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C. Tyler Diggans ,1,2,3 Erik M. Bollt,1,4 and Daniel ben-Avraham1,2

1Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, New York 13699, USA
2Department of Physics, Clarkson University, Potsdam, New York 13699, USA

3Air Force Research Laboratory: Information Directorate, Rome, New York 13441, USA
4Department of Electrical and Computer Engineering, Clarkson University, Potsdam, New York 13699, USA

(Received 14 December 2021; accepted 9 February 2022; published 22 February 2022)

We present a link-by-link rule-based method for constructing all members of the ensemble of spanning trees
for any recursively generated, finitely articulated graph, such as the Dorogovtsev-Goltsev-Mendes (DGM) net.
The recursions allow for many large-scale properties of the ensemble of spanning trees to be analytically solved
exactly. We show how a judicious application of the prescribed growth rules selects for certain subsets of the
spanning trees with particular desired properties (small world, extended diameter, degree distribution, etc.), and
thus approximates and/or provides solutions to several optimization problems on undirected and unweighted
networks. The analysis of spanning trees enhances the usefulness of recursive graphs as sophisticated models for
everyday life complex networks.

DOI: 10.1103/PhysRevE.105.024312

I. INTRODUCTION

Recursive, finitely articulated models of complex networks
mimic many key properties of real-world networks. At the
same time, these models are amenable to exact analysis,
providing important insights into the nature of everyday life
complex networks. In this article, we revisit the subject of
spanning trees for recursive scale-free nets, and provide a
method for generating all spanning trees, enabling a more
complete analysis of this important set of subgraphs.

The link-based method presented here is applicable
to any recursive generative network model that produces
finitely articulated graphs, but we focus on the well-known
Dorogovtsev-Goltsev-Mendes (DGM) net [1] as a representa-
tive example of this class. This particular family of networks
was introduced in Ref. [1] as a pseudofractal scale-free web
(and was referred to as the PSW in subsequent literature), but
is equivalent to the (u, v)-flower graph [2] when u = 1 and
v = 2. We use our notation Fν (1, 2) to denote the νth gener-
ation of this network [2], for which there are two equivalent
ways to construct it recursively: the link-by-link approach and
the hub-pasting approach. Both recursive growth processes
create the same set of small-world complex networks with
a hierarchical structure, a scale-free degree distribution with
power-law exponent γ ≈ 2.57, and a high clustering coeffi-
cient of C = 4/5, matching several characteristic benchmarks
of real-life complex nets. The recursive nature and the fi-
nite articulation have enabled exact analytical studies of the
statistics of cycles [3], diffusion [4], percolation [5], spectral
properties [6], and minimum dominating sets [7] for this net-
work, shedding light on the analogous properties in real-life
complex nets. Previous work has exploited the hub-pasting
approach of constructing this and similar models to enu-
merate the spanning trees (and calculate the subsequent tree

entropy [8] of the ensembles) [9–12], but additional results
related to spanning trees of these networks are now obtained
by considering a link-by-link approach.

After providing a brief description of both methods of
constructing the original Fν (1, 2) in Sec. II, a few results on
the spanning trees of these graphs will be provided from the
hub-pasting viewpoint in Sec. III, before turning to the link-
based approach. In Sec. IV, we provide an explicit process for
efficiently generating the whole ensemble of spanning trees.
We use the same recursive link-by-link process that creates
the original network, except that the links are assigned an R
or G, which stand for “real” or “ghost,” respectively. The term
ghost indicates that a link is part of the original graph, but
not part of the spanning tree, and we represent these links by
dashed lines in all the figures.

Using the link-based approach, we first verify previous
results for the enumeration of the labeled spanning trees of
Fν (1, 2) in a simplified way and calculate the tree entropy
of the general (u, v) flower for comparison with previous
results. We then show that this approach finds added utility in
solving optimization problems on undirected and unweighted
networks of this type. While the well-known minimum span-
ning tree (MST) problem on weighted networks has garnered
a lot of attention [13], because of its relevance to the famed
traveling salesman problem [14,15] and its useful applica-
tions in data science [16–22], the MST is not clearly defined
for unweighted networks. Common generalizations do exist,
however, for the undirected and unweighted case includ-
ing the dense, sparse, and minimum routing cost spanning
tree problems, as well as many other lesser studied varia-
tions [23–34]. The solutions to these problems are relevant
to an ever widening diversity of applications from optical
network design [35,36] to networked oscillator synchroniza-
tion [37]. We show that while these combinatorial problems
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FIG. 1. Two equivalent methods of constructing Fν (1, 2) from
Fν−1(1, 2): (a) The first three generations of Fν (1, 2) are obtained
by adding a path of length 2 in parallel to each link from the previous
generation and (b) the construction of F3(1, 2) is obtained by identi-
fying the hub vertices of u + v = 3 copies of F2(1, 2); the three nodes
resulting from the hub identifications (the new hubs) are indicated by
dashed circles for clarity.

are often NP-hard in general [23,24,35], for recursive, finitely
articulated networks, such optimal spanning trees (and indeed
the whole ensemble of spanning trees) can now be created
alongside the original network with minimal overhead. We
conclude this article by describing a process for selecting such
optimal spanning trees through imposing restrictions on the
application of the link-based rules, and provide an interesting
open problem that we hope this work sheds light on.

II. CONSTRUCTING Fν(u, v)

Starting from an initial seed graph of the complete graph on
two vertices, i.e., K2, in each generation of the growth process,
we replace each link from the previous generation with a pair
of paths of length u and v, in parallel, between the nodes
of the original link. For the case of u = 1 and v = 2, this is
equivalent to just adding a new path of length two in parallel
to the existing link as shown in Fig. 1(a), which illustrates the
first three generations of Fν (1, 2).

For this case, it follows that for each link from the previous
generation, one new node is added to the network, while w =
u + v = 3 links replace each old link in the new generation.
Thus, the size (total number of links), Mν , and order (total
number of nodes), Nν , of the νth generation are given by Mν =
wν = 3ν and

Nν = w − 2

w − 1
wν + w

w − 1
= 1

2
3ν + 3

2
, (1)

where detailed derivations through recursion relations are pro-
vided elsewhere [1,2,38].

Alternately, one can construct Fν (1, 2) using a hub-pasting
approach by taking w = u + v = 3 copies of Fν−1(1, 2) and
identifying one hub vertex (those of highest degree) on each
copy with another hub vertex on each other copy resulting in
Fν (1, 2). This process is shown in Fig. 1(b) for the creation
of F3(1, 2) by hub-pasting three copies of F2(1, 2), where the
identified hub nodes are indicated by dashed circles.

Prior to exploring the main contribution of this work within
the context of the link-by-link approach, we first mention

(a)

(b)

FIG. 2. As with the regular flower graph, there are two methods
of constructing spanning trees of (1,2)-flower graphs: (a) The hub-
pasting approach (here requiring an additional step) entails choosing
1 + 2 = 3 elements from the previous generation of spanning trees
and identifying pairs of hub nodes as shown; this, however, results in
a single cycle (bolded), which must be broken by removing one of its
links. (b) The link-by-link approach involves applying one of three
rules to each link in each generation recursively. Each sequence of
valid rule operations results in a unique spanning tree, allowing for
the enumeration and generation of all spanning trees in the ensemble.

two points that are best described within the hub-pasting
paradigm.

III. HUB-PASTING CONSTRUCTION AND
THE TYPICAL DIAMETER

For generating spanning trees of Fν (1, 2), one can begin by
selecting (with replacement) three members from the ensem-
ble of trees from generation ν − 1 and identifying them at the
vertices that would be considered hubs of Fν−1(1, 2) as shown
in Fig. 2(a). We will use the italicized version of the word hub
to indicate these hub nodes of the original network when in
reference to a spanning tree, whether those nodes in fact have
the largest degree in the tree or not. This pasting process is
done explicitly by temporarily adding a link between the hub
vertices from adjacent spanning trees (chosen from the pre-
vious generation), and then contracting the graph along these
temporary links to identify the three pairs of hub nodes into
the hubs for the new generation. Due to the connectedness of
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the three individual spanning trees, the identification process
will form a single cycle through the new hub nodes (shown
in bold). To obtain a spanning tree of the new generation,
remove one of the links from this cycle. The ambiguity of this
link removal step complicates the enumeration of spanning
trees, which led to a more arduous accounting process used
in previous work [9]. However, this simplified description
provides insight into the typical diameter of the spanning trees
of Fν (1, 2).

In Ref. [3], the typical cycle length of Fν (1, 2) was shown
to scale as 2ν in the thermodynamic limit of large graphs. This
implies that the typical spanning tree of Fν (1, 2) contains a
path having length on the order of 2ν . Given that the maximum
diameter of any tree is also of order 2ν (see Sec. V), then
the typical spanning tree must have a diameter of order 2ν .
It is interesting that while the (1,2) flower is a small-world
network, the diameter of the typical spanning tree of this
network scales as ∼2ν ∼ N log3 2 [where the order of Fν (1, 2)
from Eq. (1) is N = 1

2 3ν + 3
2 ∼ 3ν] and is therefore not small

world. However, Sec. V shows how to select a small-world
spanning tree from the (typically non-small-world) ensemble.

Additionally, we note that the “copy machine” algorithm
outlined in Appendix C of Ref. [4], which is based on the
hub-pasting approach, can be adapted to efficiently generate
adjacency matrices of spanning trees of Fν (1, 2) in a manner
similar to what was outlined for ensembles in Ref. [38].

IV. LINK-BY-LINK CONSTRUCTION
AND TREE ENTROPY

The link-by-link approach to spanning tree construction
will mirror the general link-by-link construction process of
the recursive net, while keeping track of two different kinds
of links: “real” links (R) that belong to the spanning tree, and
“ghost” links (G) that belong to the original network, but not
the spanning tree.

For Fν (1, 2), in each generation, an R link is either replaced
by a G link and two R links [rule No. 1 in Fig. 2(b)], or the
R link is replaced by an R link and a path of one R link and
one G link in either order (rule No. 2). Additionally, in the
process going forward, a G link is always replaced by a G
link and a path of one R link and one G link (rule No. 3).
Other recursive scale-free network models such as the generic
(u, v)-flower graph [2] or a similar construction described in
Ref. [39] may require a larger set of rules with more cases
to consider, making the subsequent analysis more tedious, but
the process is, in essence, the same.

Denoting by Rν (Gν) the number of real (ghost) links in
generation ν, the construction rules in Fig. 2 imply

Rν+1 = 2Rν + Gν, R0 = 1,

Gν+1 = Rν + 2Gν, G0 = 0, (2)

leading to Rν = 1
2 (3n + 1) and Gν = 1

2 (3n − 1). This is con-
sistent with the fact that Rν = Nν − 1 and Gν + Rν = Mν ,
where Mν and Nν are as defined in Eq. (1).

Each sequence of link updatings results in a single unique
spanning tree; moreover, each updating rule is uniquely re-
versible. Finally, the reverse rules applied (in an appropriate
manner) to an arbitrary spanning tree of Fν (1, 2) generate a

spanning tree of Fν−1(1, 2) (i.e., no loops are created, and nei-
ther is the tree disconnected by the reverse rule application).
It follows that there is a one-to-one correspondence between
spanning trees and valid generating sequences of rules, and
therefore these rules generate the complete set of labeled
spanning trees.

This approach enables an independent verification of the
number of labeled spanning trees of generation ν for the
DGM net [9]. Denote the number of spanning trees by Tν , and
consider the recursion

Tν+1 = (3Rν · 2Gν )Tν, (3)

where the term in parentheses accounts for the 3 (2) ways of
updating R (G) links. Together with the expressions for Rν and
Gν and the initial condition of T0 = 1, we get

Tν =
(

3

2

) ν
2

6(3ν−1)/4.

In terms of the order of the graph N ,

Tν =
(√

3

2

)log3(2N−3)

6( N
2 −1) ∼ 2C

6
NC

√
6

N
,

where C = [1 − log3(2)]/2 is a constant. Although a different
numbering convention for the generation was used here, this
confirms the result found in Ref. [9].

For comparison, the total number of all labeled trees of
order N is NN−2 [40]. Amusingly, this functional dependence
of Tν with N is closer to that of unlabeled trees of order N [41].

For further comparison, this approach can be adapted to
the general (u, v) flower by letting w = u + v. The recursion
for the enumeration of all labeled spanning trees [analogous
to Eq. (3)] is then Tν+1 = wRν · (uv)Gν Tν with T0 = 1, since
there are w ways that any R link can be propagated (the
spanning trees of a w cycle) and uv ways that any G link can
be propagated (one link in each path having lengths u and v

must be a ghost link). A recursion similar to Eq. (2) then gives
Rν = w−2

w−1wν + 1
w−1 and Gν = 1

w−1wν − 1
w−1 , which leads to

the closed-form solution

Tν = w
w−2
w−1 ( wν−1

w−1 + ν
w−2 ) · (uv)

1
w−1 ( wν−1

w−1 −ν).

This gives the tree entropy [8] of the (u, v) flower as

lim
N→∞

ln Tν

N
= ln(w)

w − 1
+ ln(uv)

(w − 1)(w − 2)
,

So, while the (1,2) flower indeed has a small tree entropy
when compared with other networks having an average degree
of 〈k〉 = 4 as described in Ref. [9], it is also true that larger
values of w will result in smaller tree entropies tending toward
zero in the limit of large w, although the average degrees of
flower graphs will tend toward 〈k〉 = 2 as w → ∞. Finally,
we note that the tree entropy for the w cycle is simply ln(w)

w
,

meaning the tree entropy of the flower graphs is increased by
an additional term that is quadratic in 1

w
due to the overlapping

w cycles that define them.
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V. SPANNING TREE SUBSETS HAVING OPTIMAL
CHARACTERISTICS

In many applications of spanning trees, one is not con-
cerned with simply the number of trees, but one seeks an
optimal spanning tree for some purpose, e.g., minimal branch-
ing vertex spanning tree (MBVST), dense spanning tree
(DST), etc. Within the process outlined, due to the finite
articulation of the models being addressed, large-scale prop-
erties can be defined in terms of recursion relations allowing
such optimal trees to be selected from various subsets of the
ensemble of spanning trees that share certain properties. This
selection is done by restricting how the rules are applied,
which alters the recursions that define these properties.

To illustrate, consider the maximum diameter of any span-
ning tree from the ensemble in generation ν, which we denote
by smax

ν . If rule No. 1 is applied to all R links, then for each
R link in the path that defined the diameter of the previous
generation, we will have two R links in the path that con-
tribute to the diameter of the new generation. At least for
generation ν > 2, there will also be two additional G links
that will enable the diameter to be extended further, meaning
we have the recursion smax

ν = 2smax
ν−1 + 2, with initial condi-

tion smax
2 = 5, leading to the formula smax

ν = 7 · 2ν−2 − 2. So,
applying rule No. 1 to all R links (excluding rule No. 2
entirely) leads to the diameter scaling ∼2ν , and in fact, the
application of any finite proportion of rule No. 1 to R links will
result in a non-small-world spanning tree of these small-world
networks.

These maximal diameter spanning trees are solutions to
both the minimal branching vertex and the sparse spanning
tree problems (MBVST and SST, respectively) [28,33–35].
So by applying rule No. 1 to all R links and reducing the
ambiguity of rule No. 3 by choosing the R link to extend
the diameter whenever possible (e.g., choosing the R link to
be adjacent to nodes with smaller degree), a member of the
subset of spanning trees with maximal diameter is obtained
[see Fig. 3(a) for one of the subset of eight such spanning
trees of F4(1, 2) having smax

4 = 26 that are in fact solutions to
the MVBST and SST problems].

Contrast this spanning tree with a spanning tree that is
created by never applying rule No. 1, which is a small-world
spanning tree since the diameter then scales as the logarithm
of the order. In the class of trees where only rules No. 2 and
No. 3 are applied, if one chooses R links to be adjacent to
the largest degree node (breaking ties randomly), then one
obtains a member of the subset of spanning trees with the
smallest diameter, i.e., a solution to the dense spanning tree
problem, which has a minimal Wiener index [30,33,42] [see
Fig. 3(b)]. In particular, we obtain a spanning tree having the
minimum diameter, defined by the recursion smin

ν+1 = smin
ν + 1,

since the ambiguity of rule No. 2 prevents any increase in
the span, but there is one ghost link in each generation that
must add to the span. The initial condition of smin

1 = 2 leads to
smin
ν = ν + 1, meaning in terms of the order of the graph, we

have smin
ν ∼ log3(N ) in the limit of large graphs.

Letting a parameter p control the proportion of instances
(when applying rules No. 2 and No. 3) where the R link is
attached to the largest degree node, the tree in Fig. 3(b) is
a representative of the set created using p = 1, and the tree

(a)

(b)

(c)

FIG. 3. Representative examples of subsets of spanning trees that
can be selected from within the set of spanning trees of Fν (1, 2):
(a) using rules No. 1 and No. 3 only, where the ambiguity of rule
No. 3 is reduced by maximizing the diameter when possible (break-
ing ties randomly) resulting in a solution to the MBVST problem;
(b) using rules No. 2 and No. 3 only with p = 1 resulting in a solution
to the DST problem; and (c) using rules No. 2 and No. 3 only with
p = 0 leads to a balanced small-world tree with a more homogeneous
degree distribution that is a candidate for a solution to the k-MBVST
problem.
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in Fig. 3(c) is representative of using p = 0. The parame-
ter p then alters the degree distribution while retaining the
small-world property, and values of p ∈ (0, 1) then define
probability distributions over this subset of trees having small
Wiener indices, providing a useful tool for approaching the
minimal k-branching vertex problem (k-MBVST) [32,34].

VI. CONCLUSION

In summary, a general approach for obtaining spanning
trees of recursive, finitely articulated graphs has been pre-
sented through the example of the DGM net, and basic
properties of the ensemble of all spanning trees, such as the
typical or maximum diameter and the number of labeled trees
are obtained exactly. Additionally, one can now select a span-
ning tree from subsets of the ensemble of spanning trees that
share desirable properties such as small-world features, cer-

tain degree distributions, and a maximal or minimal diameter,
effectively solving many optimal spanning tree problems and
approximating solutions to others on such finitely articulated
models.

Perhaps the most interesting related open question is to find
the number of unlabeled spanning trees of recursive finitely
articulated graphs. While this is, in general, an intractable
problem, we hope that the recursive properties of these graphs
might provide a convenient foothold to approach such a prob-
lem.
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