same marginal dsitributions as X,Y".

2.3. Conditional mutual information. First we consider the finite alphabet case: three
random variables X, Y, Z with finite alphabets Ax, Ay, Az, each equipped with the power-set
o-algebra By, = 24+, x = XY, Z. Define the conditional mutual information of X,Y given
Z to be

(2.1) I(X;Y|Z) :== KL(Pxyz|Pxxy|z)

This manuscript is for review purposes only.
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10 Z. BIAN AND E. M. BOLLT

where Py y/|z is a probability distribution on Ax x Ay X Az defined by

(22)  Pxyyjz(Bx x By x Bz) == Y _ P(X € Bx|Z=2)P(Y € By|Z = 2)P(Z = 2)
z€By

for any Bx € Bay, By € Ba, and Bz € By,. Here, the conditional probability is the usual

one P(F|E) = PEPIEJ)E) provided that P(E) > 0.

Remark 2.5. As discussed in the Introduction, conditional mutual information is designed
to quantify the deviation from conditional independence of X,Y given Z. And Px,y|z is
designed to serve as the conditional independent model against which to compare the joint
distribution Pxyz, cf. the role of Px ® Py in the definition of I(X;Y") as discussed in Remark
2.4. More precisely, consider new random variables X', Y”, Z" with joint distribution Px,y|z
and observe

e X' Y’ 7' have the same marginal distributions as X,Y,Z: Px: = Px, Py: = Py,
Pz = Py;
e X' Y’ have the same conditional marginal distributions given Z’ as X,Y given Z:
P(X € Bx|Z =2)=P(X' € Bx|Z' =2)and P(Y € By|Z = 2) =P(Y' € By|Z' = 2);
e X' Y’ are conditionally independent given Z’: P(X’' € Bx,Y' € By|Z' =z) =P(X' €
Bx‘Z/ = Z)P(Y/ S By‘Z = Z)
In other words, Pxyy|z is a “Markovization” of the joint distribution Pyyz in the sense
that the modified random variables X', Y’ Z" form a Markov chain Y/ — Z' — X’ (or
X" = Z' - Y’) because the information about the state of Y’ in addition to that of Z’,
does not further resolve the uncertainty about the state of X’ (the same holds with X', Y’
swapped).

To generalize the definition of I(X;Y|Z) in Eq. 2.1, the main challenge lies with the
conditional probabilities appearing in the definition (2.2) of Pyyy/|z. In general, we may well
have P(Z = z) = 0 for each z € Ay, for example, take Z to be uniformly distributed on
Az = [0,1], or any other distribution absolutely continuous with respect to Lebesgue. This
makes it impossible to define P(F|Z = z) in the same way as the discrete alphabet case
P(FN{Z=z})

P(Z=z) -

This challenge can be met by (i) interpreting the conditional probability P(X € Bx|Z =
z), rather than a fraction, as a Radon-Nikodym derivative for fixed Bx € Bya, and (ii)
requiring that the alphabets of X,Y,Z be “standard” measurable spaces so that P(X €
Bx|Z = z) is well-defined as regular conditional probability simultaneously for all Bx € B
and similarly for P(Y € By|Z = z). In [14], there is an even more general definition beyond
standard alphabets. Since the standard alphabet already covers the practically relevant cases
such as Polish spaces, we shall contain our discussion in the standard alphabet case and leave
the details in the Appendix.

Consider three random variables X,Y,Z on a common probability space (€2, F,P) with
standard alphabets (Ax,Bay ), (Ay,Ba, ), (Az,Ba,), respectively. See Appendix A for de-
tails. Define the conditional average mutual information as in Eq. (2.1) where the Markoviza-
tion Pyyy|z is given in terms of regular conditional probabilities, for Bx € Bay, By € Ba,,
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THE PROBLEM OF INFINITE INFORMATION FLOW 11

By € BAZ

PX><Y|Z(BX X By x Bz) ::/ ) P(X S Bx|0'(Z))P(Y S By’O'(Z))dP
Z~ BZ

:/ P(X € Bx|Z = 2)P(Y € By|Z = 2)dPy(2).
Bz

Remark 2.6. Note that Pyyy|z is a deterministic probability measure and hence the con-
ditional mutual information I(X;Y|Z) is a deterministic object on Ax x Ay x Az, even though
the notation suggests some conditioning. As the construction above shows, the randomness
from conditioning on Z is averaged out.

In light of Lemma 2.2, I(X;Y|Z) equals zero precisely when X, Y are conditionally inde-
pendent given Z and quantifies the deviation from this conditional independence otherwise.

Since Pxyz, Pxxy|z both have Z-marginals equal to Pz by construction, they admit
disintegrations with respect to Pz denoted by (Pxyz). and (Pxyy|z)z, which coincide with
the regular conditional probabilities: for Pz-a.e. 2z € Az, and all Bx € Ba,,By € Ba,, we
have

(PXYZ)z(BX X By) :P(X € Bx,Y S By|Z = Z),
(PX><Y|Z)z(BX X By) :IP)(X S BX|Z = Z)P(Y S By|Z = Z).
See Appendix A for more details. We will sometimes prefer the disintegration notation to the
regular conditional probability notation for clarity of presentation.

Definition 2.7 (Z-conditioned random variables). For each z € Az, define the Z-conditioned
random variables X.,Y, with alphabets (Ax,Ba ), (Ay, Ba, ), respectively, and joint distri-
bution

(2.3) PXzYz = (nyz)z, S Az.

Then, their marginal distributions are given by

PXZ(BX) :PXZYZ(BX X Ay) = P(X € Bx|Z = Z), z € Az,BX S BAX
PYZ(By) :PXZYZ(AX X By) = P(Y S BylZ = Z), z e Az,By S BAy.

Hence,
(Pxxy|z): = Px, ® Py,

and
I(X.;Y,) = KL(Px.y, || Px, ® Py,) = KL((Pxvy2z):[|(Pxxy|z)2)-

The intuition behind the above construction of X,,Y, is to consider them as the disintegrated
versions of X,Y on the z-slice Ax x Ay x{z}. The next proposition shows that the conditional
mutual information I(X;Y|Z) is the average of I(X,;Y,) across all such z-slices.

Proposition 2.8 (Average of disintegrated MI). Consider three random variables X, Y, Z on
a common probability space (Q, F,P) with standard alphabets (Ax,Bay), (Ay,Ba, ), and
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12 Z. BIAN AND E. M. BOLLT

(Az,Ba,), respectively. Then, the conditional mutual information I(X;Y|Z) is the Py-
average of mutual information 1(X.;Y.) = KL((Pxyz):|[(Pxxy|z)=) between the z-conditioned]
random variables X,,Y,. More precisely, if (Pxyz). < (Pxxy|z)z for Pz-a.e. z € Az, then
the Radon-Nikodym derivative

d(Pxvyz)-

dPxyz
d(Pxxy|z)=

dPxyxy|z

(:E?y) =

(IL‘,y, Z) fOT PXXY\Z'a'e' (l‘,y,Z)

and hence
I(X;Y]Z)—/ I(X.;Y,)dPz(2);
Ag

otherwise, there is By € Ba, with Pz(Bz) >0 and 1(X,;Y,) = KL ((PXYZ>Z||(PX><Y|Z)Z) =
oo for each z € By, in which case I(X;Y|Z) = oo

Proof.  First consider (Pxyz). < (Pxxy|z). for Pz-a.e. z € Az. Then the Radon-
Nikodym derivative M exists for Pz-a.e. z € Az. Integrating its logarithm against

(Pxyz). yields, according to Lemma 2.3,

d(Pxyz):
d(Pxxy|z)=

Further integrating the above equation against Pz yields, by definition of disintegration,

KL (Pxyz):||(Pxxy|z)=) :/A » In d(Pxyz)--

a(P
/ KL ((Pxy2): || (Pyyiz)-) dPs (= / / APxv2): gop ) dPy()
Ay Ay AX><AY d(Pxxy|z)=

d(Pxyz).
= In 7dPXYZ
/x4xXAy><AZ d(PXXY|Z)

For any Bx € Ba,,By € Ba,,Bz € Ba,, by definition of disintegration, we have

d(P, .
/ M(w,y)dPXsz(x,y, Z)
BxxBy xBy U Pxxy|z)=

/ / PPxYZ) (z,9)d(Pxxy|z)-(z,y)dPz(2)
By JBxxBy APxxy|z)-

:/ (PXYZ)Z(BX X By)dpz(z)
Bz
:PXYZ(BX X By X Bz).
By uniqueness of Radon-Nikodym derivative, we conclude

d(Pxyz)-. y) = dPxyz (
d(Pxxy|z)s dPxxy|z

We continue

dPxvyz
/ KL (Pxy2): |l (Pxcyi2):) dP2(2) = / I X2
AZ AxXAyXAZ dPX><Y|Z

r,y,2) for Px,y|z-a.e. (v,y,2).

dPxyz =1(X;Y|Z),

This manuscript is for review purposes only.
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384 by Lemma 2.3. This proves the first assertion.
385 Now we consider the other case: there is some By with Pz(Bz) > 0 and for each z € By,

386 there is some Bg?g, with (PXYZ)Z(BE?;) > 0= (Pxxy|z)-, then the set

387 Bxyyz = U Bg?g/ X {Z}
2€EBy

388 has the property that
389 Pxyz(Bxyz) > 0= Pxyxy|z(Bxyz)-

390 In particular, Pxyz is not absolutely continuous with respect to Pxyy|z. Hence, by Lemma
391 2.3, we have
392 I(X,Y’Z) :KL<PXYZHPX><Y\Z) = 00.

393 Ezxample 2.9 (Transfer and causation entropy). Consider a stochastic process X = (Xo, X1, )]
394 taking values in (Ax,Ba, ) and another stochastic process Y = (Y, Y7, ---) taking values in

395 (Ay,Ba, ).

396 As in [5, Chapter 9.8.1], we are interested to quantify the information flow from Y to X

397 at time ¢, conditioned on some history Xt(k) = (Xt -, X¢—gy1) of X itself k-steps into the

398 past. If there is no such information flow, then X1, Y;(l) should be conditionally independent

. k) .
399  given Xt( ), ie.,

400 I( X1 Yt(l) |Xt(k)) =0.

401  Otherwise, the information flow can be quantified by the deviation from conditional indepen-
402 dence. This motivates our definition
403 Ty xp = I(Xern; V| XP) = KL (P (013 H P g <k>)

oAt +h S t X1 X, 'Y, X1 xYy | Xy ’
404 which has a similar form to the discrete version given by eq. (9.128) in [5]. Variations such
405 as unlimited memory can also be considered.
406 The causation entropy is a fruitful generalization of TE in the context of a network of
107 stochastic processes X" indexed by nodes v € V := {1,--- ,n}, where each XV = (X} )i=0,1,..-
108  Given three collections I, J, K C V of nodes, CE (looking 1 step into the past) [23] is defined
109 to be

D () (K
410 Crone = T X1 X19)) = KL <PX§f1X§K)XfJ)

Px§i>1xxy>xsf<>> -

411 In a discovery algorithm, [23] uses Cj_,1/x; to quantify the information flowing from nodes
412 J to nodes I conditioned on nodes K, where I nodes are the potential neighbors of J nodes
413 under consideration and K is the collection of known neighbors of J; the authors identify the
414 most likely neighbors of J as the collection I that maximizes Cj_jk ;-

115 3. Dynamic determinism. This section analyzes the conditional mutual information I(X;Y|2Z)}}
416 in the case where X = T'(Y, Z) is determined by Y, Z via a measurable function 7' : Ay x Az —
417 Ax. This is a context particularly relevant to dynamics.
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14 Z. BIAN AND E. M. BOLLT

3.1. Mutual information: zero or positive. Before diving into the conditional mutual
information among three random variables, we first consider two random variables. We begin
with a trivial observation.

Proposition 3.1 (Zero mutual information). Let X, Z be two random variables. If Px = 6,
for some xg € Ax, then
Pxz = Px ® Py.

In particular, I(X; Z) = KL(Px z||Px ® Pz) = 0.

Note that Py = 0, is equivalent to X = zg a.s.; in this case, we may view X = T'(Z)
for the constant map T : z — xg. As we will see shortly, this is essentially the only way for
I(X; Z) to vanish.

More generally, consider a measurable map T : Ay — Ax and two random variables X, Z.
The following are equivalent

(i) X =T(2) as.

(i) (X =T(2)|Z) =1 as.

(iii) P(X =T(2)|Z = z) =1 for Pz-a.e. z € Ag.
When one of the above holds, we say that X is determined by Z via T.

Proposition 3.2 (Positive mutual information).  Consider a random wvariable X = T(Z),
determined by another random variable Z via some measurable map T : Ay — Ax. If there
is some Bx € Ba, with 0 < Px(Bx) < 1, then the event

S := Bx X T_I(AX \ Bx)
has the property that
sz(S) =0< Px® Pz(S);
in particular, we have Pxz # Px ® Pz and I(X;Z) = KL(Pxz||Px ® Pz) > 0.
Proof.

Pxz(S) =P((X,Z) € S) =P((T(Z),Z) € Bx x T"'(Ax \ Bx))
=P(Z e T YBx)NT (Ax \ Bx)) =0

and
Px® Pz(S) :Px(Bx)Pz(Til(AX \ BX)) = Px(Bx)Px(AX \ Bx) > 0.

This completes the proof. |

Proposition 3.2 provides a partial converse to Proposition 3.1. If we additionally require
that the alphabet (Ax,Ba, ) be such that every zero-one measure is a dirac delta, then it is
a complete converse.

A measure p on a measurable space (A,.A) is said to be a zero-one measure if p(F) is
either 0 or 1 for all F € A. A dirac delta is necessarily a zero-one measure, but there are
zero-one measures which are not dirac deltas. The issue usually is that the o-algebra is too
coarse.
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ot Ot Ot

ot

156

ol
ot Ot Ot
© 0 3

460
461

162
463
464

165
466
467
468
469
470
471
472
473

481

182
483
484

485

186
487

THE PROBLEM OF INFINITE INFORMATION FLOW 15

Ezample 3.3 (Non-measurable singletons). Consider the alphabet Ax = {a,b} equipped
with the trivial o-algebra Ba, = {0, Ax}. The only probability measure Py on (Ax,Ba, ) is
a zero-one measure, but not a dirac delta because the singletons {a}, {b} are not measurable.

Combining Propositions 3.1 and 3.2 yields the following dichotomy result.

Theorem 3.4 (Characterization of positive mutual information). Let X be a random variable
with an alphabet (Ax,Ba, ), where every zero-one measure is a dirac delta. Suppose also that
X =T(Z) is determined by another random variable Z via a measurable map T : Az — Ax.
Then, we have a dichotomy:

(i) X is constant. In this case, I(X;Z) = 0;

(ii) X is nonconstant. In this case, 1(X;Z) > 0.

Discrete spaces and Polish spaces are key examples where every zero-one measure is a
dirac delta.

Ezample 3.5 (Separable metric space). If A is a separable metric space, equipped with the
Borel o-algebra A, then any zero-one measure on (A,.4) must be a dirac delta. Indeed, if
u were a zero-one measure on (A,.A) but not a dirac delta, then the support of p is well-
defined (see [17, Theorem 2.1]) and must contain at least two distinct points x1 # o with
d(x1,z2) = d > 0. By definition of support, the two open balls B; := B(x;,d/3) are disjoint
with pu(B(z;,d/3)) =1 > 0. Now we arrive at 1 = pu(A) > u(B1) + uw(B2) =1+1 =2, a
contradiction.

Specific examples include a finite or countable set A equipped with the discrete distance
d(a,b) = d4p, and other Polish spaces equipped with the Borel o-algebra.

3.2. Mutual information: finite or infinite.

Theorem 3.6 (Mutual information: finite or infinite).  Consider a random variable X =
T(Z) determined by another random variable Z via some measurable map T : Ay — Ax.
Assume that the singletons are measurable, i.e., {x} € Ba, for all z € Ax. Then, we have a
dichotomy:

1. Atomic case: there is a finite or countable set Sx € Ba, with Px(Sx) = 1. In this

case, Pxy < Px ® Pz and

106:2)= Y Pxla) [

TESx A

d(Pxz)s

P, (2)d(Pxz)z(2),

In
zZ

which can be either finite or infinite.
2. Continuous case: there is Bx € Ba, with Px(Bx) > 0 and Px({z}) = 0 for all
x € Bx. In this case, the set

S:={(T(z),2): T(z) € Bx}

has the property that Pxz(S) > 0 and Px ® Pz(S) = 0. In particular, Pxz is not
absolutely continuous with respect to Px ® Py and hence

I(X;Z) = KL(Pxz||Px ® Pz) = 0.
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16 Z. BIAN AND E. M. BOLLT

Proof. For the atomic case, consider any N € Ba, ® B4, with Py ® Pz(N) = 0. We
show Pxz(N) = 0. By Fubini, for any 2 € Sx, we have Pz(N,) = 0, where N, :={z € Az :
(z,z) € N}. Hence,

Pxz(N)=P((X,Z) e N)= > P(X,Z)€{z} x No)= Y _ P(T(Z) =x,Z € N,)

z€Sx rE€Sx
< Z P(Z € N,) = Z Pz(N,) = 0.
TESx x€Sx

Now we show that the atomic and continuous cases form a dichotomy. If Px does not
admit a Bx with Px(Bx) > 0 and Px({z}) = 0 for all z € By, then for every Bx with
Px(Bx) > 0, there is some x € Bx with Px({z}) > 0. Since Px is a probability measure,
there can be at most countably many =z € Ax with Px({z}) > 0; denote by Al the set of
all such point atoms x of Px. Note Aﬁ( is measurable because each singleton is measurable.
Then by construction we must have Px(Ax \ A%) = 0 because otherwise Ax \ A% would
have positive measure and hence contain a point from A}(. This shows that Px has at most
countable support, namely, Aﬁ(, so we are in the atomic case 1. We conclude that the two
cases indeed form a dichotomy.

In the atomless case 2, by definition,

Pxz(S)=P(X,Z) e S)=P(X =T(Z) € Bx) = Px(Bx) > 0.

By Fubini,
Px ® Pz(S) = Px(S,)dPz(z) = / Px({T(2)})dPz(z) =0,
Ay Tﬁl(BX)
where in the last equality we use T'(z) € Bx for any z € T~!(By). [ ]

3.3. Infinite conditional mutual information. In this section, we consider the case when
Y, Z together determine X, that is, X = T'(Y, Z) for a measurable map T': Ay x Az — Ax.
We split the alphabet Az into three disjoint pieces

AZ — A% UAaZtomlc UAczontlnuous’

where AY consists of z € Az for which the marginal distribution Py, = P(X € :|Z = 2)
of X, concentrates on a singleton, i.e., P(X = z,|Z = z) = 1 for some z, € Ay; Agomic
consists of z € Az for which Px,_ concentrates on a non-singleton at most countable set, i.e.,
Px. (Bx) = P(X € Bx|Z = z) = 1 for some non-singleron at most countable Bx € Ba,;
A%mtinuous consists of z € Ay for which Py, charges an atomless continuum, i.e., there is
Bx € Ba, with Px_ (Bx) > 0 and Px, ({z}) = 0 for all x € Bx By Theorem 3.6, the three
parts are disjoint and indeed form a partition of A.

Theorem 3.7 (Conditional mutual information). Let random variable X = T(Y,Z) be de-
termined by random variables Y, Z via a measurable map T : Ay x Ay — Ax. Suppose X,Y, Z
all have standard alphabets. Then,

anmmic I(X27 Yz)dPZ(z) ’Lf Pz(ACZOntinuous) =0,
Z

00 else.

I(X:Y|Z) = {

This manuscript is for review purposes only.
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523 In particular, when Pz(A%) =1, we have I(X;Y|Z) = 0.

524 Proof. By Proposition 2.8, we split the conditional mutual information into three parts.

o HGYIZ) = [ IGYIAPE) 4 [ TXGYIAP@ + [ I YdP(e)
AZ Az}tomic AcZontinuous

526 By Proposition 3.1, I(X,;Y,) = 0 for any 2 € A%, so the first term vanishes. The last term is
527 zero when Py (A§™MIMOUS) — ( and is co otherwise, according to Theorem 3.6. u

528 In many dynamically relevant situations, we have PZ(A%)’““““O“S) > 0, as announced in
529 Theorem A, and hence I(X;Y|Z) = occ.

530 4. Examples.

531 4.1. Bernoulli interval maps. Consider the piecewise linear expanding map Ej : [0, 1] —
532 [0,1], d € Z, d > 2, on the unit interval given by Ey4(z) = d -2z mod 1.

533 If YV is uniformly distributed on the interval, i.e., Py = Lebygj), then so is X = E4(Y),

534 i.e., Px = Py. The joint distribution of (X,Y’) on the unit square [0,1]? is given by Pxy =
535 (Eq, id)*Leb[Oyl}, which is supported on the graph of E4. In particular, Pxy is mutual singular
536 with respect to Px ® Py = Lebg ;2. By Theorem 3.6, I(X;Y) = KL(Pxy||[Px ® Py) = oc.
537 Now we discretize. Fix a positive integer L = A~! € Z~g. Then, the uniform partition
538 by {[£2,£)} is a Markov partition for E,. Note

) 1—1 1 1 .
539 IP’(XA =1A) = Lebyg [L’ L> =7 Vi=1,---,L.
540 This shows that X2 is uniformly distributed on {1,---,L}. So is Y2 = II*Y. The joint
541 distribution Pyaya of (X2,Y?) charges uniform mass to the pairs

542 (4.1) (d(i—1)+r mod L,i), i=1,---,L, r=1,---,d.
513 When L < d, then Pyaya is uniform on {1,---, L}2, with Pyaya(i,j) = # for each (j,7) €
544 {1,--- L}2. In this case,
545 I(X2;Y?) = KL(Pyaya|Pxa ® Pya) = 0.
546 When L > d, then only dL pairs of (j,i) € {1,---,L}? satisfying eq. (4.1) are charged
547 with mass ﬁ each. In this case,
548 I(X?;Y?) =KL(Pxayal||[Pxa @ Pya)
. Pyaya(y,i
549 = % Pxaya(j,i)In PXAX®YPY(1 (j), B)
550 :dLi In 172? =InL —Ind.
551 In the discretized version, a more expanding map Ey with large d gives less mutual infor-

55
552 mation.
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553 4.2. Sine box functions. Consider the sine box function S, : [0,1] — [0, 1] given by
1 in 2
554 Sp(x) = w, n=12,---

555  We compute its invariant measure p, by taking a long trajectory {z; = S.(xo) : t = 79,70 +
556 1,--+, 79 + 7 — 1}, starting from xg = 0.5 (other initial points 0.2,0.3,---,0.9 yielded very
similar results), discarding the first 79 = 1000 iterates as transient, and collecting the next
558 1 = 106 iterates to approximate

1 To+7—1
559 M = :U’gr) =z Z Oz, -
T t=70

560 If Y follows pup, then X = S, (Y) follows (Sy,)«ttn = fin.
561 The probability density function ¢ of p,, is approximated by the histogram for {z;} binned
562 into {[(i — 1)A,iA)}, that is,

To+7—1

563 ¢(7—)((Z - 1)A) = Z ]l[(i—l)A,iA) (CL't), L= 1a T )La

t=T10

564 which can be represented in vector form

565 o™ = (gE, ¢l = 9D —1)A).

566 The product of the marginals Px @ Py discretizes into Pya @ Pya = (IT® x IT?)(Px ® Py),
567 which is approximated by

568 Pya ® Pya = P} @ P i= ¢ - (¢(0)T
569 The joint distribution Pxy discretizes into Pyaya = (IT®,II?)(Pxy ), which is then ap-

570 proximated by

571 Pyaya = P)((TiyA = (P)(;zyA)zl:jzla
572 where

1 To+7—1
573 (Pya)is == D7 Lnaia) (@) - Lg-nasa ().

t=70

574 It follows from Theorem 3.6 that I(X,Y) = co for any n. However, higher value of n decreases
575 the ability to resolve uncertainty about X = S,,(Y) from knowledge about Y. Accordingly,
576 we expect I(X2;Y%) to decrease as n increases. This is confirmed by simulations as shown
577 in Figure 3.
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Appendix A. Regular conditional probability and disintegration on standard measurable
spaces. We motivate the consideration of standard measurable spaces by an attempt to gen-
eralize the definition of conditional probability for discrete variables to more general variables.
We finish the discussion by showing that regular conditional probabilities are equivalent to
disintegrations in our setting.

Consider a common probability space (2, F,P) for random variables X,Y, Z taking values
in (AX7 BAX)7 (AY7 BAY)’ (AZ7 BAZ)‘

The first challenge in generalizing the definition of conditional probability P(F|Z = z) :=
% to non-discrete variables Z is that the events {Z = z} being conditioned on may
well have zero probability. To overcome this challenge, a first fix is to interpret the conditional
probability as a density (Radon-Nikodym derivative) rather than a fraction. More precisely,
given an arbitrary random variable Z and a fixed event F' € F, we define P(F|Z = z), z € Az
to be the Radon-Nikodym derivative

dPF(ze.) . dPF(Ze)

P(FIZ = 2) = prre 3.0) = gy ()

ZGAz,

where PF'(Z € ) := P(F N {Z € -}) is absolutely continuous with respect to Py = P(Z € -).
By Radon-Nikodym Theorem, P(F|Z = z) exists and is Pz-essentially unique. Equivalently,
we have the defining equation for P(F|Z = z)

P(FN{Z e By})=PI'(Z e By) = / P(F|Z = 2)dPz(z), Bz € Ba,,
Bz

an analogue of the discrete alphabet case

P(FN{Z € By})= Y P(F|Z=2)Ps(2), Bz€Ba,.
2€By

This is a more direct construction than the usual conditioning on sigma-algebra, which
we review below for comparison. For a fixed event F' € F, the conditional probability P(F|G)
given a sigma-algebra G C F is defined to be any G-measurable random variable g : Q — [0, 1]
with

/ gdP=P(FNG), VG ed.
G
P(F|G) exists and is P-a.s. unique as the Radon-Nikodym derivative of P(F N -)/P(F) with
respect to P, both restricted to G, provided P(F') > 0; in case P(F') = 0, we have P(F|G) = 0.
Now consider G = o(Z). Since P(F|o(Z)) is o(Z)-measurable, it can be factored through Z

[13, Lemma 5.2.1], that is,
P(F|lo(Z)) =ho Z,

for some measurable function h : Az — [0,1]. We thus have
P(F|Z = z) = h(z2).

A subtle issue remains with this Radon-Nikodym construction, namely, the potential pile
up of exceptional sets E(F') in the definition of P(F|Z = z). The Radon-Nikodym derivative
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P(F|Z = z) is well-defined up to an exceptional set E(F') with P(E(F')) = 0 depending on the
event F'. These exceptional sets may pile up P (U Fe fE(F)) =1 and in this case we cannot
define P(F|Z = z) simultaneously for all F' € F. An example of such a pathology can be
found in [9, Page 624]; for more details see [10, Chapter 5.1.3]. Hence, in order to generalize
the definition of Py,y/|z as in Eq. (2.2), we need to rule out such pathologies. This motivates
our second fix: the regular conditional probability.

Definition A.1 (Regular conditional probability (RCP); [13] Chapter 5.8). The regular con-
ditional probability given a sub-o-algebra G C F is a function f : F x Q@ — [0, 1] such that

1. for each w € Q, f(-,w) is a probability measure on (2, F);

2. for each F € F, f(F,-) is a version of P(F|G).
We consider sigma-algebra G = o(Z) and events of the form F' = {X € Bx} € F. Define the
reqular conditional distribution of X given Z to be

P(X € Bx|Z = 2) := f({X € Bx},w), weY Yz}

RCP does not always exist in general but it does, for example, [13, Corollary 5.8.1] (i)
when both (Ax,Ba, ) and (Az,Ba,) are standard, (ii) when either is discrete.

Definition A.2 (Standard measurable space; [2] page 541). A measurable space (€2, F) is
called a standard measurable space if isomorphic via a bi-measurable bijection to a Borel subset
of a Polish space.

In particular, a standard measurable space (€2, F) admits a sequence of finite fields F,, C F,
n=20,1,--- such that
1. increasing fields: F, C F,41 for alln =0,1,---;
2. generating fields: F = o (U,—, Fn);
3. nonempty atomic intersection: an event is called an atom of a field if it is nonempty
and its only subsets which are members of the field are the empty set and itself. If
Gp € Fn,n=0,1,--- are atoms with G, 11 C G, for all n, then

oo
() Gn #0.
n=0
In fact, the above three conditions are sometimes taken to be the defining properties of a
standard measurable space, for example in [14]. We have taken the more restricted definition
of Arnold [2] to ensure that both regular conditional probabilities and disintegrations exist.

Now we review disintegrations and show that they coincide with regular conditional prob-
abilities in our setting.

Definition A.3 (Disintegration; [2] pp 22). Given a probability measure p on a product
measurable space (A x B, A ® B) and a probability measure v on (A, A), we say that a
function p.(-) : A x B — [0, 1] is a disintegration of u with respect to v if

1. for all B € B, a+ p4(B) is measurable function from (A, .A) to ([0, 1], B([0,1]));

2. for v-a.e. a € A, B — 4(B) is a probability measure on (B, B);

3. forall E € A® B,

W(E) = /A /B 15(a, b)da () (b).
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Disintegrations do not always exist, but they do exist v-essentially uniquely, when (A4, .A),
(B, B) are both standard alphabets, see [2, Proposition 1.4.3] and [13, Corollary 5.8.1].

Returning to our previous setting, Pxyz, Pxxy|z both have Z-marginals equal to Pz by
construction and so both admit disintegrations with respect to Pz denoted by (Pxyz). and
(Pxxy|z)=- In this case, it follows from the definitions of RCP and disintegration and their
existence and essential uniqueness that for Pz-a.e. z € Az, and all Bx € Ba,, By € Ba,, we
have

(PXYZ)Z(BX X By) :P(X € Bx,Y S By|Z = Z),
(PXxY|Z)z(BX X By) :]P)(X € B)(|Z = Z)P(Y S By|Z = Z)

Appendix B. Additive noise.  Consider a measurable map Ty : [0,1] — [0,1] on the
unit interval, which is nonsingular with respect to the Lebesgue measure A on [0, 1] in the
sense that A\(T; 'N) = 0 for any A(N) = 0. Consider random variable Z with distribution

= hzA\.

Let Xo = Tp(Z). By Theorem 3.6, we have I(X; Z) = oo.

Now perturb T by additive noise

Te: 2z To(z) +& mod 1,

where the noise £ is independent of Z and follows some distribution Pz = heA.
For concreteness, we take the uniform noise of amplitude e centered at 0 with density

he = 1i—e/2e/2)
Consider X given by the randomly transformed Z via {7T¢}; more precisely,

1
P(X € B|Z = 2) = /0 L o Te(2)dPe(¢).

In other words,

(Pxz): = (Rpy(z))«Pe;,  Ro:z+—x+a mod l.
If the joint distribution Pxz < Px ® Py, then
I(X;72) = fIn fdPx ® Py,
[0,1]2
d(P. d(%ﬂ z)—e/2, z)+e ))‘
where f(z,z) = dg}fiéi,z (z,2) = d(lgxiéj?)z) (z) = [To(2) dl/D2XTo( sre/2)2 (0,

In general, f depends on Ty. Consider the special case of Bernoulli maps Typ = E4 or
roations Ty = Ry, both of which preserve A. Then, Px = A, f(z,2) = %]I[To(z)_g/ZTO(Z)JFE/Q] (x),
and we have

1 1
I(X;7) = /[ “Ln(2)—e/2,70(2)+e/2 (@) 10 =y (2) e/, Ty (2) 2] (€) dzd 2

01]26
To(z) +e/2 1
// fln dzdz
(z)— 6/2 € €
=€— lnf lnf
€ € €
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This indicates that the mutual information of the blurred variables does not distinguish be-
tween very ambiguous map Ty = Ey3 and non-ambiguous map Ty = R,

Appendix C. Derivation of the discretized mutual information formula.

Recall that the Shannon entropy of a continuous random variable X is infinite, but there
is a meaningful notion of differential entropy, which differs from the Shannon entropy of the
discretization of X by an infinite offset.

In a similar spirit, we aim to identify such an infinite offset in mutual information 7(X;Y")
with X = T(Y) so as to extract the meaningful term Az(Y’), which we have termed the
relative ambiguity of the system (7,Y).

Observe that Pyaya < Pya ® Pya and hence

P(X2 =iA, Y2 = jA)
P(XA =iA)P(YA = jA)

(C.1) I(X2Y%) =) P(X® =iA, Y =jA)In
1,J

Since the densities fx, fy are continuous by assumption in Conjecture C, we have the usual
Riemman sum approximation

P(Y2 = jA) ~fy (JA)A.

In the linear case T = Ey, the mass fx(iA)A splits evenly into d = |T7(iA)| pieces. Since
T is piecewise C! expanding |T”| > 1 by assumption in Conjecture C, we conjecture the key
approximation

_ fx(EA)A

P(X2 =iA Y2 = jA)~ 12—/
( 1’ ) ] ) ‘T/('LA)"

T(iA) =~ jA.

When T has contracting regions |T”| < 1, this approximation fails. This suggests a connection
to the transfer operator formula for expanding maps

THw = ¥

zeT 1y
where the transfer operator T : L*(\) — L*()) is defined to be the Radon-Nikodym derivative

oo dTU(fN)

Tf .= ————.
/ dA
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Now we combine these approximations together:

1]

2]

[4]

[5]

[9]
(10]

(11]

(12]

J.
R

C

C

P(X2 =iA, Y2 = jA)
I(X2 Y2 = P(X2 =iA, Y2 = jA)1 ’
S AXJ:A ( "= iR) YP(XA = iAP(YA = jA)

- FxGA)A | Jx(A)A/T'(A)|
=2 2. i) M hGA)AL GA)A

JA PAET-15A

_ fx(A)A . 1
=2 2 \T’(iA)\l T"(iA)|fy (1A)A

JA GAET-1A

A 1
~ T 1 d
/Ay [fXHIT’I-fyoTA] Y
/f11d+/f1 1d+/f11d
= v 1n —dz x In x v In —dz
Ax 7| Ax fyoT Ax A

R 1
:—/ fxln]T’]dx—i—/ (Tfx)In —dy +In A1
Ax Ay Y

f
=H(Y) - /1n|T’\dPX+1nA1.
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