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Abstract. We study conditional mutual information (cMI) between a pair of variables X,Y given a third one4
Z and derived quantities including transfer entropy (TE) and causation entropy (CE) in the dynam-5
ically relevant context where X = T (Y,Z) is determined by Y,Z via a deterministic transformation6
T . Under mild continuity assumptions on their distributions, we prove a zero-infinity dichotomy7
for cMI for a wide class of T , which gives a yes-or-no answer to the question of information flow8
as quantified by TE or CE. Such an answer fails to distinguish between the relative amounts of9
information flow. To resolve this problem, we propose a discretization strategy and a conjectured10
formula to discern the relative ambiguities of the system, which can serve as a reliable proxy for11
the relative amounts of information flow. We illustrate and validate this approach with numerical12
evidence.13
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1. Introduction. Quantifying information flow is a critical task for understanding complex17

systems in various scientific disciplines, from neuroscience [26, 25, 20] to financial markets18

[8, 3]. Information measures such as mutual information (MI), conditional mutual information19

(cMI) [7], transfer entropy (TE) [19], and causation entropy (CE) [23], have become essential20

tools for this purpose.21

Tracing back to the classic Weiner-Granger causality [11, 12, 4, 15], a central idea that22

underlies these information theoretic methods of quantifying information flow is the notion of23

disambiguation in a predictive framework. In contrast to the experimentalist approach, which24

infers causality from outcomes of perturbations and experiments, the predictive framework,25

which we consider below, is premised on alternative formulations of the forecasting question,26

with and without considering the influence of an external system.27

Formulated by Schreiber [19] in 2000, TE is a quantitative attempt in this predictive28

framework. We think of V = {Vt} and U = {Ut} as stochastic processes indexed by discrete29

time t = 0, 1, · · · ; for a concrete example, imagine that V,U record EEG times series data from30

different parts of the brain. We expect that the present state Vt informs about the future state31

Vt+1 and are interested in determining whether the present state Ut also informs about Vt+1.32

If Vt+1 is conditionally independent of Ut given Vt, then the knowledge about the state of Ut33

does not resolve any uncertainty about the state of Vt+1, assuming one already has access to34

the state of Vt. In this case, we would like to conclude no information flow from U to V at35
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2 Z. BIAN AND E. M. BOLLT

time t and zero TE accordingly. Otherwise, any deviation from this conditional independence36

indicates the presence of information flow, to be captured and quantified by some positive37

value of TE measured in bits per time unit.38

By a slight generalization of Schreiber’s original formulation and in agreement with the39

usual definition for discrete variables, we define TE40

(1.1) TU→V,t := I(Vt+1;Ut|Vt)41

to be the conditional mutual information of Vt+1, Ut given Vt. For simplicity, this is the case of42

lag length 1; longer lags are allowed in general. Causation entropy, proposed by Sun, Taylor43

and Bollt [23], generalizes TE to infer network connectivity [21, 22, 1, 16], by also building44

in conditioning on ternary influences as a way to resolve the differences between direct and45

indirect interactions. The precise definition of cMI will be given in Section 2. Roughly speak-46

ing, it quantifies the deviation from conditional independence of a pair of random variables47

conditioned on a third variable.48

1.1. Zero-infinity dichotomy. Consider a typical situation from dynamical systems, where49

the random variable Vt+1 is determined by Ut, Vt via some deterministic map T , that is,50

(1.2) Vt+1 = T (Ut, Vt).51

If Vt+1 does not depend on Ut, that is, Vt+1 = T0(Vt), then we trivially have zero information52

flow TU→V,t = 0. In terms of probability distributions, this case corresponds to the regular53

conditional probability P(Vt+1 ∈ ·|Vt = vt) = δT0(vt) being a dirac delta.54

Otherwise, one expects TU→V,t > 0 to quantify the amount of information flowing from U55

to V at time t. For example, if the map T is highly “ambiguous”, then the knowledge about56

the states of Ut, Vt does not resolve much uncertainty about the state of Vt+1.57

Example 1.1. Consider two maps T1(u, v) = 100(u + v) mod 1 and T2(u, v) = u + v58

mod 1. The knowledge about the states of Ut, Vt up to 10−2 precision is completely lost via59

T1 and trivially informs that Vt+1 = T1(Ut, Vt) lies in [0, 1], whereas this knowledge under T260

informs about the state of Vt+1 = T2(Ut, Vt) up to precision 2 × 10−2. Therefore, we may61

expect TU→V,t to be smaller in the more ambiguous case of Vt+1 = T1(Ut, Vt) than in the case62

of Vt+1 = T2(Ut, Vt).63

However, under some mild continuity assumptions on the distribution of Vt+1, we see that in64

both cases, TU→V,t = ∞. This holds more generally for any measurable map T . Throughout65

this paper, we assume that the random variables take values in standard measurable spa-66

ces, unless otherwise stated. This implies the existence and essential uniqueness of regular67

conditional probabilities and disintegrations; for details see Appendix A.68

Theorem A (infinite information flow): Assume that for a positive measure set of69

outcomes vt of Vt, the regular conditional probability distribution P(Vt+1 ∈ ·|Vt = vt) of Vt+170

in Eq. (1.2) charges an atomless continuum. Then, the transfer entropy TU→V,t from U to V71

at time t is infinite.72

Remark 1.2. The positive measure set is with respect to the distribution of Vt. We say73

that a probability measure µ charges an atomless continuum if there is a measurable set B74
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THE PROBLEM OF INFINITE INFORMATION FLOW 3

such that µ(B) > 0 and µ({b}) = 0 for each point b ∈ B. The assumption of Theorem A75

says that Vt alone does not fully determine Vt+1 but rather leaves a rich continuum of possible76

values for Vt+1. This is the case, for example, when Vt+1 = T1(Ut, Vt) or Vt+1 = T2(Ut, Vt) as77

in Example 1.1 with Vt and Ut independent and following the uniform distribution on [0, 1].78

Theorem 3.7 gives an equivalent but slightly different formulation of Theorem A and is79

proven in Section 3.3. The zero-infinity dichotomy of TU→V,t gives a yes-or-no answer to the80

question of information flow.81

A key step in the proof of Theorem A is to disintegrate the conditional mutual informa-82

tion into mutual information between conditioned variables. We believe that this result is83

interesting in its own right and state it below.84

Theorem B (disintegration of conditional mutual information): The conditional85

mutual information I(X;Y |Z) of three random variables X,Y, Z is the average of the mutual86

information I(Xz;Yz) between conditioned versions Xz, Yz of X,Y defined in Eq. (2.3), that87

is,88

I(X;Y |Z) =

∫
I(Xz;Yz)dPZ(z).89

Figure 1. Disintegrated distributions. The main histogram at the bottom illustrates the distribution PZ of
variable Z, which, together with Y , determines X = T (Y,Z) via a measurable map T . The joint distribution
PXY Z disintegrates into (PXY Z)z for each realization of Z = z, which can be interpreted as the joint distribution
PXzYz of the conditioned versions Xz, Yz of X,Y . The left, center and right subplots above the main histogram
illustrate three typical disintegrated distributions (PXY Z)z = PXzYz , where Xz follows a constant, atomic and
continuous distribution, respectively. In each subplot, the scatter plot shows the joint distribution PXzYz , the
top histogram shows the marginal distribution PYz , and the right histogram shows the marginal distribution
PXz . The intensity of the blue gradient indicates regions of high probability density.
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4 Z. BIAN AND E. M. BOLLT

Remark 1.3. The conditioned variables Xz, Yz describe the probabilistic landscape once90

the uncertainty about Z is removed, by assuming that the outcome of Z is z. This allows91

the intermediate measurement of I(Xz;Yz) on this particular outcome. By averaging across92

all outcomes of Z, the full conditional mutual information I(X;Y |Z) is recovered. We illus-93

trate pictorially three typical scenarios in Figure 1; the subplots show the joint PXzYz and94

marginal distributions PXz , PYz of pairs of random variables Xz, Yz above the main histogram95

illustrating the distribution of Z. Proposition 2.8 gives an equivalent but slightly different96

formulation of Theorem B and is proven in Section 2.3. The main technical step involves the97

proper construction of Xz, Yz in Eq. (2.3) and the equivalence of disintegration and regular98

conditional probability in our context.99

Theorem B reduces the analysis of TE or cMI in Theorem A to that of MI between con-100

ditioned variables. The exhaustive analysis of MI in the deterministic context thus completes101

the proof of Theorem A.102

In practice, one computes TE from a finite amount of data and obtains finite positive103

values of TU→V,t. As noted in [6], much of the literature that applies TE to detect information104

flow focuses on establishing that TU→V,t is statistically significantly different from zero, and105

treats the finite positive values of TU→V,t as mere artifacts of finite sampling.106

As discussed in Example 1.1, a more ambiguous map such as T1 allows through less107

information flow, which should be reflected by a smaller value of TU→V,t. Of course, this108

intuitive assumption is valid for discrete variables. However, it lacks theoretical justification in109

the case of continuous variables as pointed out by Theorem A, which is typical for applications110

to dynamical systems. We refer to this discrepancy between the practically obtained finite TE111

values and the theoretic zero-infinity dichotomy as the problem of infinite information flow.112

1.2. Resolution by discretization. In light of Theorem B, it suffices to analyze the pair-113

wise I(X;Y ) for X = T (Y ), seeing that I(X;Y |Z) can be obtained by averaging across114

I(Xz, Yz) for pairs of conditioned variables Xz, Yz. A resolution of the problem of infinite115

information flow needs to achieve two things:116

(R1) modify the model so as to obtain finite values for I(X;Y ),117

(R2) by comparing the relative values, distinguish between the relative amounts of infor-118

mation flow.119

By adding white noise to the map T as employed in [24], one can easily achieve (R1) as a120

blurring effect. However, we will show in Appendix B that this strategy still falls short of (R2).121

In fact, we prove for Bernoulli maps with uniformly distributed additive noise of amplitude122

ϵ, uniformly distributed Y and hence X, the resulting finite value of I(X;Y ) is ln 1
ϵ , which is123

a function of the noise amplitude alone, independent of the expanding rate of the Bernoulli124

map. In this sense, the addition of white noise does not achieve (R2) because the resulting125

finite values of I(X;Y ) cannot distinguish between the relative dynamical ambiguities of the126

Bernoulli systems.127

We propose discretization as a strategy to achieve both (R1) and (R2) and illustrate in128

the one-dimensional case.129

Conjecture C (relative ambiguity of (T, Y )): Suppose that X,Y are R-valued random130
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THE PROBLEM OF INFINITE INFORMATION FLOW 5

variables with continuous probability density functions fX , fY , respectively, and that there is a131

piecewise C1 map T for which |T ′| ≥ 1 and X = T (Y ). Consider the discretization by uniform132

mesh of size ∆ > 0, that is,133

Π∆ : R → Z∆, (Π∆)−1{i∆} = [i∆, (i+ 1)∆), i ∈ Z.134

Then, in the limit as ∆ → 0+, the discretized variables X∆ := Π∆X,Y ∆ := Π∆Y satisfy135

I(X∆;Y ∆) + ln∆ → H(X)−
∫

ln |T ′|fY dy =: −AT (Y ),136

where H(X) := −
∫
fX ln fXdx is the differential entropy of X and the quantity AT (Y ) shall137

be called the relative ambiguity of system (T, Y ).138

Remark 1.4. In the special case of T = id, we have I(X∆;X∆)+ln∆ → H(X) and recover139

the relation between Shannon entropy and differential entropy, see e.g. [7, Section 9.3]. More140

generally, it is clear that in the refinement limit of the discretization, i.e., as ∆ → 0+, the141

MI between the discretized variables I(X∆, Y ∆) tends to the infinite theoretic value I(X;Y ).142

This is not our primary concern, however. What is more interesting is the behavior for finite143

∆−1. Namely, for any finite ∆−1, the intuition that a more ambiguous system (T, Y ) with144

large relative ambiguity AT (Y ) allows through less information is reflected by a smaller value145

of I(X∆, Y ∆). In this sense, discretization achieves both (R1) and (R2), resolving the problem146

of infinite information flow.147

Note that the relative ambiguity AT (Y ) involves an entropy and an exponent, which nat-148

urally suggests a link to the Pesin entropy formula [18]. However, we defer further discussions149

on this link, as well as the proof and generalization of Conjecture C, to a separate ongoing150

work.151

Below, we validate Conjecture C with numerical evidence in some concrete dynamical152

examples. A sketch of the derivation of the conjectured formula for AT (Y ) is included in the153

Appendix C.154

Example 1.5 (Bernoulli interval maps). Let the random variableX = Ed(Y ) be determined155

by Y via the piecewise linear expanding map Ed : [0, 1] → [0, 1], d ∈ Z, d ≥ 2, on the unit156

interval given by157

Ed(x) = d · x mod 1.158

Assume Y follows a continuous distribution (we consider uniform and GaussianN[0,1](0.3, 0.02)159

centered at 0.3 with variance 0.02 truncated between 0 and 1) on the interval. By Theorem160

A, or more directly, Theorem 3.6, I(X;Y ) = ∞.161

From Conjecture C, we have zero differential entropy of the uniformly distributed variable162

X and a constant expansion rate |T ′| = d, which yields AT (Y ) = ln d.163

A direct calculation, see Section 4.1, shows that if Y is uniformly distributed in [0, 1], then164

so is X and165

I(X∆;Y ∆) = ln∆−1 − ln d = − ln∆ +AT (Y ),166

in agreement with Conjecture C.167
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6 Z. BIAN AND E. M. BOLLT

In Figure 2, we set ∆−1 = 300. The left and center panels show the scatter plots of168

the joint distribution PX∆Y ∆ of the discretized variables X∆, Y ∆, together with the marginal169

distribution PY ∆ on the top and PX∆ on the right of the scatter plots. We take Y to follow170

the uniform distribution in the left panel in blue and the Gaussian N[0,1](0.3, 0.02) in the171

center panel in red. The intensity of the colors indicates the high probability density. The172

right panel shows the mutual information I(X∆, Y ∆) decreases as the expansion rate d of the173

Bernoulli map Ed increases. The blue and red dots correspond to the cases of Y following174

the Ed-invariant uniform distribution and the Gaussian N[0,1](0.3, 0.02), respectively. For175

comparison, we superimpose the Conjecture prediction ln∆−1 +H(X)− ln d in dashed lines.176

Observe that the dots from empirical calculations fit well with the Conjecture C predic-177

tions in dashed lines in both the uniform and Gaussian cases. In comparison to the uniform178

distribution, the tight Gaussian distribution N[0,1](0.3, 0.02) of Y results in a smaller (in fact,179

negative) differential entropy term H(X) and hence a bigger relative ambiguity AT (Y ) of the180

system (T, Y ) and a smaller discretized mutual information. As the Bernoulli expanding rate181

d increases, the system (T, Y ) becomes more ambiguous in both the uniform and Gaussian182

cases, and hence I(X∆, Y ∆) decreases. For very large d, the expansion is so strong that even183

the tight Gaussian distribution of Y smoothens to an almost uniform distribution of X via184

Ed and we see convergence of the two curves. This example validates both Conjecture C and185

the discretization strategy’s ability to achieve (R1–2).186
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Figure 2. Discretization via uniform ∆−1 = 300 partition of continuous random variable X = Ed(Y )
determined by variable Y via the Bernoulli map Ed : x 7→ d · x mod 1. In the left and middle panels, the
scatter plots show the joint distribution PX∆Y ∆ of the discretized variables X∆, Y ∆, together with the marginal
distributions PY ∆ at the top and PX∆ on the right. The blue and red plots correspond to Y following the
uniform and Gaussian N[0,1](0.3, 0.02) distributions, respectively. Here, N[0,1](0.3, 0.02) means the Gaussian
distribution centered at 0.3 with variance 0.02 and truncated between 0 and 1. The right panel plots for each
Bernoulli expansion rate d, the corresponding I(X∆;Y ∆) of the discretized variables. The blue and red dots
correspond to the empirical calculations of uniform and Gaussian N[0,1](0.3, 0.02) distributions, respectively.
The dashed lines show the theoretic predictions from Conjecture C.

The next example illustrates the discretization strategy in a nonlinear case and beyond187

the scope of Conjecture C (because the map has contracting regions).188

Example 1.6 (Sine box functions). Let the random variable X = Sn(Y ) be determined by189
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Y via the sine box function Sn : [0, 1] → [0, 1] given by190

Sn(x) :=
1 + sin 2πnx

2
, n = 1, 2, · · · .191

We consider two continuous distributions for Y , namely, the uniform distribution and the192

absolutely continuous Sn-invariant probability (acip) distribution. The acip is approximated193

by a long trajectory {yt}, yt+1 = Sn(yt), t = τ0, τ0 + 1, · · · , τ0 + τ − 1 of length τ = 106 with194

the first τ0 = 1000 iterates discarded as transients. In both cases, we have I(X;Y ) = ∞ by195

Theorem A, or more directly, Theorem 3.6.196

In Figure 3, we discretizeX,Y the same way as in Example 1.5. For S4, we show the scatter197

plots of PX∆Y ∆ and histogram of PY ∆ at the top and PX∆ on the right of the left and center198

panels. The uniform PY shown in blue on the left is not invariant for Sn, but the red acip in the199

middle is Sn-invariant. The right panel shows that with Y following either uniform or acip200

distribution, the mutual information I(X∆;Y ∆) between the discretized variables X∆, Y ∆201

decreases as the function Sn becomes more ambiguous (as n increases). The calculation and202

simulation details are presented in Section 4.2.203
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Figure 3. Discretization via uniform ∆−1 = 300 partition of continuous random variable X = Sn(Y )
determined by variable Y via the sine box function Sn : x 7→ 1+sin 2πnx

2
. In the left and middle panels, the

scatter plots show the joint distribution PX∆Y ∆ of the discretized variables X∆, Y ∆, together with the marginal
distributions PY ∆ at the top and PX∆ on the right. The right panel plots for each n, the corresponding MI
I(X∆;Y ∆) of the discretized variables, with the empirical values shown in dots and Conjectured values in dashed
lines. The blue and red colors correspond to Y following the uniform and acip distributions, respectively.

We remark that the sine box example falls outside the scope of Conjecture C because204

Sn has contracting regions near k
2n + 1

4n for each n = 1, 2, · · · and k = 0, · · · , 2n − 1, where205

our Conjectured formula fails. It turns out that these contracting regions are assigned a206

higher weight for smaller values of n and uniform and acip densities of fY , leading to a bigger207

discrepancy between the empirical and Conjectured I(X∆, Y ∆) values for small n. In spite of208

this, it is remarkable that our formula still captures the trend that as n increases, the relative209

ambiguity of Sn increases and I(X∆, Y ∆) decreases. This example illustrates the validity of210

the discretization strategy.211

To obtain meaningful finite values of TE or cMI in Eq. (1.1) that can distinguish the212

relative amounts of information flow, we discretize each conditioned version Yz and Xz =213
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8 Z. BIAN AND E. M. BOLLT

Tz(Yz) = T (Yz, z) to obtain meaningful finite values of MI I(Xz;Yz) as in Examples 1.5, 1.6,214

and then average/integrate across all versions of z against the marginal distribution PZ (or215

its discretization) in the sense of Theorem B. The numerical computations of TE in practice,216

in our view, essentially implement a similar discretization scheme.217

Organization of the paper. In Section 2 we review the definition and properties of MI218

and cMI and end with Proposition 2.8 to decompose cMI into disintegrated MI of conditioned219

versions of the original variables. In Section 3, we analyze the dichotomy properties of MI220

and cMI leading to the proof of the Theorem of infinite information flow. In Section 4,221

we present detailed calculations and simulations for the illustrative Bernoulli and sine box222

examples 1.5, 1.6. In the Appendix, we discuss the key technical results on standard spaces,223

regular conditional probability, disintegration, and the effect of additive white noise.224

Acknowledgments. We thank Tiago Pereira and Edmilson Roque dos Santos for helpful225

discussions and comments. Z.B. and E.M.B. are supported by the NSF-NIH-CRCNS. E.M.B.226

is also supported by DARPA RSDN, the ARO, and the ONR.227

2. Background on cMI. We review notions and properties of Kullback-Leibler divergence228

in Section 2.1, entropy and mutual information in Section 2.2, and the conditional mutual in-229

formation in Section 2.3. Some technical definitions and constructions, including the standard230

measurable space and regular conditional probability, are essential for the general definition231

of the conditional mutual information and therefore are also briefly reviewed in the Appendix.232

More details can be found in [13, 14].233

Let (Ω,F ,P) be a probability space and f : Ω → A a measurable function (also called234

random variable) taking values in the measurable space (A,BA) called the alphabet. Denote235

the distribution of f on (A,BA) by236

Pf := f∗P.237

When A is a finite/countable set, we say that the alphabet is finite/discrete. For several238

random variables f1, · · · , fn, we denote their joint distribution by Pf1···fn = (f1, · · · , fn)∗P239

and the product measure of their marginal distributions by Pf1 ⊗ · · · ⊗Pfn = ((f1)∗P)⊗ · · · ⊗240

((Pfn)∗P).241

2.1. Kullback-Leibler divergence. First consider the special case where A is a finite set242

and BA = 2A. Given two probability measures P,M on (A,BA), the Kullback-Leibler diver-243

gence of P with respect to M is defined to be244

KL(P∥M) :=
∑
a∈A

P (a) ln
P (a)

M(a)
.245

Note that this makes sense only when M(a) = 0 implies P (a) = 0, i.e., P ≪ M . In this case246

we define 0 ln 0
0 := 0; otherwise, KL(P∥M) is defined to be ∞.247

Now consider the general case: two probability measures P,M on an arbitrary measurable248

space (Ω,F). The Kullback-Leibler divergence KL(P∥M) of P with respect to M is defined249

as250

KL(P∥M) := sup
f

KL(Pf∥Mf ),251

where the supremum is taken over all random variables f : Ω → A with a finite alphabet A.252

In fact, there is a sequence of random variables fn with finite alphabets, for example, obtained253
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THE PROBLEM OF INFINITE INFORMATION FLOW 9

via increasingly fine partitions of Ω, such that KL(Pfn∥Mfn) tends to KL(P∥M) as n → ∞;254

see [14, Corollary 5.2.3].255

Remark 2.1. KL is an asymmetric quantity that underlies the definitions of Shannon,256

transfer, causation entropy and (conditional) mutual information.257

A key property is the so-called divergence inequality:258

Lemma 2.2 (Divergence inequality, [14] Lemma 5.2.1). For any probability measures P,M259

on a common alphabet, we have KL(P∥M) ≥ 0 and the equality holds precisely when P = M .260

Two cases of KL will be relevant to us.261

Lemma 2.3 (Relative entropy density [14] Lemma 5.2.3). For any probability measures P,M262

on a common alphabet, if P ≪ M , then the Radon-Nikodym derivative f := dP/dM exists,263

is called the relative entropy density of P with respect to M , and verifies264

KL(P∥M) =

∫
Ω
ln f(ω)dP (ω) =

∫
Ω
f(ω) ln f(ω)dM(ω).265

In this case, if Ω is finite then f(ω) = P (ω)/M(ω) and KL reduces to the finite alphabet case;266

if Ω = Rd and P,M ≪ Leb with densities fP , fM , respectively, then267

KL(P∥M) =

∫
Rd

f(x) ln
f(x)

g(x)
dx.268

On the other hand, if P is not absolutely continuous with respect to M , then269

KL(P∥M) = ∞.270

2.2. Mutual information. Define the mutual information between two random variables271

X and Y to be272

I(X;Y ) := KL(PXY ∥PX ⊗ PY ).273

It can be shown [14, Chapter 2.5] that the (Shannon) entropy of X (defined as H(X) :=274

−∑
x∈AX

pX(x) ln pX(x) in the discrete alphabet case) can be recovered by the mutual infor-275

mation with X itself H(X) = I(X;X) and therefore I(X;Y ) = H(X) +H(Y )−H(X,Y ).276

Remark 2.4. In light of Lemma 2.2, it is clear that I(X;Y ) equals zero precisely whenX,Y277

are independent and quantifies their deviation from independence otherwise. The product278

of marginals PX ⊗ PY serves as the reference independent model against which the joint279

distribution PXY is compared. More precisely, if (X ′, Y ′) has joint distribution PX ⊗PY , then280

X ′, Y ′ are independent and have same marginal dsitributions as X,Y .281

2.3. Conditional mutual information. First we consider the finite alphabet case: three282

random variables X,Y, Z with finite alphabets AX , AY , AZ , each equipped with the power-set283

σ-algebra BA∗ = 2A∗ , ∗ = X,Y, Z. Define the conditional mutual information of X,Y given284

Z to be285

(2.1) I(X;Y |Z) := KL(PXY Z |PX×Y |Z),286
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10 Z. BIAN AND E. M. BOLLT

where PX×Y |Z is a probability distribution on AX ×AY ×AZ defined by287

(2.2) PX×Y |Z(BX ×BY ×BZ) :=
∑
z∈BZ

P(X ∈ BX |Z = z)P(Y ∈ BY |Z = z)P(Z = z)288

for any BX ∈ BAX
, BY ∈ BAY

and BZ ∈ BAZ
. Here, the conditional probability is the usual289

one P(F |E) = P(F∩E)
P(E) provided that P(E) > 0.290

Remark 2.5. As discussed in the Introduction, conditional mutual information is designed291

to quantify the deviation from conditional independence of X,Y given Z. And PX×Y |Z is292

designed to serve as the conditional independent model against which to compare the joint293

distribution PXY Z , cf. the role of PX⊗PY in the definition of I(X;Y ) as discussed in Remark294

2.4. More precisely, consider new random variables X ′, Y ′, Z ′ with joint distribution PX×Y |Z295

and observe296

• X ′, Y ′, Z ′ have the same marginal distributions as X,Y, Z: PX′ = PX , PY ′ = PY ,297

PZ′ = PZ ;298

• X ′, Y ′ have the same conditional marginal distributions given Z ′ as X,Y given Z:299

P(X ∈ BX |Z = z) = P(X ′ ∈ BX |Z ′ = z) and P(Y ∈ BY |Z = z) = P(Y ′ ∈ BY |Z ′ = z);300

• X ′, Y ′ are conditionally independent given Z ′: P(X ′ ∈ BX , Y ′ ∈ BY |Z ′ = z) = P(X ′ ∈301

BX |Z ′ = z)P(Y ′ ∈ BY |Z = z).302

In other words, PX×Y |Z is a “Markovization” of the joint distribution PXY Z in the sense303

that the modified random variables X ′, Y ′, Z ′ form a Markov chain Y ′ → Z ′ → X ′ (or304

X ′ → Z ′ → Y ′) because the information about the state of Y ′, in addition to that of Z ′,305

does not further resolve the uncertainty about the state of X ′ (the same holds with X ′, Y ′306

swapped).307

To generalize the definition of I(X;Y |Z) in Eq. 2.1, the main challenge lies with the308

conditional probabilities appearing in the definition (2.2) of PX×Y |Z . In general, we may well309

have P(Z = z) = 0 for each z ∈ AZ , for example, take Z to be uniformly distributed on310

AZ = [0, 1], or any other distribution absolutely continuous with respect to Lebesgue. This311

makes it impossible to define P(F |Z = z) in the same way as the discrete alphabet case312
P(F∩{Z=z})

P(Z=z) .313

This challenge can be met by (i) interpreting the conditional probability P(X ∈ BX |Z =314

z), rather than a fraction, as a Radon-Nikodym derivative for fixed BX ∈ BAX
and (ii)315

requiring that the alphabets of X,Y, Z be “standard” measurable spaces so that P(X ∈316

BX |Z = z) is well-defined as regular conditional probability simultaneously for all BX ∈ BAX
317

and similarly for P(Y ∈ BY |Z = z). In [14], there is an even more general definition beyond318

standard alphabets. Since the standard alphabet already covers the practically relevant cases319

such as Polish spaces, we shall contain our discussion in the standard alphabet case and leave320

the details in the Appendix.321

Consider three random variables X,Y, Z on a common probability space (Ω,F ,P) with322

standard alphabets (AX ,BAX
), (AY ,BAY

), (AZ ,BAZ
), respectively. See Appendix A for de-323

tails. Define the conditional average mutual information as in Eq. (2.1) where the Markoviza-324

tion PX×Y |Z is given in terms of regular conditional probabilities, for BX ∈ BAX
, BY ∈ BAY

,325
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BZ ∈ BAZ
326

PX×Y |Z(BX ×BY ×BZ) :=

∫
Z−1BZ

P(X ∈ BX |σ(Z))P(Y ∈ BY |σ(Z))dP327

=

∫
BZ

P(X ∈ BX |Z = z)P(Y ∈ BY |Z = z)dPZ(z).328

Remark 2.6. Note that PX×Y |Z is a deterministic probability measure and hence the con-329

ditional mutual information I(X;Y |Z) is a deterministic object on AX×AY ×AZ , even though330

the notation suggests some conditioning. As the construction above shows, the randomness331

from conditioning on Z is averaged out.332

In light of Lemma 2.2, I(X;Y |Z) equals zero precisely when X,Y are conditionally inde-333

pendent given Z and quantifies the deviation from this conditional independence otherwise.334

Since PXY Z , PX×Y |Z both have Z-marginals equal to PZ by construction, they admit335

disintegrations with respect to PZ denoted by (PXY Z)z and (PX×Y |Z)z, which coincide with336

the regular conditional probabilities: for PZ-a.e. z ∈ AZ , and all BX ∈ BAX
, BY ∈ BAY

, we337

have338

(PXY Z)z(BX ×BY ) =P(X ∈ BX , Y ∈ BY |Z = z),339

(PX×Y |Z)z(BX ×BY ) =P(X ∈ BX |Z = z)P(Y ∈ BY |Z = z).340

See Appendix A for more details. We will sometimes prefer the disintegration notation to the341

regular conditional probability notation for clarity of presentation.342

Definition 2.7 (Z-conditioned random variables). For each z ∈ AZ , define the Z-conditioned343

random variables Xz, Yz with alphabets (AX ,BAX
), (AY ,BAY

), respectively, and joint distri-344

bution345

(2.3) PXzYz := (PXY Z)z, z ∈ AZ .346

Then, their marginal distributions are given by347

PXz(BX) =PXzYz(BX ×AY ) = P(X ∈ BX |Z = z), z ∈ AZ , BX ∈ BAX
348

PYz(BY ) =PXzYz(AX ×BY ) = P(Y ∈ BY |Z = z), z ∈ AZ , BY ∈ BAY
.349

Hence,350

(PX×Y |Z)z = PXz ⊗ PYz351

and352

I(Xz;Yz) = KL(PXzYz∥PXz ⊗ PYz) = KL((PXY Z)z∥(PX×Y |Z)z).353

The intuition behind the above construction of Xz, Yz is to consider them as the disintegrated354

versions of X,Y on the z-slice AX×AY ×{z}. The next proposition shows that the conditional355

mutual information I(X;Y |Z) is the average of I(Xz;Yz) across all such z-slices.356

Proposition 2.8 (Average of disintegrated MI). Consider three random variables X,Y, Z on357

a common probability space (Ω,F ,P) with standard alphabets (AX ,BAX
), (AY ,BAY

), and358
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12 Z. BIAN AND E. M. BOLLT

(AZ ,BAZ
), respectively. Then, the conditional mutual information I(X;Y |Z) is the PZ-359

average of mutual information I(Xz;Yz) = KL((PXY Z)z∥(PX×Y |Z)z) between the z-conditioned360

random variables Xz, Yz. More precisely, if (PXY Z)z ≪ (PX×Y |Z)z for PZ-a.e. z ∈ AZ , then361

the Radon-Nikodym derivative362

d(PXY Z)z
d(PX×Y |Z)z

(x, y) =
dPXY Z

dPX×Y |Z
(x, y, z) for PX×Y |Z-a.e. (x, y, z)363

and hence364

I(X;Y |Z) =

∫
AZ

I(Xz;Yz)dPZ(z);365

otherwise, there is BZ ∈ BAZ
with PZ(BZ) > 0 and I(Xz;Yz) = KL

(
(PXY Z)z∥(PX×Y |Z)z

)
=366

∞ for each z ∈ BZ , in which case I(X;Y |Z) = ∞.367

Proof. First consider (PXY Z)z ≪ (PX×Y |Z)z for PZ-a.e. z ∈ AZ . Then the Radon-368

Nikodym derivative d(PXY Z)z
d(PX×Y |Z)z

exists for PZ-a.e. z ∈ AZ . Integrating its logarithm against369

(PXY Z)z yields, according to Lemma 2.3,370

KL
(
(PXY Z)z∥(PX×Y |Z)z

)
=

∫
AX×AY

ln
d(PXY Z)z
d(PX×Y |Z)z

d(PXY Z)z.371

Further integrating the above equation against PZ yields, by definition of disintegration,372 ∫
AZ

KL
(
(PXY Z)z∥(PX×Y |Z)z

)
dPZ(z) =

∫
AZ

∫
AX×AY

ln
d(PXY Z)z
d(PX×Y |Z)z

d(PXY Z)zdPZ(z)373

=

∫
AX×AY ×AZ

ln
d(PXY Z)z
d(PX×Y |Z)z

dPXY Z .374

For any BX ∈ BAX
, BY ∈ BAY

, BZ ∈ BAZ
, by definition of disintegration, we have375 ∫

BX×BY ×BZ

d(PXY Z)z
d(PX×Y |Z)z

(x, y)dPX×Y |Z(x, y, z)376

=

∫
BZ

∫
BX×BY

d(PXY Z)z
d(PX×Y |Z)z

(x, y)d(PX×Y |Z)z(x, y)dPZ(z)377

=

∫
BZ

(PXY Z)z(BX ×BY )dPZ(z)378

=PXY Z(BX ×BY ×BZ).379

By uniqueness of Radon-Nikodym derivative, we conclude380

d(PXY Z)z
d(PX×Y |Z)z

(x, y) =
dPXY Z

dPX×Y |Z
(x, y, z) for PX×Y |Z-a.e. (x, y, z).381

We continue382 ∫
AZ

KL
(
(PXY Z)z∥(PX×Y |Z)z

)
dPZ(z) =

∫
AX×AY ×AZ

ln
dPXY Z

dPX×Y |Z
dPXY Z = I(X;Y |Z),383
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by Lemma 2.3. This proves the first assertion.384

Now we consider the other case: there is some BZ with PZ(BZ) > 0 and for each z ∈ BZ ,385

there is some B
(z)
XY with (PXY Z)z(B

(z)
XY ) > 0 = (PX×Y |Z)z, then the set386

BXY Z :=
⋃

z∈BZ

B
(z)
XY × {z}387

has the property that388

PXY Z(BXY Z) > 0 = PX×Y |Z(BXY Z).389

In particular, PXY Z is not absolutely continuous with respect to PX×Y |Z . Hence, by Lemma390

2.3, we have391

I(X;Y |Z) = KL(PXY Z∥PX×Y |Z) = ∞.392

Example 2.9 (Transfer and causation entropy). Consider a stochastic processX = (X0, X1, · · · )393

taking values in (AX ,BAX
) and another stochastic process Y = (Y0, Y1, · · · ) taking values in394

(AY ,BAY
).395

As in [5, Chapter 9.8.1], we are interested to quantify the information flow from Y to X396

at time t, conditioned on some history X
(k)
t = (Xt, · · · , Xt−k+1) of X itself k-steps into the397

past. If there is no such information flow, then Xt+1, Y
(l)
t should be conditionally independent398

given X
(k)
t , i.e.,399

I(Xt+1;Y
(l)
t |X(k)

t ) = 0.400

Otherwise, the information flow can be quantified by the deviation from conditional indepen-401

dence. This motivates our definition402

TY→X,t := I(Xt+1;Y
(l)
t |X(k)

t ) = KL
(
P
Xt+1X

(k)
t Y

(l)
t

∥∥∥P
Xt+1×Y

(l)
t |X(k)

t

)
,403

which has a similar form to the discrete version given by eq. (9.128) in [5]. Variations such404

as unlimited memory can also be considered.405

The causation entropy is a fruitful generalization of TE in the context of a network of406

stochastic processes Xv indexed by nodes v ∈ V := {1, · · · , n}, where each Xv = (Xv
t )t=0,1,···.407

Given three collections I, J,K ⊆ V of nodes, CE (looking 1 step into the past) [23] is defined408

to be409

CJ→I|K,t := I(X
(I)
t+1;X

(J)
t |X(K)

t ) = KL

(
P
X

(I)
t+1X

(K)
t X

(J)
t

∥∥∥∥PX
(I)
t+1×X

(J)
t |X(K)

t

)
.410

In a discovery algorithm, [23] uses CJ→I|K,t to quantify the information flowing from nodes411

J to nodes I conditioned on nodes K, where I nodes are the potential neighbors of J nodes412

under consideration and K is the collection of known neighbors of J ; the authors identify the413

most likely neighbors of J as the collection I that maximizes CJ→I|K,t.414

3. Dynamic determinism. This section analyzes the conditional mutual information I(X;Y |Z)415

in the case whereX = T (Y,Z) is determined by Y,Z via a measurable function T : AY ×AZ →416

AX . This is a context particularly relevant to dynamics.417
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14 Z. BIAN AND E. M. BOLLT

3.1. Mutual information: zero or positive. Before diving into the conditional mutual418

information among three random variables, we first consider two random variables. We begin419

with a trivial observation.420

Proposition 3.1 (Zero mutual information). Let X,Z be two random variables. If PX = δx0421

for some x0 ∈ AX , then422

PXZ = PX ⊗ PZ .423

In particular, I(X;Z) = KL(PXZ∥PX ⊗ PZ) = 0.424

Note that PX = δx0 is equivalent to X ≡ x0 a.s.; in this case, we may view X = T (Z)425

for the constant map T : z 7→ x0. As we will see shortly, this is essentially the only way for426

I(X;Z) to vanish.427

More generally, consider a measurable map T : AZ → AX and two random variables X,Z.428

The following are equivalent429

(i) X = T (Z) a.s.430

(ii) P(X = T (Z)|Z) = 1 a.s.431

(iii) P(X = T (Z)|Z = z) = 1 for PZ-a.e. z ∈ AZ .432

When one of the above holds, we say that X is determined by Z via T .433

Proposition 3.2 (Positive mutual information). Consider a random variable X = T (Z),434

determined by another random variable Z via some measurable map T : AZ → AX . If there435

is some BX ∈ BAX
with 0 < PX(BX) < 1, then the event436

S := BX × T−1(AX \BX)437

has the property that438

PXZ(S) = 0 < PX ⊗ PZ(S);439

in particular, we have PXZ ̸= PX ⊗ PZ and I(X;Z) = KL(PXZ∥PX ⊗ PZ) > 0.440

Proof.

PXZ(S) =P((X,Z) ∈ S) = P((T (Z), Z) ∈ BX × T−1(AX \BX))441

=P(Z ∈ T−1(BX) ∩ T−1(AX \BX)) = 0442

and443

PX ⊗ PZ(S) =PX(BX)PZ(T
−1(AX \BX)) = PX(BX)PX(AX \BX) > 0.444

This completes the proof.445

Proposition 3.2 provides a partial converse to Proposition 3.1. If we additionally require446

that the alphabet (AX ,BAX
) be such that every zero-one measure is a dirac delta, then it is447

a complete converse.448

A measure µ on a measurable space (A,A) is said to be a zero-one measure if µ(F ) is449

either 0 or 1 for all F ∈ A. A dirac delta is necessarily a zero-one measure, but there are450

zero-one measures which are not dirac deltas. The issue usually is that the σ-algebra is too451

coarse.452
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Example 3.3 (Non-measurable singletons). Consider the alphabet AX = {a, b} equipped453

with the trivial σ-algebra BAX
= {∅, AX}. The only probability measure PX on (AX ,BAX

) is454

a zero-one measure, but not a dirac delta because the singletons {a}, {b} are not measurable.455

Combining Propositions 3.1 and 3.2 yields the following dichotomy result.456

Theorem 3.4 (Characterization of positive mutual information). Let X be a random variable457

with an alphabet (AX ,BAX
), where every zero-one measure is a dirac delta. Suppose also that458

X = T (Z) is determined by another random variable Z via a measurable map T : AZ → AX .459

Then, we have a dichotomy:460

(i) X is constant. In this case, I(X;Z) = 0;461

(ii) X is nonconstant. In this case, I(X;Z) > 0.462

Discrete spaces and Polish spaces are key examples where every zero-one measure is a463

dirac delta.464

Example 3.5 (Separable metric space). If A is a separable metric space, equipped with the465

Borel σ-algebra A, then any zero-one measure on (A,A) must be a dirac delta. Indeed, if466

µ were a zero-one measure on (A,A) but not a dirac delta, then the support of µ is well-467

defined (see [17, Theorem 2.1]) and must contain at least two distinct points x1 ̸= x2 with468

d(x1, x2) = d > 0. By definition of support, the two open balls Bi := B(xi, d/3) are disjoint469

with µ(B(xi, d/3)) = 1 > 0. Now we arrive at 1 = µ(A) ≥ µ(B1) + µ(B2) = 1 + 1 = 2, a470

contradiction.471

Specific examples include a finite or countable set A equipped with the discrete distance472

d(a, b) = δab, and other Polish spaces equipped with the Borel σ-algebra.473

3.2. Mutual information: finite or infinite.474

Theorem 3.6 (Mutual information: finite or infinite). Consider a random variable X =475

T (Z) determined by another random variable Z via some measurable map T : AZ → AX .476

Assume that the singletons are measurable, i.e., {x} ∈ BAX
for all x ∈ AX . Then, we have a477

dichotomy:478

1. Atomic case: there is a finite or countable set SX ∈ BAX
with PX(SX) = 1. In this479

case, PXZ ≪ PX ⊗ PZ and480

I(X;Z) =
∑
x∈SX

PX(x)

∫
AZ

ln
d(PXZ)x
dPZ

(z)d(PXZ)x(z),481

which can be either finite or infinite.482

2. Continuous case: there is BX ∈ BAX
with PX(BX) > 0 and PX({x}) = 0 for all483

x ∈ BX . In this case, the set484

S := {(T (z), z) : T (z) ∈ BX}485

has the property that PXZ(S) > 0 and PX ⊗ PZ(S) = 0. In particular, PXZ is not486

absolutely continuous with respect to PX ⊗ PZ and hence487

I(X;Z) = KL(PXZ∥PX ⊗ PZ) = ∞.488
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16 Z. BIAN AND E. M. BOLLT

Proof. For the atomic case, consider any N ∈ BAX
⊗ BAZ

with PX ⊗ PZ(N) = 0. We489

show PXZ(N) = 0. By Fubini, for any x ∈ SX , we have PZ(Nx) = 0, where Nx := {z ∈ AZ :490

(x, z) ∈ N}. Hence,491

PXZ(N) =P((X,Z) ∈ N) =
∑
x∈SX

P((X,Z) ∈ {x} ×Nx) =
∑
x∈SX

P(T (Z) = x, Z ∈ Nx)492

≤
∑
x∈SX

P(Z ∈ Nx) =
∑
x∈SX

PZ(Nx) = 0.493

Now we show that the atomic and continuous cases form a dichotomy. If PX does not494

admit a BX with PX(BX) > 0 and PX({x}) = 0 for all x ∈ BX , then for every BX with495

PX(BX) > 0, there is some x ∈ BX with PX({x}) > 0. Since PX is a probability measure,496

there can be at most countably many x ∈ AX with PX({x}) > 0; denote by A1
X the set of497

all such point atoms x of PX . Note A1
X is measurable because each singleton is measurable.498

Then by construction we must have PX(AX \ A1
X) = 0 because otherwise AX \ A1

X would499

have positive measure and hence contain a point from A1
X . This shows that PX has at most500

countable support, namely, A1
X , so we are in the atomic case 1. We conclude that the two501

cases indeed form a dichotomy.502

In the atomless case 2, by definition,503

PXZ(S) = P((X,Z) ∈ S) = P(X = T (Z) ∈ BX) = PX(BX) > 0.504

By Fubini,505

PX ⊗ PZ(S) =

∫
AZ

PX(Sz)dPZ(z) =

∫
T−1(BX)

PX({T (z)})dPZ(z) = 0,506

where in the last equality we use T (z) ∈ BX for any z ∈ T−1(BX).507

3.3. Infinite conditional mutual information. In this section, we consider the case when508

Y,Z together determine X, that is, X = T (Y, Z) for a measurable map T : AY × AZ → AX .509

We split the alphabet AZ into three disjoint pieces510

AZ = A0
Z ∪Aatomic

Z ∪Acontinuous
Z ,511

where A0
Z consists of z ∈ AZ for which the marginal distribution PXz := P(X ∈ ·|Z = z)512

of Xz concentrates on a singleton, i.e., P(X = xz|Z = z) = 1 for some xz ∈ AX ; Aatomic
Z513

consists of z ∈ AZ for which PXz concentrates on a non-singleton at most countable set, i.e.,514

PXz(BX) = P(X ∈ BX |Z = z) = 1 for some non-singleron at most countable BX ∈ BAX
;515

Acontinuous
Z consists of z ∈ AZ for which PXz charges an atomless continuum, i.e., there is516

BX ∈ BAX
with PXz(BX) > 0 and PXz({x}) = 0 for all x ∈ BX By Theorem 3.6, the three517

parts are disjoint and indeed form a partition of AZ .518

Theorem 3.7 (Conditional mutual information). Let random variable X = T (Y, Z) be de-519

termined by random variables Y,Z via a measurable map T : AY ×AZ → AX . Suppose X,Y, Z520

all have standard alphabets. Then,521

I(X;Y |Z) =

{∫
Aatomic

Z
I(Xz;Yz)dPZ(z) if PZ(A

continuous
Z ) = 0,

∞ else.
522

This manuscript is for review purposes only.



THE PROBLEM OF INFINITE INFORMATION FLOW 17

In particular, when PZ(A
0
Z) = 1, we have I(X;Y |Z) = 0.523

Proof. By Proposition 2.8, we split the conditional mutual information into three parts.524

I(X;Y |Z) =

∫
A0

Z

I(Xz;Yz)dPZ(z) +

∫
Aatomic

Z

I(Xz;Yz)dPZ(z) +

∫
Acontinuous

Z

I(Xz;Yz)dPZ(z)525

By Proposition 3.1, I(Xz;Yz) = 0 for any z ∈ A0
Z , so the first term vanishes. The last term is526

zero when PZ(A
continuous
Z ) = 0 and is ∞ otherwise, according to Theorem 3.6.527

In many dynamically relevant situations, we have PZ(A
continuous
Z ) > 0, as announced in528

Theorem A, and hence I(X;Y |Z) = ∞.529

4. Examples.530

4.1. Bernoulli interval maps. Consider the piecewise linear expanding map Ed : [0, 1] →531

[0, 1], d ∈ Z, d ≥ 2, on the unit interval given by Ed(x) = d · x mod 1.532

If Y is uniformly distributed on the interval, i.e., PY = Leb[0,1], then so is X = Ed(Y ),533

i.e., PX = PY . The joint distribution of (X,Y ) on the unit square [0, 1]2 is given by PXY =534

(Ed, id)∗Leb[0,1], which is supported on the graph of Ed. In particular, PXY is mutual singular535

with respect to PX ⊗ PY = Leb[0,1]2 . By Theorem 3.6, I(X;Y ) = KL(PXY ∥PX ⊗ PY ) = ∞.536

Now we discretize. Fix a positive integer L = ∆−1 ∈ Z>0. Then, the uniform partition537

by {
[
i−1
L , i

L

)
} is a Markov partition for Ed. Note538

P(X∆ = i∆) = Leb[0,1]

[
i− 1

L
,
i

L

)
=

1

L
, ∀i = 1, · · · , L.539

This shows that X∆ is uniformly distributed on {1, · · · , L}. So is Y ∆ = Π∆Y . The joint540

distribution PX∆Y ∆ of (X∆, Y ∆) charges uniform mass to the pairs541

(4.1) (d(i− 1) + r mod L, i), i = 1, · · · , L, r = 1, · · · , d.542

When L ≤ d, then PX∆Y ∆ is uniform on {1, · · · , L}2, with PX∆Y ∆(i, j) = 1
L2 for each (j, i) ∈543

{1, · · · , L}2. In this case,544

I(X∆;Y ∆) = KL(PX∆Y ∆∥PX∆ ⊗ PY ∆) = 0.545

When L > d, then only dL pairs of (j, i) ∈ {1, · · · , L}2 satisfying eq. (4.1) are charged546

with mass 1
dL each. In this case,547

I(X∆;Y ∆) =KL(PX∆Y ∆∥PX∆ ⊗ PY ∆)548

=
∑
(j,i)

PX∆Y ∆(j, i) ln
PX∆Y ∆(j, i)

PX∆ ⊗ PY ∆(j, i)
549

=dL
1

dL
ln

1/dL

1/L2
= lnL− ln d.550

In the discretized version, a more expanding map Ed with large d gives less mutual infor-551

mation.552
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4.2. Sine box functions. Consider the sine box function Sn : [0, 1] → [0, 1] given by553

Sn(x) :=
1 + sin 2πnx

2
, n = 1, 2, · · · .554

We compute its invariant measure µn by taking a long trajectory {xt = St
n(x0) : t = τ0, τ0 +555

1, · · · , τ0 + τ − 1}, starting from x0 = 0.5 (other initial points 0.2, 0.3, · · · , 0.9 yielded very556

similar results), discarding the first τ0 = 1000 iterates as transient, and collecting the next557

τ = 106 iterates to approximate558

µn ≈ µ(τ)
n :=

1

τ

τ0+τ−1∑
t=τ0

δxt .559

If Y follows µn, then X = Sn(Y ) follows (Sn)∗µn = µn.560

The probability density function ϕ of µn is approximated by the histogram for {xt} binned561

into {[(i− 1)∆, i∆)}, that is,562

ϕ(τ)((i− 1)∆) :=
1

τ

τ0+τ−1∑
t=τ0

1[(i−1)∆,i∆)(xt), i = 1, · · · , L,563

which can be represented in vector form564

ϕ(τ) = (ϕ
(τ)
i )Li=1, ϕ

(τ)
i := ϕ(τ)((i− 1)∆).565

The product of the marginals PX ⊗ PY discretizes into PX∆ ⊗ PY ∆ = (Π∆ ×Π∆)(PX ⊗ PY ),566

which is approximated by567

PX∆ ⊗ PY ∆ ≈ P
(τ)

X∆ ⊗ P
(τ)

Y ∆ := ϕ(τ) · (ϕ(τ))⊤568

The joint distribution PXY discretizes into PX∆Y ∆ = (Π∆,Π∆)(PXY ), which is then ap-569

proximated by570

PX∆Y ∆ ≈ P
(τ)

X∆Y ∆ = (P
(τ)

X∆Y ∆)
L
i,j=1,571

where572

(P
(τ)

X∆Y ∆)i,j =
1

τ

τ0+τ−1∑
t=τ0

1[(i−1)∆,i∆)(xt) · 1[(j−1)∆,j∆)(xt+1).573

It follows from Theorem 3.6 that I(X,Y ) = ∞ for any n. However, higher value of n decreases574

the ability to resolve uncertainty about X = Sn(Y ) from knowledge about Y . Accordingly,575

we expect I(X∆;Y ∆) to decrease as n increases. This is confirmed by simulations as shown576

in Figure 3.577
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Appendix A. Regular conditional probability and disintegration on standard measurable578

spaces. We motivate the consideration of standard measurable spaces by an attempt to gen-579

eralize the definition of conditional probability for discrete variables to more general variables.580

We finish the discussion by showing that regular conditional probabilities are equivalent to581

disintegrations in our setting.582

Consider a common probability space (Ω,F ,P) for random variables X,Y, Z taking values583

in (AX ,BAX
), (AY ,BAY

), (AZ ,BAZ
).584

The first challenge in generalizing the definition of conditional probability P(F |Z = z) :=585
P(F∩{Z=z})

P(Z=z) to non-discrete variables Z is that the events {Z = z} being conditioned on may586

well have zero probability. To overcome this challenge, a first fix is to interpret the conditional587

probability as a density (Radon-Nikodym derivative) rather than a fraction. More precisely,588

given an arbitrary random variable Z and a fixed event F ∈ F , we define P(F |Z = z), z ∈ AZ589

to be the Radon-Nikodym derivative590

P(F |Z = z) :=
dPF (Z ∈ ·)
dP(Z ∈ ·) (z) =

dPF (Z ∈ ·)
dPZ

(z), z ∈ AZ ,591

where PF (Z ∈ ·) := P(F ∩ {Z ∈ ·}) is absolutely continuous with respect to PZ = P(Z ∈ ·).592

By Radon-Nikodym Theorem, P(F |Z = z) exists and is PZ-essentially unique. Equivalently,593

we have the defining equation for P(F |Z = z)594

P(F ∩ {Z ∈ BZ}) = PF (Z ∈ BZ) =

∫
BZ

P(F |Z = z)dPZ(z), BZ ∈ BAZ
,595

an analogue of the discrete alphabet case596

P(F ∩ {Z ∈ BZ}) =
∑
z∈BZ

P(F |Z = z)PZ(z), BZ ∈ BAZ
.597

This is a more direct construction than the usual conditioning on sigma-algebra, which598

we review below for comparison. For a fixed event F ∈ F , the conditional probability P(F |G)599

given a sigma-algebra G ⊆ F is defined to be any G-measurable random variable g : Ω → [0, 1]600

with601 ∫
G
gdP = P(F ∩G), ∀G ∈ G.602

P(F |G) exists and is P-a.s. unique as the Radon-Nikodym derivative of P(F ∩ ·)/P(F ) with603

respect to P, both restricted to G, provided P(F ) > 0; in case P(F ) = 0, we have P(F |G) ≡ 0.604

Now consider G = σ(Z). Since P(F |σ(Z)) is σ(Z)-measurable, it can be factored through Z605

[13, Lemma 5.2.1], that is,606

P(F |σ(Z)) = h ◦ Z,607

for some measurable function h : AZ → [0, 1]. We thus have608

P(F |Z = z) = h(z).609

A subtle issue remains with this Radon-Nikodym construction, namely, the potential pile610

up of exceptional sets E(F ) in the definition of P(F |Z = z). The Radon-Nikodym derivative611
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P(F |Z = z) is well-defined up to an exceptional set E(F ) with P(E(F )) = 0 depending on the612

event F . These exceptional sets may pile up P
(⋃

F∈F E(F )
)
= 1 and in this case we cannot613

define P(F |Z = z) simultaneously for all F ∈ F . An example of such a pathology can be614

found in [9, Page 624]; for more details see [10, Chapter 5.1.3]. Hence, in order to generalize615

the definition of PX×Y |Z as in Eq. (2.2), we need to rule out such pathologies. This motivates616

our second fix: the regular conditional probability.617

Definition A.1 (Regular conditional probability (RCP); [13] Chapter 5.8). The regular con-618

ditional probability given a sub-σ-algebra G ⊆ F is a function f : F × Ω → [0, 1] such that619

1. for each ω ∈ Ω, f(·, ω) is a probability measure on (Ω,F);620

2. for each F ∈ F , f(F, ·) is a version of P(F |G).621

We consider sigma-algebra G = σ(Z) and events of the form F = {X ∈ BX} ∈ F . Define the622

regular conditional distribution of X given Z to be623

P(X ∈ BX |Z = z) := f({X ∈ BX}, ω), ω ∈ Y −1{z}.624

RCP does not always exist in general but it does, for example, [13, Corollary 5.8.1] (i)625

when both (AX ,BAX
) and (AZ ,BAZ

) are standard, (ii) when either is discrete.626

Definition A.2 (Standard measurable space; [2] page 541). A measurable space (Ω,F) is627

called a standard measurable space if isomorphic via a bi-measurable bijection to a Borel subset628

of a Polish space.629

In particular, a standard measurable space (Ω,F) admits a sequence of finite fields Fn ⊆ F ,630

n = 0, 1, · · · such that631

1. increasing fields: Fn ⊆ Fn+1 for all n = 0, 1, · · · ;632

2. generating fields: F = σ (
⋃∞

n=0Fn);633

3. nonempty atomic intersection: an event is called an atom of a field if it is nonempty634

and its only subsets which are members of the field are the empty set and itself. If635

Gn ∈ Fn, n = 0, 1, · · · are atoms with Gn+1 ⊆ Gn for all n, then636

∞⋂
n=0

Gn ̸= ∅.637

In fact, the above three conditions are sometimes taken to be the defining properties of a638

standard measurable space, for example in [14]. We have taken the more restricted definition639

of Arnold [2] to ensure that both regular conditional probabilities and disintegrations exist.640

Now we review disintegrations and show that they coincide with regular conditional prob-641

abilities in our setting.642

Definition A.3 (Disintegration; [2] pp 22). Given a probability measure µ on a product643

measurable space (A × B,A ⊗ B) and a probability measure ν on (A,A), we say that a644

function µ·(·) : A× B → [0, 1] is a disintegration of µ with respect to ν if645

1. for all B ∈ B, a 7→ µa(B) is measurable function from (A,A) to ([0, 1],B([0, 1]));646

2. for ν-a.e. a ∈ A, B 7→ µa(B) is a probability measure on (B,B);647

3. for all E ∈ A⊗ B,648

µ(E) =

∫
A

∫
B
1E(a, b)dµa(b)dν(b).649
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Disintegrations do not always exist, but they do exist ν-essentially uniquely, when (A,A),650

(B,B) are both standard alphabets, see [2, Proposition 1.4.3] and [13, Corollary 5.8.1].651

Returning to our previous setting, PXY Z , PX×Y |Z both have Z-marginals equal to PZ by652

construction and so both admit disintegrations with respect to PZ denoted by (PXY Z)z and653

(PX×Y |Z)z. In this case, it follows from the definitions of RCP and disintegration and their654

existence and essential uniqueness that for PZ-a.e. z ∈ AZ , and all BX ∈ BAX
, BY ∈ BAY

, we655

have656

(PXY Z)z(BX ×BY ) =P(X ∈ BX , Y ∈ BY |Z = z),657

(PX×Y |Z)z(BX ×BY ) =P(X ∈ BX |Z = z)P(Y ∈ BY |Z = z).658

Appendix B. Additive noise. Consider a measurable map T0 : [0, 1] → [0, 1] on the659

unit interval, which is nonsingular with respect to the Lebesgue measure λ on [0, 1] in the660

sense that λ(T−1
0 N) = 0 for any λ(N) = 0. Consider random variable Z with distribution661

PZ = hZλ.662

Let X0 = T0(Z). By Theorem 3.6, we have I(X0;Z) = ∞.663

Now perturb T0 by additive noise664

Tξ : z 7→ T0(z) + ξ mod 1,665

where the noise ξ is independent of Z and follows some distribution Pξ = hξλ.666

For concreteness, we take the uniform noise of amplitude ϵ centered at 0 with density667

hξ =
1
ϵ1[−ϵ/2,ϵ/2].668

Consider X given by the randomly transformed Z via {Tξ}; more precisely,669

P(X ∈ B|Z = z) =

∫ 1

0
1B ◦ Tξ(z)dPξ(ξ).670

In other words,671

(PXZ)z = (RT0(z))∗Pξ, Rα : x 7→ x+ α mod 1.672

If the joint distribution PXZ ≪ PX ⊗ PZ , then673

I(X;Z) =

∫
[0,1]2

f ln fdPX ⊗ PZ ,674

where f(x, z) = dPXZ
dPX⊗PZ

(x, z) = d(PXZ)z
d(PX⊗PZ)z

(x) =
d( 1

ϵ
1[T0(z)−ϵ/2,T0(z)+ϵ/2])λ

dPX
(x).675

In general, f depends on T0. Consider the special case of Bernoulli maps T0 = Ed or676

roations T0 = Rα, both of which preserve λ. Then, PX = λ, f(x, z) = 1
ϵ1[T0(z)−ϵ/2,T0(z)+ϵ/2](x),677

and we have678

I(X;Z) =

∫
[0,1]2

1

ϵ
1[T0(z)−ϵ/2,T0(z)+ϵ/2](x) ln

1

ϵ
1[T0(z)−ϵ/2,T0(z)+ϵ/2](x)dxdz679

=

∫ 1

0

∫ T0(z)+ϵ/2

T0(z)−ϵ/2

1

ϵ
ln

1

ϵ
dxdz680

=ϵ
1

ϵ
ln

1

ϵ
= ln

1

ϵ
.681
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This indicates that the mutual information of the blurred variables does not distinguish be-682

tween very ambiguous map T0 = Ed and non-ambiguous map T0 = Rα.683

Appendix C. Derivation of the discretized mutual information formula.684

Recall that the Shannon entropy of a continuous random variable X is infinite, but there685

is a meaningful notion of differential entropy, which differs from the Shannon entropy of the686

discretization of X by an infinite offset.687

In a similar spirit, we aim to identify such an infinite offset in mutual information I(X;Y )688

with X = T (Y ) so as to extract the meaningful term AT (Y ), which we have termed the689

relative ambiguity of the system (T, Y ).690

Observe that PX∆Y ∆ ≪ PX∆ ⊗ PY ∆ and hence691

(C.1) I(X∆;Y ∆) =
∑
i,j

P(X∆ = i∆, Y ∆ = j∆) ln
P(X∆ = i∆, Y ∆ = j∆)

P(X∆ = i∆)P(Y ∆ = j∆)
.692

Since the densities fX , fY are continuous by assumption in Conjecture C, we have the usual693

Riemman sum approximation694

P(X∆ = i∆) ≈fX(i∆)∆695

P(Y ∆ = j∆) ≈fY (j∆)∆.696

In the linear case T = Ed, the mass fX(i∆)∆ splits evenly into d = |T ′(i∆)| pieces. Since697

T is piecewise C1 expanding |T ′| ≥ 1 by assumption in Conjecture C, we conjecture the key698

approximation699

P(X∆ = i∆, Y ∆ = j∆) ≈ fX(i∆)∆

|T ′(i∆)| , T (i∆) ≈ j∆.700

When T has contracting regions |T ′| < 1, this approximation fails. This suggests a connection701

to the transfer operator formula for expanding maps702

(T̂ f)(y) =
∑

x∈T−1y

f(x)

|T ′(x)| ,703

where the transfer operator T̂ : L1(λ) → L1(λ) is defined to be the Radon-Nikodym derivative704

T̂ f :=
dT∗(fλ)

dλ
.705
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Now we combine these approximations together:706

I(X∆, Y ∆) =
∑
i∆,j∆

P(X∆ = i∆, Y ∆ = j∆) ln
P(X∆ = i∆, Y ∆ = j∆)

P(X∆ = i∆)P(Y ∆ = j∆)
707

≈
∑
j∆

∑
i∆∈T−1j∆

fX(i∆)∆

|T ′(i∆)| ln
fX(i∆)∆/|T ′(i∆)|
fX(i∆)∆fY (j∆)∆

708

=
∑
j∆

∑
i∆∈T−1j∆

fX(i∆)∆

|T ′(i∆)| ln
1

|T ′(i∆)|fY (j∆)∆
709

≈
∫
AY

T̂

[
fX ln

1

|T ′| · fY ◦ T ·∆

]
dy710

=

∫
AX

fX ln
1

|T ′|dx+

∫
AX

fX ln
1

fY ◦ T dx+

∫
AX

fX ln
1

∆
dx711

=−
∫
AX

fX ln |T ′|dx+

∫
AY

(T̂ fX) ln
1

fY
dy + ln∆−1

712

=H(Y )−
∫

ln |T ′|dPX + ln∆−1.713
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